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Abstract

Adapters are light-weight modules that al-
low parameter-efficient fine-tuning of pre-
trained models. Specialized language and task
adapters have recently been proposed to facil-
itate cross-lingual transfer of multilingual pre-
trained models (Pfeiffer et al., 2020b). How-
ever, this approach requires training a sepa-
rate language adapter for every language one
wishes to support, which can be impractical for
languages with limited data. An intuitive solu-
tion is to use a related language adapter for the
new language variety, but we observe that this
solution can lead to sub-optimal performance.
In this paper, we aim to improve the robustness
of language adapters to uncovered languages
without training new adapters. We find that en-
sembling multiple existing language adapters
makes the fine-tuned model significantly more
robust to other language varieties not included
in these adapters. Building upon this observa-
tion, we propose Entropy Minimized Ensem-
ble of Adapters (EMEA), a method that opti-
mizes the ensemble weights of the pretrained
language adapters for each test sentence by
minimizing the entropy of its predictions. Ex-
periments on three diverse groups of language
varieties show that our method leads to sig-
nificant improvements on both named entity
recognition and part-of-speech tagging across
all languages.

1 Introduction

Massively multilingual pretrained models (Devlin
et al., 2019; Huang et al., 2019; Conneau and
Lample, 2019; Conneau et al., 2020) combined
with cross-lingual transfer now define the state
of the art on a variety of NLP tasks (Hu et al.,
2020). Within this paradigm, multilingual pre-
trained models are fine-tuned on annotated data
of a task in a high-resource language, and trans-
ferred to other languages. Several recent works pro-
pose parameter-efficient fine-tuning methods that
insert small adapter modules between the layers
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Figure 1: Comparison of the standard cross-lingual adapter
and our method of entropy minimized ensembling of adapters
(EMEA), which combines multiple language adapters to im-
prove robustness to new language varieties at test time.

of pretrained models (Rebuffi et al., 2017; Houlsby
et al., 2019). In this line of work, the pretrained
model is usually frozen while only the adapters
are fine-tuned for a downstream task, which is con-
ducive to both improving the model’s learning abil-
ity and compactness with respect to storage on
disk or in memory. The adapters can be applied
to the cross-lingual transfer setting by training sep-
arate language and task adapters (Pfeiffer et al.,
2020b; Üstün et al., 2020). Specifically, Pfeiffer
et al. (2020b) propose to perform zero-shot transfer
by first training language-level adapters on mono-
lingual data in different languages and then a task
adapter on annotated data in the source language.

One drawback of this framework is that a sep-
arate language adapter is required for each target
language, which is problematic in cases where the
data to train these adapters cannot be easily ob-
tained, such as for languages with diverse regional
or demographic variations. In fact, certain language
varieties are not included in the standard language
identification tools, which makes it challenging to
reliably obtain even unlabeled data (Salameh et al.,
2018; Caswell et al., 2020; Demszky et al., 2021).
To give just one example, the Nordic languages
and dialects form a dialect continuum where the
total number of language varieties is difficult to es-
timate, and language varieties constantly emerge in
culturally and linguistically diverse areas (Svend-
sen and Røyneland, 2008; Røyneland and Jensen,
2020). Although highly related, these language
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varieties have many systematic differences, which
need to be addressed by NLP systems that equi-
tably serve all speakers (Kumar et al., 2021). One
potential mitigation strategy is directly using an
adapter trained on another similar language variety,
but we find this sub-optimal in experiments (§ 4).

Instead, we propose two methods to combine ex-
isting language adapters to adapt the model to new

language varieties at test time without any training
data. First, we find that simply ensembling multiple
related language adapters can significantly improve
the fine-tuned model, compared with using individ-
ual language adapters. Second, we propose Entropy
Minimized Ensemble of Adapters (EMEA; Fig. 1),
which adapts the ensemble weight of the language
adapters for each test instance by minimizing the
ensembled model’s prediction uncertainty. Our ex-
periments show that EMEA further improves over
vanilla ensembling for three groups of uncovered
language varieties on both the named entity recog-
nition and part-of-speech tagging tasks.

2 Adapters for Cross-lingual Transfer

To facilitate our discussion, we briefly summa-
rize the MAD-X framework (Pfeiffer et al., 2020b)
for zero-shot cross-lingual transfer and identify its
shortcomings. The goal of MAD-X is to fine-tune a
multilingual pretrained model M to m downstream
tasks T1, T2, ..., Tm, each of which could be in n

languages L1, L2, ..., Ln. To this end, MAD-X re-
lies on language and task adapters, which are light-
weight functions inserted in the Transformer layers
in M—usually a feed-forward down-projection
followed by an up-projection. Specifically, let h
be the output of an intermediate layer in M, then
Lj(h) is the transformation that projects h into the
embedding space for language Lj , and Ti(Lj(h))
is the transformation that projects Lj(h) into the
embedding space for task Ti.

