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Abstract—We propose a compact snapshot monocular depth estimation technique that relies on an engineered point spread function
(PSF). Traditional approaches used in microscopic super-resolution imaging such as the Double-Helix PSF (DHPSF) are ill-suited for
scenes that are more complex than a sparse set of point light sources. We show, using the Cramér-Rao lower bound, that separating
the two lobes of the DHPSF and thereby capturing two separate images leads to a dramatic increase in depth accuracy. A special
property of the phase mask used for generating the DHPSF is that a separation of the phase mask into two halves leads to a spatial
separation of the two lobes. We leverage this property to build a compact polarization-based optical setup, where we place two
orthogonal linear polarizers on each half of the DHPSF phase mask and then capture the resulting image with a polarization-sensitive
camera. Results from simulations and a lab prototype demonstrate that our technique achieves up to 50% lower depth error compared
to state-of-the-art designs including the DHPSF and the Tetrapod PSF, with little to no loss in spatial resolution.

Index Terms—Computational Photography, 3D Sensing, Microscopy, Phase Mask Design, Polarization-encoded PSFs

1 INTRODUCTION

D scanning is crucial to a wide range of applica-

tions, including microscopy [1], autonomous driving [2],
and robot-assisted surgeries [3]. Among the multitude
of approaches to measure depth, perhaps the hardest
are those that involve passive, monocular, and snapshot
measurements—a scenario that prioritizes compactness and
time resolution. Estimating 3D information in this context
relies on cues such as shading [4] or defocus [5, 6]; however,
the underlying inverse problem is challenging and ill-posed.

A key property of real cameras is that the defocus blur
changes with the depth of scene points, which has been
leveraged by prior work to obtain depth. However, the blur
produced by conventional pupils is not conducive to robust
depth estimation; to mitigate this, there has been significant
interest in the design of engineered pupil plane masks in the
form of an amplitude [5], or phase mask [7, 8, 9, 10, 11, 12,
13]. In particular, the seminal work of Pavani ef al. [9] has
demonstrated that the so-called Double-Helix PSF (DHPSF),
consisting of two lobes rotating about a center, can provide
high spatial and depth resolutions, at least in the context of
super-resolution localization microscopy.

The majority of prior work on engineered PSFs focus
on isolated point light sources; this is a consequence of
their intended application—namely super-resolved local-
ization of fluorescent particles—and the simplification that
this assumption provides. However, real-world scenes often
consist of more complex geometric primitives such as lines,
edges, and curves [14, 15]; a PSF optimized for point sources
is inadequate at recovering such complex geometries due
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to ambiguities in depth estimation. This is all the more
important in applications involving linear structures includ-
ing blood vasculature, neuronal networks (of the biological
kind), and microtubules.

We propose and evaluate polarized spiral PSF (PS*F),
a novel engineered PSF that is well-suited for linear struc-
tures. Our key enabling observation is that asymmetric PSFs
achieve higher depth accuracy for scenes comprising of
linear structures. We achieve this asymmetry by observing
that the DHPSF is comprised of two lobes that rotate about
a common center; by capturing images with the individual
lobes, we can reliably estimate depth. We propose a compact
realization of our approach with a novel polarization-based
imaging system. PS’F is generated by combining a DHPSF
mask with orthogonal linear polarizers on the two halves
of the mask. We then use a polarization sensor, capable
of measuring images along four polarization angles in a
snapshot by using a Bayer-like tiling. Finally, the 3D scene
is estimated by solving a depth-dependent deconvolution
problem. An overview of depth estimation with PS?F is
illustrated in Fig. 1.

Contributions. We propose a new engineered PSF for imag-
ing linear structures and make the following contributions.

o We theoretically demonstrate that the DHPSF is ill-suited
for 3D imaging of linear structures by analysing its
Cramér-Rao lower bound (CRLB).

« We propose a compact polarization-based setup, using a
novel polarizer-phase mask encoding that is capable of
better 3D estimation in a snapshot manner.

o We demonstrate the advantages of PS*F through several
experiments with our lab prototype over a wide range of
scene geometries.

Limitations. At its core, PS%F assumes that the scene inten-
sity is unpolarized; if the scene is polarized, the resultant
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Fig. 1: Polarized Spiral PSF (PS®F) for single-shot 3D scene estimation. We propose a novel monocular depth imager based on
an engineered PSF. Numerous real-world scenes can be modeled as linear structures. We observe that asymmetric PSFs, such as a
single lobe of the DHPSF, enable us to accurately estimate the 3D geometry of such linear structures. We leverage this observation
and propose a compact polarization-based setup that produces accurate depth maps in a snapshot manner.

depth estimate may not be accurate. Our technique, like
most techniques that rely on defocus blur, performs poorly
for regions with little or no textures or structures.

