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and information theory (Lovering et al., 2021). However,

these works have not characterized the idea of spurious fea-

tures mathematically. In this paper, we characterize spurious

features from an information-theoretic perspective. We con-

sider prediction of target random variable Y ∈ Y from input

variable X ∈ X and characterize spurious features learned

under changes to the input distribution p(X) (i.e. covariate

shift).

A central goal of machine learning is to learn true causal re-

lationships between X and Y in a manner robust to spurious

factors concerning the variables. We assume that there ex-

ists an “ideal” data distribution pideal (short for pideal(X,Y )
below) which contains data from all possible experimental

conditions concerning the confounders that cause spurious

correlations, both observable and hypothetical (Lewis, 2013;

Arjovsky et al., 2019; Bellot & van der Schaar, 2020). For

example, consider the problem of classifying images of

cows and camels (Beery et al., 2018). Under the ideal con-

ditions, we assume that pictures of cows and camels on

any background can be collected, including cows in deserts

and camels in green pastures. Therefore, under pideal the

background of the image X is no longer a spurious factor

of the label Y . However, such an “ideal” distribution pideal

is not accessible in practice (Bahng et al., 2020; Koh et al.,

2020; McCoy et al., 2019), and our training distribution

ptrain (often, in practice, an associated empirical distribu-

tion) does not match pideal. ERM-based learning algorithms

indiscriminately fit all correlations found in ptrain, including

spurious correlations based on confounders (Tenenbaum,

2018; Lopez-Paz, 2016).

To investigate the spurious features learned under the distri-

bution shift from pideal to ptrain, we first characterize those

features of X which most efficiently capture all possible in-

formation needed to predict Y . We define these robust

features using the notion of minimal sufficient statistic

(MSS) (Dynkin, 2000; Cvitkovic & Koliander, 2019) un-

der pideal. We then examine whether the features learned

under ptrain contain spurious features compared to the MSS

learned under pideal. Through our analysis, we find that even

only with covariate shift, the features learned on ptrain can

contain spurious features or miss robust features of pideal.

Models that fit spurious correlations in ptrain can be vulnera-

ble to groups (subpopulations of pideal/ptest) where the corre-

lation does not hold. A common approach to avoid learning

a model that suffers high worst group errors is group dis-

tributionally robust optimization (group DRO), a training

procedure that efficiently minimizes the worst expected loss

over a set of groups in the training data (Oren et al., 2019;

Sagawa et al., 2020a). The partition of groups can be defined

in several ways, such as by presence of manually identified

potentially spurious features (Sagawa et al., 2020a), data do-

mains (Koh et al., 2020), or topics of text (Oren et al., 2019).

In a typical setup, the groups of interest in the test set align

with those used to partition the training data. Under such

setups, group DRO usually outperforms ERM with respect

to the worst-group accuracy. We contend that this is because

it promotes learning robust features that perform uniformly

well across all groups. However, in many tasks, we can

not collect clean group membership of training examples

due to expensive annotation cost or privacy concerns regard-

ing e.g. demographic identities of users or other sensitive

information.

Inspired by our analysis of spurious features, we demon-

strate that group DRO can fail under “imperfect” partitions

of training data that are not consistent with the test set, es-

pecially when reducing spurious correlation in one group

could exacerbate the spurious correlations in another (§4.2),

as shown in Fig. 1. This is because group DRO treats each

training group as a unit, preventing it from adjusting learning

weights differently for subgroups within each group. Recent

work has proposed to use sophisticated unsupervised cluster-

ing algorithm to search for meaningful subclasses (Sohoni

et al., 2020) and execute group DRO on the found subclasses.

To learn robust models under noisy protected groups, Wang

et al. (2020) designs robust approaches that is based on

an estimate of a noise model between the clean and noisy

groups. Instead of relying on good partitions of groups

or a not readily available noise model, we propose group-

conditional DRO (GC-DRO) that defines the uncertainty set

over the joint distribution of groups and their instances (i.e.

q(G)q(X,Y |G)). Every training example is reweighted by

both its group weight and the instance-level weight, which

offers a more flexible uncertainty set compared to group

DRO. Through extensive experiments on three tasks — fa-

cial attribute classification, natural language inference, and

toxicity detection, we show that GC-DRO significantly out-

performs both ERM and group DRO in various partitions of

training data and demonstrate the robustness of GC-DRO

against various group partitions.

2. Preliminaries on Robust Representations

To study spurious features, we need to formally define which

features or properties of the data describe spurious corre-

lations, and which features are robust features relevant to

the task at hand. In supervised learning we are interested

in finding a good representation T (X) of the input X1

that is useful to predict a target label Y . What charac-

terizes the optimal representations of X w.r.t. Y is much

debated, but a common assertion is that T (X) should be

a minimal sufficient statistic (MSS) of X for Y (Adragni

& Cook, 2009; Schwartz-Ziv & Tishby, 2017; Achille &

Soatto, 2018; Cvitkovic & Koliander, 2019), which is:

1We assume that T (X) is a deterministic mapping of X given
neural network parameters.
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(i) T (X) should be sufficient for Y , i.e. ∀x ∈ X , t ∈ T , y ∈
Y, p(x|t, y) = p(x|t), which is equivalent to p(y|t, x) =
p(y|t). This means given the value of T (X), the distribution

of X does not depend on the value of Y .

