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Abstract
Graphs are ubiquitous across the globe and within science and engineering. Some powerful classifiers are proposed to classify
nodes in graphs, such as Graph Convolutional Networks (GCNs). However, as graphs are growing in size, node classification
on large graphs can be space and time consuming due to using whole graphs. Hence, some questions are raised, particularly,
whether one can prune some of the edges of a graph while maintaining prediction performance for node classification, or
train classifiers on specific subgraphs instead of a whole graph with limited performance loss in node classification. To
address these questions, we propose Sparsified Graph Convolutional Network (SGCN), a neural network graph sparsifier
that sparsifies a graph by pruning some edges. We formulate sparsification as an optimization problem and solve it by an
Alternating Direction Method of Multipliers (ADMM). The experiment illustrates that SGCN can identify highly effective
subgraphs for node classification in GCN compared to other sparsifiers such as Random Pruning, Spectral Sparsifier and
DropEdge. We also show that sparsified graphs provided by SGCN can be inputs to GCN, which leads to better or comparable
node classification performance with that of original graphs in GCN, DeepWalk, GraphSAGE, and GAT. We provide insights
on why SGCN performs well by analyzing its performance from the view of a low-pass filter.

Keywords Graph sparsification · Node classification · Graph convolutional network

1 Introduction

Graphs have become universal and are growing in scale in
many domains, especially on the Internet and social media.
Addressing graph-based problems with various objectives
has been the subject of many recent studies. Examples
include studies on link prediction [20] and graph cluster-
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ing [26], or on node classification [2], which is the particular
focus of this study.

In node classification, one aims to classify nodes in a
network by relying on node attributes and the network struc-
ture. There are two main categories of node classification
methods: (1) methods that directly use node attributes and
structural information as features and use classifiers (e.g.,
decision trees) to classify nodes, and (2) random walk-based
methods, which classify nodes by determining the probabil-
ity p that a random walk starting from node vi ∈ V with
label c will end at a node with the same label c. The per-
formance of random walk-based methods implicitly relies
on graph structural properties, e.g., degrees, neighborhoods,
and reachabilities.

In recent studies, neural network classifiers [35] arewidely
used for both types of methods due to their performance and
flexibility. A well-established example is the Graph Convo-
lutional Network (GCN) [17], a semi-supervised model that
uses the whole adjacency matrix as a filter in each neural
network layer. However, there is a major difficulty faced by
methods that directly use thewhole graph to extract structural
information: the size of the graph. Unlike node attributes, as
a graph with n nodes grows, the size of its adjacency matrix
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increases at a n2 rate, which introduces an unavoidable space
and computational cost to classifiers. One engineering solu-
tion is to store the adjacency matrix as a sparse matrix (i.e.,
save non-zeros); however, the process is still extremely slow
and requires massive storage when the graph is dense or
large. Meanwhile, more edges in the graph can introduce
over-fitting in node classification.

The present work: sparsified graph convolutional net-
work (SGCN). Inspired by the challenge in node classifi-
cation, we explore whether we can keep the skeleton of a
graph (i.e., a subgraph), such that the skeleton can be used
as the input to node classification instead of the whole graph
while maintaining the state-of-art performance. We propose
Sparsified Graph Convolutional Network (SGCN), a neu-
ral network graph sparsifier to prune the input graph to
GCN without losing much accuracy in node classification.
We formulate graph sparsification as an optimization prob-
lem, which we efficiently solve via the Alternating Direction
Method of Multipliers (ADMM) [3]. We also introduce a
new gradient update method for the pruning process of the
adjacencymatrices, ensuring updates to thematrices are con-
sistent within SGCN layers.

To evaluate SGCN, we compare its performance with
other classical graph sparsifiers on multiple real-world
graphs.We demonstrate that within a range of pruning ratios,
SGCNprovides better-sparsified graphs for GCNwhen com-
pared to other graph sparsifiers. We also show that node
classification performance using these sparsified graphs in
GCNcan be better or comparable towhen (much larger) orig-
inal graphs are used in GCN, DeepWalk [22], GraphSAGE
[14] and GAT [33]. As an extended version of our original
paper onSGCN [18],we conduct experiments to demonstrate
that as GCN becomes deeper, the performance of GCN com-
bined with SGCN is more stable on node classification than
that of GCN. Moreover, by analyzing the performance of the
low-pass filter produced by SGCN, we theoretically explain
the effect of SGCN on GCN. In sum, our contributions can
be summarized as:

1. We propose Sparsified Graph Convolutional Network
(SGCN), the first neural network graph sparsifier that
sparsifies graphs to enhance node classification;

2. We design a gradient update method that ensures adja-
cency matrices in the two SGCN layers are updated
consistently;

3. We demonstrate that the sparsified graphs obtained by
SGCN perform better in GCN for node classification that
those provided by other graph sparsifiers;

4. We show that sparsified graphs obtained from SGCNwith
various pruning ratios, if used as inputs to GCN, lead to
classification performances similar to that of GCN, Deep-

Walk, GraphSAGE, DropEdge-GCN, and GAT using the
(much larger) whole graphs;

5. We apply experiments to demonstrate that using sub-
graphs obtained by SGCN in GCN yields more stable
results in node classification when the depth of GCN
increases; and

6. We theoretically analyze and explain the effect of SGCN
on GCN from the view of a low-pass filter in Sect. 6.

The paper is organized as follows. We review related work in
Sect. 2. We provide the SGCN problem definition in Sect. 3.
Section 4 details the problem formulation, solution, and time
complexity of SGCN. We conduct experiments in Sect. 5.
The performance analysis of SGCN from the view of a low-
pass filter is provided in Sect. 6. We conclude in Sect. 7.

