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Most applications of machine learning in heterogeneous catalysis thus far have used black-box models to predict computable
physical properties (descriptors), such as adsorption or formation energies, that can be related to catalytic performance (thatis,
activity or stability). Extracting meaningful physical insights from these black-box models has proved challenging, as the inter-
nal logic of these black-box models is not readily interpretable due to their high degree of complexity. Interpretable machine
learning methods that merge the predictive capacity of black-box models with the physical interpretability of physics-based
models offer an alternative to black-box models. In this Perspective, we discuss the various interpretable machine learning
methods available to catalysis researchers, highlight the potential of interpretable machine learning to accelerate hypothesis
formation and knowledge generation, and outline critical challenges and opportunities for interpretable machine learning in

heterogeneous catalysis.

geneous catalysts have been discovered using trial-and-error

experimental approaches that rely on the chemical intuition
of catalysis practitioners. The difficulties associated with moving
away from empirical experimental approaches towards catalyst
design using predictive models are multifaceted, including the fact
that heterogeneous catalysis spans time and length scales of more
than nine orders of magnitude', and that the catalyst performance
depends on many variables, such as the catalyst composition, mor-
phology, support material and reaction environment (for example,
temperature, solvent and external potential). This large parameter
space makes the design and optimization of heterogeneous catalysts
challenging.

Researchers have recently turned to machine learning (ML) to
accelerate the study and discovery of heterogeneous catalysts, using
these tools to navigate the parameter space more efficiently’~. ML
is a subfield of artificial intelligence that encompasses methods that
self-infer patterns from data. Catalysis researchers leverage these
learned patterns to streamline their work in many areas, including
the atomistic simulation of reaction conditions®’, catalyst surface
phase diagram construction®, reaction mechanism prediction™'
and catalyst structure elucidation'"">. Most applications of ML in
catalysis thus far have used black-box models (see Table 1) to make
predictions of computable physical properties (descriptors), such as
adsorption or formation energies, that can be related to the catalytic
performance (that is, activity or stability)*~. Extracting meaningful
physical insights from black-box models has proved challenging, as
the internal logic of black-box models is not readily interpretable
due to the high degree of complexity of these models.

Interpretable ML methods that merge the predictive capacity of
black-box models with the physical interpretability of physics-based
models offer an alternative to black-box models. Herein, we refer
to interpretable ML as models that extract relevant knowledge
about relationships between catalytic variables in the form of suc-
cinct data formats such as visualizations, rule sets, or mathematical
equations”. For example, an interesting fundamental question that
interpretable ML can help to address, which we elaborate on below,

D espite their enormous importance, most commercial hetero-

is determining which physical properties of a catalyst surface gov-
ern the chemisorption strength of different adsorbates. In our view,
interpretable ML methods present a complementary approach to
black-box methods (Fig. 1). Translating the hidden patterns identi-
fied by ML models into interpretable information formats can lead
to testable theories and hypotheses, further advancing scientific
understanding. Knowledge gained from interpretation can help to
explain why a model fails to make some predictions accurately and
thus guide model improvement. The development and application
of interpretable ML algorithms is an active area of research across
law, healthcare, business, engineering and science'*"'*.

In this Perspective, we discuss the interpretable ML methods
that are available to catalysis researchers and the potential of inter-
pretable ML to accelerate hypothesis formation and knowledge
generation in the field of heterogeneous catalysis. We frame our
discussion by briefly describing black-box models, whose generally
opaque internal logic makes extracting physical insights challenging
(Fig. 2a). We then introduce two general categories of interpretable
ML: grey-box ML methods, which rely on model-agnostic post-hoc
analyses to interpret black-box models (Fig. 2b), and glass-box
methods in which outputting an interpretation is an inherent fea-
ture of the method (Fig. 2c). We highlight studies in heterogeneous
catalysis that use interpretable methods (Table 1) and studies from
chemistry and materials science research that use methods that have
yet to see use in catalysis but may be of interest to the catalysis com-
munity. We note that interpretable ML is also helping to improve
the design and study of homogeneous catalysts'*-*, which in many
respects is a more mature field due to its substantial crossover
with molecular design, although discussion of these applications
is beyond the scope of this Perspective. Finally, we outline critical
challenges for interpretable ML in heterogeneous catalysis.

Black-box methods

Black-box models, such as Gaussian process models or neural net-
works, are widely used in catalysis. One area that has benefitted
from black-box models is computational high-throughput cata-
lyst screening”~. In most cases, these screening studies search
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Table 1| Examples of black-box, grey-box and glass-box ML methods used in catalysis applications

Method Description

Example application

Black box

Neural networks’””
predictive models.