2 RELATED WORK

PS?F draws motivation from the prior work on engineered
PSFs. We discuss the relevant ones in this section.

2.1 Mask-based PSF encoding

Encoding PSFs by designing masks has been used in several
works, including extended depth-of-field imaging [16, 17,
18], 3D sensing in the macroscopic [6] and microscopic [7,
10] regimes, and in a lensless imaging setting [19]. The de-
signed masks can be placed in front of the imaging lens or in
the pupil plane of the imaging system. Earlier works include
designing amplitude masks or coded apertures [5, 6] — such
amplitude masks however lead to poor light efficiency and
very coarse depth information. Several follow up works
utilized phase-only modulation masks which include the
rotating PSFs [7, 20, 21], and PSFs obtained by optimizing
the Fisher information [10]. Phase masks have also been
designed in an end-to-end optimization setting, both for
macroscopic [22, 23] and microscopy [12, 13] tasks.

2.2 3D super-resolution microscopy using phase
masks

Coupled with STORM [24] and PALM [25, 26], masks
that result in rotating PSFs with depth have been able to
perform super-resolution microscopy [7, 20] of individual
fluorophore emitters to nanometer-scale accuracy. The most
successful of such designs is the DHPSF [7], a popular
choice for 3D localization of point sources [11, 24, 27]. 3D
localization performance have been further improved by
designing Tetrapod PSFs [10], which were generated by
directly optimizing the Fisher information of the phase mask
for (z,y,z) localization of point sources. Recently, deep
learning techniques have enabled an end-to-end design
framework that simultaneously learn phase masks as well
as neural networks for obtaining 3D localizations from raw
captures [12, 13].

Of particular interest is the work by Nehme et al. [13],
where a pair of masks were designed in an end-to-end

learning process. The two masks are placed in two parallel
4f imaging channel. The mask pair, coupled with a learnt
deep network, allows for high accuracy 3D localization of
single fluorophores over a large depth range and for a high
density of point-like emitters. Their work focuses on super-
resolution microscopy and on 3D localization of point-like
emitters, while our result tackles extended linear structures.

2.3 3D sensing of linear and extended structures

Human/animal bodies have a rich, dense 3D network of
blood vessels running through them. Capturing the 3D
structure of vasculature is usually done using variants of
light-sheet microscopy (LSM) [28, 29, 30], confocal micro-
scope (CM) [31, 32], optical projection tomography [33], and
optical coherence tomographic angiography [34]. However,
confocal and LSM methods involves scanning individual
points, lines, or planes which makes the systems bulky and
decreases the achievable imaging rate, making them non-
ideal for fast dynamic 3D imaging.

2.4 Depth sensing using rotating PSFs

There is a rich body of work devoted to PSFs with lobes
that rotate with defocus. These can be clustered into two
groups based on their use of Gauss-Laguerre (GL) modes [9]
or Fresnel rings [21].

GL-based rotating PSFs [7, 20] have been used for super-
resolving and localizing single molecules in 3D [7, 35, 36,
37]. Both GL-based [38] and Fresnel-ring-based [39, 40]
rotating PSFs have also been used for single-shot depth
estimation of scenes. However, the first work employs a two
phase-mask solution. The latter two employ a patch-based
technique involving processing in the cepstrum domain.
They only recover very simple scenes at low spatial and
depth resolutions. Such recovery approaches do not extend
to more complex geometry such as linear structures.

2.5 Using polarization channels for PSF encoding

There have been a few works that leverage polarization
to help in 3D super-resolution imaging [13, 41, 42]. These
works typically use a beam-splitter to split the incoming
light into two separate 4f optical system channels which



enabled individual channels to be encoded with a differ-
ent mask. The images were then captured over two non-
overlapping regions of a single sensor, or on two separate
sensors. Such solutions however call for bulkier optics, and
more importantly, a need for sub-pixel alignment to achieve
high spatial resolution. We instead leverage snapshot polari-
metric cameras that are naturally well-aligned, and hence
easier to work with, and more compact.

3 POLARIZED SPIRAL POINT SPREAD FUNCTION

We begin with a brief background on the DHPSF, an analysis
of its properties, and its performance for linear/extended
structures. Subsequently, we introduce our proposed PSF
and its associated reconstruction technique.

3.1 Background: DHPSF and mask design

This subsection outlines the background on the generation
of the DHPSF [7] and other GL-based rotating PSFs [20].

