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Abstract

Question answering (QA) in English has been

widely explored, but multilingual datasets are

relatively new, with several methods attempt-

ing to bridge the gap between high- and low-

resourced languages using data augmentation

through translation and cross-lingual transfer.

In this project, we take a step back and study

which approaches allow us to take the most

advantage of existing resources in order to pro-

duce QA systems in many languages. Specif-

ically, we perform extensive analysis to mea-

sure the efficacy of few-shot approaches aug-

mented with automatic translations and per-

mutations of context-question-answer pairs.

In addition, we make suggestions for future

dataset development efforts that make better

use of a fixed annotation budget, with a goal

of increasing the language coverage of QA

datasets and systems.1

1 Introduction

Automatic question answering (QA) systems are

showing increasing promise that they can fulfil

the information needs of everyday users, via in-

formation seeking interactions with virtual assis-

tants. The research community, having realized the

obvious needs and potential positive impact, has

produced several datasets on information seeking

QA. The effort initially focused solely on English,

with datasets like WikiQA (Yang et al., 2015),

MS MARCO (Nguyen et al., 2016), SQuAD (Ra-

jpurkar et al., 2016), QuAC (Choi et al., 2018),

CoQA (Reddy et al., 2019), and Natural Questions

(NQ) (Kwiatkowski et al., 2019), among others.

More recently, heading calls for linguistic and ty-

pological diversity in natural language processing

1Code and data for reproducing our experiments are avail-
able here: https://github.com/NavidRajabi/

EMQA.
*Equal contribution.

research (Joshi et al., 2020), larger efforts have pro-

duced datasets in multiple languages, such as TyDi

QA (Clark et al., 2020), XQuAD (Artetxe et al.,

2020), or MLQA (Lewis et al., 2020).

Despite these efforts, the linguistic and typo-

logical coverage of question answering datasets

is far behind the world’s diversity. For exam-

ple, while TyDi QA includes 11 languages –less

than 0.2% of the world’s approximately 6,500 lan-

guages (Hammarström, 2015)– from 9 language

families, its typological diversity is 0.41, evaluated

in a [0,1] range with the measure defined by Ponti

et al. (2020); MLQA provides data in 7 languages

from 4 families, for a typological diversity of 0.32.

The total population coverage of TyDi QA, based

on population estimates from Glottolog (Nordhoff

and Hammarström, 2012), is less than 20% of the

world’s population (the TyDiQA languages total

around 1.45 billion speakers).

Obviously, the ideal solution to this issue would

be to collect enough data in every language. Un-

fortunately, this ideal seems unattainable at the

moment. In this work, we perform extensive anal-

ysis to investigate the next-best solution: using the

existing resources, large multilingual pre-trained

models, data augmentation, and cross-lingual learn-

ing to improve performance with just a few or no

training examples. Specifically:

• we study how much worse a multilingual few-

shot training setting would perform compared

to training on large training datasets,

• we show how data augmentation through

translation can reduce the performance gap

for few-shot setting, and

• we study the effect of different fixed-budget

allocation for training data creation across lan-

guages, making suggestions for future dataset

creators.
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2 Problem Description and Settings

We focus on the task of simplified minimal answer

span selection over a gold passage: The inputs to

the model include the full text of an article (the pas-

sage or context) and the text of a question (query).

The goal is to return the start and end byte indices

of the minimal span that completely answers the

question.

Our models follow the current state-of-the-art

in extractive question answering, relying on large

multilingually pre-trained language models (in our

case, multilingual BERT (Devlin et al., 2019)) and

the task-tuning strategy of Alberti et al. (2019),

which outperforms approaches like Documen-

tQA (Clark and Gardner, 2018) or decomposable

attention (Parikh et al., 2016). In all cases, we treat

the official TyDi QA development set as our test

set, since the official test set is not public.2 We pro-

vide concrete details (model cards, hyperparmeters,

etc) on our model and training/finetuning regime

in Appendix A.

To simulate the scenario of data-scarce adapta-

tion of such a model to unseen languages, we will

treat the TyDi QA languages as our test, unseen

ones. We will assume that we have access to (a)

other QA datasets in more resource-rich languages

(in particular, the SQuAD dataset which provides

training data in English), and (b) translation models

between the languages of existing datasets (again,

English) and our target “unseen” languages.