Gaussian process models’®
uncertainty.

AdaBoost regressor’®
better fit difficult examples.

Grey box

Global feature-importance scores®!
the dataset level.

Partial dependence plots®
model output.

Shapley additive explanations®

Glass box

Symbolic regression®?
target properties.

Subgroup discovery®
common traits in data.

Generalized additive models®®

Highly tunable and empirically state-of-the-art

Bayesian models that quantify the prediction

Models that refine their focus during training to

Describes a feature's contribution to predictions at

Visual explanations of how each feature affects the

Game-theoretic metric for describing a feature's
contribution to an individual prediction.

Identifies simple closed-form models for predicting

Identifies and characterizes subgroups that share

Predictive models that are interpretable because the

High-throughput prediction of CO and H adsorption
energies on diverse intermetallic alloys™®.

Accelerating the construction of catalyst surface phase
diagrams®.

Discovery of stable materials such as oxides, phosphides,
sulfides and alloys®°.

Determining the physical properties that govern

CO adsorption during CO, electroreduction catalyst
screening?.

Visualizing the impact of small-molecule and
oxide-surface properties on chemisorption®.

Quantifying the influence of the catalyst composition and
experimental conditions on the selectivity to C, products
during the oxidative coupling of methane®.

Identifying an easily calculable descriptor that predicts
chemisorption for various adsorbates on alloys with
different compositions and surface facets*°.

|dentifying single-atom catalysts that can break scaling
relations for the nitrogen reduction reaction®.

Quantifying and understanding chemisorption on alloys®’.

independent segments of the model decision-making
process can be interpreted independently.

Principal component analysis®

dataset variance.

Probabilistic graphical models®
structure and quantify error.

for model surface sites that bind relevant adsorbates with desired
adsorption energies. The motivation for using these approaches is
that, in many cases, the design space of possible catalysts is too large
to be studied using quantum chemical methods alone. ML models
serve as computationally efficient surrogates to minimize expensive
quantum chemical calculations, enabling an accelerated screening
of the catalyst design space. For example, an ML-accelerated screen-
ing of electrochemical carbon dioxide (CO,) reduction catalysts
identified copper-aluminium alloys as active and selective mate-
rials based on the computed binding energy of carbon monoxide
(CO), which has been proposed to be a descriptor of CO, reduction
activity”.

Black-box ML models are referred to as such because the param-
eters (weights, rules or connections) they learn are so overwhelm-
ing in number that directly extracting meaningful insight regarding
the different physical behaviours captured by these parameters is
unfeasible. For example, in the case of the aforementioned cop-
per—aluminium alloy, the model is too complex to interpret (that
is, shed light on the features of aluminium atoms that electroni-
cally change the copper atoms to modulate their interaction with
the CO adsorbate) and is therefore too complex to explain (that is,
contextualize the model’s behaviour within the framework of exist-
ing CO, reduction catalysis knowledge). Nonetheless, their large
number of parameters enables black-box models to typically out-
perform glass-box models in terms of computational accuracy for
large and complex datasets. This benefit is sufficient for specific ML
applications in catalysis, such as high-throughput active-site screen-
ing or creating machine-learned potentials for molecular dynamics
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An unsupervised ML algorithm that projects the data
onto a reduced basis while describing the maximum

Predictive models that can be used to enforce causal

Finding electronic-structure descriptors for metal alloys
and oxides®.

Quantitatively attributing errors in an activity volcano plot
for the oxygen reduction reaction®.

or Monte Carlo simulations because accuracy is more desired than
interpretation.

Grey-box methods

While a critical problem with black-box models is that it is chal-
lenging to interpret the internal logic that led to the conclusions
of a model, there exists a class of methods for indirectly extracting
interpretable information from black-box ML models after training.
These approaches are called post-hoc analysis methods, referred
to herein as grey-box methods. Many grey-box methods are
model-agnostic and therefore usable with any class of ML model.
The information from grey-box methods can take many forms
but is usually a set of visualizations or sensitivity measures called
feature-importance scores. Grey-box methods can generate expla-
nations that are either global or local. Global explanations allow
interpretation of the dataset-level relationships and patterns learned
by black-box models, whereas local explanations allow practitioners
to understand why black-box models make a specific prediction for
a single data point.