3.1.1 Phase mask for GL-based rotating PSFs

Any propagating paraxial wave/beam can be expressed in
terms of the orthogonal basis of GL modes, which are char-
acterized by two integers (n,m). Different combinations
of the GL modes lead to varying properties of paraxial
beams. In [43], it was shown that beams that constituted of
GL modes that are in arithmetic progression continuously
rotated and scaled upon propagation. Using a beam cor-
responding to GL modes of (1,1), (5,3), (9,5), (13,7), it was
shown in [8] that the amplitude and phase profile of the
beam at z = 0 can be used as a mask in front of a lens
(or in the Fourier plane of a 4f lens system) to generate a
PSF that rotates with defocus. Subsequently, this mask was
implemented in a phase-only manner using a variant of
Gerchberg-Saxton optimization procedure with constraints
included for the GL modal domain [9]. The resulting phase
function creates a PSF that rotates with changing point
source depth, and is popularly known as the DHPSF due to
its double helical structure. This PSF has been successfully
used in 3D localization of fluorescent particles [7][35].

3.1.2 Properties of GL-based rotating PSFs

Piestun et al. [43] present a theory on paraxial rotating beams
using GL modes, and characterizing the resulting rotation
range, rotation rates, and beam scaling rates. Specifically,
given a 4 f system with lenses of focal length f, a GL-based
mask designed with beam width w, for wavelength A, and
having GL modes lying on a single line with slope Vi, the
following can be established:

o The total rotation in one direction of defocus is (Vi7/2)
o The angle of the rotating PSF

z
= Vitan ! —2——
#(2) = ¢o + Vi tan (Afz/ww(%)
« The PSF will rotate by (Vi7/4) over a depth of ;‘1’; .
0
Even though phase-only masks for rotating PSFs are gen-
erated after an optimization procedure [9], the above rates
and ranges are still a good approximation to understand the
properties of any GL-based rotating PSE.
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Fig. 2: Ambiguities caused by DHPSF for lines. Estimation
of depth and orientation of a line using the DHPSF is an ill-
conditioned problem. There is an inherent global ambiguity
in depth estimation, since for every line image, two possible
candidate depths are possible.

3.2 Challenges in imaging linear/extended structures

Phase masks such as the DHPSF [7], or the Tetrapod
PSF [10], were designed for 3D estimation of point sources. To
image scenes with extreme fluorophore density, the concept
of a scene made up of point-like emitters is not accurate.
With increasing fluorophore/light source density, scenes
consist of edge-like and linear structures. Using a DHPSF
for recovering depth of a line then leads to an ambiguity
between depth and orientation of the line. This is illustrated
in Fig. 2. Given a line image formed using the DHPSEF, there
will always be a global depth ambiguity—two different
depths can give rise to the same line image. This makes
the DHPSF ill-suited for imaging edge/linear structures.

3.3 Designing a PSF for 3D lines

A line with constant intensity blurred with an arbitrary
PSF produces another line — thereby leading to loss of
information along the line direction. In case of the DHPSEF,
the loss of information implies that two lines at two different
depths (—Az and +Az) produce the same measurement.
This ambiguity can however be resolved if we measure
two separate images with each lobe of the PSF. Imaging
with the individual DHPSF lobes separately will remove the
global degeneracy issues (up to a 27 lobe rotation range).
Next, we provide a theoretical analysis of the advantages
to be obtained by such a separation. For estimation from
data (image(s) in our case), we can use theoretical tools to
understand what ultimate precision is possible. The Fisher
information and Cramér-Rao Lower bound (CRLB) give the
best possible precision that can exist by any estimator. In
the case of an image of an isolated point source, the Fisher
information matrix for estimating parameters § = (z,y, z)
is given by [10]:

bl 1 ou ope\ T
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where N, is the number of pixels, k is a variable for
summing over all pixels, T' corresponds to the transpose
operator, /3 is the background Poisson noise level, and pg
is the scaled PSF image for a point source at 0 = (z,y, 2)
(scaled by the number of photons V). The diagonal elements



of the inverse of the Fisher information matrix provides the
CRLB for estimation of each of the parameters 6 = (z,y, z).

[CRLB(0)); = [F1(0)];;"

We next extend the Cramér-Rao analysis to imaging of
lines. Given a line image (or a one-sided edge image), the
parameters to be estimated are the associated depth z of the
line/edge (at center of the patch), the associated orientation
¢, i.e. 0 = (z,¢). Thus, given a line image 1, the CRLB
estimates for depth z is given by

FIO):; = kNZ 55 (). (‘i;‘;o)T %)

[CRLB(9)]. = [FI(0)]. ()