In the experiments sections, we first focus on

few- and zero-shot experiments (§3) and then

study the effects of language selection and budget-

restricted decisions on training data creation (§4).

Evaluation We report F1 score on the test set of

each language, as well as a macro-average exclud-

ing English (avgL). In addition, to measure the

expected impact on actual systems’ users, we fol-

low Faisal et al. (2021) in computing a population-

weighted macro-average (avgpop) based on lan-

guage community populations provided by Eth-

nologue (Eberhard et al., 2019).

3 Is Few-Shot a Viable Solution?

We first set out to explore the effect of the amount

of available data on downstream performance.

Starting with baselines relying solely on English-

only SQuAD, we implement a few-shot setting for

2This follows the guidelines to perform analyses over the
development set to ensure the integrity of the leaderboard.

fine-tuning on the target languages of TyDi QA.3

To our knowledge, this is the first study of its type

on the TyDi QA benchmark.

The straightforward baseline simply provides

zero-shot results on TyDi QA after training only

on English. Table 1 provides our (improved) repro-

duction of the baseline experiments of Clark et al.

(2020). The skyline results (bottom of Table 1) re-

flect the presumably best possible results under our

current modeling approach, which trains jointly on

all languages using all available TyDi QA train-

ing data. We note that for most languages the gap

between the baseline and the skyline is more than

20 percentage points, with the exception of En-

glish where –unsurprisingly– there is a difference

of only 3.3 percentage points. The performance

gap is smallest for Russian (rus) at 10.9 percentage

points, and largest for Telugu (tel) at 34 points.

We first study a monolingual few-shot setting.

That is, we fine-tune the model trained on the En-

glish SQuAD dataset, with only a small amount

of data (10, 20, or 50 training instances) in the

test language. Due to space limitations, we only

present results with 50 examples per language in

Table 1, but the full experiments are available in

Appendix C. We observe that even just 50 addi-

tional training instances are enough for significant

improvements, which are consistent across all lan-

guages. For example, the improvement in Finnish

(fin) exceeds 15 percentage points and covers about

more than 60% of the performance gap between

the baseline and the skyline.

We now turn to a multilingual few-shot setting.

Exactly as before, we assume a scenario where

we only have access to a small amount of data

in each language, but now we fine-tune using that

small amount of data in all languages. For example,

10 training instances in each language result in

training with 90 training examples over the 9 test

languages. A sample of our experimental results

are presented in Table 1 under “multilingual few-

shot,” with complete results in Appendix C.

Simply adding 50 instances from each language

we obtain an F1 score of 67.9 over the zero-shot

baseline, an improvement of almost 7 percentage

points which reduces the zero-full gap by 43.4%.

3We do not report results on Korean, due to a late-
discovered issue: we found that parts of the Korean data
use a Unicode normalization scheme different than what is
expected by mBERT’s vocabulary. We suspect this is respon-
sible for our Korean results being consistently around 50%
worse than previously published results.
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Results (F1-score) avgL avgpop

Model eng ara ben fin ind swa rus tel (without eng)

