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Abstract

Advances in biofabrication processes need to be complemented with appropriate nondestructive quality engineering techniques that can be
integrated into scalable engineered tissue manufacturing systems. Previous studies have demonstrated the feasibility of dielectric spectroscopy
(DS) as a inline, real time biological quality monitoring alternative. Time series modeling can help improve the efficiency and accuracy of quality
prediction by analyzing trends in DS data as the biofabricated constructs mature over time. These models can help forecast potential future
deviations in quality attributes and provide opportunities to take preemptive, corrective actions, leading to better yields and higher quality of final
products. In this study, we investigated time series modeling of DS data to characterize the effects of two critical biofabrication parameters on
constructs of gelatin methacryloyl (GeIMA) hydrogel containing human adipose-derived stem cells (hASC) over 11 days of in vitro culture. The
performance of standard autoregressive time series models (Exponential Smoothing, ARMA, ARIMA, SARIMA) and conventional sequence-
based machine learning (ML) models (SVM, ANN, CNN and LSTM) were analyzed to forecast trends in Ae, a key DS metric that directly
correlates to the volume of viable cells in constructs. The ML-based time series models, in general, showed superior performance in predicting
future trends in Ae, with LSTM providing the lowest least mean square errors (MSE) in Ae forecasts. The outcomes of this study highlight the
benefits of using DS and time series modeling synergistically for efficient quality monitoring in biofabrication.

© 2022 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the Scientific Committee of the NAMRI/SME.

Keywords: Time Series Analysis; Machine Learning; Non-destructive Quality Monitoring; Dielectric Spectroscopy; Tissue Engineering

1. Introduction

Recent advances in biofabrication have accelerated the
prospect of fabricating patient-specific tissue-engineered
medical products (TEMPs) with functional properties similar to
natural tissues and organs [1-4]. To enable the scale-up
production of TEMPs, scalable non-destructive quality
monitoring technologies are essential to track the changes in
biological critical quality attributes (CQA) such as cell viability

(i.e., proportion of living cells), proliferation (i.e., increase in
the number of cells over time), and cell differentiation (i.e.,
functional or phenotypical changes) in real time. However,
majority of the current quality evaluation techniques are
predominantly offline and destructive in nature [5]. Other
available non-destructive approaches are primarily dependent
on analyses of optical images and video feeds [6—8]. These
visuals-based approaches can provide information about overall
tissue growth but lack the ability to detect changes occurring
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inside the constructs over time. Dielectric spectroscopy (DS) is
one of the non-image analysis-based altenatives being
investigated recently to oversome these limitations.

DS utilizes the dielectric response of living cells to interpret
their attributes, as shown in Fig. 1. The phospholipid bilayer
cell membrane causes viable cells to polarize in the presence of
an alternating electric field, and the intensity of the polarization
depends on the frequency. In this phenomenon known as the
Maxwell-Wagner effect [9-10], positive and negative charges
accumulate at the permeable cell membranes, which results in
charge build-up (i.e., permittivity) [11]. Increasing the
frequency results in a decrease in the permittivity following a
typical trend characterized by three dispersion regions (Fig.
1(b)). For mammalian cells, frequencies between 150-2500
kHz produce the signature B-dispersion trend — steady drop in
permittivity with increasing frequency [12-13]. At frequencies
below 150 kHz (oa-dispersion), a negligible amount of
polarization takes place, whereas at frequencies over 2500 kHz
(y-dispersion), the cells do not have sufficient time to polarize.
In B-dispersion, the At (i.e., the difference between permittivity
at the highest and lowest frequencies) is a useful measure of
CQA of engineered tissue constructs. From literature, it is
known that the Ae is proportional to the volume of viable cells
[9-11].
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Fig. 1(a). Schematic showing polarization of viable cells encapsulated in
engineered tissue induced by DS method (b) Characteristic DS spectrum
highlighting the delta permittivity (Ag).

We have recently demonstrated the effectiveness of using Ae
in determining overall viability and proliferation of cells in
biofabricated constructs [5,14]. Changes in biofabrication
parameters and culture conditions can significantly affect the
morphological changes and intercellular communication, which
also influences the trends in Ae over time [15]. Forecasting of
Ae over time as a function of the construct fabrication and
culture conditions can enable to preemptively detect potential
future deviations in quality and provide an opportunity to take
appropriate early corrective actions. From an economics
perspective, predicting future Ae could also help save resources
by not having to produce irretrievable defective products with
imminent fabrication errors.