The estimation of line orientation from a line path is easier
than depth estimation, as orientation can be computed from
the global structure of the line image. Hence, for simplicity
of exposition, we focus on the analysis of the CRLB, values
here. Analysis regarding the CRLB, values is shown in
the Supplementary. Using Eqns 2, 3 we can calculate the
+v/CRLB, values for a given line image for all (z, ¢). This
calculation can be readily extended to line images captured
using two separate PSFs. In such a case, the final Fisher
information matrix is the sum of the individual Fisher
matrices. Assuming a 4f system with 50 mm focal length
lenses, and N = 100,000 photons, 3 = 5 photons/pixel,
we compute the +/CRLB, plots (as a function of z, ¢) for
the DHPSF [9], the Tetrapod PSF [10], and the individual
DHPSF lobes with 25% photons in each lobe. Note that
v/CRLB, obtained with a mask pair should be compared
with a single mask having 2x SNR (2x total photons), as
shown in [13]. However, our polarizer-phase mask setup
causes a 50% light loss (see further in Section 3). Hence,
for an appropriate comparison, we compare the individual
DHPSF lobe pair, with other PSFs having 4x the SNR.
There are possible ways to remove this loss, with a setup
demonstrated in [13], which will further lower the estimated
v/CRLB, values.

Fig. 3 illustrates the /CRLB, values (log-scale) for a
given line at depth z and having orientation ¢. The mean
and standard deviation of the /CRLB, values are also
shown in the individual insets. The DHPSF plot in Fig. 3
shows several peaks with large magnitude. This occurs at
specific (z, ¢) where the line connecting the two lobes of the
PSF and the scene line are either perpendicular or parallel
to each other. The ability to discern lines at slightly differing
depths is greatly reduced at these points due to symmetry.
For the Tetrapod PSF [10] and the PhaseCam3D PSF [22], the
plots in Fig. 3 also show more peaks and ridges, but with
lower magnitude compared to the DHPSF. For the PSF pair
of the individual DHPSF lobes, we see that most of the peaks
are removed, except for a central peak in the plot. The peak
corresponds to the case when the PSF is in focus and the
the line orientation is perpendicular to the PSF lobes. This
central peak does not affect the effectiveness of separating
lobes, because it is a narrow peak over a only small area in
the parameter space of (z, ¢). The average /CRLB, values
for the individual DHPSF lobe pair is similar to the DHPSF
with 4x SNR. Thus, with 4x lower SNR, the PS2F is able
to achieve a comparable /CRLB, value with other PSFs,

PhaseCam3D PSF (4x SNR

6.2 +/-3.8 um

Tetrapod PSF (4x SNR)

5.4+/-2.2 um
PS2F (1x SNR)

-—

7.7 +/-4.0 um

-2.5 10.6 +/-4.1 um
0° % 180°

Fig. 3: CRLB comparison for various phase masks. The figure
shows /CRLB. log-intensity (log-mm) plots for line images,
as a function of line depth (z) and line orientation (). PS*F
achieves a comparable CRLB over the whole range of depth
and orientations with fewer peaks, even with 4x lower SNR. In
contrast, competing approaches have curves with large CRLB
values, which introduce ambiguities in the depth estimate.

and does not show consistent peaks and ridges as seen in
the plots. Note that CRLB calculations only provide insight
about local ambiguities or precision levels. However, we
also observe that a PSF pair created out of separating the
DHPSF lobes removes global ambiguities as well. Thus
overall, a PSF pair created from the individual DHPSF lobes
is better for estimating depths of line/edge patches.

3.4 Using polarizers to separate out the DHPSF lobes
in a single 4 f optical system

Imaging with a PSF pair is possible by having two sepa-
rate parallel 4f imaging systems with separate sensors, as
demonstrated in [13]. However, the DHPSF mask (and the
Fresnel ring-based two-lobe masks) enjoy the property of
PSF lobe separability. Partitioning such a mask into two
halves along a particular axis, and allowing light through
only one half leads to the creation of only a single rotating
PSF lobe, as depicted in Fig. 4. The primary reason is that
the light falling on one half is modulated to form one lobe,
while the light falling on the other half is modulated to form
the other lobe. Such a partitioning leads to partitioning of
the DHPSF into two separate, distinct lobes.

The separability of DHPSF lobes can be leveraged to
build a compact imaging system. In PS?F, we add two
linear polarizers on each mask half, one oriented along s-
polarization and the other oriented along p-polarization.
This ensures that the s-polarization component is modu-
lated using one mask half, and consequently the p-polarized
component is modulated using the other mask half. The
PSF created out of such a polarizer-phase mask encoding
contains two lobes, but with each lobe being in a different
polarization (either s or p). This addition of polarizers
causes a 50% light loss, which was taken into consideration
while estimating the /CRLB, values. Such a polarized spiral
PSF can be captured efficiently using a polarized camera
sensor. A polarized camera sensor contains a 2D array of
pixels with a Bayer pattern that has 90, 45, 135, 0 degree
polarizers. After addition of the polarizers in the mask-
plane, the orthogonally polarized DHPSF lobes can be im-
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Fig. 4: Effect of separating the phase mask. The phase mask
for generating the DHPSF has a special property that separating
the phase profile along the highlighted red line yields a separa-
tion of the two lobes. We leverage this to implement a compact
realization of Polarized Spiral PSF (PS°F) using a polarization
camera sensor and two polarizers in the pupil plane.