(ii) Given that T (X) is sufficient, it should be minimal

w.r.t. X , i.e. for any sufficient statistic S, there exists a deter-

ministic function f such that T = f(S) almost everywhere

w.r.t. X . This means for any measurable, non-invertible

function g, g(T ) is no longer sufficient for Y .

In other words, the minimal sufficient statistics most effi-

ciently capture all information useful for predicting Y . The

notion of MSS has been connected to Shannon’s informa-

tion theory (Kullback & Leibler, 1951; Cover, 1999) and ex-

tended to any joint distribution P (X,Y ) of X and Y in the

information bottleneck (IB) framework (Tishby et al., 2000;

Shamir et al., 2010; Kolchinsky et al., 2019), which provides

a principled way to characterize the extraction of relevant

information from X for predicting Y . Loosely speaking,

learning a MSS T is equivalent to maximizing I(T (X);Y )
(sufficiency) and minimizing I(X;T (X)) (minimality).

Robust Features. Suppose A contains all possible com-

binations of spurious variables, both observable and hy-

pothetical, and we consider datasets D(a,y) = {xi}
Na,y

i=1

collected under each condition of (a ∈ A, y ∈ Y), where

each D(a,y) contains examples that are i.i.d. according to

some probability distribution p(X|y, a). We define pideal as

the mixture distribution of p(X|y, a) with uniform weights

over (a, y) ∈ A× Y . Thus, MSS learned on pideal provide

a good candidate for robust features T (X) (sometimes de-

noted Tideal(X) for clarity), which most efficiently capture

the information from X necessary for predicting Y on a

distribution that is free of spurious factors.

Spurious Features. In contrast, we define representations

T ′(X) that contain spurious features. Specifically, the en-

tropy of T ′(X) conditioned on T (X) under pideal is positive.

Hideal(T
′(X)|T (X)) > 0 (1)

Because these learned features are not deterministic given

T (X) then they contain additional information that is not

useful for predicting Y .2 For example, in image classifica-

tion, knowing that the image contains a horse, we cannot

predict the background with certainty (a horse could be on a

race track or a beach). Another example in natural language

inference (NLI) task is that model learned on a biased data

set often associates negation with the label “contradiction”.

This is another spurious feature under our definition, be-

cause given the meaning of a sentence (robust features),

whether it contains negation or not is not deterministic,

e.g. “Don’t worry.” and “Be calm.” are synonymous but

only one contains negation. A classifier that uses these spuri-

2Note that it is not just the case of T ′(X) containing redundant
features, in which case H(T ′(X)|T (X)) = 0.

ous features can suffer from the risk of learning the spurious

correlations between T ′(X) and the labels Y .

3. Spurious Features under Covariate Shift

The training data is often marred by various abnormalities,

such as selection biases (Buolamwini & Gebru, 2018) and

confounding factors (Gururangan et al., 2018). We ask if

the MSS learned under ptrain are robust features under pideal.

Note that we do not study how to learn MSS via ERM in this

paper, on the other hand, considering that MSS provides a

good candidate for robust representations, we want to study

if the MSS learned under ptrain contains spurious features

with respect to the MSS learned under pideal, which are

universal robust features against various spurious factors.

We consider the distribution shift in p(X),3 also known

as covariate shift (David et al., 2010), and we show that

the entropy of MSS learned under ptrain conditioned on the

robust features is zero in Theorem 1 with proofs in §A.

Theorem 1. Suppose that there is only covariate shift

in ptrain, i.e. ∃x ∈ Xtrain s.t. ptrain(x) 6= pideal(x) but

ptrain(Y |X = x) = pideal(Y |X = x), ∀x ∈ Xtrain. Let

Ttrain(X) be the MSS representation learned under ptrain,

then we have:

Htrain(Ttrain(x)|Tideal(x)) = 0. (2)

Theorem 1 tells us that Ttrain(X) is deterministic

given Tideal(X) under ptrain (shown in blue to distin-

guish from Eq. 1). However, this does not imply

Hideal(Ttrain(X)|Tideal(X)) = 0 under pideal. Thus, we

cannot conclude that Ttrain(X) contains no spurious fea-

tures. We further discuss the implications with two cases

based on the relationship between the support of input

Xtrain and that of Xideal: (1) Xtrain = Xideal and (2)

Xtrain ⊂ Xideal. When the input support of ptrain is equal

to that of pideal, we have the following corollary:

Corollary 1. Suppose Xtrain = Xideal in Theorem 1, then

Ttrain(X) is also the MSS under pideal.

Corollary 1 corroborates the findings in Wen et al. (2014)

that the (unweighted) solution learned by ERM is also

the robust solution when only covariate shift exists and

Xtrain = Xideal. In practice, however, this assumption does

not hold (because we only have datasets with limited sup-

port) and thus the representation Ttrain(X) learned by ERM

is not necessarily equivalent to Tideal(X). By Theorem 1,

Ttrain(X) is deterministic given Tideal(X) under ptrain,

which implies that the information contained in Ttrain(X)
is equal to or less than that contained in Tideal(X). In the

former case, Ttrain(X) can be equivalent in representation

to Tideal(X) but can also contain spurious features that co-

occur with the robust features in the training data. In the

3It is often assumed that p(Y |X) is invariant in supervised
learning problems (Arjovsky et al., 2019).
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latter case, Ttrain(X) can miss robust features in Tideal(X).
We demonstrate these two cases with synthetic experiments

in Appendix D due to space limit.