The primary grey-box interpretation methods used in cataly-
sis applications so far are global feature-importance scores”>**-%,
A global feature-importance score is a sensitivity measure that
describes how an individual feature or combination of features con-
tributes to a model’s predictions at the dataset level. These scores
yield insight into which features the model generally finds impor-
tant and allow practitioners to quantify the relative importance of
different features for describing a specific type of behaviour. For
example, normalized sensitivity coefficients (a measure of feature
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Fig. 1| Synergistic relationship between black-box and interpretable ML
approaches. Both interpretable and black-box ML models can be used in
materials discovery applications to identify promising catalysts. Validating
ML-predicted catalysts via experimental synthesis and characterization
and computational validation can lead to materials that exhibit desirable
properties such as low cost, high stability, high activity and high selectivity.
In addition, fingerprinting (that is, uniquely labelling) and recording

the structure-property data from detailed characterization studies

can be used to iteratively improve ML models and accelerate catalyst
discovery. Interpretable ML algorithms have the advantage of outputting
human-interpretable information regarding the patterns or dependencies
learned by the ML model. These interpretations enable hypothesis
formation about what underlying physical mechanisms might play a role in
the task. This knowledge can guide feature selection such that features are
linked to the target property and inform additional experiments, thereby
improving the ML models and accelerating catalyst discovery further.

importance) were generated for neural networks used to perform
high-throughput screening of core-shell alloy catalysts for CO,
electroreduction using the CO adsorption energy as an activity
descriptor (Fig. 3a)*. The sensitivity coefficients showed that the
local Pauli electronegativity at a catalyst surface site plays a crucial
role in predicting the CO adsorption energies, particularly for alloys
that contain surface sites with fully occupied d bands such as cop-
per (Cu), silver (Ag) and gold (Au). In addition, feature-importance
scores of a random forest model have been used to determine the
relative impact of the calculated geometric and electronic features
of doped nickel phosphide (Ni,P) catalysts on their hydrogen evolu-
tion reaction activity, ultimately identifying the Ni;-Ni, bond length
(with the a, p and y notation used by the authors shown in Fig. 3b)
as the most important descriptor of hydrogen evolution reaction
activity”. These examples highlight the utility and relative ease with
which feature-importance scores can extract insight from black-box
models.

In addition to global feature-importance scores, there have
also been limited efforts to bring post-hoc global visualizations to
catalysis. Global visualization methods, such as partial dependence
plots®, accumulated local effects plots™ and transparent model dis-
tillation'**, provide visual explanations of the change in the model
behaviour subject to a change in only one or two feature values,
which allows these effects to be plotted in a line chart or heat map,
respectively. One recent application used partial dependence plots
to visualize the marginal change in the predicted adsorption ener-
gies of various adsorbates such as alkanes, aromatics and amines
on group 13 metal oxide surfaces (for example, aluminium oxide
and gallium oxide) from a regression model subject to changing
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the physical properties of the adsorbate and the oxide surface™.
The partial dependence plots indicated that the adsorbate’s highest
occupied molecular orbital (HOMO) energy and the oxide’s surface
energy play crucial roles in determining the adsorption energy (Fig.
3c), with the adsorption strength increasing for a higher-in-energy
HOMO and a higher surface energy. Although limited in their
applications thus far, we believe that global visualizations will be a
valuable tool for researchers to interpret their black-box catalysis
models in the future.

Local explanations are an alternative approach for interpret-
ing black-box models. The most common form of local expla-
nation is local feature-importance scores. In contrast to global
feature-importance scores, which describe a feature’s general contri-
bution across many different predictions, local feature-importance
scores describe a feature’s contribution to an individual prediction
(for example, giving insight into the contributions of electronic or
geometric features to the performance of a specific material). One
important method that assigns local feature-importance scores is
Shapley additive explanations (SHAP)*, which have been used in
several recent catalysis studies*®*”. For example, a recent study used
SHAP in a literature meta-analysis of around 2,000 catalysts for
the oxidative coupling of methane (OCM)*. SHAP elucidated the
relative influence of different catalysts and experimental conditions
on the selectivity to desired C, products in OCM, suggesting that
a high operating temperature, a higher partial pressure of meth-
ane relative to oxygen and the presence of lanthanum and sodium
in the catalyst were critical parameters for steering OCM towards
the desired C, products. There have also been efforts in catalysis at
providing local explanations, such as generating post-hoc visualiza-
tions, for black-box adsorption energy prediction models that show
the contributions of individual atoms to the predicted binding ener-
gies (Fig. 3d)*.

