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Abstract 

Advances in biofabrication processes need to be complemented with appropriate nondestructive quality engineering techniques that can be 

integrated into scalable engineered tissue manufacturing systems. Previous studies have demonstrated the feasibility of dielectric spectroscopy 

(DS) as a inline, real time biological quality monitoring alternative. Time series modeling can help improve the efficiency and accuracy of quality 

prediction by analyzing trends in DS data as the biofabricated constructs mature over time. These models can help forecast potential future 

deviations in quality attributes and provide opportunities to take preemptive, corrective actions, leading to better yields and higher quality of final 

products. In this study, we investigated time series modeling of DS data to characterize the effects of two critical biofabrication parameters on 

constructs of gelatin methacryloyl (GelMA) hydrogel containing human adipose-derived stem cells (hASC) over 11 days of in vitro culture. The 

performance of standard autoregressive time series models (Exponential Smoothing, ARMA, ARIMA, SARIMA) and conventional sequence-

based machine learning (ML) models (SVM, ANN, CNN and LSTM) were analyzed to forecast trends in Δɛ, a key DS metric that directly 

correlates to the volume of viable cells in constructs. The ML-based time series models, in general, showed superior performance in predicting 

future trends in Δɛ, with LSTM providing the lowest least mean square errors (MSE) in Δɛ forecasts. The outcomes of this study highlight the 

benefits of using DS and time series modeling synergistically for efficient quality monitoring in biofabrication. 
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1. Introduction 

Recent advances in biofabrication have accelerated the 

prospect of fabricating patient-specific tissue-engineered 

medical products (TEMPs) with functional properties similar to 

natural tissues and organs [1–4]. To enable the scale-up 

production of TEMPs, scalable non-destructive quality 

monitoring technologies are essential to track the changes in 

biological critical quality attributes (CQA) such as cell viability  

(i.e., proportion of living cells), proliferation (i.e., increase in 

the number of cells over time), and cell differentiation (i.e., 

functional or phenotypical changes) in real time. However, 

majority of the current quality evaluation techniques are 

predominantly offline and destructive in nature [5]. Other 

available non-destructive approaches are primarily dependent 

on analyses of optical images and video feeds [6–8]. These 

visuals-based approaches can provide information about overall 

tissue growth but lack the ability to detect changes occurring 

http://www.sciencedirect.com/science/journal/22128271
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inside the constructs over time. Dielectric spectroscopy (DS) is 

one of the non-image analysis-based altenatives being 

investigated recently to oversome these limitations. 

DS utilizes the dielectric response of living cells to interpret 

their attributes, as shown in Fig. 1. The phospholipid bilayer 

cell membrane causes viable cells to polarize in the presence of 

an alternating electric field, and the intensity of the polarization 

depends on the frequency. In this phenomenon known as the 

Maxwell–Wagner effect [9-10], positive and negative charges 

accumulate at the permeable cell membranes, which results in 

charge build-up (i.e., permittivity) [11]. Increasing the 

frequency results in a decrease in the permittivity following a 

typical trend characterized by three dispersion regions (Fig. 

1(b)). For mammalian cells, frequencies between 150-2500 

kHz produce the signature β-dispersion trend – steady drop in 

permittivity with increasing frequency [12-13]. At frequencies 

below 150 kHz (α-dispersion), a negligible amount of 

polarization takes place, whereas at frequencies over 2500 kHz 

(γ-dispersion), the cells do not have sufficient time to polarize. 

In β-dispersion, the Δɛ (i.e., the difference between permittivity 

at the highest and lowest frequencies) is a useful measure of 

CQA of engineered tissue constructs. From literature, it is 

known that the Δɛ is proportional to the volume of viable cells 

[9-11]. 

Fig. 1(a). Schematic showing polarization of viable cells encapsulated in 

engineered tissue induced by DS method (b) Characteristic DS spectrum 

highlighting the delta permittivity (Δɛ). 

 

We have recently demonstrated the effectiveness of using Δɛ 

in determining overall viability and proliferation of cells in 

biofabricated constructs [5,14]. Changes in biofabrication 

parameters and culture conditions can significantly affect the 

morphological changes and intercellular communication, which 

also influences the trends in Δɛ over time [15]. Forecasting of 

Δɛ over time as a function of the construct fabrication and 

culture conditions can enable to preemptively detect potential 

future deviations in quality and provide an opportunity to take 

appropriate early corrective actions. From an economics 

perspective, predicting future Δɛ could also help save resources 

by not having to produce irretrievable defective products with 

imminent fabrication errors. 

