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Abstract

Multilingual neural machine translation
(MNMT) learns to translate multiple lan-
guage pairs with a single model, potentially
improving both the accuracy and the memory-
efficiency of deployed models. However, the
heavy data imbalance between languages
hinders the model from performing uniformly
across language pairs. In this paper, we
propose a new learning objective for MNMT
based on distributionally robust optimization,
which minimizes the worst-case expected
loss over the set of language pairs. We
further show how to practically optimize this
objective for large translation corpora using
an iterated best response scheme, which is
both effective and incurs negligible additional
computational cost compared to standard
empirical risk minimization. We perform ex-
tensive experiments on three sets of languages
from two datasets and show that our method
consistently outperforms strong baseline
methods in terms of average and per-language
performance under both many-to-one and
one-to-many translation settings.'

1 Introduction

Multilingual methods that process multiple lan-
guages with one single model have gained favor
across a variety of NLP tasks (Firat et al., 2016;
Ha et al., 2016; Johnson et al., 2017; Devlin et al.,
2019; Aharoni et al., 2019; Conneau et al., 2020)
because (1) training and deployment of one mul-
tilingual model is more computationally efficient
compared to maintaining one model for each lan-
guage (Arivazhagan et al., 2019), (2) training mul-
tilingually can improve accuracy, particularly for
low-resource languages (LRLs) (Zoph et al., 2016;
Neubig and Hu, 2018; Pires et al., 2019).
However, in multilingual training, the amount
and type of training data available varies greatly
*Equal contribution.

'Our code is available at https://github.com/
violet-zct/fairseg-dro-mnmt
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Figure 1: Illustration of different training distributions
where the training distribution of the three languages
fr, zh and en is (0.1,0.3,0.6). Contours represent
different radii of the x2-ball around p'®". The blue
points are the tempered distributions described in §2.1.

fr

across languages. Because most models are trained
using empirical risk minimization (ERM), which
minimizes the average training loss on the train-
ing set, high-resource languages (HRLs) with large
amounts of data contribute to the majority of the
training objective. When model capacity is limited,
this results in trade-offs or decreased performance
on some languages, particularly LRLs (Arivazha-
gan et al., 2019; Wang et al., 2020b, 2021). To
better control this trade-off, a common practice
is to balance the training distribution by heuristic
oversampling of LRLs (Johnson et al., 2017; Neu-
big and Hu, 2018; Arivazhagan et al., 2019).

Although simple data balancing can improve the
performance on LRLs significantly, it is far from
optimal. First, the sampling hyperparameters need
to be adjusted for different datasets. Second, the
use of simple heuristics does not consider the inher-
ent level of difficulty in learning each language, the
similarity between languages in the multilingual
dataset, and other factors that affect cross-lingual
transfer. Because of this, previous work has indi-
cated the importance of learning strategies that are
explicitly tailored for each multilingual learning
scenario (Wang et al., 2020a).

In this paper, we propose a new learning proce-
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dure for multilingual translation that automatically
adjusts the training distribution of different lan-
guages using distributionally robust optimization
(DRO) (Ben-Tal et al., 2013a; Duchi et al., 2016).
In constrast to ERM, DRO casts learning as a game
between the learner and an adversary, where the
learner picks a model while the adversary picks the
hardest data distribution for that model within an
uncertainty set Q of potential distributions we wish
to perform well on (which typically contains the
training distribution Fj).

We first demonstrate how to apply DRO to mul-
tilingual training by letting the adversary choose
the relative weights of individual language pairs
in the training objective. However, we empirically
find that naively applying existing methods to mul-
tilingual learning yields inferior results to ERM,
mostly because (1) standard DRO objectives tend
to be overly conservative and only take into ac-
count language pairs with very large losses and
(2) existing optimization algorithms for DRO es-
sentially reweigh the gradients of examples in a
mini-batch, which implicitly changes the scale of
the learning rates. This hurts modern NLP models
like Transformers (Vaswani et al., 2017) that are
highly sensitive to learning rate schedules.

To remedy this, we propose both a novel training
objective and a corresponding optimization algo-
rithm amenable to the multilingual setting. Our
objective is a variation on Group DRO of Sagawa
et al. with a more flexible uncertainty set, parame-
terized by the y2-divergence. To efficiently solve
the min-max game, we propose an iferated best re-
sponse scheme that, at each epoch, re-samples the
training data according to the worst weighting for
the current model parameters, and then runs ERM
training on the re-sampled dataset. Our method—
which we refer to as y-IBR —incurs negligible
additional computational cost compared to ERM.