Grey-box methods are a promising approach for interpreting
black-box models that can often yield plausible explanations of the
black-box model’s behaviour. Nevertheless, we add a warning that
grey-box explanations can also be misleading and misrepresent
black-box model behaviour'>*. This is because, in most cases, there
exists a gap between the simple explanations offered by a grey-box
method and the complex behaviour learned by the black-box
model. Nonetheless, developing higher resolution grey-box meth-
ods remains an open field of research in ML that will undoubtedly
benefit advances in catalysis research and in science and engineer-
ing in general.

Glass-box methods

Not all ML methods require a grey-box method to interpret the
relationships they have uncovered. Some ML methods yield such
insights directly, referred to herein as glass-box methods. Generally,
these glass-box methods have constraints, such as enforced simplic-
ity, that make direct interpretation of glass-box ML results possible.
Glass-box methods are used to find simple analytical expressions
that relate input variables to target properties, to identify hidden
or underlying structures in the data, to make predictions under
enforced modularity or causal structure, or to suggest causal struc-
ture directly. It is our view that glass-box methods are preferred if
extracting scientific insight is the central objective.

The most applied glass-box method in catalysis applications thus
far is symbolic regression*~**. Symbolic regression methods (for
example, SISSO* and genetic programming'®) algorithmically com-
bine input features using mathematical operators (for example, +,
—, X, + and log) to find functionally simple mathematical expres-
sions that can predict target properties as a function of those fea-
tures. Models from symbolic regression methods are interpretable
because the simplicity of their closed-form analytical expressions
allows researchers to step through the models and understand the
numerical relationships between the various input features and the
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Fig. 2 | Schematic depiction of black-box, grey-box and glass-box ML methods. The objective of supervised learning applications is to predict a target
property, y*. The predictions are made using a set of variables, called features (x;,x,...x,), that characterize the catalyst. Typically, these features are
compositional, electronic or geometric fingerprints of the catalytic system of interest. a, Many highly predictive ML approaches fall under the umbrella
description of black-box methods because their models contain numerous interdependent weights, rules and connections. Although the many learned
patterns can lead to a high predictive accuracy, interpreting them without additional processing is a task that is beyond the means of human cognition.

b, Post-processing to extract insight from black-box models can be done using grey-box methods, which use a separate model or technique to derive
explanations of the black-box model behaviour. ¢, Glass-box methods can output explanations directly. These methods typically have constraints on their

functional behaviour that make their interpretation straightforward.

corresponding outputs. For example, researchers used symbolic
regression to identify an activity descriptor for the oxygen evolu-
tion reaction (OER) on perovskite oxides (oxides with an ABO,
structure)”. From a feature set containing numerous electronic
(for example, valence electron structure and electronegativity) and
structural features (for example, atomic radii and other structural
parameters), symbolic regression identified an activity descrip-
tor (u/t) that combined two well-known structural parameters of
perovskites, the Goldschmidt tolerance factor (t) and the octahe-
dral factor (u). The identified u/t descriptor (Fig. 4a) suggested
that increasing t, by incorporating large cations at the A site, and
decreasing y, by incorporating small cations at the B site, should
lead to higher OER activity. Ultimately, four perovskites with exper-
imental activities higher than previously reported perovskite oxide
catalysts were identified for the OER based on these criteria. This
example highlights the potential of symbolic regression for build-
ing accurate and interpretable models that relate geometric or elec-
tronic features of catalysts to their performance.

Another strategy for finding interpretable scientific insights
is through unsupervised ML. Unsupervised ML algorithms are
pattern-recognition algorithms that probe for underlying struc-
ture in the data®, which can help to accelerate an exploration of the
dataset. The two primary methods of unsupervised learning used
in catalysis thus far are clustering algorithms and dimensionality
reduction algorithms. In clustering, the goal is to identify and seg-
ment similar subpopulations, or clusters, in the data. Interpreting
the clusters can facilitate an understanding of the similarities and
differences between data (for example, spectra, mechanisms and
structures). For example, clustering has been used in homoge-
neous catalysis to help identify the optimal phosphine ligands for
a stereoselective Suzuki-Miyaura cross-coupling reaction catalysed
by phosphine-ligand-mediated palladium catalysis*. To address
this challenge, researchers used clustering for the rapid identifica-
tion of representative phosphine ligand motifs so that the choice
of phosphine ligands could be optimized systematically. K-means
clustering grouped 365 commercially available phosphines into
24 chemically distinct clusters based on their molecular proper-
ties such as the HOMO-LUMO gap, Fukui index and volume. One
compound from each cluster was experimentally evaluated based
on availability, price and anticipated stability, and one of the ligands,
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2-(diphenylphosphino)-2’,6'-dimethoxy-1,1’-biphenyl, was identi-
fied as having superior performance. Further investigation revealed
that structurally similar triarylphosphine ligands were also effec-
tive. We note that, in general, clusters are most likely to be interpre-
table when clustering is performed on low-dimensional data of two
or three features, as the clusters and decision boundaries used for
cluster assignment can then be easily visualized.