Traditional forecasting-based time series models have been 

widely investigated in the literature due to their accuracy in 

predicting future events. Among these, exponential smoothing 

[16], autoregressive moving average (ARMA) [17], [18], 

autoregressive integrated moving average (ARIMA) [19], and 

seasonal autoregressive integrated moving average (SARIMA) 

[20], have been typically used for time series data analysis in 

healthcare and biotechnology industry [21]. The more 

traditional support vector machine (SVM)-based machine 

learning (ML) models have also been widely used for time 

series prediction in biomedical applications [22-23]. More 

recently, neural networks and deep learning (DL) approaches 

have been investigated in the biomanufacturing domain. For 

example, DL models such as artificial neural networks (ANN) 

and convolutional neural network (CNN) have been utilized for 

image processing, resolution augmentation, segmentation, and 

optimization of in situ fabrication parameters in tissue 

engineering [24-25]. DL-based time series models, including 

recurrent neural network (RNN) and long short-term memory 

(LSTM), have also been successfully applied for monitoring of 

upstream cultivation processes in biopharmaceutical 

manufacturing [26] and as forecasting and generation tools to 

aid in therapeutic biologics manufacturing [27]. 

Process parameters used during biofabrication impact the 

quality of the engineered tissue constructs. For example, during 

the biofabrication of constructs using photocrosslinkable 

hydrogels such as gelatin methacryloyl (GelMA), the duration 

of exposure to ultraviolet (UV) radiation to achieve photo-

crosslinking can significantly impact the mechanical and 

biological properties of constructs [28-30]. Similarly, culture 

parameters such as the volume of media during the maturation 

of constructs [31-32] also affect the viability and proliferation 

of cells. In this study, we investigated time series modeling with 

DS to characterize the effect of the two critical biofabrication 

parameters (UV exposure duration and culture media volume) 

on the quality of GelMA constructs containing human adipose-

derived stem cells (hASC) over 11 days of in vitro culture. The 

performances of standard autoregressive time series models 

(exponential smoothing, ARMA, ARIMA and SARIMA) and 

sequence-based ML models (SVM, ANN, CNN, and LSTM) 

while forecasting future Δɛ trends for constructs fabricated 

under different biofabrication conditions were assessed. To the 

best of our knowledge, this is the first study focused on DS and 

time series modeling-driven non-destructive quality forecasting 

of 3D biofabricated tissue constructs.  

2. Methods and materials 

2.1. Biofabrication and traditional viability evaluation of 

GelMA constructs 

Human adipose-derived stem cells (hASC) were cultured in 

88% v/v MesenPro RS basal media, 10% v/v Mesenpro growth 

supplement, 1% Glutamax, and 1% antibiotic-antimycotic 

(Thermo Fisher Scientific, MA) in 175 cm2 cell culture flasks 

at 37°C and 5% CO2. At 80% confluency, cells were passaged 

until the required cell quantity was achieved. A 5% w/v GelMA 

solution was prepared by mixing Dulbecco’s Phosphate-

Buffered Saline (DPBS) (Genesee Scientific, CA) with sterile 

lyophilized GelMA (60% degree of substitution, 

MilliporeSigma, MA). Cells (0.5x106 hASC/ml) were mixed 

with the GelMA solution to constitute the bioink. Following the 

experimental design in Table 1, constructs (n = 3/group) were 

fabricated by photocrosslinking (405 nm UV, 10mW/cm2) 2 

mL bioink/well in untreated 6-well plates (Fig. 2(a)) and then 
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cultured (37°C, 5% CO2) over 11 days, with media changes 

once every 24 hours.  

Cell viability was evaluated on day 11 using the standard 

Live/Dead assay (Thermo Fisher Scientific). Briefly, 

constructs were washed twice with DPBS and incubated for 45 

minutes in 1 ml of DPBS containing 2 μl EthD-I and 0.5 μl 

calcein AM. Then the solution was aspirated off, and images of 

the constructs were recorded using an inverted fluorescence 

microscope (Leica Microsystems, Germany). 

