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Abstract—In a built environment, wanting to see without direct line of sight is often due to being outside a doorway. The two vertical

edges of the doorway provide occlusions that can be exploited for non-line-of-sight imaging by forming corner cameras. While each

corner camera can separately yield a robust 1D reconstruction, joint processing suggests novelties in both forward modeling and

inversion. The resulting doorway camera provides accurate and robust 2D reconstructions of the hidden scene. This work provides a

novel inversion algorithm to jointly estimate two views of change in the hidden scene, using the temporal difference between

photographs acquired on the visible side of the doorway. Successful reconstruction is demonstrated in a variety of real and rendered

scenarios, including different hidden scenes and lighting conditions. A Cramér–Rao bound analysis is used to demonstrate the 2D

resolving power of the doorway camera over other passive acquisition strategies and to motivate the novel biangular reconstruction

grid.

Index Terms—biangular coordinates, computational photography, computer vision, corner camera, non-line-of-sight imaging, remote

sensing, stereo vision
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1 INTRODUCTION

O VER the past decade, the possibility of forming images
of objects hidden from line-of-sight view has emerged

as an intriguing and potentially important expansion of
computational imaging and computer vision technology.
This capability could help soldiers anticipate danger in a
tunnel system, autonomous vehicles avoid collision, and
first responders safely traverse a building. Non-line-of-sight
(NLOS) imaging techniques may be divided into active
and passive methods. Active methods use controlled illu-
mination of the hidden scene and are thus generally less
stealthy. Furthermore, most active methods use pulsed laser
illumination and single-photon detection, thus requiring
costly, high-power equipment. An excellent, comprehensive
review of active NLOS imaging systems may be found in [1].

This paper focuses on passive NLOS imaging with an
ordinary digital camera in the configuration shown in Fig-
ure 1. Like most passive methods, we emphasize the ex-
ploitation of occluding structures. A camera obscura or pin-
hole camera is a simple example of a useful occluding struc-
ture. Here, incident light from a given direction illuminates a
unique point on the observation plane, creating a projection
of the scene outside of the camera on the observation plane.
Useful naturally occuring occluding structures might be the
aperture formed by an open window [2] or the ‘inverse
pinhole’ created when an object changes position between
subsequent measurements [2], [3]. In [4], a 2D reconstruction
of a hidden scene was formed using a single photograph
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Fig. 1: An illustration of the doorway camera acquisition
strategy. An ordinary digital camera takes a single photo-
graph of the penumbrae in FOV-L and FOV-R. This photo-
graph is used to form a 2D reconstruction of the hidden
scene.

from an ordinary digital camera and an occluder with
known shape. Joint estimation of unknown occluder shape
and the hidden scene has been demonstrated using motion
of the hidden scene in [5] and deep matrix factorization
in [6]. More recent works addressing similar acquisition con-
figurations have improved inversion techniques [7], [8], [9],
broadened the set of occluding objects [10], and even shown
that reconstructions are possible without the benefit of an
occluding object when a trained network is employed [9],
[11].

Our most direct inspiration is the corner camera of
Bouman et al. [12]. The corner camera uses the vertical
edge that occurs naturally at the corner of every wall and



Fig. 2: An annotated photograph shows a single vertical
edge occluder (yellow). Light from around the corner is
cast onto the floor on the visible side forming a fan-like
penumbra pattern (green).

doorway, so the question of knowledge of the occluder
shape is obviated. Ambient light from around the occlud-
ing edge (on the hidden side of the wall) is cast onto
the floor on the visible side forming a fan-line penum-
bra shadow pattern observed on the floor, as shown in
Figure 2. Photographs of the penumbra region may be
used to form reconstructions of the hidden scene that are
highly resolved in azimuthal angle around the corner. This
was first demonstrated in [12], where temporal differences
between subsequent measurement frames were processed
to produce 1D (in angle) reconstructions of motion in the
hidden scene. Subsequently, 1D reconstruction of an entire
hidden scene (i.e., both moving and non-moving) from a
single photograph while also jointly estimating the un-
known, non-uniform floor albedo was demonstrated [13].
Two-dimensional reconstruction (where the second dimen-
sion is range from the corner) using a single vertical edge
was demonstrated in [14], although range estimation was
found to be highly susceptible to model mismatch, even
in a controlled environment. In active NLOS imaging, a
vertical edge has been exploited to control hidden scene
illumination with selectivity in azimuthal angle [15].