Baseline: SQuAD zero-shot

(reproduction) 74.2 59.0 57.3 55.7 63.2 60.3 65.6 44.6 58.0±6.3 59.3

Monolingual Few-Shot (+50) 73.9 64.9 66.4 70.9 73.3 70.1 66.3 62.5 67.8±3.5 67.1

Multilingual Few-Shot

(+10/lang, 90 total) 73.7 64.6 62.9 66.5 67.0 63.1 65.9 59.6 64.2±2.4 64.4

(+50/lang, 450 total) 73.4 69.2 65.8 69.0 73.4 68.8 67.2 66.2 68.5±2.4 68.6

(+100/lang, 900 total) 74.2 72.5 70.9 71.9 75.5 72.3 69.3 69.3 71.7±2.0 71.9

(+500/lang, 4500 total) 76.1 76.3 74.5 78.2 81.4 79.2 73.3 73.7 76.7±2.8 76.2

Data Augmentation + Multilingual Few-Shot

+tSQuAD 74.9 65.4 58.4 66.7 65.2 69.4 60.2 44.7 61.4±7.7 61.2

+mSQuAD 75.1 65.6 68.6 71.7 70.3 66.2 75.5 49.4 66.7±7.7 67.6

+mSQuAD +500/lang 77.6 78.7 75.0 78.5 83.5 82.5 73.2 75.3 78.1±3.6 77.6

+tSQuAD +500/lang 77.9 78.8 80.0 79.5 82.8 83.6 72.5 73.5 78.7±3.9 78.6

Skyline: Full training on TyDi QA train

(reproduction) 77.5 82.4 78.9 80.1 85.4 83.8 76.5 78.3 80.8±3.0 80.9

Table 1: Data augmentation combined with multilingual few-shot learning can reach about 98% of the skyline

accuracy using only 10 times less training data on the test languages beyond English.

We note that the total 450 training instances rep-

resent less than 1% of the full TyDi QA training

set! Doubling that amount of data to 100 exam-

ples per language further increases downstream

performance to an average overall F1 score of 71.7.

Going further to the point of adding 500 training in-

stances per language (for a total of 4500 examples)

leads to even larger improvements for an average

F1 score of 76.7. That is, using less than 10% of

the available training data we can reduce the aver-

age F1 score performance gap by more than 82%.

For a few languages the gap reduction is even more

notable, e.g., more than 92% for Finnish.

Data Augmentation through Translation Gen-

erating translations of English dataset to train

systems in other languages has a long history

and has been successful in the QA context as

well (Yarowsky et al., 2001; Xue et al., 2020, inter

alia). We follow the same approach, translating all

SQuAD paragraphs, questions, and answers to all

TyDi QA languages using Google Translate.4 For

each language, we keep between 20-50% of the

question-answer pairs where the translated answer

has an exact match in the translated paragraph,

4We release the data to facilitate the reproduction of our
experiments.

which becomes the target span.5 Details of the re-

sulting dataset (which we refer to as tSQuAD) are

in Table 3 in Appendix B. A second approach trans-

lates the question of a training instance into one

language, but keeps the answer and context into the

original language. The result is a modified train-

ing set (which we name mSQuAD) that requires

better cross-lingual modeling, as the question and

contexts are in different languages.

Both approaches improve over the zero-shot

baseline with F1 score of 61.4 (+3) and 66.7 (+8).

Notably, though, they are not as effective as few-

shot training even with just 50 instances per lan-

guages. This further strengthens the discussion

of Clark et al. (2020) on the qualitative differences

between the SQuAD and TyDi QA dataset. Never-

theless, combining tSQuAD (or mSQuAD) with a

few examples from the TyDi QA dataset leads to

our best-performing methods. In particular, aug-

mentation through translation leads to an 1-2 per-

centage point improvements over the multilingual

few-shot approach (cf. 76.7 to 78.1/78.7 F1 score

in Table 1; full results in Appendix C). Now, using

only 500 new training examples per language we

are almost (98%) at similar performance levels as

the skyline.

5This approach could be enhanced using word/phrase
alignment techniques, which we leave for future work.
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Results (F1-score) Overall ∆l avg
eng ara ben fin ind swa rus tel (w/o eng) (max-min) seen unseen

Baseline: no budget for additional data (zero-shot except for eng)
74.2 59.0 57.3 55.7 63.2 60.3 65.6 44.6 58.0±6.3 29.6 74.2 58.0

Monolingual budget allocation (max 4500 per language; 7 experiments)
76.0±1.8 74.0±3.9 69.1±5.0 75.8±2.7 78.4±4.1 71.7±4.1 75.7±6.3 61.3±12.3 72.3±5.3 17.1 77.1 71.3

Tri-lingual budget allocation (1500 per language; 7 random language selection experiments)
76.7±1.2 77.2±2.8 68.6±4.8 77.9±1.6 80.9±3.3 81.5±3.3 72.7±2.3 62.9±13.3 74.5±6.3 18.6 78.9 68.5

Uniform budget allocation (500 per language)
77.9 78.8 80.0 79.5 82.8 83.6 72.5 73.5 78.7±3.9 11.1 78.6 –

Ideal Few-Shot (4500 in each language; in-language results)
78.4 81.8 77.7 79.7 83.9 84.0 75.7 78.2 79.9±3.0 8.3 79.9 -

Table 2: A more egalitarian budget allocation leads to better and more equitable performance across languages

(avg±std: higher average, lower std. deviation) reducing the gap (∆l) between best and worst performing languages.