Table 1. Experimental design: parametric variations in different construct 

groups 

Group UV exposure duration (sec) Media volume (ml) 

1 4 2 

2 4 4 

3 7 2 

4 7 4 

2.2. DS Assessment 

A flush probe (Ø25 mm, Aber Instruments, UK) was used 

to perform DS on each construct once every 24 hours over 11 

days. During each measurement, the probe was introduced into 

the construct well using a 3D printed custom guide to ensure 

identical placement of the probe throughout the study, as 

shown in Figure 2(b). A constant distance of 2 mm was 

maintained between the top of the GelMA construct and 

electrodes on the bottom surface of the probe. At each time 

point (i.e., once every 24 hours over 11 days), one DS 

measurement was performed. One DS measurement refers to a 

series of 20 frequency scans (50-20,000 kHz; default frequency 

range of the equipment). For each group, this resulted in 60 

spectral readings (20 frequency scans × 3 constructs/group) per 

time point. After data collection, permittivity data in the 150-

2500 kHz range, which is the relevant β-dispersion for 

mammalian cell characterization [12,13], was extracted. The 

Δɛ of each group at each time point was calculated as the 

average of the difference between permittivities at 150 and 

2500 kHz from the 60 spectral readings. Finally, two-way 

ANOVA and Tukey’s HSD post hoc tests (α = 0.05) were 

conducted to evaluate the effects of parametric variations and 

time points on Δɛ.  

2.3. Time Series Modelling 

2.3.1. Autoregressive models 

To prepare the dataset for subsequent autoregressive time 

series analysis, the stationarity of the dataset was evaluated 

using the augmented Dickey-Fuller test. After the data was 

confirmed as stationary, the dataset was split into train/test, 

where data collected in the first 9 days (9 days × 60 

readings/group × 4 groups = 2160 total readings) were used to 

train the time series algorithms, and the prediction task was 

performed for Δɛ of last 2 days (2 days × 60 predictions/group 

× 4 groups = 480 total predictions). For exponential smoothing, 

Holt’s Winters Seasonal Exponential Smoothing model was 

deployed from the python statsmodel library. Dataset was 

decomposed to check the trend, cycle, seasonality, and noise 

components. The decomposition results indicated additive 

seasonality with a sessional period of 60 readings/day/group). 

For ARMA, ARIMA, and SARIMA analyses, ‘pmdarima’ 

python package was utilized to identify the optimal values for 

trend elements (p, d, q) and seasonal elements (P, D, Q, m = 

60), where p, d, and q are the trends in autoregression order, 

difference order, and moving average order, respectively, and 

P, D, Q, and m are the seasonal autoregressive order, seasonal 

difference order, seasonal moving average order, and number 

of time steps each day, respectively. Finally, the predicted Δɛ 

were compared with actual values from the last 2 days for each 

group using mean square error (MSE). 

2.3.2. ML models 

Extending the time series analysis of section 2.3.1, the 

performance of ML-based time series modeling techniques that 

capture temporal information in sequential Δɛ data were 

investigated. The time series Δɛ trends of the four groups 

representing the biofabrication parametric variations were 

subjected to identical data preprocessing techniques before ML 

models were fit on the data. As an example, Fig. 3 shows the 

Δɛ trend of Group 1 (Table 1); the total of 660 data points 

correspond to 60 readings/time point × 11 time points. 

Under the paradigm of supervised ML modeling, the dataset 

was split into 2 sets – the training set comprising of the first 

330 data points of the time series trend and the testing set 

comprising of the next 330 data points. This splitting approach, 

despite being in contrast to the one used for the autoregressive 

models, was adopted to cater to larger training and testing sets 

usually required for ML models. These two sets were extracted 

Fig. 2(a). Fabrication, DS evaluation, and culture of hASC cell encapsulated 

GelMA constructs. (b) Placement of DS probe over samples 

Fig. 3. Δɛ trend of Group 1 
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to train the candidate ML models and to validate their 

performance on a hold-out test set, respectively. Owing to the 

time series nature of the data, a randomly split training and 

testing set extraction was not an option as that would not have 

retained the temporal characteristics of the data, which is 

paramount for time series ML models. The splitting of the 

datasets was done in such a manner that both the training and 

testing sets had significant trend and seasonality features, the 

patterns of which could be easily discernible by trained ML 

models. However, once the training and testing sets were 

carved out, shuffling was imposed during training to ensure 

that the ML models were not biased by the sequence of data 

being fed to them.  