2 Related work

2.1 Graph neural networks

Inspired by the major success of convolutional neural
networks in computer vision research, new convolutional
methods have emerged for solving graph-based problems.
There are two main types of graph convolutional networks:
spectral-based methods and spatial-based methods.

Spectral-based convolutional networks often rely on
graph signal processing and are mostly based on normal-
ized graph Laplacian. GCNs [9,17] process the whole graph
as input to the neural network. They face various challenges
for efficient processing of large-scale graphs. For addressing
these challenges, different variants of GCNs are proposed.
Cluster-GCN [7] is based on graph clustering and proposes
a stochastic multi-clustering framework which can improve
the efficiency of GCNs while handling large-scale graphs.
SGC [34], an efficient GCN, reduces the excess complexity
of GCNs by repeatedly removing the nonlinearities between
GCN layers and collapsing the resulting function into a sin-
gle linear transformation. FastGCN [5] solves the recursive
neighborhood expansion across layers, which causes time
andmemory challenges for trainingwith large, dense graphs.
The method interprets graph convolutions as integral trans-
forms of embedding functions under probability measures.
Such an interpretation allows for the use of Monte Carlo
approaches to consistently estimate the integrals, which in
turn leads to a batched training scheme. Other examples
include the work of Bhagat et al. [21], which aims to repre-
sent a graph by extracting its locally connected components.
Another is DUIF, proposed by Geng et al. [12], which uses
a hierarchical softmax for forward propagation to maximize
modularity. One main drawback of spectral-based methods
is the need to performmatrix multiplication on the adjacency
matrix, which is costly for large graphs.
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Spatial-based methods focus on aggregating the neigh-
borhood for each node. These methods can be grouped
into (1) recurrent-based and (2) composition-based methods.
Recurrent-based methods update latest node representa-
tion using that of their neighbors until convergence [8,25].
Composition-based methods update the nodes’ representa-
tions by stacking multiple graph convolution layers. For
example, Gilmer et al. [13] develop amessage passing neural
network to embed any existing GCN model into a message
passing (the influence of neighbors) and readout pattern.
GraphSAGE [14] operates by sampling a fixed-size neigh-
borhood of each node and performing a specific aggregator
over it, which yields impressive performance across several
large-scale inductive benchmarks. GAT [33] applies atten-
tion mechanism and enables graph nodes having different
degrees by assigning arbitraryweights to the neighbors,with-
out requiring any costly matrix operations or dependence on
knowing the graph structure. Spatial-basedmethods are often
more flexible and easier to apply to large networks.

2.2 Graph sparsification

For graph sparsification, previous studies have distinct objec-
tives from that of ours. Generally speaking, most graph
properties of a dense graph can be approximated from its
[sparsified] sparse graph.Cut sparsifiers [1,11,16] ensure the
total weight of cuts in the sparsified graph approximates that
of cuts in the original graph within some bounded distance.
Spectral sparsifiers [30,31] ensure sparsified graphs preserve
spectral properties of the graph Laplacian. There are var-
ious applications for graph sparsification. Some examples
include, the work of Serrano et al. [28], which aims to iden-
tity the backbone of a network that preserves structural and
hierarchical information in the original graph; the study by
Satuluri et al. [24], which applies local sparsification to pre-
process a graph for clustering; the study by Lindner et al.
[19], which proposes a local degree sparsifier to preserve
nodes surrounding local hub nodes by weighing edges link-
ing to higher degree nodes more, which aims to minimize
divergence of stationary distribution of a random walk while
sparsifying the graph. Recent research has combined sparsi-
fier with some neural networks as backbone to improve the
performance of those neural networks. For example, Neu-
ralSparse [37] proposes edge pruning and utilizes a DNN to
parameterize the sparsification process. Similarly, DropEdge
[23] considers removing a certain number of edges randomly
from an input graph at each training epoch.

These studies are similar, but with different objectives
from that of ours. Instead of preserving graph properties or
randomly removing edges, our proposed sparsifier SGCN
[18] is the first GCN-based sparsification by formulating and
solving it as an optimization problem. Finally, the space cost

is reduced due to sparsification,while node classification per-
formance of GCN is maintained, or improved.

3 Problem definition

Consider an undirected graph G = (V , E), its nodes V =
{v1, . . . , vn}, and its edges E = {e1, . . . , em}. Let n = |V |
denote the number of nodes and m = |E | denote the num-
ber of edges. Given adjacency matrix A of G and features
for each node v : X(v) = [x1, . . . , xk], the forward model
(i.e., output) of a two-layered graph convolutional network
(GCN), as formulated by Kipf and Welling [17], is

Z( Â,W ) = softmax( Â ReLU( ÂXW (0))W (1)), (1)

where Â = ˜D− 1
2 ˜A˜D− 1

2 , ˜D = diag(
∑

j
˜Ai j ), ˜A = A + IN ,

X is the matrix of node feature vectors X(v), and W (0) and
W (1) are the weights in the first and second layer, respec-
tively. Functions softmax(xi ) = exp(xi )/

∑

i exp(xi ) and
ReLU(·) = max(0, ·) both perform entry-wise operations
on their arguments. Graph sparsification aims to reduce the
number of edges |E | in the original graph G to |Es | in a sub-
graph Gs , i.e., |Es | < |E |, such that the induced subgraph
Gs , when used as input to GCN, results in similar classifica-
tion performance to that of the original graph G. In pruning,
adjacency A is pruned to Ap = A − B � A, where B is
a matrix and � is Hadamard product. Thus, the new ˜A is
˜A = Ap + IN and Â can be an updated filter related to Ap.
We explore how the level of graph sparsification in filters
affects SGCN performance.