4 How to Spend the Annotation Budget?

In the previous section we show that the combina-

tion of data augmentation techniques with a few

new annotations can reach almost 98% of the per-

formance one would obtain by training on 10x

more data. In this section we explore how one

should allocate a fixed annotation budget, in order

to achieve not only higher average but also more

equitable performance across languages.

Keeping our budget fixed to 4500 instances, we

study 3 scenarios. The first is monolingual allo-

cation, where the whole budget is consumed by

collecting training examples on a single language.

We repeat the study over all 8 languages of our test

set, randomly sampling training instances from

the TyDi QA training set. Second, we study a

tri-lingual budget allocation scheme, where we

equally split the budget across 3 languages for 1500

training instances per language. We repeat this ex-

periment 7 times, each time randomly selecting 3

languages. Last, the third and more egalitarian

scenario splits the budget equally across all 8 lan-

guages, matching our previously analyzed few-shot

scenario where we only have 500 additional train-

ing examples per language. In all experiments, we

use our best-performing approach from the previ-

ous section, also utilizing tSQuAD for pre-training.

Our findings are summarized in Table 2. For the

repeated monolingual and tri-lingual scenarios we

report average performance across our experiment

repetitions (full results in Appendix E). We can

conclusively claim that a uniform budget alloca-

tion leads to not only better average performance,

but also to more equitable performance. We report

two straightforward measures for the equitability

of the average accuracy across languages. First,

we report the standard deviation of the accuracy

across languages; the lower the standard deviation,

the more equitable the performance. We also re-

port the difference between the best and the worst

performing language for each experiment, as well

as the averages for the languages that are seen and

unseen during fine-tuning.

Having no budget for additional annotation (es-

sentially, attempting the task in zero-shot fashion)

leads to the most inequitable performance. The

monolingual scenario typically leads to the highest

accuracy when evaluating on the same language

as the new training examples (the ideal section of

Table 2) but the zero-shot performance on all other

languages is generally significantly worse, leading

to inequity. The tri-lingual scenarios follow similar

patterns, with performance close to state-of-the-

art for the four languages (three plus English) that

have been included in the fine-tuning process, but

with the rest of the languages lagging behind: the

difference between seen and unseen languages is

on average 10.4 points. In our experiments we

randomly sampled (without replacement) three of

the seven languages, but one could potentially use

heuristics or a meta-model like that of Xia et al.

(2020) to find or suggest the best subset of candi-

date languages for transfer learning; we leave such

an investigation for future work.

Encouragingly, the uniform budget allocation

scenario leads to higher average performance,

while also reducing the gap between worst and

best performing languages from around 30 percent-

age points to less than 12 points (60% reduction).

Note that a 8x larger budget (ideal scenario) with

4500 instances per language would further improve

downstream accuracy and equitability. Note that

in this case where some resources are available,
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simple multilingual fine-tuning might not be the

best approach for some languages, e.g. compared

to monolingual fine-tuning or meta-learning ap-

proaches (Wang et al., 2020; Muller et al., 2021,

inter alia). We leave an investigation of such set-

tings for future work.

5 Discussion

We show that data augmentation through transla-

tion along with few-shot fine-tuning on new lan-

guages with a uniform budget allocation leads to

a performance close to 98% of an approach using

10x more data, while producing more equitable

models than other budget-constrained alternatives.

The implications of our findings become clear

with a counter-factual exploration. The Gold Pas-

sage portion of the TyDi QA dataset includes

around 87,000 annotated examples (50k for train-

ing across 9 languages and about 37k development

and test samples). Consider the scenario where,

given this annotation budget, we maintain the same

evaluation standards collecting 4k development

and test examples per language, but we only col-

lect 500 training examples per language. In that

case, we could have created a much more diverse

resource that would include at least 19 languages!