In this paper, we explore the doorway camera formed by
two adjacent vertical edges, as shown in Figure 1. Unlike the
single edge in [12], which results in poor radial resolution
while requiring high signal-to-noise ratio (SNR) [14], the
azimuthal resolution of two separate edges enables robust
2D reconstruction of the hidden scene. The idea of combin-
ing two corner cameras was initially demonstrated in [12].
There, an angular location was extracted from each 1D
reconstruction using manual contour tracing and combined
to triangulate the 2D position of a single hidden target in
motion. Even if contour tracing can be performed perfectly,
with the simple triangulation approach in [12], n target con-
tours at each corner camera correspond to n2 possible target
positions in the hidden scene. As in [12], we perform tem-
poral differencing and seek a reconstruction of change in the
hidden scene. However, unlike [12], we jointly process the
data from the two penumbrae. Our reconstruction approach
produces two unique 2D views of change in the hidden
scene, one from the perspective of each occluding edge. We
demonstrate our algorithm at far lower SNR than is required

for accurate 2D reconstruction in [14] Our reconstruction
technique is also capable of resolving multiple moving
objects in the foreground while simultaneously describing
illumination changes in the background due to occlusion in
the hidden scene. Our key contributions include:

• Cramér–Rao bound (CRB) analysis (Section 3) to
demonstrate the utility of the doorway occluder
for 2D hidden scene reconstruction. Our analysis
illustrates the large reduction in location uncertainty
provided by the second edge in all parts of the
hidden scene and motivates our use of the biangular
coordinate system.

• An inversion algorithm (Section 4) to jointly estimate
two views (i.e., one from each occluding edge) of the
hidden scene in a novel 2D reconstruction grid.

• Demonstration of our reconstruction algorithm (Sec-
tion 5) on a variety of synthetic and experimental
hidden scenes.

2 FORWARD MODEL

The doorway NLOS acquisition strategy in Figure 1 consists
of two vertical edges, each with an adjacent swath of floor
where the penumbra is measured, called FOV-L and FOV-R

for left and right when facing the doorway. Considered
alone, each of the vertical edges may be treated as a single
vertical edge occluder, as in [12], [13], [14]. In this section we
review the forward model for a single vertical edge occluder
and discuss the two-edge doorway scenario.

2.1 The Single Edge Occluder

In Figure 3 we show the bird’s eye view of a single
edge occluder. We will assume a thin planar occluding
wall, although additional modeling could account for non-
negligible wall thickness. Point p = (r, θ) is on the floor in
the camera FOV at range r from the corner and azimuthal
angle θ measured away from the occluding wall. The loca-
tion of a point in the hidden scene (yellow) is parameterized
in cylindrical coordinates, with range ρ measured from the
corner along the floor, azimuthal angle α measured around
the corner in the plane of the floor, and height z. Assum-
ing the camera is pointed straight down at a Lambertian
floor, and excluding foreshortening factors for simplicity, the
brightness Lo(p) of point p may be written as a sum of all
light incident on point p multiplied by the albedo a(p) at
point p:

Lo(p) = a(p) (Lv(p) + Lh(p)) ,

where Lv(p) is incident light originating on the visible side
and Lh(p) is incident light originating on the hidden side.
We simplify this to

Lo(p) = Lv + Lh(p) (1)

by assuming that a(p) and Lv(p) do not vary with p within
the camera FOV and normalizing to a(p) = 1. These are
justified by the floor albedo being constant or known; and
any visible-side light sources being relatively far from the
camera FOV.

We parameterize the hidden scene in cylindrical coordi-
nates with range ρ, azimuthal angle α (measured into the



Fig. 3: Bird’s eye view of the single corner camera.

hidden scene and around the corner), and height h. Incident
light originating from the hidden side Lh(p) may be written
as a sum over different directions of incident light Li:

Lh(r, θ)
(a)
=

∫ θ

0

∫ ∞

0

∫ ∞

0
Li(ρ, α, z)ρ dz dρ dα

(b)
=

∫ θ

0

∫ ∞

0

∫ ∞

0

Sh(ρ, α, z)

d2(r, θ, ρ, α) + z2
ρ dz dρ dα, (2)

with integral bounds in (a) set up from α = 0 to α = θ
to sum over all un-occluded hidden light sources. In (b),
we rewrite Li in terms of the radiosity of the hidden
scene S(ρ, α, z) at point (ρ, α, z), attenuated by radial falloff
where

d2(r, θ, ρ, α) = r2 + ρ2 − 2rρ cos(π − θ + α) (3)

is the squared distance between point p and hidden scene
point (ρ, α, z) measured along the floor.

In this work, as in [12], we seek to reconstruct change in
the hidden scene by subtracting a background measurement
Lb
o(p) = Lb

v + Lb
h(p) from each new measurement frame

Lt
o(p) = Lt

v + Lt
h(p):

Lt
o(p)− Lb

o(p) = (Lt
v − Lb

v) + (Lt
h(p)− Lb

h(p))

= b+ L∆
h (p), (4)

where L∆
h (p) is the change in illumination at point p due to

change (i.e., motion) in the hidden scene and b quantifies the
change in illumination due to the visible side. The algorithm
proposed in Section 4 seeks to invert (4) from the two
edge occluder measurements that can be acquired near a
doorway. For each vertical edge in the doorway, we seek to
estimate the change in the hidden scene S∆

h (ρ, α, z), as well
as the illumination change b from the perspective of that
corner.