In dimensionality reduction, high-dimensional data (for exam-
ple, signals, images or large feature sets) are transformed to a
lower-dimensional subspace that still captures the essence of the data.
In the lower-dimensional space, the data can be visualized and may
be interpretable. Nonetheless, the transformation from high to low
dimensions can be complex, non-linear and highly parameterized,
making it difficult to understand how the lower-dimensional data
relate to the original high-dimensional data. One method of devel-
oping this understanding is through explanatory visualizations. For
example, we recently used a dimensionality reduction technique
called principal component analysis (PCA) to establish relationships
between the geometric structures of subsurface alloys based on rho-
dium (Rh), palladium (Pd), iridium (Ir) and platinum (Pt) (in which a
ligand metal composes the layer immediately beneath the surface) and
the chemisorption strengths of different adsorbates on the alloys*. We
used electronic-structure descriptors as a bridge to relate the chemi-
sorption strength to the geometric structure and composition of the
alloys. To accomplish this goal, we employed PCA on the d-projected
density of states at the adsorption site to derive principal compo-
nent (PC) descriptors of the sites’ electronic structure. Interpretation
of the PC descriptors using signal reconstruction showed that they
mapped to the geometric structure of the sites. For example, one of the
machine-learned PC descriptors (Fig. 4c), found to be negatively cor-
related with the chemisorption energy, was associated with a broad-
ening and downshift in the surface electronic d band. Relating this
machine-learned descriptor to geometric structure revealed that this
broadening and downshift is caused by increasing the surface metal
size, increasing the ligand metal size and decreasing the number of
ligand d electrons. Ultimately, the PCA-based approach led us to con-
clude that selecting larger surface metal atoms, larger ligand metal
atoms or ligand metals with fewer d electrons lowers the chemisorp-
tion energies of most adsorbates. Such insights are critical to designing
surface sites with a specific chemical activity.
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Fig. 3 | Grey-box methods in catalysis applications. a, Normalized sensitivity coefficients are used to assess the feature importance in a neural network for
predicting CO adsorption on Ni, Pd, Pt, Cu, Ag and Au core-shell alloys, where the listed metal is the shell. b, Relative feature importance on the hydrogen
evolution reaction activity of Ni,P catalysts obtained using a random forest model. Features are defined based on the displayed Ni,P model system, in
which nickel is coloured grey and phosphorus doping sites are coloured purple. The angled brackets on <Ni-Ni> indicate an average bond length. The

X notation loosely relates to the dopants. For example, gy, denotes the residual charge on the dopants when there are two dopants, and gy; denotes the
residual charge on the dopants when there are three. The standard deviation of the dopant charges is given by o,,. ¢, Partial dependence plots showing
the marginal effect of an adsorbate’'s HOMO energy and an oxide's surface energy on the adsorption energy (E,,.) of the corresponding system. The black
lines indicate the partial dependence plot, and the points, coloured according to the adsorption strength, show the actual values. Histograms showing the
distribution of the actual values are displayed above. d, A saliency map for a crystal graph convolutional neural network model shows which individual
atoms in a Cu(211) model contribute the most to the predicted CO binding energy (where O is coloured red, C is coloured dark grey and Cu atoms are
coloured light grey and light brown), with the light brown Cu atomic colouring indicating a larger contribution. Panel a reproduced with permission from
ref. 2, American Chemical Society. Panels adapted with permission from: b, ref. °, American Chemical Society; ¢, ref. 3, American Chemical Society;

d, ref. 8, American Chemical Society.