To generate the features and targets of the dataset within 

each subset of data, a sliding window of size T (yellow region 

in Fig. 3) was scanned across the entire span of the subset. The 

scan was made at an incremental step size of 1-time unit (i.e., 

30 sec) so as to lead to the formation of feature-target pairs 

wherein each feature is a set of Δɛ values of size T and the 

target corresponding to that feature is the next Δɛ value in the 

time series trend that will need to be predicted. Quite evidently, 

this sliding window size of T that dictates the size of the 

features is a hyperparameter that requires tuning for each 

dataset. In the case of the Δɛ data, a size of T = 10 was chosen 

as a suitable window size that was sufficient to capture 

correlations between adjacent data points. One conventional 

ML model (SVM) and three candidate DL models (ANN, 

CNN, LSTM) were chosen to perform time series prediction on 

the preprocessed Δɛ data.  

 

Fig. 4. shows a schematic of the fully connected ANN that 

was trained on the Δɛ dataset. Features extracted from the 

sliding window of size T were supplied as inputs from the 

training set that the ANN trained on. Subsequent values in the 

time series, i.e., the data with position T+1 in the series, were 

supplied as the target to be predicted, which explains the uni-

nodal output of ANN. As the sliding window continued 

scanning through the training set from left to right in 

incremental steps of 1, more sets of training data of size T were 

generated and subsequently supplied as input data to the ANN.  

Fig. 5 shows the network configuration of the CNN that was 

trained on the Δɛ dataset. It can be observed that the 

architecture chosen for the CNN comprises of 1-dimensional 

convolutional layers of varying filter sizes, appropriate for 

sequence data modeling. The overall architecture comprises of 

MaxPooling layers sandwiched between the convolutional 

layers to extract averaged information inherent in the sequence 

data. Similarly, Fig. 6 shows the architecture for the LSTM 

model used to train on the Δɛ data. With reference to Figs. 5 

and 6, it can be observed that each layer has an input and output 

signifying the number of neural network node connections. 

This is also represented by the accompanied shape tuple in 

parentheses. The ‘None’ value in the tuple represents the batch 

size of data points used during training. The next number in the 

tuple represents the number of nodes in the layer, and the last 

number signifies the number of channels of the layer employed 

to extract information from the data. The ‘Dense’ layers in both 

networks represent the output layer responsible for estimating 

a continuous value. 

Fig. 6. Network architecture of LSTM used in time series modeling  

The LSTM architecture shows a simple single-layer LSTM 

structure with 24 as its hidden state dimension, which was 

sufficient to capture temporal information of the time series 

data. The decision on the number of nodes in the hidden layers 

Fig. 5. Network architecture of CNN used in time series modeling 

Fig. 4. Fully connected configuration of ANN 
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of the ANN, number of filters and maxpooling layers in the 

CNN architecture, and number of neurons in the hidden state 

of the LSTM model were all obtained through a series of trial 

and errors that yielded the best performances across the models. 

For the LSTM model training, trial ranges of 2-30 and 1-5 were 

imposed on the number of neurons and number of LSTM 

layers, respectively. The ranges used were rather conservative 

owing to the fact that the size of the input dataset was 

comparatively smaller in contrast to conventional sequence 

modeling tasks. 

For the SVM model, a typical support vector regressor 

model was used to extract the correlation of the time series 

trends through an inherent linear autoregressive model. 

Autoregressive models primarily model the relation of future 

values to past values in a sequence through linear combinations 

of the past values. Therefore, a support vector regressor model 

with a linear kernel exhibiting similar characteristics of target 

and input variable relationship ought to produce comparable 

results. This was evident from the kernel that gave the SVM 

model the best results in terms of lowest MSE. A linear kernel 

was sufficient to give the best outcomes proving the hypothesis 

that a linear autoregressive model was apt in modeling the 

relationship between the data points. 

3. Results and discussion 

3.1. Δɛ characteristic of GelMA constructs with different 

biofabrication parameters 

Fig. 7(a) summarizes the trends in Δɛ for the four construct 

groups over 11 days. Although the initial cell quantity was 

identical in all constructs, the Δɛ magnitude and trends differed 

over time across groups. 