2.2 The Doorway Occluder and Biangular Coordinates

In Figure 4, we show a bird’s eye view of the doorway
occluder, consisting of two vertical edge occluders sepa-
rated by a known distance 2d along the x-axis. We acquire
measurements (M pixels in a square array) at each of
FOV-L and FOV-R, each of which may be described by the
forward model in Section 2.1. As in Section 2.1, ranges ρ1
and ρ2 measure scene distance from the corner along the
floor and azimuthal angles α1 and α2 are measured around
each occluding edge into the hidden scene. As previously
demonstrated in [12], [13], [14], each separate edge occluder

Fig. 4: The doorway camera. A point in the hidden
scene is shown in both cylindrical(ρ1, α1, z) and biangular
(α1, α2, z) coordinates.

primarily provides azimuthal information (i.e., the ability to
resolve the hidden scene in α). Thus, in this work, we adopt
the biangular coordinate system [16] and describe a point on
the ground plane of the hidden scene by (α1, α2). Ranges
ρ1 and ρ2 may be written in terms of α1 and α2 alone by
applying the law of sines:

ρ1 =
2d sinα2

sin γ
and ρ2 =

2d sinα1

sin γ
, (5)

where γ = π − α1 − α2, as marked in Figure 4.

3 CRAMÉR–RAO BOUND FOR LOCALIZATION

The Cramér–Rao bound provides a lower bound on the
variance of an unbiased estimate of unknown parameters.
It allows us to explore how much information about our
unknown parameters is contained in our noisy camera mea-
surements under different acquisition strategies. The CRB
for a hidden point target’s unknown parameters in polar
coordinates for the single edge-occluder scenario is given
in [14]. In this section, we consider the problem of localizing
a point target in biangular coordinates for the doorway
acquisition strategy. Our goal is to provide a qualitative
comparison among acquisition strategies, to show the merit
of two edge occluders over one or none.

Take the hidden target to be a hypothetical point emit-
ter with brightness cs, located in biangular coordinates
at (α1, α2, z) = (ϕ1, ϕ2, 0). The equivalent in cylindrical
coordinates is (ρ1, α1, z) = (ρ1s, ϕ1, 0), where

ρ1s =
2d sinϕ2

sin γs
(6)

from (5), with γs = π − ϕ2 − ϕ2. This point corresponds to
hidden scene

Sh(ρ1, α1, z) =
cs
ρ1s

δ(ρ1 − ρ1s)δ(α1 − ϕ1)δ(z).

Evaluating (2), the outgoing radiosity at point p in FOV-L

due to the hidden scene is

Lh(p) =
csH(θ − ϕ1)

r2 + ρ21s − 2rρ1s cos(ϕ1 + π − θ)
, (7)

where H(x) is the Heaviside step function. Substituting (6)
into (7), we rewrite (7) in biangular coordinates:

Lh(p) =
csH(θ − ϕ1)

r2 + ( 2d sinφ2

sin γs

)2 − 4dr sinφ2

sin γs

cos(ϕ1 + π − θ)
. (8)



(a) Single FOV without corner
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(b) Single corner camera
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(c) Double FOV without corner
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(d) Doorway camera
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Fig. 5: Uncertainty regions (top row) for four different acquisition strategies. Uncertainty regions have a width of
2
√

CRBdoor(ϕ1) in coordinate α1 and a width of 2
√

CRBdoor(ϕ2) in coordinate α2. Two black dots on the x-axis mark the
points around which α1 and α2 are measured; in this analysis, these points are spaced one meter apart. The bottom row
of images show sample measurements when the target is located at the red dot, at the same noise level used to compute
uncertainty regions. Each camera FOV is 0.2 m wide and the number of pixels per FOV is M = 1252.

Assuming no visible-side light for simplicity, the mea-
surement at pixel m is ym = im + ϵ, where ϵ ∼ N (0, σ2).
Summing Lh over the spatial extent Pm of the camera pixel
gives

im =

∫

p∈Pm

csH(θ − ϕ1)

r2 + ( 2d sinφ2

sin γs

)2 − 4dr sinφ2

sin γs

cos(ϕ1 + π − θ)
dp.

(9)
Similarly, if pixel m is in FOV-R,

im =

∫

p∈Pm

csH(θ − ϕ2)

r2 + ( 2d sinφ1

sin γs

)2 − 4dr sinφ1

sin γs

cos(ϕ2 + π − θ)
dp.

(10)
Under our Gaussian model, the Fisher information

about unknown parameters (cs, ϕ1, ϕ2) in measurements
{ym}2Mm=1 is given by F = (1/σ2)

(

∇IT∇I
)

, where

∇I =

















∂i1
∂cs

∂i1
∂φ1

∂i1
∂φ2

∂i2
∂cs

∂i2
∂φ1

∂i2
∂φ2

...
...

...

∂i2M
∂cs

∂i2M
∂φ1

∂i2M
∂φ2

















.