4 SGCN: sparsified graph convolutional
networks

We first illustrate the problem formulation and solution, fol-
lowed by SGCN algorithm, a new gradient update method,
and the SGCN time complexity analysis.

4.1 Problem formulation and solution

4.1.1 Problem formulation

The output of graph convolutional networks in Eq. (1) is a
function of Â andW , but as Â can be written as a function of
A, the output can bewritten as Z(A,W ). For semi-supervised
multiclass classification, loss function of the neural networks
is the cross-entropy error over labeled examples:
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f (A,W ) = −
∑

l∈YL

∑

f

Yl f ln(Zl f ) (2)

where YL is the set of node indices that have labels, Yl f is
a matrix of labels and Zl f is the output of the GCN forward
model.

Our aim is to achieve a sparse graph, with weight matrices
being fixed in SGCN. In the following, we will use f (A) to
present the loss function and our problem is defined by:

minimize
A

f (A)

subject to ‖A‖0 ≤ l
(3)

For Eq. (3), we define an indicator function to replace
constraint:

g(�) =
{

0 if ‖�‖0 ≤ l,

+∞ otherwise,

Therefore, formulation (3) can be rewritten as

minimize
A

f (A) + g(A). (4)

4.1.2 Solution

In Eq. (4), the first term f (·) is the differentiable loss
function of the GCN, while the second term g(·) is the non-
differentiable indicator function; hence, problem (4) cannot
be solved directly by gradient descent. To dealwith this issue,
we propose to use Alternating DirectionMethod of Multipli-
ers (ADMM) to rewrite problem (4). ADMM is a powerful
method for solving convexoptimizationproblems [3].Recent
studies [15,32] have demonstrated that ADMM also works
well for some nonconvex problems.

The general form of a problem solvable by ADMM is

minimize
α, β

f (α) + g(β),

subject to Pα + Qβ = r .

The problem can be decomposed to two subproblems via
augmented Lagrangian. One subproblem contains f (α) and
a quadratic term of α; the other contains g(β) and a quadratic
term of β. Since the quadratic term is convex and differen-
tiable, the two subproblems can often be efficiently solved.

Hence, we rewrite problem (4) as

minimize
A

f (A) + g(V ),

subject to A = V .
(5)

The augmented Lagrangian [3] of problem (5) is given by

Lρ

(

A, V ,�
) = f (A) + g(V ) + tr[�T (A − V )]

+ ρ

2
‖(A − V )‖2F ,

where � is the Lagrangian multiplier (i.e., the dual variable)
corresponding to constraint A = V , the positive scalar ρ

is the penalty parameter, tr(·) is the trace, and ‖ · ‖2F is the
Frobenius norm.

By defining the scaled dual variable U = (1/ρ)�, the
augmented Lagrangian can be equivalently expressed in the
scaled form:

Lρ

(

A, V ,U
) = f (A) + g(V ) + ρ

2
‖A − V +U‖2F

− ρ

2
‖U‖2F .

Whenwe applyADMM[3] to this problem,we alternately
update the variables according to

Ak+1 := argmin
A

Lρ

(

A, V k,Uk), (6)

V k+1 := argmin
V

Lρ

(

Ak+1, V ,Uk), (7)

Uk+1 := Uk + Ak+1 − V k+1, (8)

until

‖Ak+1 − V k+1‖2F ≤ ε, ‖V k+1 − V k‖2F ≤ ε. (9)

In (6), we solve the first subproblem:

minimize
A

f ′(A) := f (A) + ρ

2
‖A − V k +Uk‖2F . (10)

In the above problem, as the loss function f (A) and the �2-
norm are differentiable, we can use gradient descent to solve
it. As f (A) is nonconvex with respect to the variable A, there
has been no theoretical guarantee on the convergence when
solving problem (10). We present a method to solve (10) in
Sect. 4.3.

In (7), we solve the second subproblem , which is

minimize
V

g(V ) + ρ

2
‖Ak+1 − V +Uk‖2F . (11)

As g(·) is the indicator function, problem (11) can be
solved analytically [3], where the solution is

V k+1 = 5S(Ak+1 +Uk), (12)

where 5S(·) is the Euclidean projection onto set S = {� |
‖�‖0 ≤ l}.
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Graph A Pre-trained 
with GCN

Edge Pruning 
Formulated as Eq.(5)

Solve subproblem in 
Eq.(10):

Given V, op�mize A;

Solve subproblem in 
Eq.(11):

Given A, op�mize V
By se�ng sparsity

A sparsified graph

A + Weights

Fig. 1 Framework of SGCN using ADMM. Weights can be pretrained
from GCN with an input graph A

Finally, we update the scaled dual variable U according
to (8). This is one ADMM iteration. We update the vari-
ables iteratively until condition (9) is satisfied, indicating
the convergence of ADMM. Figure 1 shows the whole pro-
cess followed by SGCN. As GCN with two layers can yield
better performance, we obtain weights by pretraining a 2-
layer GCN. By fixing the weights from the pre-trained GCN,
SGCN trains an input graph based on Eq. (3). So, SGCN
consists of two graph convolutional layers.