Traditional forecasting-based time series models have been
widely investigated in the literature due to their accuracy in
predicting future events. Among these, exponential smoothing
[16], autoregressive moving average (ARMA) [17], [18],
autoregressive integrated moving average (ARIMA) [19], and
seasonal autoregressive integrated moving average (SARIMA)

[20], have been typically used for time series data analysis in
healthcare and biotechnology industry [21]. The more
traditional support vector machine (SVM)-based machine
learning (ML) models have also been widely used for time
series prediction in biomedical applications [22-23]. More
recently, neural networks and deep learning (DL) approaches
have been investigated in the biomanufacturing domain. For
example, DL models such as artificial neural networks (ANN)
and convolutional neural network (CNN) have been utilized for
image processing, resolution augmentation, segmentation, and
optimization of in situ fabrication parameters in tissue
engineering [24-25]. DL-based time series models, including
recurrent neural network (RNN) and long short-term memory
(LSTM), have also been successfully applied for monitoring of
upstream  cultivation processes in  biopharmaceutical
manufacturing [26] and as forecasting and generation tools to
aid in therapeutic biologics manufacturing [27].

Process parameters used during biofabrication impact the
quality of the engineered tissue constructs. For example, during
the biofabrication of constructs using photocrosslinkable
hydrogels such as gelatin methacryloyl (GelMA), the duration
of exposure to ultraviolet (UV) radiation to achieve photo-
crosslinking can significantly impact the mechanical and
biological properties of constructs [28-30]. Similarly, culture
parameters such as the volume of media during the maturation
of constructs [31-32] also affect the viability and proliferation
of cells. In this study, we investigated time series modeling with
DS to characterize the effect of the two critical biofabrication
parameters (UV exposure duration and culture media volume)
on the quality of GelMA constructs containing human adipose-
derived stem cells (hASC) over 11 days of in vitro culture. The
performances of standard autoregressive time series models
(exponential smoothing, ARMA, ARIMA and SARIMA) and
sequence-based ML models (SVM, ANN, CNN, and LSTM)
while forecasting future Ae trends for constructs fabricated
under different biofabrication conditions were assessed. To the
best of our knowledge, this is the first study focused on DS and
time series modeling-driven non-destructive quality forecasting
of 3D biofabricated tissue constructs.

2. Methods and materials

2.1. Biofabrication and traditional viability evaluation of
GelMA constructs

Human adipose-derived stem cells (hASC) were cultured in
88% v/v MesenPro RS basal media, 10% v/v Mesenpro growth
supplement, 1% Glutamax, and 1% antibiotic-antimycotic
(Thermo Fisher Scientific, MA) in 175 ¢cm? cell culture flasks
at 37°C and 5% CO,. At 80% confluency, cells were passaged
until the required cell quantity was achieved. A 5% w/v GeIMA
solution was prepared by mixing Dulbecco’s Phosphate-
Buffered Saline (DPBS) (Genesee Scientific, CA) with sterile
lyophilized GelMA  (60% degree of substitution,
MilliporeSigma, MA). Cells (0.5x10° hASC/ml) were mixed
with the Ge]IMA solution to constitute the bioink. Following the
experimental design in Table 1, constructs (n = 3/group) were
fabricated by photocrosslinking (405 nm UV, 10mW/cm?) 2
mL bioink/well in untreated 6-well plates (Fig. 2(a)) and then
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cultured (37°C, 5% CO,) over 11 days, with media changes
once every 24 hours.

Cell viability was evaluated on day 11 using the standard
Live/Dead assay (Thermo Fisher Scientific). Briefly,
constructs were washed twice with DPBS and incubated for 45
minutes in 1 ml of DPBS containing 2 pl EthD-I and 0.5 pl
calcein AM. Then the solution was aspirated off, and images of
the constructs were recorded using an inverted fluorescence
microscope (Leica Microsystems, Germany).