Another class of models that probe for latent or underlying dictions are trustworthy, called the domain of applicability. Recent
structure in a dataset are subgroup discovery (SGD) algorithms™.  work used such an approach to identify the domain of applicability
Applications of ML in heterogeneous catalysis often focus on learn-  for ML models predicting the stability of transparent conducting
ing a single global model to predict a target property for many dif-  oxides*. These examples highlight the potential of SGD for identi-
ferent catalysts. However, global models can fail to account for the  fying geometrically or chemically similar groupings of catalysts and
possibility that the physical mechanism governing a target property — improving predictive models.
may differ across different subgroups of catalysts, with the global There have also been efforts to leverage glass-box models with
model obfuscating or misrepresenting the physics affecting the tar-  enforced modularity for extracting catalysis insights. A model is
get property. Therefore, it may sometimes be beneficial to identify = modular if each feature’s contribution to the model decision-making
and segment physically similar subgroups and learn local models for ~ process can be independently interpreted. For example, generalized
each subgroup. The interpretation of these subgroups can enablean  additive models (GAMs) make predictions by summing indepen-
understanding of the geometric and chemical similarities between  dent, potentially non-linear, functions of each input variable®>°.
the catalysts®~. A recent application of SGD identified single-atom  Because the overall model is a linear combination of functions
catalysts capable of breaking scaling relations between reaction that are dependent on only one or two variables of interest, each
intermediates for the nitrogen reduction reaction (Fig. 4d)*". This independent function can be visualized easily, thus shedding light
analysis demonstrated that scaling relations were only broken by on the model behaviour. We recently used GAMs to develop che-
early transition metal atoms, with additional electronic-structure  misorption models for OH, Cl, O and S adsorbates on Rh-, Pd-,
analysis showing that early transition metals offer this advantage = Ag-, Ir-, Pt- and Au-based subsurface alloys (Fig. 4¢)”. The GAMs
because of charge transfer to the support, limiting the amount of identified a few critical material properties that control the che-
charge available for bonding electronegative adsorbates like N*  misorption strength on the alloys, showing that for a fixed surface
and NH*, where the asterisk indicates an adsorbed species. SGD  atom, the number of d electrons in the ligand subsurface metal
can also identify regions of feature space where an ML model’s pre-  and the size of the ligand atom are two critical parameters that
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and Pt. d, Calculated *NH, adsorption free energy as a function of the calculated *N adsorption free energy on single transition metal atoms on vanadium
disulfide (VS,) supports. All single-atom systems containing four or more d electrons (n,> 4; filled points) fulfil the scaling relation, whereas early transition
metals with three or fewer d electrons (n,<3; open data points) do not. The overview of the single metal atoms studied (left) and a top view of the VS,
substrate in which V atoms are coloured grey and S atoms are coloured yellow (right) is shown under the plot. The two single-atom adsorption sites
considered are shown: one hexagonal close-packed hollow site atop a V atom (TV) and one face-centred cubic hollow site atop a subsurface hollow site
(HS). e,f, GAMs shed light on the effect of the number of ligand valence d electrons relative to the host metal on the chemisorption energies of O, OH, S,
and Cl on Pt (e) and Au (f) subsurface alloys. The subsurface alloy model systems are shown in the insets, with Pt coloured grey, Au coloured gold and the
generic ligand metal atom coloured green. Panel a reproduced with permission from ref. 3, Springer Nature Ltd under a Creative Commons license

CC BY 4.0. Panels adapted with permission from: b, ref. 3, AAAS,; ¢, ref. *°, Elsevier; d, ref. °', American Chemical Society; e f, ref. */, Elsevier.
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control the chemisorption behaviour, which corroborated earlier
reports®>*’. Notably, the GAM models suggested that the number of
d electrons in the ligand metal describes the degree of Pauli repul-
sion between the alloy surface and the adsorbate. Specifically, the
GAMs connected the opposite adsorption trends of electron-rich
adsorbates, such as OH and Cl, compared with adsorbates that are
relatively electron-poor, such as O and S, on platinum alloys to the
number of ligand d electrons (Fig. 4e). A previous chemisorption
study, which used a physics-based chemisorption model®, attrib-
uted similar opposite trends in the chemisorption strength of OH
and Cl compared with O and S on platinum alloys to Pauli repul-
sion”’. Additional analysis of adsorption trends on metals with
completely full d bands, such as gold (Fig. 4f), whose chemisorption
trends should depend primarily on Pauli repulsion, corroborated
this hypothesis as they mirrored the behaviour of the electron-rich
adsorbates on platinum. We expect that modular ML models will
be a valuable tool for catalysis researchers in the future, especially
with the expanding availability of open-source software packages
that contain these model classes, such as InterpretML®.