PSF stack

aged in their respective channels of a polarization sensor.
This allows for a compact 4 f system, allowing the imaging
of a PSF pair using just a single 4 f system channel, making
the proposed method a single-shot, single-sensor method.

3.5

We assume that the light from the scene is unpolarized
in our imaging model. The imaging of a 3D scene with
a depth-dependent PSF can be approximated as a sum of
2D convolutions between the depth-dependent PSF and the
per-plane scene intensity:

Imaging model and reconstruction procedure

Zend

L(z,y)= > he(,y;2) *s(z,y,2) (4)

Z=Zstart

where I.(z, y) is the image intensity at (x,y) in polarization
channel ¢, h.(z,y; z) is the 2D PSF corresponding to depth
z and polarization channel ¢, and s(z,y,z) is the scene
intensity at point (z,y, 2).

The goal of 3D reconstruction is to estimate a 3D matrix
s(z,y, z) from the noisy measurements of I(x,y). There are
numerous ways to solve this problem including regularized
least-squares [19, 44, 45], data learning-based [22, 23], and
more recently, ones based on deep network-based regular-
izer [46]. To keep the exposition simple, we demonstrate
recovery by modelling the 3D reconstruction problem as a
regularized least squares optimization problem.

Specifically, we formulate the 3D scene estimation prob-

lem as:
Iy Hy
) =l

where x is a 3D matrix of scene intensities, Hy, Hyy are
the depth-specific PSF operators corresponding to the in-
dividual two lobes that are polarized to 0° and 90° states
respectively, and Iy, Igg are captured images in the 0° and
90° polarization channels respectively. S is the summing
operator that sums across the depth channels of Hox and
Hgox separately. We employ TV and L1 regularizers as scene
priors, with A7y, A1 as hyperparameters to control their
regularization effects respectively. We solve the optimization
problem using autograd functionality in PyTorch and the

2
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Adam optimizer [47] to leverage the speed of graphical
processing units (GPUs).

A key requirement for our technique is that the scene
emits unpolarized light. This is required so as to ensure that
both the lobes have produce PSFs with similar intensity
levels that we can calibrate a priori. When the incident
light is polarized, the blur kernels in Eq. 4 will have an
unknown scaling, which leads to a model mismatch; in
an extreme scenario, we lose all the information in one
of the lobes if the polarization angle of the incident light
is orthogonal to the corresponding polarizer in the pupil
plane. While this is a limitation of our technique, we largely
encountered unpolarized light in our intended application
of fluorescence microscopy.

4 SIMULATIONS

To evaluate the performance of our proposed PS?F, we
perform extensive simulations on the VascuSynth 2013
dataset [48, 49], which provides 10 simulated 3D volumes
of vascular trees for each of 12 levels of complexity. Scene
complexity is set by the number of bifurcations in the
vascular tree (ranging from 1 to 56 in steps of 5). Each 3D
vasculature volume in the dataset consists of 101 x 101 x 101
voxels. These volumes were converted into 3D scenes of size
256 x 256 x 256 through interpolation methods. This new
volume was assumed to cover a volume of 1.76 x 1.76 x 5.00
mm? with each voxel occupying a 6.9 x 6.9 x 19.5 ym?.

We further assume a 4f system with both lenses having
focal lengths f = 50 mm. We render images of the vascular
structures using several different masks of diameter 3 mm
in the Fourier plane. We assume that the light from the vas-
culature is monochromatic of wavelength A = 532 nm. We
render images assuming occlusion of vasculature and that
light is received only from the surface of the vasculature. We
assume that the center of the 3D scene is f = 50 mm away
from the first lens, thus, the scene spans a defocus range of
[—2.5 mm, +2.5 mm]. The masks (and their corresponding
PSFs) used in rendering the simulated images were:

e DHPSF: We optimize for a GL-based DHPSF mask (fol-
lowing procedure in [9]), based on the rotating paraxial
beam with wg = 0.4 mm and having GL modes cor-
responding to (1,1),(3,5),(5,9), (7,13). Full 180 degree
lobe rotation was achievable over 2 ;‘1{) 23 = 5.3 mm.

« PS?F: Using the above mask, we construct an equivalent
mask pair corresponding to PSF by partitioning the mask
into two halves appropriately.

e Tetrapod PSE: We obtain a Tetrapod PSF mask designed
for 550 nm wavelength from [36] and repurpose it for
imaging over our specified 5 mm depth range.