Results of two-way ANOVA showed a significant effect of 

the parameter combination and time point on Δɛ (p < 0.05). The 

relatively higher Δɛ over time for Groups 2 and 4 indicates 

higher volume of viable cells in those constructs. This 

conforms to the expectation, given that these constructs 

received more nutrients due to the higher media volume during 

culture compared to Groups 1 and 3. A cyclic trend was 

observed in the Δɛ magnitudes for all groups, which is also 

expected from constructs cultured under static, in vitro 

conditions [33-34]. This trend is reflective of the depletion of 

nutrients available to cells over time between media changes 

The Live/Dead images in Fig. 7(b) (green indicating live cells, 

red indicating dead cells) at Day 11 aligns with the trends noted 

in Δɛ. The lowest intercellular communication was observed in 

Group 1, which also aligns with the lowest Δɛ magnitude 

observed for Group 1 over time. 

 

3.2. Time series prediction performance of models  

Performance (MSE) of different autoregressive time series 

models in predicting Δɛ for each of the four groups is 

summarized in Table 2. It was observed that by introducing 

seasonality (SARIMA), the prediction performance of the time 

series models improved significantly for all groups. However, 

despite the improvement in model performance due to the 

introduction of seasonality, the prediction accuracy was 

multiple folds higher for the ML-based time series models, 

which is evident from the MSE values in Table 3.  

Table 2. Prediction performance (MSE) of autoregressive time series models 

Group Exponential 

Smoothing 

ARMA ARIMA SARIMA 

1 0.2381 0.1703 0.2875 0.1976 

2 0.3345 0.3894 0.3789 0.3072 

3 0.7561 0.4181 0.4181 0.4145 

4 0.1446 0.1926 0.1926 0.1445 

Table 3. Prediction performance (MSE) of ML-based time series models 

Group SVM ANN CNN LSTM 

1 0.0297 0.02418 0.02942 0.02240 

2 0.0347 0.03343 0.04287 0.03203 

3 0.0401 0.03019 0.03566 0.02956 

4 0.0343 0.02451 0.03031 0.02475 

 

Since the autoregressive and ML models were all employed 

to predict continuous Δɛ values of the future, this was quite 

evidently a regression task, and hence the MSE score was an 

appropriate evaluation metric for the models. While all the ML 

models were comparable in their performances in forecasting 

Δɛ trends in the testing set, LSTM had the lowest mean MSE 

value across all groups (Table 3). This is also evident in Fig. 8 

that shows the Δɛ trends of the testing set overlaid on the trends 

predicted by the three DL models for Group 1. These graphs 

show that, for the most part, the trends predicted by ANN 

overshoot while the CNN predictions undershoot and lag the 

actual Δɛ trend of the testing set. In comparsion, the LSTM-

predicted trends align well with the actual data. This can be 

attributed to the ability of the LSTM to capture long term 

dependencies in temporal data through memory cells, which 

allows the models to capture any long term autoregressive 

relationship in the Δɛ data. The superior performance of the 

ML/DL models for this prediction aligns with similar 

investigations in previous literature [35]. The comparatively 

poorer performance of the autoregressive models in predicting 

the time series Δɛ data can be attributed to the absence of strong 

Fig. 7(a). The Δɛ trends (mean and standard deviation) over 11 days for 

the four groups. (b) Representative Live/Dead images for each group on 

day 11 (scale bar 300 μm). 
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seasonality patterns in the data to which such parametric 

methods are typically more responsive. Consequently, ML 

models which do not rely on such assumptions perform better 

in extracting the regression  relationship. It is to be noted that, 

the ML models perform a one step ahead prediction on the test 

data, and hence do not recursively use the predicted results 

from a previous iteration as new input for the model to do 

prediction on the step ahead. This allows for prediction errors 

to not build up and deviate future predicted values by large 

amounts. While a recursive input of previously predicted 

values would have been more appropriate for a multi-step 

forecast, for the use case in this study, a one step ahead 

prediction is commensurate to the frequency at which data is 

collected. 

 

4. Conclusion 

In this study, we invaestigated the application of time series 

modeling for assessing the effects of two biofabrication 

parameters (UV exposure duration and media volume) on the 

key DS metric of Δɛ, which is correlated to the viability and 

proliferation of cells in engineered tissue constructs. The 

results showed that there was a significant variation in the 

trends in Δɛ of the four groups of constructs fabricated using 

different process parameter combinations, which was in 

agreement with results of a traditional biochemical assessment 

assay. The results of time series analyses using standard 

autoregressive and ML-based models to forecast Δɛ showed 

that ML models showed consistently better prediction 

performance than autoregressive models. The LSTM model 

outperformed (lowest MSE) all other models tested. The 

approach and outcomes of this study demonstrate the capability 

of DS and time series modeling for efficient predictive quality 

monitoring of engineered tissues. 
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