Discussion. We have discussed the cases of learning spuri-

ous features when the model learns MSS under ptrain. How-

ever, we normally adopt maximum likelihood estimation

(MLE) as an instantiation of ERM for classification prob-

lems. We provide the connection of MLE with learning

MSS via the information bottleneck method (Tishby et al.,

2000; Shamir et al., 2010) in the Appendix B, where under

certain assumptions, we can view MLE as an objective that

approximately learns MSS.

4. Does Group DRO Learn Robust Features?

The discussions in §3 suggest that under covariate shift,

directly learning from the empirical data distribution can

result in learning the spurious correlations satisfied by the

majority of the training data. When the spurious factors are

known, we can apply group distributionally robust optimiza-

tion (group DRO), which reweights the losses of different

groups associated with spurious factors to alleviate covariate

shift and learn robust features that generalize to both mi-

nority and majority groups. In this section, we first review

group DRO and discuss under which cases it can fail.

4.1. Group Distributionally Robust Optimization

Group DRO is an instance of distributionally robust op-

timization (Ben-Tal et al., 2013; Duchi et al., 2016) that

minimizes the worst expected loss over a set of potential

test distributions Q (the uncertainty set):

LDRO(θ) = sup
q∈Q

E(x,y)∼q

[

`(x, y; θ)
]

(3)

This worst-case objective upper bounds the test risk for

all qtest ∈ Q, which is useful for learning under train-test

distribution shift. However, its success crucially depends

on choosing an adequate uncertainty set that encodes the

possible test distributions of interest. Choosing a general

family of distribution as the uncertainty set, such as a diver-

gence ball around the training distribution (Ben-Tal et al.,

2013; Hu & Hong, 2013; Gao & Kleywegt, 2016), encom-

passes a wide set of distribution shifts, but can also lead to a

conservative objective emphasizing implausible worst-case

distributions (Duchi et al., 2019; Oren et al., 2019).

To construct a viable uncertainty set, one can optimize

models over all meaningful subpopulations or groups g

depending on the available source information regarding the

data, such as domains, demographics, topics, etc. Group

DRO (Hu et al., 2018; Oren et al., 2019) leverages such

structural information and constructs the uncertainty set as

any mixture of these groups. Following Oren et al. (2019),

we adopt the conditional value at risk (CVaR) which is a

type of distributionally robust risk to achieve low losses on

all α-fraction subpopulations (Rockafellar et al., 2000) of

the training distribution (i.e. {p : αp(x) ≤ ptrain(x), ∀x}).
As we assume that each data point comes from some group

p(x, y|g) and ptrain is a mixture of m groups ptrain(g), we

can extend the definition of CVaR to groups and construct

the uncertainty set Q as all group distributions that are α-

covered by ptrain(g) (or topic CVaR (Oren et al., 2019)):

Q =

{

q : q(g) ≤
ptrain(g)

α
∀g

}

(4)

This upper bounds the group distribution within the uncer-

tainty set by its corresponding training distribution. The

group DRO objective then minimizes the expected loss un-

der the worst-case group distribution:

LGDRO = sup
q∈Q

Eg∼qE(x,y)∼p(x,y|g) [`(x, y; θ)] (5)

Intuitively, this objective encourages uniform losses across

different groups, which allows us to learn a model that is

robust to group shifts. We adopt the efficient online greedy

algorithm developed in Oren et al. (2019) to update the

model parameters θ and the worst-case distribution q in an

interleaved manner. The greedy algorithm roughly amounts

to upweighting the sample losses by 1
α

which belong to the

α-fraction of groups that have the worst losses. We present

the detailed algorithm in Appendix C.

4.2. Group DRO Can Fail with Imperfect Partitions

As discussed earlier, we aim to learn a model that is robust to

spurious factors. For example, in toxicity detection, a robust

model should perform equally well on data from different

demographic groups. Group DRO mitigates covariate shift

by minimizing the worst-case loss under the uncertainty

set Q, consisting of mixtures of sub-group distributions.

Intuitively, given that optimizing pideal allows for learning

of robust, non-spurious features, defining a Q that covers

pideal is highly advantageous from a learning perspective.

If we know all the spurious attributes of the training data A,

we can adopt the setup in Sagawa et al. (2020a) that divides

the data into |A|× |Y| groups, where each example belongs

to one of the groups g = (a, y). We define such group-

ing strategy as “clean partitions” in which each group is

uniquely associated with one value of (a, y).4 If A contains

all the spurious factors of interest, it can be seen that there

exists some mixture of groups
∑m

g=1 q(g)ptrain(· | g) that

can recover pideal, where q ∈ ∆m and ∆m is the (m − 1)-
dimensional probability simplex. Thus, pideal is contained

in Q. Such clean partitions provide a plausible environment

for group DRO to learn well in the presence of covariate

shift that causes spurious correlations in the training data.