We then added Poisson and Gaussian read-out noise to the
final measurements. For an appropriate comparison, we per-
form 3D reconstructions with individual single lobes (PS*F),
two-shot capture with DHPSF, and a two-shot capture using
the Tetrapod PSE. To accurately account for the 50% light
loss in the PS2F case, we also render out images with half
the signal level as compared to the signal levels in DHPSF
and Tetrapod PSF case. After obtaining the 3D volumetric
estimate, we filter out points whose sum across the z-stack is
lower than a fixed threshold. We then estimate depth using
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Fig. 5: Simulations on vascusynth dataset with varying complexity. The figure shows reconstructions with various PSF designs
on scenes with medium complexity (top row) and high complexity (bottom row). PS?F is superior in depth estimation, especially
in regions where there is higher vasculature (scene) complexity (see insets). Scale bars indicate 0.25 mm.
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Fig. 6: Accuracy vs. scene comglexity. Depth estimation per-
formance, for the proposed PS°F and other comparing PSFs
(averaged over 10 scenes for each complexity level, shaded
regions show variance across the 10 scenes). This demonstrates
the suitability of PS’F, and that the separation of the DHPSF
lobes helps in 3D reconstruction.

the index corresponding to a maximume-intensity-projection
(MIP) of the 3D estimate.

4.1 Comparison with DHPSF and Tetrapod PSF

Fig. 6 shows the depth estimation performance for the
proposed PS?F, DHPSF, and the Tetrapod PSF. We compare
the PSFs depth estimation using the Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and the multi-scale
Structural Similarity Index Measure [50] (MS-SSIM) metrics.
The entire set of results can be seen in the Supplementary.

The proposed PS?F method performs ~ 2x better in terms
of the RMS error for depth estimation. The depth estimation
performance improvement is even higher (~ 3x) for vascu-
lature with more bifurcations, i.e. greater complexity. Depth
estimation results for two example vasculature scenes can
be seen in Fig. 5. In Fig. 5 (top row), the vasculature scene
is not very complex. The depth map estimation results are
fairly similar for all the three PSFs (PS?F, DHPSF, Tetrapod
PSF), but the zoom-in insets highlight the errors seen in
the DHPSF and Tetrapod PSF depth estimation. In Fig. 5
(bottom row), the scene has greater complexity, and the PS*F
produces much better depth estimation than the other two
PSFs. The zoom-in insets especially highlight the same.

4.2 Resolution performance

Furthermore, we analyse the reconstruction resolution per-
formance by reconstructing a simulated skew USAF target.
We assume a USAF target places at the focus plane, but tilted
with respect to the optical axis so that its depth changing
horizontally across the target; we render using the same
three masks in the same 4f optical system as above. The
results are shown in Fig. 7. The proposed PS’F generates
a better reconstruction than the DHPSF and Tetrapod PSF
reconstructions, both in lateral and axial dimensions. As
seen from the XZ MIP plots in Fig. 7, the PS?F and Tetrapod
PSF reconstructions are able to obtain the skew angle of the
target, with the former being much better. The DHPSF fails
to get the skew angle, due to the global depth ambiguity
issues explained in Section 3. In the lateral dimensions, the
Tetrapod PSF is unable to reconstruct Group 4 and 5. This
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Fig. 7: Simulated reconstruction results of a USAF target at
a skew angle. (A) Shows the depth map estimates for PS°F,
DHPSEF, and Tetrapod PSF respectively. The XZ maximum in-
tensity projections are shown in (B) in their respective columns,
with ground truth shown in the inset. (C) shows zoom-in insets
of depth maps (after thresholding to remove small artifacts) of
highlighted regions in (A). PS®F has a better reconstruction in
lateral and axial dimensions as compared to the DHPSF and
the Tetrapod PSF. Scale bars for (A), (B), (C) indicate 0.5 mm,
0.5 mm, and 0.1 mm respectively.

could be attributed to the fact that the PSF has a larger
support. On the other hand, the PS’F and DHPSF have
concentrated lobes, and thus are able to reconstruct elements
of Group (5,3) (12.40 pm linewidth) and (5,2) (13.92 um
linewidth) respectively.

