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Despite their enormous importance, most commercial hetero-
geneous catalysts have been discovered using trial-and-error 
experimental approaches that rely on the chemical intuition 

of catalysis practitioners. The difficulties associated with moving 
away from empirical experimental approaches towards catalyst 
design using predictive models are multifaceted, including the fact 
that heterogeneous catalysis spans time and length scales of more 
than nine orders of magnitude1, and that the catalyst performance 
depends on many variables, such as the catalyst composition, mor-
phology, support material and reaction environment (for example, 
temperature, solvent and external potential). This large parameter 
space makes the design and optimization of heterogeneous catalysts 
challenging.

Researchers have recently turned to machine learning (ML) to 
accelerate the study and discovery of heterogeneous catalysts, using 
these tools to navigate the parameter space more efficiently2–5. ML 
is a subfield of artificial intelligence that encompasses methods that 
self-infer patterns from data. Catalysis researchers leverage these 
learned patterns to streamline their work in many areas, including 
the atomistic simulation of reaction conditions6,7, catalyst surface 
phase diagram construction8, reaction mechanism prediction9,10 
and catalyst structure elucidation11,12. Most applications of ML in 
catalysis thus far have used black-box models (see Table 1) to make 
predictions of computable physical properties (descriptors), such as 
adsorption or formation energies, that can be related to the catalytic 
performance (that is, activity or stability)2–5. Extracting meaningful 
physical insights from black-box models has proved challenging, as 
the internal logic of black-box models is not readily interpretable 
due to the high degree of complexity of these models.

Interpretable ML methods that merge the predictive capacity of 
black-box models with the physical interpretability of physics-based 
models offer an alternative to black-box models. Herein, we refer 
to interpretable ML as models that extract relevant knowledge 
about relationships between catalytic variables in the form of suc-
cinct data formats such as visualizations, rule sets, or mathematical 
equations13. For example, an interesting fundamental question that 
interpretable ML can help to address, which we elaborate on below, 

is determining which physical properties of a catalyst surface gov-
ern the chemisorption strength of different adsorbates. In our view, 
interpretable ML methods present a complementary approach to 
black-box methods (Fig. 1). Translating the hidden patterns identi-
fied by ML models into interpretable information formats can lead 
to testable theories and hypotheses, further advancing scientific 
understanding. Knowledge gained from interpretation can help to 
explain why a model fails to make some predictions accurately and 
thus guide model improvement. The development and application 
of interpretable ML algorithms is an active area of research across 
law, healthcare, business, engineering and science14–18.

In this Perspective, we discuss the interpretable ML methods 
that are available to catalysis researchers and the potential of inter-
pretable ML to accelerate hypothesis formation and knowledge 
generation in the field of heterogeneous catalysis. We frame our 
discussion by briefly describing black-box models, whose generally 
opaque internal logic makes extracting physical insights challenging  
(Fig. 2a). We then introduce two general categories of interpretable 
ML: grey-box ML methods, which rely on model-agnostic post-hoc 
analyses to interpret black-box models (Fig. 2b), and glass-box 
methods in which outputting an interpretation is an inherent fea-
ture of the method (Fig. 2c). We highlight studies in heterogeneous 
catalysis that use interpretable methods (Table 1) and studies from 
chemistry and materials science research that use methods that have 
yet to see use in catalysis but may be of interest to the catalysis com-
munity. We note that interpretable ML is also helping to improve 
the design and study of homogeneous catalysts19–24, which in many 
respects is a more mature field due to its substantial crossover 
with molecular design, although discussion of these applications 
is beyond the scope of this Perspective. Finally, we outline critical 
challenges for interpretable ML in heterogeneous catalysis.