The CRB on parameters cs, ϕ1 and ϕ2 may be computed as
follows:

CRBdoor(cs) = [F−1]1,1, (11a)

CRBdoor(ϕ1) = [F−1]2,2, (11b)

CRBdoor(ϕ2) = [F−1]3,3. (11c)

where the subscript ‘door’ indicates that these results corre-
spond to the two-edge doorway scenario.

In Figure 5 we use these CRB results to plot uncertainty
regions at different points on a biangular grid. Uncertainty
regions have a width of 2

√

CRBdoor(ϕ1) in coordinate ϕ1

and a width of 2
√

CRBdoor(ϕ2) in coordinate ϕ2. Two black
dots on the x-axis mark the points around which ϕ1 and ϕ2

are measured; in this analysis, these points are spaced one
meter apart. In addition to plotting the uncertainty regions

for CRBdoor (d), we compute and plot similar bounds for
the following cases for comparison:

• Single FOV without corner: A single photograph of
FOV-L with no occluding edge.

• Single corner camera: A single photograph of FOV-L

with an occluding edge. This models an occluding
wall rather than a doorway.

• Double FOV without corner: Photographs of both
FOV-L and FOV-R, each with no occluding edge. Here
we explore the effects of having two spaced out
photographs.

The bottom row of Figure 5 includes sample measurements
for each case with the same noise level used to compute
the uncertainty regions shown above. In the single corner
camera and doorway camera cases, the penumbra due to
the point target is clearly visible in the measurement. In
the cases with no corner, the radial falloff patterns used to
localize the hidden target are faintly visible, most noticeably
when comparing FOV-L and FOV-R in the double FOV case.

We note that the largest uncertainty regions occur in the
single FOV without corner case, where a single measure-
ment is collected with no occluding edge (a). Uncertainty
grows in both directions as test points move away from
FOV-L. The lack of rotational symmetry is due to using the
uncertainty in biangular coordinates despite the collected
data being only from FOV-L. When a single corner camera
is used (b), an edge is introduced and uncertainty regions
effectively collapse to lines as ϕ1 uncertainty becomes van-
ishingly small. Here we also note that ϕ2 uncertainty is
relatively unchanged with the introduction of the edge,
consistent with the result in [14] that the vertical edge
primarily enhances azimuthal resolving power. Uncertainty
regions in the double FOV with no corner case (c) shrink
compared to the single FOV no corner case. In addition to
collecting measurements at twice as many pixels, the two
FOVs are spaced apart along the x-direction giving them
moderately improved localization power, especially for hid-
den points closer to the x-axis. The uncertainty regions in



the double FOV with no corner case (c) are too small to
observe the spatial variation in uncertainty for this case.
In Supplementary Note 1, we plot these regions with a
width of 500

√

CRBdoor(ϕ1) in coordinate ϕ1 and a width
of 500

√

CRBdoor(ϕ2) in coordinate ϕ2 to make these spatial
variations more clear.

In the doorway camera acquisition strategy (d) that we
focus on in this paper, the azimuthal resolution provided
by both occluding edges is combined to effectively shrink
uncertainty regions down to points. The reconstruction grid
proposed in Section 4 is motivated by the observation that
each measurement FOV provides a ‘view’ of the hidden
scene that is primarily resolved in angle around the adjacent
occluding edge.

4 INVERSE FORMULATION AND ALGORITHM

4.1 Linearity and Occlusion

The model in Section 2.1 is linear and hence does not
include the effect of some part of the hidden scene occluding
another. When imaging from a single vantage point, one
may neglect such occlusion because there is no attempt to
see through foreground objects. In the doorway camera, an
object may be influencing FOV-L but not FOV-R, or vice
versa. To maintain the simplicity of a linear forward model,
we choose to combine measurements at both corners to
simultaneously reconstruct a view from each FOV vantage
point. This also allows for other angular variation of ap-
pearance, such as self-occlusion of objects and directional
lighting variations. As described in Section 4.2, these recon-
structions are coupled to improve the physical realism of
the model and reduce the number of decision variables at
the expense of making the model bilinear. The formation of
a unified reconstruction from the two views is discussed in
Section 4.4.

4.2 Discrete Forward Model

Our reconstruction approach assumes a hidden scene com-
posed of vertical planar facets placed on a biangular grid.
Each facet has unknown brightness in red, green, and blue.
The geometry that gives rise to our biangular reconstruc-
tion grid is illustrated in Figure 6a. Here we have plot-
ted biangular ‘graph paper,’ composed of 21 lines equally
spaced in angle α1 (blue) and 21 lines equally spaced
in angle α2 (red). The 20 intervals in each angle create
∑20−1

n=1 n = 19 · 20/2 = 190 cells, known as the 19th
triangular number, some of which are outside the plotted
area; cells near the origin are extremely small. A subset of
the points of intersection of the lines are marked with black
dots, with those outside the plotted area and very close to
the origin omitted. Facets in our reconstruction grid rest
on the gray lines formed by connecting these black dots to
bisect the cells in the direction transverse to the origin. As
shown in Figure 6a, these facets form concentric rings about
the doorway opening. Note that although facets are longer
at ranges further from the doorway, all facets share the same
angular widths in α1 and α2.