While this method applies to essentially any mul-
tilingual task, we specifically demonstrate its bene-
fit on three sets of language pairs from two multilin-
gual machine translation datasets. We experimen-
tally test these choices by comparing several objec-
tives and optimization algorithms, and results show
that our method consistently outperforms existing
DRO procedures and various strong baselines.

2 Preliminaries

Notation. Throughout this paper, n denotes the
training set size and d the number of parameters

of the model. For m € N, A™ denotes the m-
dimensional simplex, i.e. A™ = {q € R™,¢q; >
Oand ), ¢; = 1}. The data lies in X' x ) where
(x,y) € X x Y consists of a source and tar-
get sentence pair with x = (x1,...,xr,) and
y = (¥1,---,¥Ly). The function £ : (X x )) x
R? — R refers to the loss. We consider maximum-
likelihood estimation, i.e. for a target sentence y
with Ly tokens, we define

1 &

loxyit) = - ;logp(yz\x,y@, 0)

2.1 Multilingual Machine Translation

In contrast to bilingual machine translation, which
translates from a single source language S to a tar-
get language 7', multilingual neural MT (MNMT)
learns a single model to translate between NV lan-
guage pairs {(S1,71), ... (Sn,Tn)}. The training
data Dyyain is the concatenation of the N parallel

datasets, i.e. Diyain = [D1; D2, -+ ; Dn]. We can
then define the probability over each language pair
ptrain € AN ag pirain = 2:l We now describe

2510500
two common training objze:Jcti\ies for MNMT.
Empirical Risk Minimization (ERM). The
simplest and most common approach for MNMT
is to minimize the empirical loss over data points,
which we will refer to as ERM. More precisely, we
define the average loss on a parallel dataset D; as

‘5 Z Ux,y;0).

il (x,y)€D;

ERM for multilingual models then corresponds to
simply minimizing the loss over D, i.e. over all the
aggregated parallel sentence pairs. This yields

L(0; D;) =

§ERM € argmin £(0; D) = Zpﬁrai”C(Q; D;).
0 i<N
Classical results in learning theory guarantee that,
under mild assumptions, as n goes to infinity, §ERM
will show good performance on test sets with the
same distribution as . However, this does not
guarantee that our model will perform adequately
on individual parallel datasets. To remedy this
issue, several works propose varying the sampling
distribution—or equivalently the weighting of the
parallel datasets in ERM—in order to encourage
more uniform performance across language pairs.

Weighted Risk Minimization and Sampling
Strategies. The amount of training data can vary
significantly across language pairs. As a result,
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in ERM training—i.e. optimizing for the average
loss across sentence pairs—HRLSs contribute most
of the objective, resulting in poor performance on
LRLs. Balancing the objective—or equivalently,
the usage of training data—between HRLs and
LRLs is important to maintain good performance
across all languages (Devlin et al., 2019; Arivazha-
gan et al., 2019). A commonly adopted approach
in multilingual training is femperature-based sam-
pling (Arivazhagan et al., 2019; Conneau et al.,
2020) where the probability of sampling data from

D; is proportional to its data size exponentiated
|Di | 1/
35105117
ferred to as ERM with 7 in §4). This is equivalent

to optimizing the re-weighted objective

by a temperature term 7, i.e. p;; = (re-

L(0:D) = priL(0;D;).
i<N

As a result, 7 = 1 corresponds to ERM where
most of the contribution comes from the HRLs and
T = oo corresponds to sampling language pairs
uniformly at random, i.e. with data from LRLs be-
ing over-sampled. This approach comes with three
major drawbacks (1) 7 is an extra hyper-parameter
that requires tuning for each MNMT instance to
balance the performance across both HRLs and
LRLs, (2) this heuristic sampling method does not
consider the training dynamics of each language
and how the optimal sampling distribution might
evolve during the training process and (3) the pa-
rameterization of p; is not only very constrained
(essentially one degree of freedom), it is also only
a function of the quantity of training data, which is
too rigid to achieve the desired performance.