Black-box methods
Black-box models, such as Gaussian process models or neural net-
works, are widely used in catalysis. One area that has benefitted 
from black-box models is computational high-throughput cata-
lyst screening25–28. In most cases, these screening studies search 
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for model surface sites that bind relevant adsorbates with desired 
adsorption energies. The motivation for using these approaches is 
that, in many cases, the design space of possible catalysts is too large 
to be studied using quantum chemical methods alone. ML models 
serve as computationally efficient surrogates to minimize expensive 
quantum chemical calculations, enabling an accelerated screening 
of the catalyst design space. For example, an ML-accelerated screen-
ing of electrochemical carbon dioxide (CO2) reduction catalysts 
identified copper–aluminium alloys as active and selective mate-
rials based on the computed binding energy of carbon monoxide 
(CO), which has been proposed to be a descriptor of CO2 reduction 
activity27.

Black-box ML models are referred to as such because the param-
eters (weights, rules or connections) they learn are so overwhelm-
ing in number that directly extracting meaningful insight regarding 
the different physical behaviours captured by these parameters is 
unfeasible. For example, in the case of the aforementioned cop-
per–aluminium alloy, the model is too complex to interpret (that 
is, shed light on the features of aluminium atoms that electroni-
cally change the copper atoms to modulate their interaction with 
the CO adsorbate) and is therefore too complex to explain (that is, 
contextualize the model’s behaviour within the framework of exist-
ing CO2 reduction catalysis knowledge). Nonetheless, their large 
number of parameters enables black-box models to typically out-
perform glass-box models in terms of computational accuracy for 
large and complex datasets. This benefit is sufficient for specific ML 
applications in catalysis, such as high-throughput active-site screen-
ing or creating machine-learned potentials for molecular dynamics 

or Monte Carlo simulations because accuracy is more desired than 
interpretation.

Grey-box methods
While a critical problem with black-box models is that it is chal-
lenging to interpret the internal logic that led to the conclusions 
of a model, there exists a class of methods for indirectly extracting 
interpretable information from black-box ML models after training. 
These approaches are called post-hoc analysis methods, referred 
to herein as grey-box methods. Many grey-box methods are 
model-agnostic and therefore usable with any class of ML model. 
The information from grey-box methods can take many forms 
but is usually a set of visualizations or sensitivity measures called 
feature-importance scores. Grey-box methods can generate expla-
nations that are either global or local. Global explanations allow 
interpretation of the dataset-level relationships and patterns learned 
by black-box models, whereas local explanations allow practitioners 
to understand why black-box models make a specific prediction for 
a single data point.

The primary grey-box interpretation methods used in cataly-
sis applications so far are global feature-importance scores25,26,29,30. 
A global feature-importance score is a sensitivity measure that 
describes how an individual feature or combination of features con-
tributes to a model’s predictions at the dataset level. These scores 
yield insight into which features the model generally finds impor-
tant and allow practitioners to quantify the relative importance of 
different features for describing a specific type of behaviour. For 
example, normalized sensitivity coefficients (a measure of feature 

Table 1 | Examples of black-box, grey-box and glass-box ML methods used in catalysis applications

Method Description Example application

Black box

 Neural networks77 Highly tunable and empirically state-of-the-art 
predictive models.

High-throughput prediction of CO and H adsorption 
energies on diverse intermetallic alloys38.

 Gaussian process models78 Bayesian models that quantify the prediction 
uncertainty.

Accelerating the construction of catalyst surface phase 
diagrams8.

 AdaBoost regressor79 Models that refine their focus during training to 
better fit difficult examples.

Discovery of stable materials such as oxides, phosphides, 
sulfides and alloys80.

Grey box

 Global feature-importance scores81 Describes a feature’s contribution to predictions at 
the dataset level.

Determining the physical properties that govern 
CO adsorption during CO2 electroreduction catalyst 
screening25.

 Partial dependence plots31 Visual explanations of how each feature affects the 
model output.

Visualizing the impact of small-molecule and 
oxide-surface properties on chemisorption34.

 Shapley additive explanations35 Game-theoretic metric for describing a feature’s 
contribution to an individual prediction.

Quantifying the influence of the catalyst composition and 
experimental conditions on the selectivity to C2 products 
during the oxidative coupling of methane36.