4.2 SGCN algorithm

The ADMM solution discussed facilitates efficient edge
pruning in graphs. In the solution, we need to maintain α,
the number of non-zero elements. The Euclidean projection
in (12) maintains α elements in ˜Ak+1 + Uk with the largest
magnitude and sets the rest to zero. This is proved to be
the optimal and analytical solution to subproblem (11) in
edge pruning of graphs. In GCN, filters in the loss func-

tion (2) consist of ˜D− 1
2 ˜A˜D− 1

2 , where ˜A = A + IN and
˜D = ∑

j
˜Ai j . Variable IN is the identity matrix and ˜A is

a [modified] adjacency matrix. Variables ˜A and ˜D in each
layer are fixed and non-trainable in the original GCN. To
solve graph sparsification in GCN and maintain classifica-
tion performance, variable ˜A should be trained and updated
iteratively. As variable ˜D depends on ˜A, ˜A in the original
loss function cannot be directly differentiated. Therefore, we
expand the forward model into the following:

Z(A) = diag(
∑

j (A + I )i j )
− 1

2 (A + I )

×diag(
∑

j (A + I )i j )
− 1

2 XW . (13)

In Eq. (13), no variable depends on ˜A. However, one can-
not still train variables A and W at the same time as the
differentiation of A depends onW and vice versa. Hence, we
pre-train a model with the original GCN and obtain a pre-
trained model with variable W . By fixing variable W in this
model, the adjacency matrix A can be regarded as a train-
able variable. With ADAptive Moment estimation (ADAM)

Algorithm 1: The SGCN Algorithm
input : Weight matrix W , adjacency matrix A, feature matrix X ,

ADMM iterations k and pruning ratio p%
output: A pruned adjacency matrix Ap

for i ← 1 to the number of layers do
Vi ← Initialize(Ai);
Ui ← Zerolike(Vi);

for k ← 0 to ADMM iterations do
Solve subproblem (10) and update A’s in two layers;
for i ← 1 to the number of layers do

Update Vi ’s by performing Euclidean projection (12);
Update Ui ’s by performing (8);

Fetch A1 from the first layer;
Set the smallest p% of nonzero elements in A1 to zero;
Obtain a pruned adjacency matrix Ap;

optimizer, gradients of the variable (adjacency matrix A) can
be updated in SGCN. Algorithm 1 provides the pseudo-code
SGCN.Weusevariable A to initialize variableV in each layer
using function I ni tiali ze() and apply function Zerolike()
to V to ensure variable U has the same shape as V with all
the zero elements.

4.3 Adjacencymatrix training

When training adjacency A in Algorithm 1, we should keep
the adjacency matrices in the first and second layer consis-
tent. To address this issue, we propose amethod to update the
gradients of the adjacency matrix when fixing weight matri-
ces W in the two layers during SGCN training. A mask m
is defined using the adjacency matrix A. As we use gradient
descent, the following equation based on (2) and (13) can be
applied to update the trainable variable (adjacency matrix A)
at each step to solve problem (10):

Ak+1
i = Ak

i − γ

(

m � ∂ f ′(Ak
i )

∂Ak
i

)

, (14)

for i = 1, . . . , n, where γ is the learning rate.
In the process of updating A, we keep the gradientmatrices

of the adjacency matrix symmetric in two layers and gradi-
ents are set to zero when there are no edges between nodes.
Also, diagonal elements are zero in the gradient matrix as we
only update the adjacency matrix and consider no self-loops
at each node. To maintain the adjacency matrices in the two
layers identical, we compute average gradients for the same
edge in the two adjacency matrices. We assign these aver-
age gradients to the corresponding edges in the matrices for
updating elements of the adjacency matrices.

Figure 2 illustrates the process of updating gradient of
adjacency matrix A in two layers of SGCN. Figure 2a shows
the original graph with different edges corresponding to dif-
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b. Gradients of the adjacency 
matrix in the first layer

e. Average gradients of the 
adjacency matrix in two layers

c. Gradients of the adjacency 
matrix in the second layer

a. Graph

d. Group gradients of an edge
in both layers and compute the 
average gradient for each edge

Fig. 2 The process of updating an adjacency matrix in SGCN

ferent colors. Grey color indicates no edges between two
nodes. When training SGCN, gradients of each adjacency
matrix in two layers are shown in Fig. 2b, c. Gradients are
grouped based on their edges (colors) and the average gradi-
ent for each edge is calculated in Fig. 2d. We set the average
gradient to zero when there are no edges between two nodes.
Finally, Fig. 2e displays average gradients are assigned back
to their corresponding edges in adjacency matrices. There-
fore, when performing gradient descent, the new gradient
matrix is used to update each adjacency matrix in the two
layers.

4.4 Time complexity analysis

We analyze SGCN training and prediction time complexity.
The GCN training time complexity isO(L|A0|F + LN F2),
where L is the number of layers, N is the number of nodes,
|A0| is the number of non-zeros in an adjacencymatrix, and F
is the number of features [7]. Hence, assuming ADMM takes
k iterations, the SGCN time complexity is O(kL|A0|F +
kLN F2). Compared to SGCN training time complexity, the
time to update variables V and U according to (12) and (8)
is negligible. In our SGCN, k = 4 and L = 2. Also, we
need only a few iterations to solve subproblem (10), which
indicates the training time complexity of SGCN is similar to
that of GCN. The time complexity for the forward model in
SGCN is O(|
|FC), where |
| is linear in the number of
edges and C is the dimension of feature maps. Compared to
the SGCN time complexity: O(|ε|FC), we have |
| ≤ |ε|
in prediction.

5 Experiments

There are two natural ways to measure the effectiveness of
SGCN.

– First, we compare the node classification performance
of GCN using sparsified graphs from SGCN with that
using subgraphs obtained from other sparsifiers. Note
that stacking many layers in GCN can bring extra com-
putational cost and reduce the accuracy of GCN. Hence,

we use 2-layer GCN for node classification, and use
the following sparsifiers: Random Pruning (RP) sparsi-
fier, Spectral Sparsifier (SS) andDropEdge. RP removes
edges uniformly at random from a graph with some prob-
ability. The SS is the state-of-the-art spectral sparsifier
[10], which sparsifies graphs in near linear-time. DropE-
dge [23] randomly removes a certain number of edges
from an input graph at each training epoch.1

– Second, we compare the node classification performance
of the sparsified graphs provided by SGCN compared to
that of other node classification techniques that utilize the
original graphs. For that, we compare the performance of
GCN using sparsified subgraphs provided by SGCNwith
that of GCN, DeepWalk, GraphSAGE, and GAT using
original graphs.