To resolve some of the above issues, the recently
proposed MultiDDS (Wang et al., 2020a) uses a
gradient-based meta-learning approach to learn the
sampling distribution over language pairs to max-
imize gradient similarity with a multilingual de-
velopment set. However, due to the necessity to
calculate and store extra gradients, their approach
comes at an increased computational and memory
cost. In contrast, x-IBR enjoys the same compu-
tational complexity as ERM, and as we show in
experiments it also largely outperforms MultiDDS.

2.2 Distributionally Robust Optimization

In contrast to ERM and related sampling strategies
which optimize for a fixed training distribution,
DRO aims to find a model 6 that performs well on
an entire collection of potential test distributions Q

(the uncertainty set). Formally, we wish to

minimize sup Ex woll(x,y;0)]. (1)
0 0e0 ()~ )]

Originating from operations research (Delage
and Ye, 2010; Ben-Tal et al., 2013a,b; Bertsimas
et al., 2018), DRO is a promising way to tackle
robustness in a variety of machine learning and
NLP problems (Hashimoto et al., 2018; Oren et al.,
2019; Levy et al., 2020).

We present here a recent variant, Group DRO,
developed by Sagawa et al. (2020) which incor-
porates additional information about the data dis-
tribution to define more meaningful uncertainty
sets. Abstractly, this method assumes a collec-
tion of distributions over subpopulations { Py} 4eg
such that the training distribution is a mixture
of these subpopulations. Importantly, it assumes
that this group structure is observed. The Group
DRO objective then minimizes the worst-case loss
over these groups, which is equivalent to (1) with
Q={>yegtPy:a€ Al91}, or equivalently, all
possible mixtures of the distributions over subpop-
ulations. In MNMT, the N language pairs at our
disposal naturally correspond to groups; thus the
Group DRO objective can be defined as

LCPRO(9: D) = max L(6; D;). 2)
1€[N]

In other words, Group DRO wishes to find a model
0 that performs well for the worst language pair.
Oren et al. (2019) propose a related but less con-
servative objective, CVaR-Group DRO at level
a € [0,1] which, considers instead the average
of the [aN'| largest group losses.

3 Methods for Distributionally Robust
Multilingual Learning

As we previewed in §2, Group DRO is a natural
objective for the multilingual setting. However, in
experiments we found that naively applying exist-
ing DRO objectives fails to achieve performance on
par with strong baselines, often improving results
on language pairs with high losses but sacrificing
too much performance overall. Our main contribu-
tion is showing how to successfully apply DRO to
the MNMT setting, and to the best of our knowl-
edge, our work is the first to do so. To that end, our
methodological contributions are two-fold: (i) we
first describe the shortcomings of the Group DRO
objective (2), then propose a related training crite-
rion that addresses these issues, (ii) we describe an
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optimization algorithm to solve the min-max opti-
mization problem that is amenable to the MNMT
setting.

3.1 x?-Group DRO

Shortcomings of Group DRO. A weakness of
the objective (2) is that apart from the language pair
with largest loss, the objective does not take into
account the value of the loss on the other language
pairs. To illustrate this, consider this example with
N = 3 language pairs and suppose that there exists
two parameters ¢ and 6 with the following loss:

L(01;D1) =0.1, L(01; D2) = 0.1, L(01; D3) =1.1
[,(92; D1) = 1.07 5(02; D2) = 1.0, £(02;D3) =1.0

We have that £°PRO(9;;D) = 1.1 but
LEPRO(h,: D) = 1.0. Consequently, the Group
DRO objective will prefer 65 to 6, while clearly
one would pick 6; over #, in most practical cases.
The aforementioned CVaR-Group DRO also ex-
hibits this behavior and ignores the values of the
language pairs not in the largest a-fraction.

To address this issue, let us rewrite the objective

LEPRO(9; D) = ma L(0; D),
(6; D) qrgAggi;Vq( )

where the equality holds because the optimal
weighting just puts all the mass on the language
with largest loss. A natural way to make the objec-
tive less conservative is to instead take the maxi-
mum over a subset of the simplex i/ C AN . This
leads to the following objective

£Y(0; D) = sup Z @i L(0; D;). 3)

€U ;N

Different choices of I/ will yield different ob-
jectives with different robustness properties. Note
that this is a general formulation as & = {pt™i"}
reduces to the ERM objective, while U, = {q :
llg/p™" || < 1/a} corresponds to the CVaR-
Group DRO of Oren et al. (2019). We would like to
choose U such that optimizing this objective results
in models with better performance on language
pairs with large losses (typically LRLs) without
significant degradation of average performance.