Glass box

 Symbolic regression82 Identifies simple closed-form models for predicting 
target properties.

Identifying an easily calculable descriptor that predicts 
chemisorption for various adsorbates on alloys with 
different compositions and surface facets40.

 Subgroup discovery83 Identifies and characterizes subgroups that share 
common traits in data.

Identifying single-atom catalysts that can break scaling 
relations for the nitrogen reduction reaction51.

 Generalized additive models55 Predictive models that are interpretable because the 
independent segments of the model decision-making 
process can be interpreted independently.

Quantifying and understanding chemisorption on alloys57.

 Principal component analysis84 An unsupervised ML algorithm that projects the data 
onto a reduced basis while describing the maximum 
dataset variance.

Finding electronic-structure descriptors for metal alloys 
and oxides49.

 Probabilistic graphical models85 Predictive models that can be used to enforce causal 
structure and quantify error.

Quantitatively attributing errors in an activity volcano plot 
for the oxygen reduction reaction63.
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importance) were generated for neural networks used to perform 
high-throughput screening of core–shell alloy catalysts for CO2 
electroreduction using the CO adsorption energy as an activity 
descriptor (Fig. 3a)25. The sensitivity coefficients showed that the 
local Pauli electronegativity at a catalyst surface site plays a crucial 
role in predicting the CO adsorption energies, particularly for alloys 
that contain surface sites with fully occupied d bands such as cop-
per (Cu), silver (Ag) and gold (Au). In addition, feature-importance 
scores of a random forest model have been used to determine the 
relative impact of the calculated geometric and electronic features 
of doped nickel phosphide (Ni2P) catalysts on their hydrogen evolu-
tion reaction activity, ultimately identifying the Niβ–Niγ bond length 
(with the α, β and γ notation used by the authors shown in Fig. 3b) 
as the most important descriptor of hydrogen evolution reaction 
activity29. These examples highlight the utility and relative ease with 
which feature-importance scores can extract insight from black-box 
models.

In addition to global feature-importance scores, there have 
also been limited efforts to bring post-hoc global visualizations to 
catalysis. Global visualization methods, such as partial dependence 
plots31, accumulated local effects plots32 and transparent model dis-
tillation16,33, provide visual explanations of the change in the model 
behaviour subject to a change in only one or two feature values, 
which allows these effects to be plotted in a line chart or heat map, 
respectively. One recent application used partial dependence plots 
to visualize the marginal change in the predicted adsorption ener-
gies of various adsorbates such as alkanes, aromatics and amines 
on group 13 metal oxide surfaces (for example, aluminium oxide 
and gallium oxide) from a regression model subject to changing 

the physical properties of the adsorbate and the oxide surface34. 
The partial dependence plots indicated that the adsorbate’s highest 
occupied molecular orbital (HOMO) energy and the oxide’s surface 
energy play crucial roles in determining the adsorption energy (Fig. 
3c), with the adsorption strength increasing for a higher-in-energy 
HOMO and a higher surface energy. Although limited in their 
applications thus far, we believe that global visualizations will be a 
valuable tool for researchers to interpret their black-box catalysis 
models in the future.

Local explanations are an alternative approach for interpret-
ing black-box models. The most common form of local expla-
nation is local feature-importance scores. In contrast to global 
feature-importance scores, which describe a feature’s general contri-
bution across many different predictions, local feature-importance 
scores describe a feature’s contribution to an individual prediction 
(for example, giving insight into the contributions of electronic or 
geometric features to the performance of a specific material). One 
important method that assigns local feature-importance scores is 
Shapley additive explanations (SHAP)35, which have been used in 
several recent catalysis studies36,37. For example, a recent study used 
SHAP in a literature meta-analysis of around 2,000 catalysts for 
the oxidative coupling of methane (OCM)36. SHAP elucidated the 
relative influence of different catalysts and experimental conditions 
on the selectivity to desired C2 products in OCM, suggesting that 
a high operating temperature, a higher partial pressure of meth-
ane relative to oxygen and the presence of lanthanum and sodium 
in the catalyst were critical parameters for steering OCM towards 
the desired C2 products. There have also been efforts in catalysis at 
providing local explanations, such as generating post-hoc visualiza-
tions, for black-box adsorption energy prediction models that show 
the contributions of individual atoms to the predicted binding ener-
gies (Fig. 3d)38.