In contrast, we define “imperfect partitions” where each

group contains samples from multiple values of (a, y) such

4Our discussions also apply to multiple spurious attributes for
which the clean partition corresponds to |Y| ×

∏

i
|Ai| groups.
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G1 G2

S = 0 S = 1 S = 0 S = 1

P (Y = 0|S) 0.5 0 1 0.5
P (Y = 1|S) 0.5 1 0 0.5

Table 1. An example of imperfect partition.

that there does not exist a q ∈ ∆m that recovers pideal, in

other words, Q does not include pideal. In this case, group

DRO can not eliminate covariate shift effectively.

To illustrate, consider a binary random variable S ∈ {0, 1}
following a uniform distribution, and the target label Y ∈
{0, 1} also follows a uniform distribution and is independent

of S. Due to covariate shift, there are spurious correlations

between S = 0, Y = 0 and between S = 1, Y = 1 in

the training data. We partition the training data into two

groups with an equal number of samples and the conditional

distribution of P (Y |S) is shown in Tab. 1. To prevent the

model from learning the spurious correlations between S =
1 and Y = 1, one can upweight losses of its “negative”

samples for which the spurious correlation does not hold,

i.e. samples of (S = 1, Y = 0) in G2; however, group

DRO upweights the group as a whole, which inevitably

also upweights the (S = 0, Y = 0) and causes the model

to latch on the spurious attribute S = 0 to predict Y = 0.

Therefore, there does not exist a mixture distribution of these

two groups, under which S ⊥ Y (pideal). Such underlying

conflicts prevent the group DRO from formulating a worst-

case distribution that can eliminate covariate shift, resulting

in a passive reliance on certain spurious correlations.

Imperfect partitions of training data are common in practice,

as it can be expensive or infeasible to acquire the labels of

spurious attributes for each training instance. For example,

we may only have rough partitions based on the data sources

or the outputs from (unsupervised) clustering algorithms.

Our analysis shows that under these practical settings, the

group DRO algorithm can not effectively alleviate covariate

shift due to the rigid treatment of group losses.

5. Proposed Method: Group-conditional DRO

Since group DRO can be problematic with imperfect parti-

tions, we propose a more flexible uncertainty set over the

joint distribution of (x, y, g), i.e. q(g)q(x, y|g), using fine-

grained weights over instances within each group instead

of treating the entire group as a whole. We extend the

α-covered distribution to both the group-level (q(g)) and

conditional instance-level (q(x, y|g)) distributions to define

the uncertainty setQ. At training time, a sample is weighted

by both its group weight induced from q(g) as well as the

instance-level weight induced from q(x, y|g). Specifically,

the new uncertainty set is

Algorithm 1: Online greedy algorithm for GC-DRO.

Input: α; β; m: #groups; ni: #samples of group i

Initialize historical average group losses L̂(0), historical

estimate of group probabilities p̂tr(0), historical

average instance losses L̂
(0)
g and q(0)(x, y|g) = 1T

for g ∈ {1, · · · ,m}
for t = 1, · · · , T do

Sample a mini-batch (x,y,g) from Ptrain

Perform online greedy updates for q(t)(Alg.2)
. Update model parameters θ

di =
niq

(t)(gi)q
(t)(x,y|gi)

p̂train(t)(gi)
∇`(xi,yi; θ

(t−1))

θ(t) = θ(t−1) − η
|B|

∑|B|
i=1 di

if reached inner update criterion then

. Update q(t)(x, y|g)
for g = 1, · · · ,m do

Sort instances in group g in the decreasing

order of `(x, y; θt); denote the sorted

index π
g

cutoff =
⌈

(N−ni)niβ

N−ni

⌉

q(t)((x, y)
π

g(j)|g) =
1
β
, ∀1 ≤ j ≤ cutoff

q(t)((x, y)
π

g(j)|g) =
ni

N
, ∀j > cutoff

end

end

end

Qα,β =

{

q(g)q(x, y|g) : q(g) ≤
ptrain(g)

α
,

1

N
≤ q(x, y|g) ≤

ptrain(x, y|g)

β
, ∀x, y, g

}

,

(6)

where N is the number of training examples and α, β ∈
(0, 1]. Denote ni the number of samples in group i, then

ptrain(x, y|g = i) = 1
ni

. The second constraint of Eq. 6

can be rewritten as 1
N
≤ q(x, y|g) ≤ 1

βni
. Compared

with the β-covered distribution, we add a lower bound

q(x, y|g) ≥ 1
N

to compensate for imbalanced group sizes.

With a plain β-covered distribution for q(x, y|g), the DRO

objective roughly upweights a β-fraction of instance losses

of each group. However, we only want to emphasize a

small subset of examples that perform badly in the major-

ity groups. Thus, we add this lower bound to q(x, y|g) in

Eq. 6 to directly “punish” larger groups. To see this, the

percentage of examples that are upweighted by 1
β

in group

i is roughly N−ni

N−niβ
β, which is monotonically decreasing

function w.r.t. ni. Therefore, the larger the group size ni is,

the smaller fraction of instances in group i are upweighted.