5.1 Experimental setup

5.1.1 Datasets

To evaluate the performance of node classification on spar-
sified graphs, we conduct our experiments on six attributed
graphs. These graphs have been utilized for evaluation in
previous studies and are hence used for evaluation. Citeseer,
Cora, and Pubmed are from Sen et al. [27] while Terror-
ists and Terrorist Attacks with high densities are available
online.2 NELL is extracted from a knowledge graph intro-
duced from Carlson et al. [4] with many edges and nodes.
We summarize these datasets in Table 1.

5.1.2 Preprocessing

We preprocess the data for existing node classification mod-
els [17,36].We split the data into tenfold for cross-validation.
In each training fold, we only select 20 instances for each
label as the labeled instances. Other instances remain unla-
beled, from which we randomly select 500 instances for

1 We cannot consider NeuralSparse [37] as the code of NeuralSparse
cannot be accessed.
2 http://linqs.soe.ucsc.edu/data.
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Table 1 Dataset statistics
Dataset Type Nodes Edges Density (×10−3)

Terrorists Social network 881 8592 22.16

Terrorist Attacks Social network 645 3172 15.27

Cora Citation network 2708 5429 1.48

Citeseer Citation network 3327 4732 0.86

Pubmed Citation network 19,717 44,338 0.23

NELL Knowledge graph 65,755 266,144 0.12

validation set, which is used to train our hyper-parameters.
Wefilter and reorder the adjacencymatrices and attribute vec-
tors to ensure they are ordered according to training/testing
folds.

5.1.3 Parameter setup

All the experiments implemented with TensorFlow are con-
ducted on aNVIDIATitanXPGPU (12GBmemory), 4-core
Intel Core CPU (3.60GHz), and 64GB of RAM.We vary the
pruning ratio (p in Algorithm 1) from 10% to 90% in SGCN
and RP. When pruning ratio is 0%, the model is the original
GCN. We use the default parameters in DropEdge, GCN,
DeepWalk, GraphSAGE and GAT. In RP, we set random
seeds from 0 to 9. For SGCN, we set ρ to 0.001 and the train-
ing learning rate to 0.001. In SS, we use the default suggested
parameters for spectral sparsifier [10]. Due to obtaining 10
folds for each dataset, we run SGCN, RP and SS, in each fold
of each dataset to obtain sparsified subgraphs and use these
subgraphs as inputs for GCN. Codes are released on https://
tinyurl.com/594paa4j.

5.2 Results and performance analysis

5.2.1 Comparing sparsifiers

In semi-supervised node classification, Fig. 3 provides the
average performance of GCN with sparsified subgraphs
obtained from SGCN and other graph sparsifiers. In Fig. 3a,
b, d–f, performances are provided in relative accuracy, where
accuracy is divided by the baseline: accuracy of models from
GCN.We cannot consider Spectral Sparsifier (SS) in the first
6 figures because SS does not allow to set a pruning ratio. In
Cora dataset, sparsified subgraphs provided by SGCN per-
form better inGCN than those provided byRP andDropEdge
when pruning ratio is less than 20% as shown in Fig. 3a. For
CiteSeer dataset, Fig. 3b shows that when the pruning ratio is
between 0 and 10%, sparsified subgraph provided by SGCN
when used as input to GCN, can yield accurate classification
models. When pruning 10% of the edges from the Pubmed
dataset in Fig. 3c, we can obtain the best GCN model using
the subgraph from SGCN. In Terrorists datasets, applying

subgraphs from SGCN as inputs to GCN can easily obtain a
higher accuracy, as shown in Fig. 3d. In Fig. 3e on Terrorist
Attack dataset, we observe that GCN performance increases
as pruning ratio increases in SGCN. Here, also SGCN yields
better subgraphs than those provided by RP or DropEdge.
Finally, when pruning ratios are between 10% and 20% on
NELL dataset, as shown in Fig. 3f, subgraphs from SGCN
can provide the best inputs to GCN. Note that DropEdge
on NELL dataset has Out-Of-Memory (OOM) issue with
our NVIDIA Titan XP GPU (12GB memory) while Rong
et al. [23] conduct all experiments on an NVIDIA Tesla
P40 GPU with 24GB memory. Therefore, SCGN needs less
resources when obtaining better subgraphs as inputs to GCN.
Figure 3g–l illustrates the performance of GCN using sub-
graphs from SGCN, RP, SS, and DropEdge. We compare
their best performances, and the performance under the same
pruning ratio, as for SS we cannot set a pruning ratio. The
results show that subgraphs from SGCN perform the best in
node classification, and SGCN is more flexible than SS as
SGCN allows different pruning ratios. Note that the results
on NELL dataset with DropEdge is unavailable due to the
limited memory of our device, as shown in Fig. 3l.