Grey-box methods are a promising approach for interpreting 
black-box models that can often yield plausible explanations of the 
black-box model’s behaviour. Nevertheless, we add a warning that 
grey-box explanations can also be misleading and misrepresent 
black-box model behaviour13,39. This is because, in most cases, there 
exists a gap between the simple explanations offered by a grey-box 
method and the complex behaviour learned by the black-box 
model. Nonetheless, developing higher resolution grey-box meth-
ods remains an open field of research in ML that will undoubtedly 
benefit advances in catalysis research and in science and engineer-
ing in general.

Glass-box methods
Not all ML methods require a grey-box method to interpret the 
relationships they have uncovered. Some ML methods yield such 
insights directly, referred to herein as glass-box methods. Generally, 
these glass-box methods have constraints, such as enforced simplic-
ity, that make direct interpretation of glass-box ML results possible. 
Glass-box methods are used to find simple analytical expressions 
that relate input variables to target properties, to identify hidden 
or underlying structures in the data, to make predictions under 
enforced modularity or causal structure, or to suggest causal struc-
ture directly. It is our view that glass-box methods are preferred if 
extracting scientific insight is the central objective.

The most applied glass-box method in catalysis applications thus 
far is symbolic regression40–44. Symbolic regression methods (for 
example, SISSO45 and genetic programming46) algorithmically com-
bine input features using mathematical operators (for example, +, 
−, ×, ÷ and log) to find functionally simple mathematical expres-
sions that can predict target properties as a function of those fea-
tures. Models from symbolic regression methods are interpretable 
because the simplicity of their closed-form analytical expressions 
allows researchers to step through the models and understand the 
numerical relationships between the various input features and the 
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Experimental/
computational validation
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Physics-based explanationsMaterials discovery
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Fig. 1 | Synergistic relationship between black-box and interpretable ML 
approaches. Both interpretable and black-box ML models can be used in 
materials discovery applications to identify promising catalysts. Validating 
ML-predicted catalysts via experimental synthesis and characterization 
and computational validation can lead to materials that exhibit desirable 
properties such as low cost, high stability, high activity and high selectivity. 
In addition, fingerprinting (that is, uniquely labelling) and recording 
the structure–property data from detailed characterization studies 
can be used to iteratively improve ML models and accelerate catalyst 
discovery. Interpretable ML algorithms have the advantage of outputting 
human-interpretable information regarding the patterns or dependencies 
learned by the ML model. These interpretations enable hypothesis 
formation about what underlying physical mechanisms might play a role in 
the task. This knowledge can guide feature selection such that features are 
linked to the target property and inform additional experiments, thereby 
improving the ML models and accelerating catalyst discovery further.
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corresponding outputs. For example, researchers used symbolic 
regression to identify an activity descriptor for the oxygen evolu-
tion reaction (OER) on perovskite oxides (oxides with an ABO3 
structure)43. From a feature set containing numerous electronic 
(for example, valence electron structure and electronegativity) and 
structural features (for example, atomic radii and other structural 
parameters), symbolic regression identified an activity descrip-
tor (μ/t) that combined two well-known structural parameters of 
perovskites, the Goldschmidt tolerance factor (t) and the octahe-
dral factor (μ). The identified μ/t descriptor (Fig. 4a) suggested 
that increasing t, by incorporating large cations at the A site, and 
decreasing μ, by incorporating small cations at the B site, should 
lead to higher OER activity. Ultimately, four perovskites with exper-
imental activities higher than previously reported perovskite oxide 
catalysts were identified for the OER based on these criteria. This 
example highlights the potential of symbolic regression for build-
ing accurate and interpretable models that relate geometric or elec-
tronic features of catalysts to their performance.