Online Optimization Algorithm. Similarly to the online

greedy algorithm for group DRO (Oren et al., 2019) (details

in Appendix C), we interleave the updates between model

parameters θ and the worst-case distribution q(g)q(x, y|g).
The greedy algorithm involves sorting losses of all the vari-
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ables when updating the worst-case distribution defined

by the α-covered distribution. However, frequently updat-

ing q(x, y|g) over large-scale training data (e.g millions of

samples) can be costly and unstable. Therefore, we only

update q(g) at every iteration, while performing updates on

q(x, y|g) lazily once every epoch or when the robust accu-

racy on the validation set drops (inner update criterion). We

present the pseudo code for the training process in Alg. 1.

Discussions. Another potential approach to circumvent-

ing the purely group-level loss is constructing an instance-

level uncertainty set (Ben-Tal et al., 2013; Husain, 2020;

Michel et al., 2021), however, the resulting Q can be too

pessimistic (Hu et al., 2018; Duchi et al., 2019) or difficult

to optimize (Michel et al., 2021). Instead, we leverage the

structural information of data partitions and expand the flex-

ibility of uncertainty set by incorporating the conditional

probabilities of instances. Furthermore, this allows us to

execute the min-max optimization in an efficient manner.

6. Experiments

In this section, we evaluate the proposed group-conditional

DRO on one image classification task and two language

tasks — natural language inference and toxicity detection.

To demonstrate the effectiveness of our method under var-

ious partitions of data, we first introduce the clean (group

number m = |A| × |Y|) and imperfect data partitions of

each task. As we discussed at the end of §4.2, there are vari-

ous cases where the partitions of training data are imperfect

such that each group is not purely associated with examples

from one pair of (a, y). In this section, we inspect several

cases reflecting diverse properties of partitions to evaluate

our method. First, on the image and NLI tasks, we man-

ually design adversarial partitions of data such that there

are explicit conflicts between groups and purely reweighing

over groups cannot eliminate covariate shift (§6.1). Second,

we use the attributes provided by a supervised classifier

to create the imperfect partitions of the toxicity data set

(§6.1). Third, we also perform unsupervised clustering on

the toxicity data set to obtain imperfect partitions in §6.4.

6.1. Data and Tasks

Object Recognition. We use the CelebA dataset (Liu et al.,

2015) which has 162,770 training examples of celebrity

faces. We classify the hair color from Y = {blond, dark}
following the set up in Sagawa et al. (2020a). In this task,

labels are spuriously correlated with the demographic infor-

mation — gender of the input A = {female, male}, which

together with Y results in 4 clean groups. The statistics of

groups in the imperfect partition are presented in Tab. 2a

(separated by “/”), each of which consists of data from mul-

tiple values of (a, y). Concretely, we create an imperfect

partition of 2 groups with two explicit spurious correlations:

male female

dark 65,487 / 1,387 22,880 / 48,749
blonde 0 / 1,387 22,880 / 0

(a) The imperfect partitions for the CelebA dataset (G1/G2).

no neg neg 1 neg 2

contradiction 57,605 / 0 / 0 0 / 1,406 / 0 0 / 0 / 9,897
entailment 67,335 / 0 / 0 0 / 0 / 215 0 / 1,318 / 0
neutral 66,401 / 0 / 0 0 / 0 / 251 0 / 1,747 / 0

(b) The imperfect partitions for the MNLI dataset (G1/G2/G3).

White-aligned AAE Hispanic Others

abusive 11,281 7,392 6,707 1,770
spam 8,147 1,041 541 4,301
normal 41,756 2,562 2,638 6,895
hateful 2,696 1,420 509 340

(c) Statistics of each group in the clean partition of the hate speech
dataset. Data of each dialect attribute (column) corresponds one
group in the imperfect partition.

Table 2. Statistics of data in different groups partitioned by at-

tributes (row) and labels (column).

i) in group G1 (dark, male) are spuriously correlated since

we put all their counterparts (blonde, male) in group G2; ii)

similarly, (dark, female) in G2 are spuriously correlated.

Natural Language Inference (NLI). NLI is the task of

determining whether a hypothesis is true (entailment), false

(contradiction) or undetermined (neutral) given a premise.

We use the MultiNLI dataset (Williams et al., 2018) and

follow the train/dev/test split in Sagawa et al. (2020a), which

results in 206,175 training examples. Gururangan et al.

(2018) have shown that there is spurious correlation between

the label of contradiction and the presence of negation words

(nobody, nothing, no, never) due to annotation artifacts.

We further split the negation words into two groups: set 1

(nobody, nothing) and set 2 (no, never) to have more variety

in the attributes, i.e. A = {no negation, negation 1, negation

2}, which together with labels forms 9 groups in the clean

partition. We create 3 groups in the imperfect partition as

shown in Tab. 2b, where G1 only contains examples from

a =no negation, while G2 and G3 contain data from both

a =negation 1 and a =negation 2. This causes a dilemma

when upweighting either of the groups.

Toxicity Detection. This task aims to identity various forms

of toxic languages (e.g. abusive speech, hate speech), an

application with practical and important real-world con-

sequences. Sap et al. (2019) have shown that there is a

strong correlation between certain surface markers of En-

glish spoken by minority groups and the labels of toxicity.

And such biases can be acquired and propagated by mod-

els trained on these corpora. We perform experiments on

the FDCL18 (Fortuna & Nunes, 2018) dataset, a corpus of

100k tweets annotated with four labels: Y = {hateful, spam,
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A. Proofs of Theorem 1

Lemma 1. If T is sufficient statistics, we have p(Y,X|T ) = p(Y |T ) · p(X|T ).