Generally, interpretations can shed light on the physical correla-
tions between a catalyst’s performance and its geometric and chemi-
cal properties. Nonetheless, many of these methods require the
catalysis researcher to interpret and validate the results to ensure that
their ML models do not learn illogical causal connections. However,
it is also possible to build models with an enforced causal structure
to ensure that ML models will behave in a manner that is consis-
tent with previous physical knowledge®°. Recent work used such
an approach to quantify and attribute the errors introduced during
the construction of an activity volcano plot for the oxygen reduc-
tion reaction (ORR) by platinum-group-metal-based catalysts®.
Researchers used a probabilistic graphical model, represented by
the directed graph in Fig. 4b, to enforce a causal structure between
the primary microkinetic input (the oxygen binding energy) and
potential error sources when predicting the optimal oxygen bind-
ing energy for the ORR. The model accounted for errors in solva-
tion treatment, density functional theory (DFT), experiment and
the empirical scaling correlations used to predict the activation and
intermediate chemisorption energies. They found that the primary
sources of error were errors in the DFT calculations and imper-
fect correlations between OOH* and OH* binding energies and
O* binding energies. There also exist methods, called causal infer-
ence methods, to determine causal structure from raw data alone®.
Although there have only been limited applications of causal infer-
ence thus far in the physical sciences”, the diffusion of advances
in causal inference to catalysis research is likely to have a notable
impact.

In contrast to the information gap present when interpreting
black-box models with grey-box methods, glass-box methods pro-
vide a full-resolution explanation of their behaviour. As a result,
glass-box methods are preferable for applications where develop-
ing scientific insight is the central objective. Although glass-box
models may have a worse predictive performance compared with
black-box models in practice due to their functional forms that
are constrained to enforce modularity, causal structure or simplic-
ity, there is, in theory, no reason that glass-box models cannot be
competitive in terms of predictive accuracy. For problems where the
data are well structured and the features are physically linked to the
target property, there are often little to no performance differences

between black-box models and simpler glass-box models®.

Challenges and opportunities for progress

Despite the successes of interpretable ML in catalysis thus far, the
field is still nascent, with substantial challenges to be overcome for
it to reach its full potential. Below we highlight the critical chal-
lenges that are related to integration with experiment, dataset size,
model reusability, and explaining interpretations. Addressing these
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challenges will require close collaboration between experimental-
ists, theoreticians and computer scientists.

Integrating interpretable ML with experimental data. Most inter-
pretable ML studies in heterogeneous catalysis thus far have used
computational datasets due to a lack of suitably large experimen-
tal datasets. Typical ML studies include 100-10,000 training data
points®, which can be prohibitively time-consuming to obtain
experimentally. One possible avenue for constructing large experi-
mental datasets for interpretable ML studies is to data-mine the
wealth of catalyst data already available in the literature. Despite this
approach being the most straightforward because the data already
exist, and such processes can be done by applying natural language
processing (that is, text extraction®), it is questionable if such an
approach would yield a coherent dataset amenable to interpretable
ML analysis. Data reporting in the field of heterogeneous catalysis
often lacks common standards in both experimental operating con-
ditions and catalyst characterization that may limit the interpret-
ability of insights gained from such a dataset. Another approach
would be proliferating new combinatoric high-throughput catalyst
synthesis and characterization techniques aided using flow reactors,
robotics or computer vision””'. Advances in such approaches will
facilitate the construction of large experimental datasets with com-
mon operating conditions, which may be more amenable to inter-
pretable ML.

Capturing the experimental complexity of catalysts with
ML-derived descriptors. An additional challenge facing the inte-
gration of interpretable ML with experiments arises from the
reliance of most existing interpretable ML studies on computa-
tional descriptors, such as the adsorption energies of surface reac-
tive intermediates’”. Despite the successes of descriptor-based
screening approaches in heterogeneous catalysis, we emphasize
that they have their limitations and can often be inadequate for
predicting the behaviour of real catalysts under reaction condi-
tions. Descriptor-based approaches often neglect the complexities
present in real catalytic materials, such as environment-induced
changes to surface sites, an abundance of diverse surface sites and
an inability to synthesize the desired surface sites, among many
others. Consequently, generating new hypotheses and descriptor
sets that can better predict the behaviour of real catalytic materials
under reaction conditions is a critical challenge, but one that we are
optimistic that future applications of interpretable ML can help to
address.

Dataset size. Even though most ML applications in catalysis thus
far have relied on computational datasets generated using quan-
tum chemical calculations, these datasets are still expensive and
time-consuming to generate, as many of the calculations rely on
high-performance supercomputing resources. Merging black-box
ML with interpretable ML may aid future efforts. For example,
approaches that leverage black-box surrogate models (for exam-
ple, active learning®, Bayesian global optimization’” and myopic
multi-scale sampling”) show promise for efficiently constructing
large computational datasets for high-throughput catalyst screen-
ing. Researchers could use such datasets not only for screening but
also to uncover scientific insights using interpretable ML.