Now consider the expectation of the downstream

accuracy in our counterfactual scenario: uniform

budget allocation on 19 languages would lead to an

average accuracy (F1 score) of around 78% (sim-

ilar to our experiments). Instead, under the (cur-

rently factual) scenario where we only have train-

ing data for 9 languages, the average accuracy for

these 9 languages is around 80%, but the zero-shot

expected average on the other 10 languages is 10

points worse – in that case, the overall average ac-

curacy would be around 74%, 4 points lower than

that of the egalitarian allocation scenario. Hence,

as long as the ideal scenario of collecting a lot

of data for a lot of languages remains infeasible,

we suggest that the community puts an additional

focus on the linguistic diversity of our evaluation

sets and use other techniques to address the lack of

training data.

Acknowledgements

This work is supported by NSF Award 2040926.

The authors also want to thank Fahim Faisal for

helpful discussions on setting up the experiments.

Most experiments were run on ARGO,6 a research

6http://orc.gmu.edu

computing cluster provided by the Office of Re-

search Computing at George Mason University,

VA, and a few experiments were run on Amazon

Web Services instances donated through the AWS

Educate program.

References

Chris Alberti, Kenton Lee, and Michael Collins.
2019. A BERT baseline for the natural questions.
arXiv:1901.08634.

Mikel Artetxe, Sebastian Ruder, and Dani Yogatama.
2020. On the Cross-lingual Transferability of
Monolingual Representations. In Proceedings of
the 58th Annual Meeting of the Association for Com-
putational Linguistics, pages 4623–4637, Online.
Association for Computational Linguistics.

Eunsol Choi, He He, Mohit Iyyer, Mark Yatskar, Wen-
tau Yih, Yejin Choi, Percy Liang, and Luke Zettle-
moyer. 2018. QuAC: Question Answering in Con-
text. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing,
pages 2174–2184. Association for Computational
Linguistics.

Christopher Clark and Matt Gardner. 2018. Simple and
Effective Multi-Paragraph Reading Comprehension.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 845–855. Association for Com-
putational Linguistics.

Jonathan H. Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. TyDi QA: A Bench-
mark for Information-Seeking Question Answering
in Typologically Diverse Languages. Transactions
of the Association for Computational Linguistics,
8:454–470.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Vol 1, pages 4171–4186. Association
for Computational Linguistics.

David M Eberhard, Gary F Simons, and Charles
D. (eds.) Fennig. 2019. Ethnologue: Languages of
the world. 2019. online. Dallas, Texas: SIL Interna-
tional.



626

Fahim Faisal, Sharlina Keshava, Md Mahfuz ibn Alam,
and Antonios Anastasopoulos. 2021. SD-QA: Spo-
ken Dialectal Question Answering for the Real
World. Preprint.

Harald Hammarström. 2015. ” ethnologue” 16/17/18th
editions: A comprehensive review. Language,
pages 723–737.

Hugging Face - mBERT. 2020. Hugging Face -
bert-base-multilingual-cased. [Online; accessed 01-
Novemberr-2020].

Pratik Joshi, Sebastin Santy, Amar Budhiraja, Kalika
Bali, and Monojit Choudhury. 2020. The State and
Fate of Linguistic Diversity and Inclusion in the
NLP World. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 6282–6293. Association for Compu-
tational Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Al-
berti, Danielle Epstein, Illia Polosukhin, Jacob De-
vlin, Kenton Lee, et al. 2019. Natural Questions:
A Benchmark for Question Answering Research.
Transactions of the Association for Computational
Linguistics, 7.

Patrick Lewis, Barlas Oguz, Ruty Rinott, Sebastian
Riedel, and Holger Schwenk. 2020. MLQA: Evalu-
ating Cross-lingual Extractive Question Answering.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7315–7330, Online. Association for Computational
Linguistics.

Benjamin Muller, Antonios Anastasopoulos, Benoı̂t
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A Experimental Settings

For the experiments, we’ve used

“bert-multi-lingual-base-uncased”

(mBERT) (Hugging Face - mBERT, 2020) as

mentioned as the main baseline on TyDi QA

paper (Clark et al., 2020). It is a pre-trained

model on the top 102 languages with the largest

Wikipedia using a masked language modeling

(MLM) objective (Devlin et al., 2019). From

preliminary experiments, we realized that the

optimum trade-off between the highest F1 score

and the least computational cost is achieved by

training for 3 epochs, using batch size of 24, and

learning rate of 3e-5. Therefore, we applied these

hyperparameter settings for our experiments. The

main script we used was a module under the

Huggingface library (Wolf et al., 2020) (called

run squad), which is being used widely for

fine-tuning transformers for multi-lingual question

answering datasets.