Lemma 2. If T is sufficient statistics, we have p(Y |T (X)) = p(Y |X).

Proof. Find T ′(X), s.t. S(x) = 〈T (X), T ′(X)〉 is an invertible mapping of X , thus p(Y |X) = p(Y |S(X)) =
p(Y |T (X), T ′(X)). We have,

p(Y, T (X), T ′(X)|T (X)) = p(Y |T ′(X), T (X))p(T ′(X)|T (X)) (8)

From Lemma 1, we have

p(Y, T (X), T ′(X)|T (X)) = p(Y |T (X))p(T ′(X)|T (X)) (9)

By (8) and (9), we obtain p(Y |T ′(X), T (X)) = p(Y |T (X)) = p(Y |X).

Theorem 1. Suppose that there is only covariate shift in ptrain, i.e. ∃x ∈ Xtrain s.t. ptrain(x) 6= pideal(x) but ptrain(Y |X =
x) = pideal(Y |X = x), ∀x ∈ Xtrain. Let Ttrain(X) be the MSS representation learned under ptrain, then we have:

Htrain(Ttrain(x)|Tideal(x)) = 0. (2)

Proof. Since there is covariate shift between pideal and ptrain, we have ptrain(Y |X) = pideal(Y |X), ∀x ∈ Xtrain.

Since Ttrain(X) is MSS of ptrain and by Lemma 2, we have ptrain(Y |Ttrain(X)) = ptrain(Y |X) = pideal(Y |X) =
pideal(Y |Tideal(X)), ∀x ∈ Xtrain. Then ∀x ∈ Xtrain, y ∈ Y ,

ptrain(y|Tideal(x)) =
∑

x′:Tideal(x′)=Tideal(x)

ptrain(y|x
′)ptrain(x

′|T (x))

=
∑

x′:Tideal(x′)=Tideal(x)

pideal(y|x
′)ptrain(x

′|T (x))

=
∑

x′:Tideal(x′)=Tideal(x)

pideal(y|T (x))ptrain(x
′|T (x))

= pideal(y|Tideal(x)) (10)

Then we have

Htrain(Y |Ttrain(X)) =
∑

x,y

ptrain(x, y)[− log ptrain(y|Ttrain(x))]

=
∑

x,y

ptrain(x, y)[− log pideal(y|Tideal(x))]

=
∑

x,y

ptrain(x, y)[− log ptrain(y|Tideal(x))]

= Htrain(Y |Tideal(X)) (11)

From equation 11 and the definition of sufficient statistics, we have

Itrain(Y ;Ttrain(X)) = Itrain(Y ;X) = Itrain(Y ;Tideal(X)) (12)

Thus, Tideal(X) is the sufficient statistics of X about Y under ptrain. By definition, we have

Htrain(Ttrain(X)|Tideal(X)) = 0. (13)

Corollary 1. Suppose Xtrain = Xideal in Theorem 1, then Ttrain(X) is also the MSS under pideal.

Proof. Since Xtrain = Xideal = X , with the similar derivation of equation 10, we have ∀x ∈ X , y ∈ Y

pideal(y|Tideal(x)) = pideal(y|Ttrain(x)) (14)

Together with Theorem 1, we have Ttrain(x) is also the MSS under pideal.
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B. Connections between MLE and Learning Minimal Sufficient Statistics

B.1. Information Bottleneck (IB) Method

The information bottleneck (IB) method (Tishby et al., 2000) is an information theoretic principle introduced to extract

relevant information that an input X ∈ X contains about an output random variable Y ∈ Y . Defined on a joint distribution

of X and Y , IB learns a mapping function T (X) by optimizing the trade-off between the mutual information I(X;T ) and

I(Y ;T ) such that T (X) is a compressed representation of X (quantified by I(X;T )) that is most informative about Y

(quantified by I(Y ;T )). Let T be parameterized by θ, the objective of IB optimizes the trade-off between I(Y ;Tθ(X)) and

I(X;Tθ(X)):

min
θ
−I(Y, Tθ(X)) + βI(X;Tθ(X)) (15)

where β is a positive Lagrange multiplier.

Schwartz-Ziv & Tishby (2017) casts finding of minimal sufficient statistics (MSS) T (X) as a constrained optimization

problem using data-processing inequality (Cover, 1999):

min
T (X)

I(T (X);X)

s.t I(T (X);Y ) = I(X;Y ) (16)

This corresponds to the IB method (Eq. 15) which extends the notion of relevance between functions of samples and

parameters in conventional MSS to any joint distribution of X and Y . The IB method provides a computational framework

for finding approximate MSS in a soft manner by trading off the sufficiency for Y (I(Y; T(X))) and the minimality of the

statistic (I(X,T (X))) with the Lagrange multiplier β (Schwartz-Ziv & Tishby, 2017; Shamir et al., 2010).

B.2. Connections between MLE and IB

Given that the IB objective is approximately learning MSS in a soft manner, we next build the connections between the

popularly adopted maximum likelihood estimation (MLE) in supervised learning and the IB objective. We show that under

certain assumptions, MLE is approximating the IB objective defined on the joint distribution of ptrain(X,Y ).