Model accessibility and reusability. Most published ML models are
seldom reused. One reason for this is that models are usually learned
on datasets generated ad hoc; the development of standardized
datasets would certainly improve reusability’*. An additional bar-
rier to reusability is the considerable amount of domain expertise in
mathematics and computer science that is required to leverage ML
models beyond the typical skill set acquired by chemists, materials
scientists and chemical engineers. Furthermore, the features used
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in the models can provide an additional barrier to use if they are
computational or experimental values that are difficult to obtain,
as opposed to easily accessible tabulated properties. One route to
expanding the accessibility of machine-learned results would be the
development of user-friendly web applications that interface with
ML models, similar to those provided by the Materials Project”.
Another route is the proliferation of interpretable ML models. We
believe that interpretable models using easily obtainable tabulated
properties will help to broaden the community use and impact of
machine-learned results. For example, a machine-learned stabil-
ity descriptor of perovskites identified using symbolic regression
has begun to see widespread use, probably due to its closed-form
expression and easy computability”®.

Explaining interpretations. As helpful as interpretation tools
might be, ML cannot eliminate the role of catalysis scientists in
advancing scientific theories and hypotheses. While the ML model
and the interpretability method are critical in yielding insightful
interpretations, the features used as inputs to the model also play a
pivotal role in enabling interpretation. Features should be selected
using domain expertise. We believe that, if possible, the best prac-
tice is to use features that align with earlier physical explanations,
as the interpretation is likely to be more insightful if it reinforces
or connects to pre-existing domain knowledge. Such features could
include electronic and geometric descriptions of surface sites, spec-
troscopic data and experimental operating conditions (temperature,
pressure and reactant concentrations). Nonetheless, we emphasize
that there are no universal criteria for choosing features for inter-
pretable ML applications. The features selected depend heavily on
the system being studied, and therefore the need for domain exper-
tise cannot be eliminated.

Even more importantly, it is up to researchers to contextualize,
audit and frame interpretable ML models using existing catalysis
knowledge. It is unlikely that an ML model in and of itself will dis-
cover new or unexpected physics. Quite the opposite is true. If an
ML model predicts unexpected physics, the model is more likely
to be incorrect (for example, learning correlation rather than cau-
sation). The power of interpretable ML lies in its ability to enable
researchers to generate hypotheses more easily from data, which can
inform additional characterization and experiments. An excellent
example of using interpretable ML for hypothesis formation was the
previously mentioned work that used SGD to identify single-atom
catalysts capable of breaking scaling relations between reaction
intermediates for the nitrogen reduction reaction®. The researchers
used SGD to identify that only early transition metals could break
scaling the relations between N* and NH*. They then performed
additional electronic-structure analysis to elucidate that early tran-
sition metals are superior due to charge transfer to the support,
limiting the amount of charge available for bonding electronega-
tive adsorbates. In the same way that the SGD result helped guide
the subsequent electronic-structure analysis, future applications
of interpretable ML in catalysis should use ML to guide additional
computational or experimental corroboration of their hypotheses.
Ultimately, the interpretations derived from ML models are mean-
ingless unless catalysis researchers can explain them.

Final remarks

It is near certain that applications of ML in heterogeneous cataly-
sis will increase in the future. The field of heterogeneous catalysis
has many complex problems that are ripe for exploration with ML,
such as uncovering structure-mechanism-reactivity relationships
for multi-component catalysts, elucidating the physicochemical
properties that govern photocatalytic, plasma-catalytic and elec-
trocatalytic reactions, and analysing microscopic and spectroscopic
data. The early success of ML for accelerating research progress
inspires confidence in its ability to help tackle these challenges.
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Nevertheless, applications of ML to generate new knowledge and
hypotheses remain few and far between, mainly because most appli-
cations of ML in catalysis thus far have used black-box models.
Whereas black-box models can be advantageous from the pragmatic
standpoint of high predictive accuracy, directly interpreting their
behaviour is intractable. Several interpretable ML methods have
been employed in recent heterogeneous catalysis studies, which
we broadly group into grey-box and glass-box methods. Grey-box
methods enable the interpretation of black-box models, but relying
solely on these methods is risky due to a potential information gap
between the black-box model and the explanation. Glass-box mod-
els, in which interpretation is an inherent feature of the model, are
superior for applications where developing scientific insight is the
primary objective. Ultimately, it is our view that further applications
of interpretable ML methods in heterogeneous catalysis will acceler-
ate knowledge generation in the field.

Data availability
The panels of Fig. 3 and Fig. 4 were adapted from refs. 2>2%3%3843:49,51,57.63
and have associated raw data.
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