The obtained zy-resolution can be theoretically justified.
The separation of lobes in the PS*F method allows for
resolution of finer scene features due to the compactness of
the PSE. The resolution will be roughly determined by the
width of the individual PSF lobes. Fitting a 2D Gaussian to
each individual lobe, the average 20-value for the Gaussian
fit is ~ 1.74 pixels = 12 um in the object space. This readily
matches with the fact that the PS?F can resolve elements
of Group (5,3), which has line elements that are spaced at
12.40 um distance. The diffraction-limited resolution of an
Airy disk PSF for the same optical system configuration is
given by 1.22)\f/D = 10.81 um, indicating that the xy-
resolution obtained by the PS?F is close to the diffraction-

Polarization
Sensor

Phase mask
+ polarizers

‘ Lens 2 H

‘ llum. H Target H Lens 1 ’

Odeg 45deg
90deg 135 deg

Fig. 8: Lab prototype. (A) Our lab prototype is a 4f system con-
sists of a polarization sensor (FLIR BFS-U3-51S5P-C) equipped
with a 50 mm F-mount lens. The phase mask and polarizers are
on an XY stage. An achromat (AC254-050-A) forms the other
half of the 4f system. We used an additional z-axis motorized
translation stage to capture the PSF stack. (B) Two orthogonal
polarizer pieces. (C) Images of the polarizers and phase mask
with a camera focused on the pupil-plane.

limited resolution (1.15x) as well.

For PS?F, we also analysed the spread of reconstruction
signal across the z-channel. For pixels with a significant
signal level, we fit a 1D Gaussian curve to estimate this
spread. The median 2c0-value across z-channel obtained
was 2 x 304 = 608 um, which is an estimate of the axial
resolution performance of the proposed PS?F. Note that
the diffraction-limited axial performance of an Airy disk
PSF for the same optical system configuration is given by
4X(f/D)? = 591 um. We are able to achieve ~ 1.03x the
diffraction-limited axial resolution with the proposed PS*F.

5 EXPERIMENTAL RESULTS

We perform real-world imaging with PS?F to verify our
simulations. In this section we detail out the experiments
and compare the PS?F with the corresponding DHPSF.

5.1 Imaging setup description

We built a 4f imaging setup with the first lens being an
achromatic lens with focal length 50 mm, and the second
lens being a Canon camera lens with effective focal length
= 50 mm. The polarizer-phase mask is added to the pupil
plane of the 4 f system. Fig. 8 shows the prototype.

5.1.1 Polarizer-Mask design

We fabricated a 3 mm diameter DHPSF mask using a 3-D
printer employing two-photon lithography. See Supplemen-
tary for more details on fabrication. The fabricated mask was
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Fig. 9: PSF stacks captured with a lab prototype. We achieved
high quality separation between the two lobes in 0 and 90
degree images with our setup. We noticed no significant effect
of any misalignment between the phase mask and the two
polarizer halves. Scale bars indicate 100 pm.

the same mask used in the Section 4 to perform simulations
of the VascuSynth dataset. To create a single-mask, single-
sensor design for the PS’F as outlined in Section 3, two
rectangular pieces of thin-film polarizers were laser cut and
put side-by-side in a 3D printed holder. Both the polarizer
pieces were laser cut such that their polarization orientation
was 0deg and 90 deg respectively. The fabricated DHPSF
mask was attached to the back side of the 3D printed holder,
carefully aligning the two mask halves w.r.t. to the polarizer
edges under a bright-field 4x microscope. This polarizer-
mask aperture is illustrated in Fig. 8(B),(C). Further details
can be found in the Supplementary figures.

5.1.2 PSF capture and calibration

To reconstruct 3D scenes, we use an experimentally cap-
tured PSF stack for the PS?FE. Using the polarization
sensor, we image a 5 pm pinhole over a range of
[—2.5 mm, 2.5 mm)] on either side of the focus plane. The
experimentally-captured PSFs can be seen in Fig. 9.

5.2

With the fabricated mask and optical setup, we perform a
series of experiments with 3D skew planar targets (using
transmissive illumination) and with 3D fluorescence targets.
We image using a polarization camera sensor (FLIR BFS-U3-
51S5P-C) to obtain the individual PS?F lobes in two polar-
ization channels. By averaging across the Bayer pattern, we
can readily obtain the image of the scene as imaged by a
DHPSF, which we use for comparison purposes.

Imaging experiments

5.2.1 3D skew planar targets

We imaged a USAF planar target placed at a skew angle, and
then performed single-shot 3D reconstruction of the target.
Furthermore, we obtain a focal stack of the target so as to
obtain ground truth depth map. The ground truth depth
map was obtained from the focal stack using the Shape-
from-focus method [51]. For the FOV being imaged, the rel-
ative intensity of each of the PS?F lobes changed across the
FOV, causing a spatial variance in the PSE. This was readily
accounted for by adding a per-pixel, per-channel weight

term to the 3D scene variable x in Eq. 5, and jointly opti-
mizing for the 3D scene x and the weights. The results are
depicted in Fig. 10. After modelling of the relative strengths
of the PS?F lobes as variables to be estimated during the
optimization, we achieved an accurate reconstruction result
matching the simulation results in terms of resolving Group
(5,3) elements for the PS?’F. The YZ maximum intensity
projections demonstrate that the skew plane of the USAF
has been correctly estimated using the PS°F, as compared to
using the DHPSE. When judged against the ground truth,
we see a ~ 50% lower RMS error achieved with the PS?F as
compared to the DHPSE.