B SQuAD Translation Details

We augmented the English SQuAD with trans-

lated SQuAD (tSQuAD) instances for each lan-

guage. Here, the contexts, questions and an-

swers from SQuAD instances are translated to

the target languages using Google Translate (with

the google-trans-new API) and only the in-

stances where an exact match of translated answer

is found in the translated context, are kept for aug-

mentation. The total number of instances per lan-

guage, we ended up with after translation is listed

in Table 3.

C Complete Few-Shot Experiments

Provided in Table 4.

D Mix-and-Match Experiments

Provided in Table 5.

E Budget Allocation Experiments

The complete results for our experiments are pre-

sented in Table 6.
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SQuAD tAr tBn tFin tInd tKo tRus tSwa tTel

no of paragraphs 18.9 16.6 13.5 12.4 16.2 11.2 11.6 15.3 16.6

no of QAs 87.6 39.1 24.1 21.4 36.1 18.1 19.2 31.2 39.7

Table 3: Number (in 1000s) of paragraphs and QA pairs present in the original SQuAD and translated SQuAD

Results (F1-score) Overall
Model eng ara ben fin ind swa rus tel (without eng)

Baseline: SQuAD zero-shot
(Clark et al., 2020) 73.4 60.3 57.3 56.2 60.8 52.9 64.4 49.3 57.3±4.7
(ours) 74.2 59.0 57.3 55.7 63.2 60.3 65.6 44.6 58.0±6.3

Monolingual Few-Shot (+10) 73.7 64.7 62.8 68.2 69.3 59.9 65.6 50.7 63.0±5.8
Monolingual Few-Shot (+20) 74.7 63.5 60.5 66.6 72.1 63.9 66.8 63.0 65.2±3.4
Monolingual Few-Shot (+50) 73.9 64.9 66.4 70.9 73.3 70.1 66.3 62.5 67.8±3.5

Multilingual Few-Shot
(+10/lang, 90 total) 73.7 64.6 62.9 66.5 67.0 63.1 65.9 59.6 64.2±2.4
(+20/lang, 180 total) 73.9 65.9 66.8 69.0 72.5 64.2 66.9 63.7 67.0±2.8
(+50/lang, 450 total) 73.4 69.2 65.8 69.0 73.4 68.8 67.2 66.2 68.5±2.4
(+100/lang, 900 total) 74.2 72.5 70.9 71.9 75.5 72.3 69.3 69.3 71.7±2.0
(+200/lang, 1800 total) 73.9 74.8 70.5 74.1 77.7 76.4 69.8 70.0 73.3±3.0
(+500/lang, 4500 total) 76.1 76.3 74.5 78.2 81.4 79.2 73.3 73.7 76.7±2.8

Data Augmentation + Multilingual Few-Shot
+tSQuAD(50/lang) 73.8 64.0 62.4 68.4 69.7 59.7 66.8 48.1 62.7±6.8
+tSQuAD(100/lang) 72.4 62.2 66.6 68.4 68.6 64.9 67.1 47.5 63.6±6.9
+tSQuAD(200/lang) 74.4 62.7 64.2 68.8 70.7 66.1 66.2 48.3 63.9±6.8
+tSQuAD(500/lang) 73.7 63.2 69.5 67.9 70.9 69.8 66.7 49.1 65.3±7.0
+tSQuAD(all) 74.9 65.4 58.4 66.7 65.2 69.4 60.2 44.7 61.4±7.7
+mSQuAD +500/lang 77.6 78.7 75.0 78.5 83.5 82.5 73.2 75.3 78.1±3.6
+tSQuAD +500/lang (mBERT) 77.9 78.8 80.0 79.5 82.8 83.6 72.5 73.5 78.7±3.9
+tSQuAD +500/lang (XLM-R)∗ 73.2 72.8 78.3 78.5 84.7 80.3 75.0 78.1 78.2±3.5

Skyline: Full training on TyDi QA train
(Clark et al., 2020) 76.8 81.7 75.4 79.4 84.8 81.9 76.2 83.3 80.4±3.3
(ours) 77.5 82.4 78.9 80.1 85.4 83.8 76.5 78.3 80.8±3.0

Table 4: Complete few-shot and data augmentation results. ∗: Results with XLM-Roberta-Large (Conneau et al.,

2020) are generally worse than using mBERT so all other experiments use mBERT.