MAD-X trains the adapters Ti(·) and Lj(·) in
two steps. First, for each language Lj , its adapter
Lj is inserted into M to replace the output of each
layer h with Lj(h). The resulting model, which we
denote as Lj ◦M, is trained on unlabeled data in
Lj using an unsupervised objective such as masked
language modeling (MLM; Devlin et al., 2019).
Second, for each task Ti, its adapter Ti is inserted
on top of a src language adapter Lsrc. The resulting
model Ti ◦ Lsrc ◦M is trained on the downstream
task Ti in language Lsrc. After these two steps,
Ti ◦Lj ◦M can be used to perform zero-shot cross-

lingual transfer for any task Ti and language Lj .

Shortcomings This approach requires a separate
adapter for each language one wishes to support.
The online database AdapterHub1 aims to improve
the efficiency and reuse of trained language and
task adapters (Pfeiffer et al., 2020a) but currently
supports only about 50 languages, and hence most
languages are not covered. More importantly, as
mentioned in the introduction, certain languages
have diverse regional varieties and difficulty of re-
liably obtaining data for them makes adapter-based
approaches especially brittle in these cases. In the
following § 3, we propose strategies to improve
the robustness of language adapters to uncovered
languages without training new adapters.

3 Generalizing Language Adapters to

Related Languages

We consider the setting where we have a multilin-
gual pretrained model M as well as the pretrained
task adapters T1, T2, ..., Tm and language adapters
L1,L2, ...,Ln. We want to use M and the existing
adapters to support a new language Lnew, which is
not in {L1, L2, ..., Ln} on a given task T without
training a new adapter for Lnew.
Related Language Adapters One potential solu-
tion is to find the most related language Lrel ∈
{L1, L2, ..., Ln} and then use T ◦ Lrel ◦M to do
inference in Lnew. However, this has two disadvan-
tages. First, the task adapter T is only trained in the
setting of T ◦ Lsrc ◦M, so it might not generalize
well to the test time setting of T ◦ Lrel ◦ M (as
shown in § 4.1). Second, while the pretrained
model M may be relatively robust against distribu-
tion shifts (Hendrycks et al., 2020), the specialized
language adapters might make the model brittle
to language variations because they are trained for
specific languages. Our experiments in § 4.1 show
that this solution indeed leads to poor performance.

Adapter Ensembling As a first solution to this
problem, we propose an extremely simple strategy
of averaging the transformed outputs of multiple
language adapters. Specifically, we use both the
source language adapter Lsrc and adapters from
related languages with similar linguistic properties
to the new language. Let R be the set of the source
and related language adapters. To do inference on
a task T for the new language Lnew, we transform

1https://adapterhub.ml/
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the output h of each layer in M with the language
adapters as Lavg(h) =

1

R

∑R
i=1

Li(h).

Entropy Minimized Ensemble of Adapters

While ensembling is a simple and effective strat-
egy to combine multiple potentially beneficial lan-
guage adapters, the equal weighing of all language
adapters could be sub-optimal for Lnew; different
language varieties, or even sentences, could ben-
efit from a different weighting of the pretrained
language adapters. To further improve adapter en-
sembling, we generalize Lavg(h) into a learnable
weighted average:

Lwavg(h) =
∑R

i=1
αiLi(h)

where α1, α2, ..., αR are learnable weights satisfy-
ing αi ≥ 0 and

∑S
i=1

αi = 1. Next, we propose
Entropy Minimized Ensemble of Adapters (EMEA)
method, which learns the adapter weightings for

each sentence without additional training.
The intuition behind our method is that a good

adapter weight α for a test input x should make
the model more confident in its prediction for
x, that is, it should lead to lower model en-
tropy over the input (Shannon, 1948; Wang et al.,
2021). Specifically for structured prediction tasks,
we want to classify each word xw in a test in-
put x with W words into one of the possible C

classes. We consider the entropy: H(x;α) =
−
∑W

w=1

∑C
c=1

P (c|xw;α) logP (c|xw;α), where
P (c|xw;α) is the prediction of the model T ◦
Lwavg(h) ◦M. Since P (c|xw;α) is a function of
the ensemble weights α, we can calculate the gra-
dient of α as gi = ∇αi

H(x;α).
To minimize the entropy loss, we can simply do

gradient descent steps on each αi using the corre-
sponding gradient gi by αi = αi − γgi, where γ is
the learning rate. We can then use the updated α to
calculate the final prediction for x. In § 4, we find
that a single step of gradient update already leads
to better performance than simple ensembling. We
can additionally perform multiple steps of gradient
descent to obtain a better α at the cost of lower
inference speed. Alg. 1 shows the pseudo code of
our method2.