Another strategy for finding interpretable scientific insights 
is through unsupervised ML. Unsupervised ML algorithms are 
pattern-recognition algorithms that probe for underlying struc-
ture in the data47, which can help to accelerate an exploration of the 
dataset. The two primary methods of unsupervised learning used 
in catalysis thus far are clustering algorithms and dimensionality 
reduction algorithms. In clustering, the goal is to identify and seg-
ment similar subpopulations, or clusters, in the data. Interpreting 
the clusters can facilitate an understanding of the similarities and 
differences between data (for example, spectra, mechanisms and 
structures). For example, clustering has been used in homoge-
neous catalysis to help identify the optimal phosphine ligands for 
a stereoselective Suzuki–Miyaura cross-coupling reaction catalysed 
by phosphine-ligand-mediated palladium catalysis48. To address 
this challenge, researchers used clustering for the rapid identifica-
tion of representative phosphine ligand motifs so that the choice 
of phosphine ligands could be optimized systematically. K-means 
clustering grouped 365 commercially available phosphines into 
24 chemically distinct clusters based on their molecular proper-
ties such as the HOMO–LUMO gap, Fukui index and volume. One 
compound from each cluster was experimentally evaluated based 
on availability, price and anticipated stability, and one of the ligands, 

2-(diphenylphosphino)-2′,6′-dimethoxy-1,1′-biphenyl, was identi-
fied as having superior performance. Further investigation revealed 
that structurally similar triarylphosphine ligands were also effec-
tive. We note that, in general, clusters are most likely to be interpre-
table when clustering is performed on low-dimensional data of two 
or three features, as the clusters and decision boundaries used for 
cluster assignment can then be easily visualized.

In dimensionality reduction, high-dimensional data (for exam-
ple, signals, images or large feature sets) are transformed to a 
lower-dimensional subspace that still captures the essence of the data. 
In the lower-dimensional space, the data can be visualized and may 
be interpretable. Nonetheless, the transformation from high to low 
dimensions can be complex, non-linear and highly parameterized, 
making it difficult to understand how the lower-dimensional data 
relate to the original high-dimensional data. One method of devel-
oping this understanding is through explanatory visualizations. For 
example, we recently used a dimensionality reduction technique 
called principal component analysis (PCA) to establish relationships 
between the geometric structures of subsurface alloys based on rho-
dium (Rh), palladium (Pd), iridium (Ir) and platinum (Pt) (in which a 
ligand metal composes the layer immediately beneath the surface) and 
the chemisorption strengths of different adsorbates on the alloys49. We 
used electronic-structure descriptors as a bridge to relate the chemi-
sorption strength to the geometric structure and composition of the 
alloys. To accomplish this goal, we employed PCA on the d-projected 
density of states at the adsorption site to derive principal compo-
nent (PC) descriptors of the sites’ electronic structure. Interpretation 
of the PC descriptors using signal reconstruction showed that they 
mapped to the geometric structure of the sites. For example, one of the 
machine-learned PC descriptors (Fig. 4c), found to be negatively cor-
related with the chemisorption energy, was associated with a broad-
ening and downshift in the surface electronic d band. Relating this 
machine-learned descriptor to geometric structure revealed that this 
broadening and downshift is caused by increasing the surface metal 
size, increasing the ligand metal size and decreasing the number of 
ligand d electrons. Ultimately, the PCA-based approach led us to con-
clude that selecting larger surface metal atoms, larger ligand metal 
atoms or ligand metals with fewer d electrons lowers the chemisorp-
tion energies of most adsorbates. Such insights are critical to designing 
surface sites with a specific chemical activity.
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Fig. 2 | Schematic depiction of black-box, grey-box and glass-box ML methods. The objective of supervised learning applications is to predict a target 
property, y*. The predictions are made using a set of variables, called features (x1,x2,...xn), that characterize the catalyst. Typically, these features are 
compositional, electronic or geometric fingerprints of the catalytic system of interest. a, Many highly predictive ML approaches fall under the umbrella 
description of black-box methods because their models contain numerous interdependent weights, rules and connections. Although the many learned 
patterns can lead to a high predictive accuracy, interpreting them without additional processing is a task that is beyond the means of human cognition. 
b, Post-processing to extract insight from black-box models can be done using grey-box methods, which use a separate model or technique to derive 
explanations of the black-box model behaviour. c, Glass-box methods can output explanations directly. These methods typically have constraints on their 
functional behaviour that make their interpretation straightforward.
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Another class of models that probe for latent or underlying 
structure in a dataset are subgroup discovery (SGD) algorithms50. 
Applications of ML in heterogeneous catalysis often focus on learn-
ing a single global model to predict a target property for many dif-
ferent catalysts. However, global models can fail to account for the 
possibility that the physical mechanism governing a target property 
may differ across different subgroups of catalysts, with the global 
model obfuscating or misrepresenting the physics affecting the tar-
get property. Therefore, it may sometimes be beneficial to identify 
and segment physically similar subgroups and learn local models for 
each subgroup. The interpretation of these subgroups can enable an 
understanding of the geometric and chemical similarities between 
the catalysts51–53. A recent application of SGD identified single-atom 
catalysts capable of breaking scaling relations between reaction 
intermediates for the nitrogen reduction reaction (Fig. 4d)51. This 
analysis demonstrated that scaling relations were only broken by 
early transition metal atoms, with additional electronic-structure 
analysis showing that early transition metals offer this advantage 
because of charge transfer to the support, limiting the amount of 
charge available for bonding electronegative adsorbates like N* 
and NH*, where the asterisk indicates an adsorbed species. SGD 
can also identify regions of feature space where an ML model’s pre-