To this end, we turn to a common and flexible
choice for U: f-divergence balls (Csiszar, 1967) of
radius p > 0 around p'™", namely

Ul == {q: Ds(q,p"™") < p}, 4)

where Dy(q,p) = > <y pif(qi/pi). In partic-
ular, we propose using the y2-divergence which
corresponds to f(t) = (¢t — 1)® and define
X*(a:p) = 3> pi(qi/pi — 1)* with its corre-
sponding uncertainty set Z/{;CQ. The x2-divergence
has a long history (Ben-Tal et al., 2013b) and pre-
vious work shows that minimizing the robust loss
with the y?-uncertainty set enjoys favorable statis-
tical properties such as optimally trading-off bias
and variance (Duchi and Namkoong, 2019) or guar-
anteeing robustness and fairness (Hashimoto et al.,
2018; Duchi and Namkoong, 2020). We refer to the

2

objective LY as the x2-Group DRO. Going back
to the toy example, setting p = 0.1, yields that
o (01; D) = 0.64 while o (62: D) = 1.0.
With the y2-uncertainty set, the objective rightly
prefers 61 to 62 and takes into account all the losses
and not only the largest. We further confirm these
intuitions and show in §4 and §5 that this is a suit-
able choice of uncertainty set for MNMT.

3.2 Optimization algorithm

Desiderata of the optimization algorithm.
Minimizing the objective (3) effectively corre-
sponds to a min-max optimization problem. Even
in the relatively simple convex-concave setting,
these are generally harder to solve than convex
minimization problems. Recall that we want to
minimize sup Z ¢ L(0;D;). (5)

x*(¢.p"™")<p <N

Due to the architectures we consider in MNMT,
we wish for an algorithm that effectively changes
the sampling distribution over mini-batches of data
instead of importance-weighting the gradients. In-
deed, standard MT architectures such as the Trans-
former (Vaswani et al., 2017) are extremely sensi-
tive to learning rate schedules and we empirically
observe that importance-weighting the gradients
result in poor performance.

The canonical way to solve min-max problem is
via primal-dual methods (PD) (Nemirovski et al.,
2009) (see background in Appendix B), where at
each step ¢, one keeps two vectors (6;,¢q;) and
alternates between a gradient descent step on 6,
and a gradient ascent step on ¢;. One can per-
form these updates efficiently as they only require
unbiased stochastic gradient estimate of the loss
w.r.t. 8; and ¢;. To obtain unbiased gradient es-
timate of the loss w.r.t. 8;, one either has to, at
each step, sample a mini-batch of examples from
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Multinomial(q;) and return the gradient of the loss
or sample a mini-batch from Multinomial(pti")
and importance-weight the gradient.

As previously mentioned, the latter is not suit-
able for Transformer-type architectures. The for-
mer option is not ideal as it is more convenient
for an algorithm to decide the sequence of mini-
batches every epoch rather than every optimizer
step as this integrates much more smoothly with
data loaders in deep learning frameworks, espe-
cially when doing distributed training. As a result,
we posit that primal-dual algorithms are not an ad-
equate choice for optimizing DRO-type objectives
in our setting. We further discuss this point in §5.

To circumvent this issue, we consider a different
optimization algorithm which we refer to as iter-
ated best response (IBR), where, instead of doing a
single gradient descent and ascent step, we iterate
between (approximately) solving the maximization
(resp. minimization) on ¢ (resp. 6), while keep-
ing 6, (resp. ) fixed. This is similar in spirit to
algorithms in the game theory literature where indi-
viduals play the optimal strategy (best response) as-
suming everyone else’s strategies remain constant.
Under some mild assumptions, this procedure con-
verges to the equilibrium of the game (Roughgar-
den, 2016). Formally, we alternate between

0!t + argmin fﬁ 0; D; (6)
&1 Ei:q (6; Dy)

¢!« argmax Zqiﬁ(HtH;Di). @)
g:x2(gptrain)<p

Practical implementation. As we show in Ap-
pendix A, given the values of the loss, the
g-update (7) is computed to accuracy € in
O(Nlog(1/e)) steps. Indeed, by taking the
dual (Boyd and Vandenberghe, 2004) of (7), we
transform the N-dimensional problem into a one-
dimensional root-finding procedure over the dual
variable which we efficiently solve with a bisection.
We provide the details in Appendix A. Note that
computation cost is negligible compared to com-
puting the gradient of the loss. We implement the
f-update of (6) by running a training epoch on a
re-sampling of the training set D according to ¢‘**.