Table 1. Experimental design: parametric variations in different construct
groups

Group UV exposure duration (sec) Media volume (ml)
1 4 2
2 4 4
3 7 2
4 7 4

2.2. DS Assessment

A flush probe (@25 mm, Aber Instruments, UK) was used
to perform DS on each construct once every 24 hours over 11
days. During each measurement, the probe was introduced into
the construct well using a 3D printed custom guide to ensure
identical placement of the probe throughout the study, as
shown in Figure 2(b). A constant distance of 2 mm was
maintained between the top of the GelMA construct and
electrodes on the bottom surface of the probe. At each time
point (i.e., once every 24 hours over 11 days), one DS
measurement was performed. One DS measurement refers to a
series of 20 frequency scans (50-20,000 kHz; default frequency
range of the equipment). For each group, this resulted in 60
spectral readings (20 frequency scans x 3 constructs/group) per
time point. After data collection, permittivity data in the 150-
2500 kHz range, which is the relevant B-dispersion for
mammalian cell characterization [12,13], was extracted. The
Ae of each group at each time point was calculated as the
average of the difference between permittivities at 150 and
2500 kHz from the 60 spectral readings. Finally, two-way
ANOVA and Tukey’s HSD post hoc tests (o = 0.05) were
conducted to evaluate the effects of parametric variations and
time points on Ae.
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Fig. 2(a). Fabrication, DS evaluation, and culture of hASC cell encapsulated
GelMA constructs. (b) Placement of DS probe over samples

2.3. Time Series Modelling
2.3.1. Autoregressive models

To prepare the dataset for subsequent autoregressive time
series analysis, the stationarity of the dataset was evaluated
using the augmented Dickey-Fuller test. After the data was
confirmed as stationary, the dataset was split into train/test,
where data collected in the first 9 days (9 days x 60
readings/group x 4 groups = 2160 total readings) were used to
train the time series algorithms, and the prediction task was
performed for Ae of last 2 days (2 days x 60 predictions/group
x 4 groups =480 total predictions). For exponential smoothing,
Holt’s Winters Seasonal Exponential Smoothing model was
deployed from the python statsmodel library. Dataset was
decomposed to check the trend, cycle, seasonality, and noise
components. The decomposition results indicated additive
seasonality with a sessional period of 60 readings/day/group).
For ARMA, ARIMA, and SARIMA analyses, ‘pmdarima’
python package was utilized to identify the optimal values for
trend elements (p, d, q) and seasonal elements (P, D, Q, m =
60), where p, d, and q are the trends in autoregression order,
difference order, and moving average order, respectively, and
P, D, Q, and m are the seasonal autoregressive order, seasonal
difference order, seasonal moving average order, and number
of time steps each day, respectively. Finally, the predicted Ae
were compared with actual values from the last 2 days for each
group using mean square error (MSE).

2.3.2. ML models

Extending the time series analysis of section 2.3.1, the
performance of ML-based time series modeling techniques that
capture temporal information in sequential Ae data were
investigated. The time series Ae trends of the four groups
representing the biofabrication parametric variations were
subjected to identical data preprocessing techniques before ML
models were fit on the data. As an example, Fig. 3 shows the
Ae trend of Group 1 (Table 1); the total of 660 data points
correspond to 60 readings/time point x 11 time points.
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Fig. 3. Ae trend of Group 1

Under the paradigm of supervised ML modeling, the dataset
was split into 2 sets — the training set comprising of the first
330 data points of the time series trend and the testing set
comprising of the next 330 data points. This splitting approach,
despite being in contrast to the one used for the autoregressive
models, was adopted to cater to larger training and testing sets
usually required for ML models. These two sets were extracted
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to train the candidate ML models and to validate their
performance on a hold-out test set, respectively. Owing to the
time series nature of the data, a randomly split training and
testing set extraction was not an option as that would not have
retained the temporal characteristics of the data, which is
paramount for time series ML models. The splitting of the
datasets was done in such a manner that both the training and
testing sets had significant trend and seasonality features, the
patterns of which could be easily discemible by trained ML
models. However, once the training and testing sets were
carved out, shuffling was imposed during training to ensure
that the ML models were not biased by the sequence of data
being fed to them.