5.2.2 3D fluorescence imaging

We, next, imaged a set of prepared fluorescent samples, con-
sisting of 10 um fluorescent beads in a PDMS substrate (for
more information, see Supplementary). The bead concentra-
tion was varied from approximately 3 to 8 beads/mm?3. The
resulting samples were ~ 2 mm in thickness. We imaged
these samples using the same mask as before, but in a
4f optical system using lenses of focal length 30 mm and
50 mm resulting in a 1.6 x magnification. We reconstructed
using the same optimization algorithm as specified in Eq.
5, and compared against ground truth data obtained with
a confocal microscope. The results are shown in Fig. 11.
Bead localization performance using the DHPSF seems to
get relatively worse as the bead concentration increases. In
contrast, PS%F enabled accurate results with increasing bead
concentration. It is important to note that in this experiment,
we use an optimization objective to perform bead recon-
struction. More sophisticated and accurate methods (such as
likelihood-based methods) exist for reconstruction of beads
or point-like objects. Moreover, the ground truth (GT) data
was captured using confocal imaging method. However,
due to the complexity of matching/registering imaging
volumes, we only obtain an approximated alignment or
approximate registration between the GT and the imaging
volume captured.

Using the same optical setup as above, we also image
fluorescent cotton strands suspended in a PDMS sample (see
Supplementary for more information about sample prepara-
tion). Fig. 12 shows the results for the same. PS?F method
is better able to capture the 3D structure of the fluorescent
strands - especially in parts with highly complex geometry.
Imaging with PS?F results in sharper reconstructions, which
helps in reconstructing the fine, complex structure of the
strands. The estimated depth map from the PS®F is also
more accurate as compared to the DHPSF case.

6 CONCLUSION

We presented PS?F for single shot, monocular depth esti-
mation of extended (linear) structures where we separated
the two lobes of the DHPSF into the two orthogonal states
of polarization. This separation enabled us to remove ambi-
guities when estimating depth of line segments by breaking
the inherent symmetry of DHPSF with respect to depth. The
snapshot capabilities of PS*F will enable faster microscopic
imaging, including high resolution light sheet microscopy
at real-time rates with fewer captures. We designed and
demonstrated a compact physical realization of PS*F with a
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Fig. 10: Skew USAF target reconstruction. Showing reconstructed depth map, YZ maximum intensity projection, zoom-in inset
of highlighted ROI for (A) PS*F, and for (B) DHPSF. Column (C) shows slice plots for marked yellow lines in the zoom-in insets,
corresponding to Group (5,3) elements for PS”F (top plot) and DHPSF (bottom plot). We were able to resolve up to Group (5,3)
elements (12.40 pm linewidth) using the PS%F, whereas only up to Group (4,5) elements (19.69 pm linewidth) using the DHPSE.
Text below YZ MIP plots indicate the depth RMS error obtained for reconstruction when compared to ground truth, showing that
the PS?F performs ~ 2x better. All scale bars indicate 1 mm.
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Fig. 11: 3D reconstructed fluorescent bead volumes. The scatter Elots show 3D reconstructed views with PS?F and the DHPSF for
bead densities approximately corresponding to (A) 3 beads/mm®~, (B) 5 beads/ mm?, and (C) 8 beads/mm?. We captured ground
truth information with a semi-aligned confocal ground truth (hence an approximate ground truth). Highlighted regions indicate
various errors: incorrect estimation by DHPSF (solid green), missing estimation by DHPSF (dashed green), incorrect estimation
by PS°F , and incorrect estimation by both PSFs . Axes values are in units of mm.

single, polarization-sensitive camera, and showed that PS’F ACKNOWLEDGMENTS

results in 2x or higher accuracy compared to current state-
of-the-art phase masks such as DHPSF and the Tetrapod
PSE. We believe that our approach of leveraging polariza-
tion multiplexed phase masks combined with polarization-
sensitive cameras opens new avenues for high resolution
snapshot depth imaging at micro and macro scales.

PS?F is inherently designed for extended/linear struc-
tures, and imaging such structures will involve high photon
counts than when imaging single molecules or point-like
emitters. Hence, we do not specifically deal with a low-
photon count scenario in this work. Nevertheless, PS?F can
be adapted to low-photon count scenarios by using ad-
vanced recovery techniques including deep network-based
approaches. Improvements such as modeling spatially vary-
ing PSF, as well as accounting for polarized input light will
further improve PS?F results.
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