In practice, our reconstruction grid is discretized more
finely than Figure 6a, with 4◦ angular resolution for each
of α1 and α2. Using all 44 · 45/2 = 990 potential facet

locations at this angular resolution would result in a large
number of small facets near the x-axis. Instead, we limit our
attention to α1 and α2 in [π/8, 7π/8], and we add facets
parallel to the y-axis to extend from the most extreme facets
to the front wall. We also omit facets that fall within the
ellipse with foci at the doorway edges and minor axis of
length 1 m. The resulting reconstruction grid with N = 230
potential facet locations is shown in Figure 6b. Facets shown
in red are assumed to represent moving scene content in the
foreground and are constrained to be positive. Facets shown
in purple represent the scene background and may be posi-
tive or negative to allow the reconstruction to also describe
negative change in the measurement when a moving object
blocks light from the scene behind it. The color triplets that
describe the N vertical facets of 1 m height in Figure 6b are
stored in the rows of v ∈ R

N×3.
The concatenated measurement in the pth color channel

xp = [xp
L; x

p
R] ∈ R

2M includes M pixels from each FOV and
may be modeled as follows:

xp =

[

1 0
0 1

]

bp +

[

AL 0
0 AR

] [

diag(cL)
diag(cR)

]

vp + q. (12)

(In the following, superscripts are used for color channel
indexes and subscripts are used for left and right indi-
cations and other indexing.) The first term describes the
effects of far-field visible side light (i.e., b in (4)), where

bp =
[

bpL bpR
]T

with bL and bR representing the intensity
at the left and right measurements and 1 ∈ R

M denoting
a vector of ones. The second term describes light from the
hidden scene, where AL ∈ R

M×N and AR ∈ R
M×N are the

left and right light transport models as described in (2). The
vector vp is the pth column of v, corresponding to the pth
color channel, and q describes noise and model mismatch.
Multiplicative factors cL, cR ∈ R

N account for differences
in observed brightness between left and right corners. Note
that rather than estimate six unknown values per hidden
pixel (i.e., red, green, and blue brightness values for each
FOV), we choose to estimate five: a single RGB triplet (con-
strained to have unit norm) and an intensity scaling factor
for each FOV. A choice to reconstruct six variables (i.e., RGB
triples for each view) without additional regularization to
promote similarity between views, is effectively the same
as using two isolated single corner cameras to form 2D
reconstructions. As shown in [14], and our own results in
Figure 5b, a single edge occluder leaves considerable uncer-
tainty in range. This formulation creates a strong coupling
between the two different reconstruction ‘views.’ The left
corner’s view of the hidden scene is vL = diag(cL)v;
the right corner’s view is vR = diag(cR)v. When both
corners ‘see’ the same facet, their views (of the hidden scene
specifically, not the values of their measurement pixels) are
constrained to be the same color but may have different
brightness. When the hidden scene is self-luminous and
conforms perfectly to our reconstruction grid, we expect
cL = cR. In practice, the differences in entries of cL and
cR describe the effects of off-grid facet tilts, illumination
foreshortening, and occlusions.

4.3 Inversion Algorithm

We seek to reconstruct change in the hidden scene between
subsequent frames given the difference measurement: yt =
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(a) A coarse illustration of the reconstruction grid concept
with 9◦ angular resolution.
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(b) The full reconstruction grid with 4
◦ angular resolution

and N = 230 planar facets. Foreground facets are red;
background facets are purple.

Fig. 6: The reconstruction grid is composed of planar facets resting on a biangular grid.

xt − x0. Here xt is the measurement acquired after motion
has occurred at time t, and x0 is an earlier measurement
used to subtract light contributions from stationary scenery.
We propose to estimate v ∈ R

N×3, cL ∈ R
N , cR ∈ R

N , and
b = [b1 b2 b3] ∈ R

2×3 by solving the following problem:

min
v,cL,cR,b

{

λgroup

N
∑

n=1

∥

∥

∥

∥

[

(cL)n
(cR)n

]
∥

∥

∥

∥

2

+

1

2

3
∑

p=1

∥

∥

∥

∥

[

1 0
0 1

]

bp +

[

AL 0
0 AR

] [

diag(cL)
diag(cR)

]

vp − yp

∥

∥

∥

∥

2

2

}

(13a)

subject to ∥vi∗∥2 = 1, i ∈ {1, 2, . . . , N}, (13b)
[

SFGcL
SFGcR

]

≥ 0, (13c)

where vi∗ is the ith row of v. The second term in the cost
function (13a) is an ℓ2-squared data fidelity, summed over
the three color channels. Tuning parameter λgroup controls
the amount of regularization introduced by the group spar-
sity term, with groups defined to be the pairs of entries in cL
and cR corresponding to the same facet location in the two
views. This term is designed to promote co-located scene
content between left and right scene estimates.