To generate the features and targets of the dataset within
each subset of data, a sliding window of size T (yellow region
in Fig. 3) was scanned across the entire span of the subset. The
scan was made at an incremental step size of 1-time unit (i.e.,
30 sec) so as to lead to the formation of feature-target pairs
wherein each feature is a set of Ae values of size T and the
target corresponding to that feature is the next Ae value in the
time series trend that will need to be predicted. Quite evidently,
this sliding window size of T that dictates the size of the
features is a hyperparameter that requires tuning for each
dataset. In the case of the Ae data, a size of T = 10 was chosen
as a suitable window size that was sufficient to capture
correlations between adjacent data points. One conventional
ML model (SVM) and three candidate DL models (ANN,
CNN, LSTM) were chosen to perform time series prediction on
the preprocessed Ae data.
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Fig. 4. Fully connected configuration of ANN

Fig. 4. shows a schematic of the fully connected ANN that
was trained on the Ae dataset. Features extracted from the
sliding window of size T were supplied as inputs from the
training set that the ANN trained on. Subsequent values in the
time series, i.e., the data with position T+1 in the series, were
supplied as the target to be predicted, which explains the uni-
nodal output of ANN. As the sliding window continued
scanning through the training set from left to right in
incremental steps of 1, more sets of training data of size T were
generated and subsequently supplied as input data to the ANN.
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Fig. 5. Network architecture of CNN used in time series modeling

Fig. 5 shows the network configuration of the CNN that was
trained on the Ae dataset. It can be observed that the
architecture chosen for the CNN comprises of 1-dimensional
convolutional layers of varying filter sizes, appropriate for
sequence data modeling. The overall architecture comprises of
MaxPooling layers sandwiched between the convolutional
layers to extract averaged information inherent in the sequence
data. Similarly, Fig. 6 shows the architecture for the LSTM
model used to train on the Ae data. With reference to Figs. 5
and 6, it can be observed that each layer has an input and output
signifying the number of neural network node connections.
This is also represented by the accompanied shape tuple in
parentheses. The ‘None’ value in the tuple represents the batch
size of data points used during training. The next number in the
tuple represents the number of nodes in the layer, and the last
number signifies the number of channels of the layer employed
to extract information from the data. The ‘Dense’ layers in both
networks represent the output layer responsible for estimating
a continuous value.
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Fig. 6. Network architecture of LSTM used in time series modeling

The LSTM architecture shows a simple single-layer LSTM
structure with 24 as its hidden state dimension, which was
sufficient to capture temporal information of the time series
data. The decision on the number of nodes in the hidden layers
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of the ANN, number of filters and maxpooling layers in the
CNN architecture, and number of neurons in the hidden state
of the LSTM model were all obtained through a series of trial
and errors that yielded the best performances across the models.
For the LSTM model training, trial ranges of 2-30 and 1-5 were
imposed on the number of neurons and number of LSTM
layers, respectively. The ranges used were rather conservative
owing to the fact that the size of the input dataset was
comparatively smaller in contrast to conventional sequence
modeling tasks.

For the SVM model, a typical support vector regressor
model was used to extract the correlation of the time series
trends through an inherent linear autoregressive model.
Autoregressive models primarily model the relation of future
values to past values in a sequence through linear combinations
of the past values. Therefore, a support vector regressor model
with a linear kernel exhibiting similar characteristics of target
and input variable relationship ought to produce comparable
results. This was evident from the kernel that gave the SVM
model the best results in terms of lowest MSE. A linear kernel
was sufficient to give the best outcomes proving the hypothesis
that a linear autoregressive model was apt in modeling the
relationship between the data points.

3. Results and discussion

3.1. Ae characteristic of GelMA constructs with different
biofabrication parameters

Fig. 7(a) summarizes the trends in Ae for the four construct
groups over 11 days. Although the initial cell quantity was
identical in all constructs, the Ae magnitude and trends differed
over time across groups.
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Fig. 7(a). The Ae trends (mean and standard deviation) over 11 days for
the four groups. (b) Representative Live/Dead images for each group on
day 11 (scale bar 300 um).