To compute the loss values { £(6¢; D;) }i<n, nec-
essary to perform the g-update, one needs to com-
pute the loss 4(x,y;0;) for every single example
(x,y) € D. This is prohibitively expensive to
compute at every epoch. To avoid this, we keep
track of the (approximate) historical values of the

Algorithm 1 Iterated Best Response

1: Input: N parallel datasets D1, ..., Dy, radius of the un-
certainty set p, number of epochs 7', learning rate sched-
ule {n¢,; }e<7,j<n, baseline loss {b; };< N, EMA parame-
ter A € [0, 1].

2: Set pi™" < [Di|/(32;|D;).

3: Set ¢° < p™" and L; < 0 fori € [N].

4: Tnitialize 6°.

S5:fort=0,...,7T—1do

6:  {Construction of D(g")}

7: Setn(q'): + [N -q!].

8 Sample n(q"); data points from D; and add them to

D(q") fori € [N].
9:  D(q") «+ Shuffle(D(q")).

10:  {6#-and E—update}

11:  for (x;,y;) € D(¢") do

12: Let k be the language pair of (x;,y;).

13: 0% %17 — i, iVE(x4,y5;007 7).

14: Ek(—)\~€(X]',yj‘;9t’j71)+(1—)\)~Zk.

15:  end for

16:  {g-update}

17: gt ArgmMAax,. 2 g ptainy ;o @i (27, - bi)

18: G110 ghIPEO],

19: end for
20: Return 7°°.

token-level loss £, on each language pair £ with
an exponential moving average (EMA) (see line 14
in Algorithm 1). We precisely describe our imple-
mentation in Algorithm 1. We see that it respects
our desiderata and comes at no computational cost.
In §5, we compare primal-dual and iterated best
response for various uncertainty sets.

Subtracting the baseline. Oren et al. propose
subtracting a per-group scalar—which we refer to
as a baseline—to each group loss before taking the
maximum over gq. They learn this baseline using
a generative bi-gram model on each group. Re-
call that §ERM is the parameter we obtain when
we minimize the average loss and define 6™ when
optimizing L. In this work, we propose using
b; = L(OFRM: D,) or b; = L(67; D;). Intuitively,
the baseline corresponds to the minimum perfor-
mance we wish for our model on the given group
and as such the loss obtained with ERM and its tem-
perature variants are natural candidates. We show
in §5 that these yield significant improvement and
conveniently make our method more robust to the
choice of p. We leave different (potentially learned)
choices of baseline to future work.

4 Experiments

4.1 Datasets

We evaluate the proposed method on two datasets:
the 58-languages TED talk corpus (Qi et al., 2018)
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aze bel

glg

slk tur rus por ces

Method 0.004 0006 0013 0081 0240 0274 0243 0136 V8
ERM (r=1) | 14.11 20.14 31.94 3247 27.18 25.68 4526 3026 28.38
any—en | MuliDDS | 14.97 20.60 3170 32.54 2656 2540 44.67 2979 28.8
y-IBR 1468 1998 31.89 33.16 27.76 2608 4533 30.76 28.71
ERM (r=1) | 7.61 12.68 2479 2524 1679 20.80 40.84 2293 21.46
en—sany | MuliDDS | 8.04 15.04 26.60 25.19 1632 2044 4047 2293 21.88
v-IBR 849 1384 2577 2609 1678 21.59 4138 2370 22.21
bos mar hin mkd ell bul fra kor
Method 0.007 0017 0033 0045 0237 0308 0340 0363 A8
ERM (r=1) | 2479 12.12 23.76 3432 39.17 40.17 41.08 20.19 29.45
any—en | MultiDDS | 26.39 12.62 24.62 34.65 3846 3971 40.60 19.46 29.56
Y-IBR 25.12 1252 2442 3447 3942 4024 4098 2072 29.74
ERM (r=1) | 1629 559 16.83 2642 3322 3579 39.68 9.09 22.86
en—any | MuliDDS | 17.96 5.61 17.44 2598 3272 3528 3957 896 2294
Y-IBR 1733 559 1690 28.02 33.82 3637 4035 913 2344