Matrix SFG ∈ R
Q×N returns only the entries of cL or cR

that correspond to facets in the foreground (i.e., red facets
in Figure 6b). When differencing is performed, moving
objects introduce a positive change in light in the foreground
while reducing the light that returns from the more distant
scenery behind the objects. The elementwise nonnegativity
constraint in (13c) forces our estimate of foreground facets
to be nonnegative while allowing the distant outer ring of
facets (i.e., purple facets in Figure 6b) to describe negative
changes in our data due to occlusion in the hidden scene.

With cL, cR, and b fixed, (13a) is a least-squares problem
whose solution can be projected to satisfy the normalization
constaints (13b); with v and b fixed, (13a) and (13c) give
a constrained group lasso problem [17]. We perform the
optimization using projected gradient methods [18].

4.4 Forming a Unified Reconstruction

Left and right reconstruction views vL and vR may be
combined into a single unified reconstruction vu of the
hidden scene

vu = M⊙max(vL,vR), (14)

where max(·, ·) returns an element-wise maximum, ⊙ is the
Hadamard product, and M is a mask with elements given
by

Mi,j =

{

0, if [(cL)i < t] ∨ [(cR)i < t];

1, otherwise,
(15)

where t is some small threshold. Effectively, this sets to zero
any pixels that are not nonzero in both views. When a pixel
is nonzero in both views, we return the maximum of the
two. In our experimental results, we observed that vu rejects
artifacts due to model mismatch that arise in only one view.

5 EXPERIMENTAL RESULTS

Our algorithm has been tested in a variety of conditions,
including different hidden scenes and lighting conditions.1

In Section 5.1, we share results achieved using synthetic
data, allowing us to compare to a perfect ground truth refer-
ence. In Section 5.2, we demonstrate that our reconstruction
technique works well on real data acquired in the laboratory.
Complete views of all reconstruction results included in

1. All code and data required to reproduce the results in this paper
may be found at https://github.com/wkrska/DoorwayCameraCode.



this work are shared in Supplementary Note 2. Additional
synthetic results for different noise levels, a scenario with
three targets of the same color, a non-Lambertian hidden
scene, mismatched model height, different camera FOV
sizes, and different numbers of camera pixels are included
in Supplementary Note 3.

5.1 Synthetic Experiments

Synthetic data for preliminary tests was generated with the
Blender rendering engine [19]. Blender was chosen for its
ability to create repeatable, physically accurate measure-
ment photos without running into the ‘inverse crime’ of
using the same model to generate synthetic data and test an
inversion technique. It offers great control over scene objects
with perfect reference ground truth. A virtual 2 m× 2 m
room and various objects were created to match the scale of
our laboratory experiments. All scenes were rendered with
up to five bounces per light path and up to 8000 light paths
per pixel, and all surface materials were modeled as Lam-
bertian. In Section 5.1.1, use a simple example to introduce
the concept of our two-view reconstruction. In Section 5.1.2,
we show a more challenging two-object scenario with chal-
lenging lighting conditions. In Section 5.1.3, we successfully
reconstruct a hidden scene with four hidden targets and
show the rendered data used to form the reconstruction.

5.1.1 Simple demonstration

Figure 7 shows results for a simple scenario to illustrate
the different products produced by our algorithm. Unlike
results included later in this section, the walls and hidden
object are self-luminous to keep this initial demonstration
simple. The two figure columns correspond to the views at
the left and right occluding edges. As shown in row (a), the
stationary hidden scene consists of red and blue side walls
with a green back wall. Before our new measurement frame,
a red cylinder has entered the hidden scene, as shown in row
(b). Rows (c) and (d) show the positive and negative ground
truth change between the stationary background (a) and the
new frame (b). Note that the positive change is due to the
introduction of the red cylinder; the negative change is due
to the occlusion of the green back wall. We show the positive
part of our reconstructions (vL)

+ and (vR)
+ in row (e) and

negative parts |(vL)
−| and |(vR)

−| in row (f). Observe that
the positive reconstruction shows the foreground cylinder
at the the same nonzero pixels in both views. The negative
reconstruction shows the part of the green back wall that is
occluded by the foreground object for each view. Because
of the distance between the two edges (marked by yellow
dots), the occluded regions share some nonzero pixels but
do not completely overlap.

5.1.2 Two object example

In Figures 8 and 9, we demonstrate our algorithm on a more
life-like scenario. Here, the room and objects are not self-
luminous, but rather illuminated by two large light sources
located on the wall containing the doorway. This type of
lighting causes additional occlusion within the hidden scene
as moving objects cast shadows on the back walls. As in
Figure 7, Figure 8 shows ground truth LOS renderings of
the hidden scene, positive and negative LOS change in
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Fig. 7: Algorithm products and LOS renderings at each FOV
for a simple self-luminous hidden scene. Rows show (a) LOS
views of the stationary hidden scene taken from the point
of view of the corner; (b) LOS views of the scene when a
red object has entered; (c) the positive change between (b)
and (a); (d) the negative change between (b) and (a); (e)
the reconstructed positive change; and (f) the reconstructed
negative change.
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Fig. 8: LOS renderings of the hidden scene and algorithm
products for the result in Figure 9. For row descriptions, see
Figure 7.