dictions are trustworthy, called the domain of applicability. Recent 
work used such an approach to identify the domain of applicability 
for ML models predicting the stability of transparent conducting 
oxides54. These examples highlight the potential of SGD for identi-
fying geometrically or chemically similar groupings of catalysts and 
improving predictive models.

There have also been efforts to leverage glass-box models with 
enforced modularity for extracting catalysis insights. A model is 
modular if each feature’s contribution to the model decision-making 
process can be independently interpreted. For example, generalized 
additive models (GAMs) make predictions by summing indepen-
dent, potentially non-linear, functions of each input variable55,56. 
Because the overall model is a linear combination of functions 
that are dependent on only one or two variables of interest, each 
independent function can be visualized easily, thus shedding light 
on the model behaviour. We recently used GAMs to develop che-
misorption models for OH, Cl, O and S adsorbates on Rh-, Pd-, 
Ag-, Ir-, Pt- and Au-based subsurface alloys (Fig. 4e)57. The GAMs 
identified a few critical material properties that control the che-
misorption strength on the alloys, showing that for a fixed surface 
atom, the number of d electrons in the ligand subsurface metal 
and the size of the ligand atom are two critical parameters that 
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Fig. 4 | Interpreting glass-box ML results. a, The limiting potential (E) at 50 mA cm−2
ox of the OER current plotted as a function of the geometric μ/t 

descriptor identified using symbolic regression. The dashed grey line shows the predicted limiting potential based on the identified μ/t descriptor, given by E 
= 2.52μ/t + 0.55. The error bars indicate the standard deviation of at least three independent experimental measurements. b, A directed acyclic graph was 
used to predict the optimal oxygen binding energy (ΔG∗