Results of two-way ANOVA showed a significant effect of
the parameter combination and time point on Ae (p <0.05). The
relatively higher Ae over time for Groups 2 and 4 indicates
higher volume of viable cells in those constructs. This
conforms to the expectation, given that these constructs
received more nutrients due to the higher media volume during
culture compared to Groups 1 and 3. A cyclic trend was
observed in the Ae magnitudes for all groups, which is also

expected from constructs cultured under static, in vitro
conditions [33-34]. This trend is reflective of the depletion of
nutrients available to cells over time between media changes
The Live/Dead images in Fig. 7(b) (green indicating live cells,
red indicating dead cells) at Day 11 aligns with the trends noted
in Ae. The lowest intercellular communication was observed in
Group 1, which also aligns with the lowest Ae magnitude
observed for Group 1 over time.

3.2. Time series prediction performance of models

Performance (MSE) of different autoregressive time series
models in predicting Ae for each of the four groups is
summarized in Table 2. It was observed that by introducing
seasonality (SARIMA), the prediction performance of the time
series models improved significantly for all groups. However,
despite the improvement in model performance due to the
introduction of seasonality, the prediction accuracy was
multiple folds higher for the ML-based time series models,
which is evident from the MSE values in Table 3.

Table 2. Prediction performance (MSE) of autoregressive time series models

Group Exponential ARMA ARIMA SARIMA
Smoothing

1 0.2381 0.1703 0.2875 0.1976

2 0.3345 0.3894 0.3789 0.3072

3 0.7561 0.4181 0.4181 0.4145

4 0.1446 0.1926 0.1926 0.1445

Table 3. Prediction performance (MSE) of ML-based time series models

Group SVM ANN CNN LSTM

1 0.0297 0.02418 0.02942 0.02240
2 0.0347 0.03343 0.04287 0.03203
3 0.0401 0.03019 0.03566 0.02956
4 0.0343 0.02451 0.03031 0.02475

Since the autoregressive and ML models were all employed
to predict continuous Ae values of the future, this was quite
evidently a regression task, and hence the MSE score was an
appropriate evaluation metric for the models. While all the ML
models were comparable in their performances in forecasting
Ae trends in the testing set, LSTM had the lowest mean MSE
value across all groups (Table 3). This is also evident in Fig. 8
that shows the Ae trends of the testing set overlaid on the trends
predicted by the three DL models for Group 1. These graphs
show that, for the most part, the trends predicted by ANN
overshoot while the CNN predictions undershoot and lag the
actual Ae trend of the testing set. In comparsion, the LSTM-
predicted trends align well with the actual data. This can be
attributed to the ability of the LSTM to capture long term
dependencies in temporal data through memory cells, which
allows the models to capture any long term autoregressive
relationship in the Ae data. The superior performance of the
ML/DL models for this prediction aligns with similar
investigations in previous literature [35]. The comparatively
poorer performance of the autoregressive models in predicting
the time series Ae data can be attributed to the absence of strong



6 Author name / Manufacturing Letters 00 (2021) 000-000

seasonality patterns in the data to which such parametric
methods are typically more responsive. Consequently, ML
models which do not rely on such assumptions perform better
in extracting the regression relationship. It is to be noted that,
the ML models perform a one step ahead prediction on the test
data, and hence do not recursively use the predicted results
from a previous iteration as new input for the model to do
prediction on the step ahead. This allows for prediction errors
to not build up and deviate future predicted values by large
amounts. While a recursive input of previously predicted
values would have been more appropriate for a multi-step
forecast, for the use case in this study, a one step ahead
prediction is commensurate to the frequency at which data is
collected.

4. Conclusion

In this study, we invaestigated the application of time series
modeling for assessing the effects of two biofabrication
parameters (UV exposure duration and media volume) on the
key DS metric of Ae, which is correlated to the viability and
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Fig. 8. Ae trends of test set overlaid on predicted trends by ML models.

proliferation of cells in engineered tissue constructs. The
results showed that there was a significant variation in the
trends in Ae of the four groups of constructs fabricated using
different process parameter combinations, which was in
agreement with results of a traditional biochemical assessment
assay. The results of time series analyses using standard
autoregressive and ML-based models to forecast Ae showed
that ML models showed consistently better prediction
performance than autoregressive models. The LSTM model
outperformed (lowest MSE) all other models tested. The
approach and outcomes of'this study demonstrate the capability
of DS and time series modeling for efficient predictive quality
monitoring of engineered tissues.
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