To facilitate the discussions, we decompose the model parameters into θ and φ that denote the parameters of the feature

extractor Tθ(x) and the classifier respectively. MLE minimizes the expected negative log probability under ptrain(X,Y ):

min
θ,φ

Ex,y∼ptrain(X,Y )[− log pθ,φ(x, y)] (17)

⇐⇒ min
θ,φ

Ex,y∼ptrain(X,Y )[− log pφ(y|Tθ(x))− log pθ(x)] (18)

Usually, we only model the conditional distribution pφ(Y |X) and assume that pθ(X) = ptrain(X) which is independent

from θ. With the assumption that pθ(x) ∝ pβ(Tθ(x))), β > 0, (18) can be rewritten as:

min
θ,φ

Ex,y∼ptrain(X,Y )[− log pφ(y|Tθ(x))] + βEx∼ptrain(X)[− log p(Tθ(x))] (19)

Assume that the neural network parameterized by φ is a universal function approximator, then we can replace minθ,φ with

minθ and (19) can be written as:

min
θ

H(Y |Tθ(X)) + βH(Tθ(X)) (20)

by (1) I(Y ;Tθ(X)) = H(Y )−H(Y |Tθ(X))

(2) H(Tθ(X)) = I(X;Tθ(X)) +H(Tθ(X)|X) = I(X;Tθ(X))

⇐⇒ min
θ
−I(Y ;Tθ(X)) + βI(X;Tθ(X)) (21)

We can see that under the assumption of pθ(x) ∝ pβ(Tθ(x))), the MLE objective can be converted into the same form as the

IB objective. In practice, we usually do not model ptrain(X) and only optimize the first term I(Y ;Tθ(X)) in (21). However,

previous work (Schwartz-Ziv & Tishby, 2017; Geiger, 2020) has shown that deep neural networks (DNNs) are implicitly

minimizing I(X;Tθ(X)) with a wide range of activation functions and architectures, which are manifested as a second

compression phase during learning with SGD. Thus, we can presumably consider MLE as approximating the IB objective,

which is equivalent to learning the MSS on the train distribution ptrain(X,Y ).
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C. Details of the Online Greedy Algorithm for Group DRO

Algorithm 2: Online greedy algorithm for group DRO (Oren et al., 2019)

Input :α; m: total number of groups

Initialize historical average group losses L̂(0); historical estimate of group probabilities p̂train(0); learning rate η

for t = 1, · · · , T do
Sample a mini-batch batch B = (x,y,g) uniformly from ptrain

. Update the historical vectors of L̂(t) and p̂train(t) for each group g ∈ {1, · · · ,m}

L̂(t)(g)← EMA({`(xi,yi; θ
(t−1)) : gi = g}, L̂(t−1)(g))

p̂train(t) ← EMA(#samples of each group in B, p̂train(t−1))
. Update the worst-case distribution q(t)

Sort p̂train(t) in the order of decreasing L̂(t) and denote the sorted group indexes π

q(t)(gπi
) = min{

p̂train(t)(gπi
)

α
, 1−

∑i−1
j=1

p̂train(t)(gπj
)

α
}

. Update model parameters θ

θ(t) = θ(t−1) − η
|B|

∑|B|
i=1

q(t)(gi)
p̂train(t)(gi)

∇`(xi,yi; θ
(t−1))

end

EMA refers to exponential weighted moving average such that EMA(v1, v2) = γv1 + (1− γ)v2, where γ ∈ (0, 1).

D. Synthetic Experiments: on Investigation Spurious Features under Covariate Shift

a b c d8 5 e f i d l3 6 t e s l a2 9

0 1 1+ +

y = 2 % 10 = 2

Figure 5. An illustrative example of the synthetic task.

Synthetic Experiments We design synthetic experiments where data is generated based on the ground-truth rules and

different biases are injected. We show that even in the presence of necessary information to learn the rules, the ERM model

(specifically, we examine MLE) can still learn spurious features or miss robust features under covariate shift. The synthetic

task aims to predict an integer y ∈ {0, · · · , 9} conditioned on a sequence x as shown in Fig. 5. Concretely, x is composed

of m chunks, where each chunk ci has |ci| characters that are randomly sampled from an alphabet V . We prepend an integer

c1i and append an integer c2i to each chunk ci, and both c1i and c2i are uniformly sampled from [1, 10]. The target integer y is

predicted following the rules: each triple of (c1i , ci, c
2
i ) produces an indicator value di; di = c2i − c1i if c2i > c1i , otherwise

di = 0; then y = (
∑m

i=1 di) mod 10. We set 3 ≤ m ≤ 6, 3 ≤ |ci| ≤ 5 and |V| = 26,. We use a one-layer bidirectional

LSTM (Hochreiter & Schmidhuber, 1997) to model the input sequence and use the final hidden states of the LSTM to

predict the target value. We create training data following the the above description and design two settings that introduce

covariate shift to examine if the model can learn the rules with ERM.