5.2.2 Node classification performance

When using sparsified subgraphs provided by SGCN are
used as inputs to GCN, we obtain a node-classification
model, which we denote as SGCN-GCN. On all datasets,
SGCN-GCN either outperforms other methods, or yields
comparable performance using much smaller graphs. On
Cora and Citeseer dataset (Fig. 4a, b), SGCN-GCN outper-
forms GraphSAGE and DeepWalk, and has a comparable
performance to GAT, GCN and DropEdge-GCN in node
classification. On other datasets (Fig. 4c–e), SGCN-GCN
outperforms other methods. For NELL dataset shown in
Fig. 4f, SGCN-GCN achieves the best performance while
GAT and DropEdge-GCN face Out-Of-Memory (OOM)
issues. Hence, even though many edges are pruned, sub-
graphs provided by SGCN when used as inputs to GCN can
lead to better or comparable node classification performance
over these datasets. The effect of SGCN on GCN is further
analyzed mathematically in Sect. 6.
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Fig. 3 Performance of GCN
using sparsified subgraphs
provided by SGCN, RP, SS, and
DropEdge sparsifiers
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Fig. 4 The performance of SGCN-GCN, GCN, GraphSAGE, Deep-
Walk, GAT and DropEdge-GCN. GCN module is 2 layers among the
models

5.2.3 Space and computational cost

Here, we feed the subgraphs from SGCN as inputs to GCN
and show the actual space and computational cost. The space
cost in a graph is O(|V | + |E |). As SGCN decreases the
number of edges (|E |), the space cost is obviously reduced,
as shown in Fig. 5a. Figure 5b, c shows average training
and prediction times in seconds, which have declining trends
when the pruning ratio increases. The reason why we can-
not include the results of Pubmed and NELL datasets in the

(a) Cora (b) CiteSeer

Fig. 6 Parameter analysis. Value of ρ is represented by the logarithm
of ρ

figures is that the space and computational reduction from
both of the datasets have different scales. On the Pubmed
dataset, we observe that when pruning ratios increase from
10 to 90%, the space cost reduces from 433 to 235KB and the
training time decreases from 0.74 to 0.66 s, while we accel-
erate the prediction from 0.39 to 0.33 s. For NELL dataset,
when sparsifying the graph from 1381 to 246 KB, we reduce
the training time from0.24 to 0.13 s and reduce the prediction
time from 0.096 to 0.088 s. Hence, the proposed framework
significantly reduces both space and computational costs.

5.2.4 Parameter analysis

In the proposed framework, pruning ratio p% and ρ are
used to sparsify graphs. To assess their influence on the
method performance, we change the value of p% from 10%
to 90% while set the ρ from 1 × 10−1 to 1 × 10−5 with a
step size of 10−1, as shown in Fig. 6. When pruning ratio
is less than 20% in Fig. 6a on Cora dataset, we find better
GCNmodels using the sparsified subgraph fromSGCN, even
though value of ρ is changed from 1 × 10−1 to 1 × 10−5.
In CiteSeer dataset shown in Fig. 6b, pruning ratio has more
influence on the performance than the ρ does. Therefore, we
conclude that pruning ratio, instead of ρ value, effectively
affects the performance of sparsified graphs as inputs to the
GCN in node classification.

Fig. 5 Space and computational
cost using subgraphs from
SGCN as inputs to GCN
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Table 2 Performance (%) of
model depth (number of layers)
on classification. A
SGCN-GCN’s input is 90% of
the original graph (sparsified by
the SGCN), while original GCN
utilizes the whole graph

Methods Number of layers

2 3 4 5 6 7 8 9

SGCN-GCN(Cora) 81.40 82.40 81.90 80.30 77.40 68.50 55.70 52.20

GCN(Cora) 81.50 77.60 45.50 67.00 47.60 15.80 15.40 25.60

SGCN-GCN(Citeseer) 72.10 70.40 69.00 66.80 62.70 59.20 48.60 38.20

GCN(Citeseer) 70.30 66.90 66.50 38.30 16.90 16.90 7.70 24.50

SGCN-GCN(Pubmed) 78.80 78.40 78.90 77.40 73.90 77.80 70.10 51.60

GCN(Pubmed) 79.00 77.40 75.50 74.30 76.10 18.00 18.00 41.70

SGCN-GCN(Terrorist) 83.15 82.02 80.90 80.90 80.90 76.40 79.78 73.03

GCN(Terrorist) 78.65 75.28 77.53 76.40 70.79 70.79 60.67 10.11

SGCN-GCN(Terrorist Attacks) 70.00 60.00 64.62 64.62 64.62 66.15 63.08 60.00

GCN(Terrorist Attacks) 50.77 49.23 52.31 29.23 33.85 30.77 30.77 15.39

SGCN-GCN(NELL) 67.07 65.96 62.31 61.70 63.02 62.82 57.04 58.66

GCN(NELL) 66.00 70.11 72.23 65.35 44.68 31.51 13.88 13.88

Best results are highlighted in bold

5.2.5 Performance with respect to GCN depth

In Table 2, we explore how subgraphs from SGCN impact
the performance of GCN when changing the depth of GCN
(number of layers). As shown in the table, we use SGCN
to prune 10% of a graph and use the sparsified graph from
SGCN as an input to GCN with different number of layers.
The results in Table 2 demonstrate that the performance of
GCN with subgraphs from SGCN are more stable than that
of original GCN as the depth increases.

6 Effect of low-pass filters

Our results indicate that SGCN can sparsify graphs to sub-
graphs and the subgraphs as inputs to GCN can maintain
classification performance. Here, we aim to explain the effect
of SGCNon the performance ofGCN from the perspective of
low-pass spectral filter. Note that SGCN is a neural network
sparsifier, and SGCN-GCN is that GCN applies subgraphs
from SGCN as inputs.