Change language of Question only Change all; Context & answers the same

Modified

Squad

Squad +

Modified

Squad

Squad +

Modified

Squad +

500

instances

Modified

Squad

Squad +

Modified

Squad

Squad +

Modified

Squad +

500

instances

English 66.59 75.06 77.56 65.40 73.49 78.21

Arabic 62.17 65.62 78.70 60.51 65.98 77.96

Bengali 67.33 68.55 75.00 58.60 62.44 76.16

Finnish 67.42 71.67 78.55 62.98 67.58 79.51

Indonesian 66.45 70.33 83.46 61.89 66.44 84.10

Kiswahili 70.32 75.48 82.51 62.66 68.55 80.01

Russian 64.71 66.16 73.16 61.01 65.64 73.28

Telugu 48.32 49.36 75.28 43.62 51.81 74.95

Avg 63.82 66.74 78.09 58.76 64.07 78.00

SD 6.74 7.75 3.60 6.33 5.31 3.35

Table 5: Mix-and-Match scheme detailed results.
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Results (F1-score) Overall Avg
eng ara ben fin ind swa rus tel (w/o eng) seen unseen

Baseline: no budget for additional data (zero-shot excelt in eng)
74.2 59.0 57.3 55.7 63.2 60.3 65.6 44.6 60.0±8.5 74.2 58.0

Monolingual budget allocation (max 4500 per language; 7 experiments)
Arabic 78.4 81.8 62.0 77.6 79.2 72.8 68.0 50.5 70.2±10.3 80.1 68.4
Bengali 74.4 66.3 77.7 71.6 72.8 78.1 66.5 52.0 69.3±8.3 76.1 67.9
Finnish 77.9 75.5 72.6 79.7 81.0 70.6 78.5 52.2 72.9±9.1 78.8 71.7

Indonesian 76.8 76.7 67.4 77.0 83.9 70.2 77.3 52.2 72.1±9.5 80.4 70.1
Kiswahili 76.4 72.5 67.1 75.0 77.4 66.4 84.0 75.0 73.9±5.6 71.4 75.2
Russian 75.2 74.5 66.7 76.3 81.0 75.7 78.8 69.4 74.6±4.7 77.0 73.9
Telugu 73.4 70.6 70.2 73.6 73.7 68.1 77.1 78.2 73.1±3.4 75.8 72.2

76.0±1.8 74.0±3.9 69.1±5.0 75.8±2.7 78.4±4.1 71.7±4.1 75.7±6.3 61.3±12.3 72.3±5.3 77.1 71.3

Tri-lingual budget allocation (1500 per language; 7 random language selection experiments)
ben-rus-tel 75.8 72.2 79.0 75.6 74.8 77.1 74.5 76.8 75.7±2.0 76.5 74.9
tel-ind-swa 76.1 75.7 65.5 76.7 83.2 84.7 71.2 77.2 76.3±6.1 80.3 72.3
fin-rus-swa 78.5 76.4 66.3 79.6 80.3 84.8 74.9 53.4 73.7±9.8 79.5 69.1
ara-rus-tel 75.7 79.3 66.8 78.0 79.2 79.9 74.3 77.0 76.4±4.3 76.6 60.8
ara-rus-fin 76.5 80.5 68.9 79.2 80.6 77.5 74.3 53.6 73.5±9.0 77.6 70.2
swa-ind-fin 76.1 77.2 68.5 79.7 84.2 83.0 71.2 51.5 73.6±10.5 80.8 67.1
ara-ind-swa 78.3 79.5 65.4 76.8 83.9 83.5 68.9 50.6 72.7±11.1 81.3 65.4

76.7±1.2 77.2±2.8 68.6±4.8 77.9±1.6 80.9±3.3 81.5±3.3 72.7±2.3 62.9±13.3 74.5±6.3 78.9 68.5

Uniform budget allocation (500 per language)
77.9 78.8 80.0 79.5 82.8 83.6 72.5 73.5 78.7±3.9 78.6 -

Table 6: Complete budget allocation experiments.