(a) Ground truth
0

1

2

3

(b) Reconstruction vu

Fig. 9: A bird’s eye view of the ground truth and unified
reconstruction vu for the scenario in Figure 8. Ground truth
and reconstruction dimension are both 3 m× 3 m. Nonzero
facets are outlined in white for improved visibility against
the background. The true location of stationary walls are
traced in white for reference in (a). The result in (b) was
produced using t = 0.2.

the hidden scene, and positive and negative reconstruction
results. The bird’s eye ground truth is shown in Figure 9,
along with unified reconstruction vu. The stationary scene,
shown in row (a) of Figure 8, consists of white walls. Two
cylindrical objects, one red and one blue, enter the scene
before the new measurement frame, as shown in row (b).
Positive left and right reconstruction results, shown in row
(e), both clearly resolve both red and blue objects, with
meaningful differences between them. Note that the left
result reconstructs the red object more brightly, and the blue
object more faintly, than the the right reconstruction. This
is consistent with the positive ground truth LOS change,
where the left view ‘sees’ a larger part of the red object and a
smaller part of the blue. The negative reconstruction results,
row (f), closely match the negative ground truth LOS change
in the hidden scene, row (d). The unified reconstruction
shown in Figure 9b closely matches the ground truth shown
in Figure 9a.

5.1.3 Four object example

Figure 10 shows results for a four-object scenario. The bird’s
eye view of the hidden scene is shown in Figure 10a, with
the location of stationary walls outlined in white. Stationary
scene measurements at FOV-L and FOV-R are shown in
Figures 10c and 10d. Measurements acquired after the four
objects have entered the scene are in Figures 10e and 10f.
In Figures 10g and 10h, the difference between the station-
ary measurement and new frame measurement is scaled
between 0 and 1 and plotted as an RGB image. Although
a faint colored hue is visible in the new measurement
frame, it is mostly indistinguishable from the stationary
scene measurement with the naked eye. The color-magnified
difference measurement clearly contains penumbra con-
tent, although the hidden scene is not obvious simply
by inspection. In fact, the darkest part of both difference
measurements is the region closest to the hidden scene,
suggesting that the majority of the change between frames is
actually due to occlusion within the scene, rather than light
introduced by the hidden objects. The unified reconstruction
produced using these measurements is shown in Figure 10b



(a) Bird’s eye ground truth
0

1

2

3

(b) vu

(c) FOV-L, stationary scene (d) FOV-R, stationary scene

(e) FOV-L, new frame (f) FOV-R, new frame

(g) FOV-L, color-magnified
difference

(h) FOV-R, color-magnified
difference

Fig. 10: The unified reconstruction result vu, produced
with t = 0.2, for a four target scenario (a) are shown in
(b). Measurements at FOV-L and FOV-R are shown in (c)
and (d) for the stationary scene and in (e) and (f) for the
new measurement frame. The color-magnified difference
measurement is shown in (g) and (h).

and closely matches the ground truth with correct object
location and color.

5.2 Laboratory Experiments

Our laboratory setup is shown in Figure 11. We constructed
a 2 m× 2 m hidden volume consisting of two existing walls
(white and green), a curtain, and a 0.5 m wide foam-board
doorway. As shown in Figure 11a, doorway walls were not
extended vertically to the ceiling so a mock ceiling was
added to prevent light from passing over the doorway and
striking the measurement. The hidden scene was illumi-

(a) A photograph of the exper-
imental setup taken from the
visible side.

(b) Both FOV-L and FOV-R are
extracted from a single photo-
graph like this one.

(c) A photograph of the hid-
den side of the doorway.

Fig. 11: Photographs of the laboratory setup show the
test doorway (a), a sample measurement of FOV-L and
FOV-R (b), and a LOS view of the hidden scene with two
mannequins (c).

nated by a single floodlight placed on top of the mock ceil-
ing. Mannequins dressed in different colored clothing were
introduced to the hidden scene, as shown in Figure 11c. Two
white squares were centered on the floor adjacent to each
edge in FOV-L and FOV-R, and the penumbrae were cap-
tured in a single photograph with a DLSR camera pointed
directly down at FOV-L and FOV-R, as shown in Figure 11b.2

For each new frame, we captured a single 1.6 second expo-
sure with the camera set to an f/5.6 aperture and ISO100.
Camera hardware with better low-light performance would
allow for a significantly shorter acquisition time. FOV-L and
FOV-R were compressed as JPEG files, manually cropped
from the original photograph, rectified, and downsampled
to contain M = 642 pixels each.