For a graph Laplacian matrix L, we can obtain L =
U�U−1, where U = [u0, . . . , uN − 1] is a matrix of eigen-
vectors ofmatrix L , and� = diag[λ0, . . . , λn−1] is amatrix
of eigenvalues of L. From Graph signal processing (GSP),
the graph Fourier transform of signal f is

f̂ = U−1f, (15)

where f̂ is the graph Fourier coefficients or graph spec-
tral coefficients of signal f . Equivalently, the graph inverse
Fourier transform is f = Uf̂ . Therefore, any graph signal can

be represented by a linear combination of eigenvectors:

f = Uf̂ =
∑

i

f̂i ui , (16)

where U can also be a matrix of Fourier basis vectors in
GSP. From a recent study on Laplacian quadratic form [6],
we know that the Fourier basis vectors with small variations
are considered as low-frequency components while the vec-
tors with large variations are considered as high-frequency
components, which can be used as a measure of smoothness
[38]. Shuman and colleagues have demonstrated that eigen-
vectors associated with smaller eigenvalues have values that
vary less rapidly along the edges [29], which indicates that
nodes and their neighbors are more likely to have similar
features. Therefore, a smooth graph signal f should mostly
consist of low-frequency components with small eigenval-
ues.

In a recent study graph convolutional filter H is defined as
˜f = H f , where f is an input signal and˜f is an output signal.
Filter H is a renormalized Laplacian matrices and can be
decomposed into H = Uh(�)U−1, where h is a frequency
response function on a diagonal matrix of eigenvalues �.
Using Eqs. (15) and (16) with the graph convolutional filter
equation, we can decompose˜f = H f as:

˜f = H f = Uh(�)(U−1f) = Uh(�)f̂ =
∑

i

h(λi ) f̂i ui (17)

In Eq. (17), the h(λi ) acts as a low-pass filter, keeping the
low-frequency signals and scaling the high-frequency ones.
Hence, we need to use underlying data relation based on
structures of graphs to produce proper graph filters which
can filter input signals and generate smooth signals for down-
stream tasks.
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Table 3 Performance on the
first fold of Cora dataset

Methods Pruning ratio

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

SGCN-GCN(%) 78.59 78.23 78.60 78.23 76.75 76.38 74.17 73.06 72.33 69.01

RP-GCN(%) 78.59 77.69 76.92 76.55 75.24 74.17 72.66 71.22 68.87 66.97

6.1 Low-pass filters in SGCN-GCN

Recent studies [34] have shown that the normalized graph
Laplacian˜L = IN− Â andfilter Â inGCNcan be represented
by

Â = IN − ˜L = U(IN − ˜�)U−1. (18)

In Eq. (17), the frequency response function h(˜λi ) is equal
to h(˜λi ) = 1− ˜λi . Combining Eq. (17) with Eq. (18), we can
easily derive that the GCN frequency response function is

h2(˜λi ) = (1 − ˜λi )
2. (19)

Equation (19) is a quadratic function, where the function
is minimum at λi = 1. For maintaining a smooth signal, the
best function performance is in range [0, 1], a low-pass area.
SGCN-GCN has similar forward model to GCN but obtains
Â = ˜Dp

− 1
2
˜Ap ˜Dp

− 1
2 and ˜Ap = Ap+ IN and ˜D = ∑

j
˜Api j ,

where Ap is a pruned adjacencymatrix fromSGCN.Hence, a
range of eigenvalues ˜λi from a Laplacian matrix ˜L can affect
the range of values in this frequency response function. Both
of SGCN and RP can provide pruned adjacency matrices as
inputs toGCN.For explaining the difference effects of SGCN
and RP on the performance of GCN, we use the experimental
results of the first fold of Cora dataset to display distribution
of eigenvalues and analyze the performance of the frequency
response functions.

Here, we note GCN uses subgraphs from SGCN as
SGCN-GCN while GCN applies subgraphs from RP as RP-
GCN. Table 3 illustrates that the SGCN-GCN performance
improves by 2% on average when compared to that of RP-
GCN. For further analyzing the frequency response functions
and distributions of eigenvalues in filters, we look at the
SGCN-GCN and RP-GCN results for pruning ratios of 50%
and 90%on the dataset. Figure 7 illustrates the distribution of
eigenvalues. Figure 7c, d shows that SGCN produces more
eigenvalues in the low-pass area [0, 1] in GCN, and the num-
ber of eigenvalues larger than 1 produced byRParemore than
those made by SGCN. Also, the range of eigenvalues from
filters of SGCN-GCN are smaller than that from RP-GCN.
Therefore, in GCN, SGCN shrinks the range of eigenvalues
into low-pass areas better than RP does. These effects are
applied to frequency response functions, such that SGCN can
avoid amplifying eigenvalues and reduce more noise com-
pared to RP in GCN. In next section, we demonstrate how

to quantitatively measure strength of the low-pass filter such
that we can further explain the effect of the low-pass filter.

6.2 Strength of low-pass filters

Generally, �2-norm is a natural way to measure magnitude
of vectors. Here, we define a way to measure the strength of
low-pass filters by using a proportion of square of �2-norm of
signals. A signal can be preserved byEq. (15) and Eq. (16). In
SGCN-GCN, signals are transferred to spectral coefficients
by Eq. (15) and the spectral coefficients are transferred back
to signals in Eq. (16) scaled by the frequency response func-
tion h(). That means information of signals can be filtered
by filters. Therefore, we propose the following theorem to
measure the strength of filters in SGCN-GCN and RP-GCN.

Theorem 1 Let f be a signal from graph G, and U =
[u0, . . . , un−1] be an orthogonal matrix of eigenvectors of
the Laplacian matrix of G. The strength of a filter can be

evaluated by S = ‖h(�)f̂‖22
‖f̂‖22

, where f̂ denotes spectral coeffi-

cients, h() is a frequency response function, and� is amatrix
of eigenvalues. An estimation of the strength of a filter is equal
to E(h(λi )

2), where i = [0, ..n − 1]

Proof Based on Eq. (15), Eq. (16) and Eq. (17) with orthog-
onal matrix U and output signals f

′
, we have

S = ‖f ′ ‖22
‖f‖22

= ‖H f‖22
‖UU−1f‖22

= ‖Uh(�)U−1f‖22
‖UU−1f‖22

= ‖Uh(�)f̂‖22
‖Uf̂‖22

= ‖h(�)f̂‖22
‖f̂‖22

.