Table 1: BLEU scores of the best ERM model (among 7=1/5/100, 7 = 5/100 are significantly worse than 7 = 1,
thus we omit these results), MultiDDS (Wang et al., 2020a) and our approach on the test sets of the TED dataset.
Bold (resp. underlined) values indicate the best (resp. second best) performance for each language pair. Values
under the language codes are the proportion of the language in the training data.

any—en en—any
Method deu fra tam tur Avg deu fra tam tur Avg
ERM (7=1) 2998 3032 1581 19.85 2399 | 23.82 33.09 928 1329 19.87
ERM (7=5) 29.25 31.60 1631 21.89 24.76 | 22.67 32.36 10.04 16.09 20.29
ERM (7=100) | 28.75 30.71 1580 22.44 2443 | 22.02 31.65 1041 1644 20.13
MultiDDS 2931 3141 16.12 2143 2457 | 2299 31.55 10.09 1451 19.79
x-IBR 29.67 31.75 1648 22.33 25.06 | 23.45 33.16 10.73 15.53 20.72

Table 2: BLEU scores of the ERM (7=1/5/100), MultiDDS and our method on the test sets of the WMT dataset.
The ratios of training data of de, ft, ta and tr are (0.499, 0.359, 0.102, 0.039).

and WMT datasets. For the TED corpus, we evalu-
ate on two sets of languages with varying levels of
language diversity following Wang et al. (2020a):
(1) related includes 4 LRLs (aze, bel, glg, s1k)
and their corresponding related HRL (tur, rus,
pos, ces). (2) diverse includes 8 languages with
varying amount of data without considering linguis-
tic similarities (bos, mar, hin, mkd, ell, bul,
fra, kor)?. Both of the related and diverse sets
have around 760K sentences of training data.

For WMT, we consider 2 HRLs (German:deu
and French:fra) and 2 LRLs (Tamil:tam and
Turkish:tur). We subsample around 5M training
sentences from the parallel corpus provided by the
WMT shared task. Specifically, the training data of
deu-eng, fra-eng is from WMT14, tam-eng
is from WMT20 and tur-eng is from WMT18.
We use the corresponding test and dev sets from
each shared task for evaluation and validation.

We evaluate both en-fo-any (translate English to
a target language) and any-to-en (translate a source

2See Wang et al. (2020a) for the interpretation of the lan-
guage codes.

language into English) directions for all language
sets. We provide dataset statistics in Appendix C.

4.2 Experimental setup

For the translation models, we adopt the encoder-
decoder Transformer (Vaswani et al., 2017) ar-
chitecture with the implementation provided in
fairseq (Ott et al., 2019). For both datasets, we use
a Transformer-base architectures that also has 6
encoder and decoder layers with hidden dimension
size being 512 and 8 attention heads.? The model
is trained for 200K and 300K steps for TED and
WMT respectively with the batch size of 65,536
tokens. For both datasets, we learn the senten-
cepiece (Kudo and Richardson, 2018) vocabulary
for the English and the combined corpus of other
languages respectively. We use beam search with
beam size 5 for decoding and report the Sacre-
BLEU score (Post, 2018; Papineni et al., 2002) on
test sets for evaluation. For the TED and WMT
datasets respectively, the constraint size p for the

3We train for more steps with a larger batch size, which
yields much better results than reported in Wang et al. (2020a).

5669



any—en en—rany
Method deu fra tam Avg deu fra tam tur Avg
FastDRO 25.14 27,58 12771 1554 20.24 | 21.39 2821 888 1274 17.81
GDRO with PD 26.72 29.13 1578 21.89 23.38 | 20.81 2943 10.29 1552 19.01
CVaR-GDRO with PD | 28.62 30.70 1594 20.61 23.97 | 2281 3244 9.68 1433 19.82
CVaR-GDRO with IBR | 29.14 31.65 1631 20.98 2452 | 22.34 3197 10.15 1482 19.82
x2-GDRO with PD 29.49 3147 1607 2124 2457 | 23.10 3230 987 1470 19.99
ERM (7=5) 29.25 31.60 1631 21.89 24.76 | 22.67 3236 10.04 16.09 20.29
x-IBR 29.67 31.75 1648 2233 25.06 | 23.45 33.16 10.73 15.53 20.72

Table 3: BLEU scores of different DRO objectives and algorithms—primal-dual (PD) and iterated best response

(IBR)—on the WMT test sets.

any—en

0.0

TED-related TED-diverse WMT

en—any

- low
N high

0.00

TED-related TED-diverse WMT

Figure 2: ABLEU of low- and high-resource language groups for the three language sets. ABLEU = difference of

BLEU scores of x-IBR and the best ERM model.

chi-square ball is set to be 0.05 and 0.3, and for
the baseline losses we use the average token-level
loss on each D; computed from the ERM model
with 7 = 1 and 7 = 100—see §5 for more anal-
yses of these choices. We provide additional pre-
processing and training details in Appendix D.