5.2.1 Single object example

In Figure 12, we show a sequence of results obtained when
a mannequin, dressed in a red shirt, moves diagonally
through the hidden scene. The first figure column shows an
LOS photograph of the hidden scene, with the mannequin’s
position with respect to the center of the doorway anno-
tated in yellow. The right column shows the corresponding
unified reconstruction results vu for each position. In the
first three positions, the unified reconstruction accurately
resolves the hidden target in location and color. In the
fourth row, the target is more coarsely resolved. We suspect
that this may be due to the unmodeled thickness of our
foam core walls. Reconstruction error due to unmodeled
wall thickness would be greatest further around one of the

2. This paper assumes that the camera is centered over FOV-L and
FOV-R, looking directly down at the floor, so that the floor area seen by
each camera pixel is approximately the same. The setup in Figure 1,
where the camera views the floor from an angle, is achievable when
differences in projected pixel area are incorporated into the model.



(a) Frame 1, LOS photo
0

1

2

3

(b) Frame 1, vu

(c) Frame 2, LOS photo
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(d) Frame 2, vu

(e) Frame 3, LOS photo
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(f) Frame 3, vu

(g) Frame 4, LOS photo
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(h) Frame 4, vu

Fig. 12: Experimental results for four frames of a single
target scenario. Results were produced using t = 0. Recon-
struction results show a 3 m × 3 m region of the hidden
scene. Some pixels in the reconstructions are saturated for
improved visual clarity.

corners (i.e., one of the angles α1 or α2 is small and the other
is large).

5.2.2 Multi-object example

Figure 13 shows results for a scenario with multiple hidden
targets. Figure rows correspond to different measurement
frames. Frames 1 and 2 are acquired while the hidden
scene contains two moving objects, one blue and one red.
In the third frame, a third object (blue) has entered the
hidden scene, and we test our ability to reconstruct multiple
objects of the same color. Figure columns are (1) ground
truth LOS photographs of the hidden scene; and (2) unified
reconstruction results vu. Results in all measurement frames

(a) Frame 1, LOS photo 0

1

2

3

(b) Frame 1, vu

(c) Frame 2, LOS photo 0

1

2

3

(d) Frame 2, vu

(e) Frame 3, LOS photo 0

1

2

3

(f) Frame 3, vu

Fig. 13: Three frames of a multi-target scenario tested in the
lab. Ground truth photographs are shown on the left and
unified reconstructions vu shown on the right. Results were
produced using t = 0.2. The measurements corresponding
to Frame 2 may be found in Figure 14. Some pixels in the
reconstructions are saturated for improved visual clarity.

exhibit a close match to the ground truth of the new object.
Note that in the third frame, the red and blue mannequins
are reconstructed to be brighter than the blue cylinder. This
accurately reflects their larger size and bright white heads.

The measured data for Frame 2 is shown in Figure 14. A
cropped portion of the single stationary scene photograph,
taken of the floor on the visible side before objects entered
the hidden scene, is shown in Figure 14a. The photograph
taken after the objects have entered the hidden scene is
shown in Figure 14b. Cropped, rectified, and downsampled
FOV-L and FOV-R are shown in Figures 14c and 14d for
the stationary scene, and in Figure 14e for the new frame.
In both the uncropped and cropped photographs, the sta-
tionary and new frame measurement are indistinguishable
with the naked eye. In Figures 14g and 14h, we show the
difference between the stationary and new measurement,
scaled between 0 and 1 and plotted as an RGB image. Here,
penumbra patterns are faintly visible with more noise at
FOV-R because it has a more direct view of the bright white



(a) Measurement of Frame 2

(b) New measurement frame

(c) FOV-L, stationary scene (d) FOV-R, stationary scene

(e) FOV-L, Frame 2 (f) FOV-R, Frame 2

(g) FOV-L, color-magnified dif-
ference

(h) FOV-R, color-magnified
difference

Fig. 14: Measurements corresponding to Frame 2 in Fig-
ure 13. The stationary measurement (a) and new measure-
ment frame (b) are indistinguishable to the naked eye,
although penumbra patterns may be seen in the their dif-
ferences (g) and (h).

left wall in the hidden scene. These noisy difference mea-
surements are what we use to produce the reconstruction
result shown in Figure 13d.

6 CONCLUSION

In this work we introduce the doorway camera as a way
to exploit the two vertical edges in a doorway, for robust
passive 2D NLOS imaging. Unlike previous work that uses
two separate corner cameras in stereo, our method jointly
processes the data from two penumbra measurements and
produces two unique 2D views of change in the hidden
scene. Using the Cramér–Rao bound for a single hidden

target, we demonstrate the utility of the two-edge doorway
occluder over a single vertical edge occluder. Inspired by
the azimuthal resolution provided by each edge, our novel
inversion algorithm reconstructs the hidden scene on a
biangular grid of planar facets. Synthetic and experimental
results demonstrate the promise of our algorithm in a va-
riety of scenarios, including challenging lighting conditions
with as many as four moving objects.
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