(20)

Also, we can decompose Eq. (20) as follows:

‖h(�)f̂‖22
‖f̂‖22

=
∑

i (h(λi ) f̂i )
2

∑

i f̂ 2i
. (21)

In SGCN-GCN and RP-GCN, we know that h(λi ) =
(1 − λi )

2. Therefore, the boundary of
‖f ′ ‖22
‖f‖22

is within

[0, 1] based on Eq. (21). Considering the minimization
min(

∑

i (h(λi )
2 − δ) f̂ 2i ), we can easily derive the solution

as δ = E(h(λi )
2). Hence Eq. (21) can be approximated by
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(a) Pruning ratio 50% from
SGCN

(b) Pruning ratio 90% from
SGCN

(c) Pruning ratio 50% from
SGCN and RP

(d) Pruning ratio 90% from
SGCN and RP

Fig. 7 Distributions of eigenvalues from SGCN and RP on Cora dataset. Figure 7a, b shows results from SGCN. Figure 7c, d aims to compare
results from RP with those from SGCN

(a) Cora (b) CiteSeer (c) Terrorist (d) Terrorist Attacks

Fig. 8 Distributions of eigenvalues for Cora, Terrorist Attacks, CiteSeer and Terrorist

Table 4 Strength of filters on
the first fold of Cora dataset.
Note that weaker filters are
highlighted in Table

Methods Pruning ratio

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

SGCN-GCN 0.228 0.259 0.298 0.344 0.459 0.451 0.574 0.629 0.752 0.860

RP-GCN 0.228 0.258 0.293 0.335 0.384 0.441 0.511 0.595 0.701 0.832

Best results are highlighted in bold

E(h(λi )
2), which captures how the distribution of eigen-

values can affect the performance of low-pass filters in
SGCN-GCN and RP-GCN. 	


Based on Theorem 1, when ratio S is closer to 1, a fil-
ter is weaker. This is because compared to original signals,
the magnitude of current signals are hardly scaled by a fil-
ter. When the ratio is approaching 0, the strength of a filter
is too strong and it almost filters everything. In terms of Eq.
(17) for preserving smoothness, when signals are of high fre-
quency, the filter should be stronger, such that it can produce
smooth signals for downstream tasks and have reasonable
performance in classification. By contrast, we should apply
a weaker filter when processing low-frequency signals.

Based on GSP principals, high-frequency signals cor-
respond to large eigenvalues while low-frequency signals
match smaller eigenvalues. Therefore, fromFig. 8a, we know
that the Cora dataset consists of many low-frequency sig-
nals with some high-frequency signals. Hence, a filter on the
dataset should be weaker to keep most low-frequency signal
and better scale high-frequency ones. Table 4 illustrates the
change of strength of filters with variations in pruning ratios
in SGCN and RP on the Cora dataset. Compared to with RP

for the same pruning ratio, SGCN produces a weaker filter as
shown in the table. This is because SGCN can reduce more
eigenvalue to low-pass area and E(h(λi )

2) (the strength of
low-pass filters S) becomes larger, which shrinks the range
of eigenvalues and avoids noise from high-frequency com-
ponents, as shown in Fig. 7a–d. Therefore, the SGCN filter
can handle low-frequency signal better than RP filter does.
This also explains Fig. 3a, where SGCN performs better than
RP for all pruning ratios.

On the Terrorist Attacks dataset, when pruning ratio
increases, the performance of SGCN-GCN and RP-GCN
improve. The distribution of eigenvalues on this dataset
(Fig. 8d) can explain the scenario. Figure 8d shows that
the dataset mostly consists of high-frequency components
with large eigenvalues over low-pass area and only has lim-
ited information in low-pass area. Therefore, in terms of
the Eq. (17) and frequency respond function, a weaker fil-
ter should be applied to this dataset, such that it reduces
negative effects from high-frequency components and keeps
the limited information in low-pass area. As pruning ratio
increases, the strength of a filter becomes weaker based on
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Theorem 1. Hence the performance of SGCN-GCN and RP-
GCN becomes better with weaker filters on the dataset.

The distribution of eigenvalues in the CiteSeer dataset
(Fig. 8b) is similar to that of the Cora dataset (Fig. 8a).
Hence their filters should act similarly, where filters grad-
ually become weaker and performance decreases with the
pruning ratio increasing. Since the distribution of eigenval-
ues on theTerrorist dataset aremainly high-frequency signals
with few low-frequency signals, a weaker filter as pruning
ratio increases is reasonable for keeping parts of information
in low-pass area and reducing noise from high-frequency
components. The experimental results in Fig. 3 of our paper
validate this hypothesis.

7 Conclusion

When a graph is large or dense, node classification often
requires massive storage or is computationally expensive. In
this paper, we address this issue by proposing the first neu-
ral network architecture that can sparsify graphs for node
classification. We propose Sparsified Graph Convolutional
Network (SGCN), a neural network sparsifier. In SGCN,
we formulate sparsification as an optimization problem and
provide an ADMM-based solution to solve it. Experimental
results on real-world datasets demonstrate that the proposed
framework can sparsify graphs and its output (sparsified
graphs) can be used as inputs to GCN to obtain classifica-
tion models that are as accurate as using the whole graphs.
Hence, SGCN reduces storage and computational cost with
a limited loss in classification accuracy. Moreover, we define
a measure to evaluate strength of SGCN and shed light on
the reason why SGCN achieves its performance, which is
that SGCN shrinks the range of eigenvalues and maintains
sufficient filtering strength for various pruning ratios.
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