4 Experiments

Data We focus on zero-shot cross-lingual trans-
fer with English as the source language. We

2Code can be found at https://github.com/

cindyxinyiwang/emea

Algorithm 1: Training with EMEA
Input :Uniform weights α0, weighted adapter

output; Lwavg(h, α
0); test data x; number of

update steps T
Output :Prediction ŷ

1 for t in 0, 1, ..., T-1 do
. Calculate entropy

2 H(x, α)← Entropy(T ◦ Lwavg(h, α
t) ◦M)

. Calculate gradient

3 gt = ∇αH(x;αt)
. Update weighting

4 αt+1
← Update(αt, gt)

5 end
. Calculate final prediction

6 ŷ ← Predict(T ◦ Lwavg(h, α
T ) ◦M)

Related Additional Test

hi en,ar mr,bn,ta,bho
is en,de fo,no,da
ru en be,uk,bg

Table 1: Test language groups and their corresponding lan-
guage adapters. Adapters from languages in the first two
columns are applied to the test languages in the third column.

conduct experiments on named entity recogni-
tion (NER) and part-of-speech tagging (POS). We
use the WikiAnn dataset (Pan et al., 2017) for
NER and Universial Treebank 2.0 for POS tag-
ging (Nivre et al., 2018).

Model We use the mBERT (Devlin et al., 2019)
model, which shows good performance for low-
resource languages on the structured prediction
tasks (Pfeiffer et al., 2020b; Hu et al., 2020). We
use the English annotated data to train the task
adapter. Each experiment is run with 3 different
random seeds and we report the average perfor-
mance. More details can be found in Appendix A.

Languages Due to the scarcity of datasets for
dialects, we focus on three groups of closely re-
lated languages to simulate the setup of language
varieties. Each group has a language with a pre-
trained adapter available on the AdapterHub (Pfeif-
fer et al., 2020a), and we test on the languages with-
out adapters. The language with adapter and the
target languages for each group are: 1. Hindi (hi):
Marathi (mr), Bengali (bn), Tamil (ta), Bho-
jpuri (bho); 2. Icelandic (is): Faroese (fo), Nor-
wegian (no), Danish (da); 3. Russian (ru): Bul-
garian (bg), Ukrainian (uk), Belorussian (be). For
our methods, we additionally use the adapter for
English (the src language), and optionally for an-
other highly related language if there is one avail-
able on the AdapterHub. The adapters used are
listed in Tab. 1.
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Task Method mr bn ta avg. fo no da avg. be uk bg avg. avg.

NER

En 48.0 54.4 29.6 44.0 57.5 73.3 80.5 70.4 67.1 67.6 71.1 68.6 61.0
Related 51.7 47.0 30.8 43.1 54.3 72.7 79.3 68.7 66.2 65.8 69.8 67.3 59.7
CL 48.1 55.2 28.9 44.1 57.5 73.6 80.6 70.6 67.0 67.8 71.0 68.6 61.1
Fusion 49.8 58.3 33.7 47.2 56.0 69.3 77.8 67.7 70.1 69.1 72.3 70.5 61.8

Ensemble 55.5 55.3 35.8 48.8 57.4 74.0 80.8 70.7 70.5 72.2 74.2 72.3 63.9
EMEA-s1 57.2 61.2 37.4 51.9 59.2 74.3 81.3 71.6 71.5 72.9 74.9 73.1 65.5
EMEA-s10 57.5 63.2 38.3 53.0 61.6 74.9 82.0 72.8 72.9 72.9 75.1 73.6 66.5

Method mr bho ta avg. fo no da avg. be uk bg avg. avg.

POS

En 62.6 39.5 53.4 51.8 71.6 84.6 87.6 81.1 85.3 81.4 84.6 83.7 72.2
Related 53.2 46.9 47.0 49.0 72.8 82.4 86.9 80.7 84.0 79.5 82.9 82.1 70.6
CL 62.6 39.6 53.6 51.9 71.7 84.2 87.7 81.2 85.6 81.5 84.7 83.9 72.3
Fusion 59.8 42.3 53.5 51.8 72.9 81.3 86.0 80.0 85.8 80.0 83.3 83.0 71.6

Ensemble 62.2 45.5 53.7 53.8 73.9 83.6 87.9 81.8 85.9 81.6 84.6 84.0 73.2
EMEA-s1 62.1 45.1 54.3 53.8 74.0 83.5 87.8 81.7 86.2 81.4 84.6 84.0 73.2
EMEA-s10 62.5 44.9 55.6 54.3 73.8 83.7 88.0 81.8 86.0 81.6 84.9 84.2 73.5

Table 2: F1 of the baselines and our methods for each language group. EMEA-s1 updates the adapter weights with a single
gradient step while EMEA-s10 updates for 10 steps.
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Figure 2: Improvements
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batch size.
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Figure 3: Improvements by
adding en adapter for differ-
ent src language adapters.
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Figure 4: Comparison to training adapter on different
amount of monolingual data.