Baselines. We compare with (1) temperature-
based sampling method described in §2.1 in three
standard settings (7 = 1/5/100), where 7 = 100
approximates uniform sampling over language
pairs, and (2) MultiDDS described in §2.1. In ad-
dition, we also perform extensive empirical studies
over different DRO uncertainty sets and optimiza-
tion procedures in §5.

4.3 Main Results

We present the BLEU scores of en—any and
any—-en translation directions on TED and WMT
data in Tab. 1 and 2 respectively. First, for both
TED and WMT datasets, x-IBR outperforms all
the other baseline methods in terms of average
BLEU score over all language pairs. By taking
a closer look at the BLEU scores for each individ-
ual language pairs, x-IBR improves over almost
all the language pairs for both translation direc-
tions compared to ERM. Secondly, as expected
from temperature-based sampling methods, differ-
ent values of 7 achieve different trade-offs between
the performances on HRLs and LRLs. As we ex-
plained in §2.1, large values of 7 favor LRLs as this
results in data being sampled with equal probability
from each language pair while small values of 7

approach ERM and will benefit HRLs. As a result,
7 needs to be carefully tuned to achieve adequate
performance on both HRLs and LRLs.

Importantly, x-IBR achieves a significantly bet-
ter trade-off than the sampling method for any
value of 7. We show in Fig. 2 the quantitative
improvements of y-IBR over the best 7 for var-
ious datasets and in both translation directions.
Surprisingly, while the improvements are larger
on LRLs in most cases, we consistently observe
improvements on HRLs. This indicates that find-
ing the right sampling distribution over language
pairs facilitates cross-lingual transfer. We further
observe that y-IBR achieves more significant im-
provements in the en—any direction than in the
any—en direction. This further supports our hy-
pothesis. Indeed, it is attested in previous work on
MNMT (Arivazhagan et al., 2019) that it is harder
to decode to multiple languages than encode from
multiple languages and as such, the en—any di-
rection is a significantly harder multi-task learning
problem. As such, this is where optimal cross-
lingual transfer would yield the larger gains, which
is what we observe in practice. We also note that
our method incurs negligible computational over-
head compared to ERM.

5 Analysis

The importance of the sampling distribution.
An advantage of our method over temperature-
based sampling methods is that it dynamically ad-
justs the training distribution as the model evolves
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Figure 3: Best response ¢ (in log-scale) across epochs on the TED diverse dataset for the any—en direction.

bos=0.007 mar=0.013 hin=0.025 mkd=0.033
. -3.15
-36{ |

Q % -3.2 -3.20
2 %
§ -38 ""a;u.s.,. My, -3.25
8 o
£ -40 —34 -3.30
4
-y a2 36 -3.35

5.0 -3.40

" 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600

ell=0.175 bul=0.228 fra=0.251 kor=0.268
-16 14
-1.50 - o~

o -101 {
£-17 -155 N
s -16 1
2 -1.60 -
t-18 el
2 -1.65 -18{ ./ -12
3 i

-19 -1.70 sol _13

0 100 200 300 400 500 600 0 100 200 300 400 500 600 O 100 200 300 400 500 600 0 100 200 300 400 500 600

epochs epochs

epochs epochs

Figure 4: Best response ¢ (in log-scale) across epochs on the TED diverse dataset for the en—any direction, the

dashed line is the true data probability (in log-scale).