(a) Setting 1 — ERM-trained models can miss robust features under covariate shift: We create the training data by

imposing c2m > c1m on the last chunk cm of all the training samples. When we create the training data, the rules applied to

each chunk are the same as described above, which means that the model does not need to learn additional rules for the last

chunk. We are interested in examining whether the model trained with ERM will apply the rules learned from other chunks

to the last one or it will miss the robust features of the last chunk. At test time, we evaluate on two groups of test sets: Dout

where c2m ≤ c1m, different from the training data, and Din where c2m > c1m, consistent with the training data. From Tab. 5,

we see that the test accuracy on Dout is much lower that that on Din. This demonstrates that the model only learns robust

features from chunks cm−1
1 but misses the robust features of the last chunk cm. We conjecture that the model trained with

ERM learns in a lazy way where it tries to minimize the entropy of learned features by memorizing patterns and taking

shortcuts as discussed further in Appendix B.2.

(b) Setting 2 — ERM-trained models can learn spurious features under covariate shift: In the second setting, we

inject spurious patterns into the training data that co-occur with the rules we aim to learn. As both robust rules and spurious

patterns co-exist in the training data, we would like to see whether the model picks up the spurious ones or the robust
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Din Dout

Setting 1 99.93 ± 0.02 14.68 ± 2.60
Setting 2 100.00 ± 0.00 10.26 ± 0.25

Table 5. Test accuracy of the synthetic task.

ones. Specifically, each training input sequence has a chunk cj that includes a special segment of characters, e.g. a b. The

remainder of dj = c2j − c1j and the sum of all indicators
∑m

i=1 di mod by 10 are the same such that the target label y is

always the same as the indicator dj . Similarly, we test on two cases: i) Din where every sequence includes a special chunk

as in the training set; ii) Dout where characters in each chunk are uniformly sampled. We can see from Tab. 5 that the model

learns to use the spurious patterns to predict the target label instead of the general rules.

E. Experimental Details

E.1. Models and Training Details

Model Specific Settings In our method, we adopt two criterions in GC-DRO to determine when to update q(x, y|g) for

each groups: (1) update when the robust validation accuracy drops (2) update at every epoch. With (2), q(x, y|g) is updated

more frequently. For MNLI and Celeb-A, we use the second criterion. For FDCL18, we use the first criterion, because

this is a relatively smaller dataset and updating q(x, y|g) less frequently makes training more stable. Every time q(x, y|g)
is updates, we clear the historical losses in EMA that is used for updating q(g). We use exponentially weighted moving

average (EMA) to compute the historical losses for both q(g) and q(x, y|g), for which we denote EMAG and and EMACG

respectively. As shown above, we use γ to denote the coefficient for current value in EMA, thus 1−γ is used to the historical

value. We found that the value of γ is an important hyperparameter in some cases to achieve better performance, since the

final q distribution is computed through sorting the losses accumulated via EMA. Basically, a higher γ pays more attention

to the current value. We search over {0.1, 0.5} for both γ used in EMAG and EMACG respectively. Through the robust

accuracy on the validation set, we set both γ’s to be 0.5 for the NLP tasks except that for the imperfect partition of toxicity

detection we set γ used in EMAG to be 0.1. For the image task, we set both γ’s to be 0.1. For the γ used in accumulating

the historical fractions of groups, we always use a small value 0.01.

Training Details For the NLP tasks, we finetune a base Roberta model (Liu et al., 2019; Ott et al., 2019) and we segment

the input text into the sub-word tokens using the tokenization described in (Liu et al., 2019). During training, we sample

minibatches that contain at most 4400 tokens. We train MNLI using Adam (Kingma & Ba, 2014) with an intitial learnig rate

of 1e− 5 for 35 epochs and FDCL18 for 45 epochs, and we linearly decay the learning rate at every step until the end of

training. For the image task, we fine-tune a ResNet-18 (He et al., 2016) for 50 epochs with batch size of 256. We use SGD

with learning rate of 1e− 4. At the end of every epoch, we evaluate the robust accuracy on the validation set. We train on

one Volta-16G GPU and it takes around 2 - 5 hours to finish one experiments for different datasets.

E.2. Implementation of the Group DRO Loss

We referred to the implementation of greedy group DRO in Sagawa et al. (2020a), where they use the exact formulation

in Eq. 5 to compute the expected loss, which leads to inferior performance compared to the exponentiated-gradient based

optimization as reported in Sagawa et al. (2020a). The implementation computed the final loss by first computing the

average loss over instances for each group (MC for the inner expectation), then compute the full expected value over the

averaged group loss, as shown below:

`(x,y,g; θ) =
∑

g

q(g)¯̀(g) =
∑

g

q(g)
1

Cg

∑

{i,∀gi=g}

`(xi,yi; θ), (22)

where (x,y,g) is a mini-batch and Cg is the number of samples that belong to group g in the mini-batch. We can

see that instances that belong to different groups are weighted correspondingly by the number of group size in a

mini-batch. This causes that instances in large group get unfairly lower weights, especially when its probability in

the q distribution is low. We fix this by directly computing the expected loss over the joint distribution of q(x, y, g),

i.e. E(xi,yi,gi)∼q(x,y,g)`(xi, yi, gi; θ) = E(xi,yi,gi)∼ptrain(x,y,g)
q(xi,yi,gi)

ptrain(xi,yi,gi)
`(xi, yi, gi). Specifically, we do this by summing

over all the importance weighted instance losses using corresponding group weights and taking average. This allows us to

obtain unbiased gradient estimates of θ.
1

N

∑

i

q(gi)

ptrain(gi)
`(xi,yi; θ) (23)