Baselines We compare with several baselines:
1) En: the English adapter; 2) Related: the best
performing related language adapter; 3) Continual
learning (CL): we use the English language adapter
and update its parameters using the entropy loss
for each test input; 4) Fusion: learn another set of
key, value and query parameters in each layer that
uses the layer output as a query to mix together the
output of each adapter (Pfeiffer et al., 2021). Since
we do not use labeled data in the new language, we
train the fusion parameters on English labeled data.

4.1 Results

The results can be found in Tab. 2. For most lan-
guages using the English adapter is better than
the best individual related language adapter. This
confirms our hypothesis that specialized language
adapters are not robust to language variations. CL
leads to slight improvements for some languages
but is generally comparable to En. Fusion improves
over En for the NER task but it requires training and
storing extra parameters. Its performance is also
not consistent across languages and tasks, likely
because it is only trained on English labeled data.

Using multiple language adapters brings signif-

icant gains Ensembling leads to significant gains
for the non-Latin language group. It also brings im-

provements or is comparable to the best baseline on
other languages. EMEA delivers further improve-
ments across almost all languages, demonstrat-
ing the effectiveness of adapting language adapter
weights to each test sentence. With only a sin-
gle gradient update step on the ensemble weights,
EMEA-s1 already leads to significant improve-
ments over ensembling for NER. EMEA-s10 brings
additional improvements on both tasks because it
learns more optimal ensembling weights with 10
gradient update steps (we list the inference cost
for each method in Appendix B). We hypothe-
size that the proposed methods improve non-Latin
languages more because these are low-performing
languages that the model is more uncertain about.

Effect of test batch size In Fig. 2 we plot the re-
sult of using different test batch sizes with EMEA
on the NER task. A smaller batch size leads to more
fine-grained test time adaptation with a higher com-
putational cost. Fig. 2 shows that a smaller batch
size indeed leads to better performance while using
a larger batch size still outperforms the baseline.

Significance of source language adapter We
investigate whether the benefit of adding the src lan-
guage adapter comes from the discrepancy between
training and testing of the task adapter. We train
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Method Example/Second

Single Adapter 250
CL 77
Fusion 200
Ensemble 200
EMEA-s1 62
EMEA-s10 9

Table 3: Decoding speed for different methods used in the
paper.

A Implementation Details

We preprocess the data using scripts in
XTREME (Hu et al., 2020). We use the
best performing adapter configuration in Pfeiffer
et al. (2020b). For NER, we train the task adapter
for 100 epochs using learning rate of 1e-4. For
POS tagging, we train the task adapter for 50
epochs with the learning rate of 1e-4. For EMEA,
we search over the learning rate γ of 0.1, 1, 10 on
the English validation set and pick γ = 10 for all
experiments.

For Fusion, we use learning rate of 5e-5 which is
recommended by (Pfeiffer et al., 2021). We search
over the best learning rate for CL on the perfor-
mance of English labeled data. We use the learning
rate of 2e-5 and do 1 step of gradient update for
each batch.

For our experiment on training new adapters, we
find that training from scratch on no and mr is not
competitive when using very small amount of data.
Therefore, we continue training from their related
language adapters.

B Decoding Speed

We list the inference time for various methods in
the paper in Tab. 3. EMEA leads to better perfor-
mance at a cost of lower inference speed. We leave
it to future work to explore strategies that speed up
the test time optimization.

C Examples of outputs

We compare the outputs of EMEA with the best
baseline on the POS tagging task for Norwe-
gian (no). Although both methods struggle with
verb and adjective predictions, EMEA is often bet-
ter at predicting the correct adjectives compared to
the baseline.

src Lendið, er, kargt, og, oyði, .
tgt NOUN, VERB, ADJ, CCONJ, ADJ, PUNCT
Base NOUN, AUX, ADJ, CCONJ, NOUN, PUNCT
EMEA NOUN, AUX, ADJ, CCONJ, ADJ, PUNCT

src Útvinningin, er, í, tveimum, umførum, .
tgt NOUN, VERB, ADP, NUM, NOUN, PUNCT
Base NOUN, AUX, ADP, ADJ, NOUN, PUNCT
EMEA NOUN, VERB, ADP, NUM, NOUN, PUNCT

Table 4: Example outputs on POS tagging.