and does not compute it solely as a function of
amount of training data. Our hypothesis is that this
is important to achieve good performance across
language pairs and that different sampling distribu-
tions will be adequate at different stages of train-
ing. We empirically check our hypothesis by study-
ing how the training distribution ¢ (the so-called
best response) changes across training epochs. In
Fig. 3 and 4, we plot the best response of x-IBR
across epochs on the TED-diverse dataset for both
translation directions. In addition, we also plot
the historical losses in Fig. 5 (Appendix). Our
first observation is that the optimal g noticeably
evolves across epochs which further showcases the
need for dynamically adjusting the sampling dis-
tribution. We make the following observations (i)
x-IBR demonstrates the desired behavior and, at
the early stages of training, always down-weights
HRLSs and up-weights LRLs; (ii) somewhat counter-
intuitively, there is no direct correlation between
| D;|, the amount of data in language ¢ and the final
value £(0®); D;). The latter further evidences the
limitations of sampling distributions only based on
the amounts of training data | D;|. Indeed, while
kor is a HRL, it is typologically much farther from
English so there is more inherent uncertainty in the
task. Consequently, it has larger losses and is con-
sistently up-weighted throughout training. On the

other hand, while hin is a LRL, it achieves low
loss after being up-weighted during the early stages
of training and is consequently down-weighted af-
ter that.

Comparison to DRO variants. We demonstrate
the benefits of x-IBR over other DRO objectives
by extensively evaluating a range of robust objec-
tives and associated optimization algorithms. In
terms of objective, we compare against (1) Group
DRO (Sagawa et al., 2020), (2) CVaR-Group
DRO (Oren et al., 2019) and (3) FastDRO (Levy
et al., 2020). In terms of algorithms, we experiment
with primal-dual methods and our proposed iterated
best response procedure which we both described
in §3.2. Note that in the case of Group DRO (i.e.
U = AN), iterated best response is not a sensible
choice as it would result in each training epoch be-
ing spent on a single language pair. In the case of
CVaR Group DRO, we follow the implementation
of (Oren et al., 2019), which is a hybrid of the two
optimization algorithms with a primal update on
and a best response update on g. We compare the
performance of these methods on the WMT dataset.
For fairness, we baseline losses in the same way
for all the DRO objectives. We first observe that,
outside of x-IBR, none of the DRO objectives are
competitive with temperature-weighted ERM. We
also observe that for both uncertainty sets, iterated
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Dataset | Setting | Avg BLEU
(@) ERM, 7 = 1 21.46
(b) ERM, 7 = 100 20.41
A (c) Ours, p = 0.05, w/o BL 22.08
m (d) Ours, p = 0.1, w/o BL 21.75
= () Ours, p = 0.05,BL: 7 = 1 2221
(f)Ours, p =0.1,BL: 7 =1 22.13
(g) Ours, p = 0.05, BL: 7 = 100 21.37
E (h) Ours, p = 0.1,BL: 7 = 1 20.34
= (i) Ours, p = 0.1, BL: 7 = 100 20.62

Table 4: Average BLEU on the test sets of en—any
direction, BL is short for baseline loss.

best response convincingly outperforms the same
objective trained with primal-dual. We finally note
that, for a fixed optimization algorithm, y2-Group
DRO outperforms the CVaR objective on all but
one language pairs. This validates both our choice
of uncertainty set and of optimization procedure.

The effects of baselined losses. We study the ef-
fect of the choice of baseline on the performance
across languages. In Tab. 4, we empirically evalu-
ate different baseline choices and uncertainty sizes
p. We observe that in the TED dataset, baseline-
ing with E(gERM; D;) performs significantly bet-
ter than baseline-ing with £(07='%°: D;) ((e) ver-
sus (g) while it is reversed for WMT. We explain
this by observing that the LRLs in TED consist of
very small amounts of data (on the order of a few
thousands) and using 7 = 100 results in a severe
oversampling of LRLs, which the model then fits
perfectly. As a result, recall the intuition that the
baseline sets a lower bound on the performance we
wish to achieve but because of the small training
data and overfitting, the model disproportionately
up-weighs the LRLs, which harms overall perfor-
mance. This does not occur in WMT and uniform
sampling across language pairs sets a good target
performance for DRO methods. Finally, we see that
with the right baseline loss, our method is more ro-
bust to different choices of p (e.g., comparing (c)
and (d) versus (e) and (f)). We consistently observe
this for other translation directions and datasets.

6 Conclusion

We showed how to successfully apply DRO to the
MNMT setting and automatically adjust the sam-
pling distribution over language pairs resulting in
sizeable improvements in performance. We posit
that this approach would also be successful in other
multilingual scenarios. Our work raises a few ques-
tions: (i) what are the right baseline losses? (ii)
surprisingly, x-IBR also improves performance
on HRLs; under what circumstances does cross-

lingual transfer happen and which languages does
it benefit most? We hope our work could inspire
better distributionally robust learning methods for
multilingual training in the future.
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