O) and optimal reaction rate (r*) for the ORR. The uncertainty from sources like solvation treatment 
(ωs), density functional theory error (ωd), experimental error (ωe) and imperfect empirical correlations (ωc) were quantified and interpreted using directed 
acyclic graphs, which increases model credibility and offers insight into how a model’s predictive accuracy can be improved. c, Signal reconstruction shows 
the electronic-structure effects captured using a PC descriptor learned on the surface d-projected density of states of subsurface alloys based on Rh, Pd, Ir 
and Pt. d, Calculated *NH2 adsorption free energy as a function of the calculated *N adsorption free energy on single transition metal atoms on vanadium 
disulfide (VS2) supports. All single-atom systems containing four or more d electrons (nd ≥ 4; filled points) fulfil the scaling relation, whereas early transition 
metals with three or fewer d electrons (nd ≤ 3; open data points) do not. The overview of the single metal atoms studied (left) and a top view of the VS2 
substrate in which V atoms are coloured grey and S atoms are coloured yellow (right) is shown under the plot. The two single-atom adsorption sites 
considered are shown: one hexagonal close-packed hollow site atop a V atom (TV) and one face-centred cubic hollow site atop a subsurface hollow site 
(HS). e,f, GAMs shed light on the effect of the number of ligand valence d electrons relative to the host metal on the chemisorption energies of O, OH, S, 
and Cl on Pt (e) and Au (f) subsurface alloys. The subsurface alloy model systems are shown in the insets, with Pt coloured grey, Au coloured gold and the 
generic ligand metal atom coloured green. Panel a reproduced with permission from ref. 43, Springer Nature Ltd under a Creative Commons license  
CC BY 4.0. Panels adapted with permission from: b, ref. 63, AAAS; c, ref. 49, Elsevier; d, ref. 51, American Chemical Society; e,f, ref. 57, Elsevier.
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control the chemisorption behaviour, which corroborated earlier 
reports58,59. Notably, the GAM models suggested that the number of 
d electrons in the ligand metal describes the degree of Pauli repul-
sion between the alloy surface and the adsorbate. Specifically, the 
GAMs connected the opposite adsorption trends of electron-rich 
adsorbates, such as OH and Cl, compared with adsorbates that are 
relatively electron-poor, such as O and S, on platinum alloys to the 
number of ligand d electrons (Fig. 4e). A previous chemisorption 
study, which used a physics-based chemisorption model60, attrib-
uted similar opposite trends in the chemisorption strength of OH 
and Cl compared with O and S on platinum alloys to Pauli repul-
sion61. Additional analysis of adsorption trends on metals with 
completely full d bands, such as gold (Fig. 4f), whose chemisorption 
trends should depend primarily on Pauli repulsion, corroborated 
this hypothesis as they mirrored the behaviour of the electron-rich 
adsorbates on platinum. We expect that modular ML models will 
be a valuable tool for catalysis researchers in the future, especially 
with the expanding availability of open-source software packages 
that contain these model classes, such as InterpretML62.

Generally, interpretations can shed light on the physical correla-
tions between a catalyst’s performance and its geometric and chemi-
cal properties. Nonetheless, many of these methods require the 
catalysis researcher to interpret and validate the results to ensure that 
their ML models do not learn illogical causal connections. However, 
it is also possible to build models with an enforced causal structure 
to ensure that ML models will behave in a manner that is consis-
tent with previous physical knowledge63–65. Recent work used such 
an approach to quantify and attribute the errors introduced during 
the construction of an activity volcano plot for the oxygen reduc-
tion reaction (ORR) by platinum-group-metal-based catalysts63. 
Researchers used a probabilistic graphical model, represented by 
the directed graph in Fig. 4b, to enforce a causal structure between 
the primary microkinetic input (the oxygen binding energy) and 
potential error sources when predicting the optimal oxygen bind-
ing energy for the ORR. The model accounted for errors in solva-
tion treatment, density functional theory (DFT), experiment and 
the empirical scaling correlations used to predict the activation and 
intermediate chemisorption energies. They found that the primary 
sources of error were errors in the DFT calculations and imper-
fect correlations between OOH* and OH* binding energies and 
O* binding energies. There also exist methods, called causal infer-
ence methods, to determine causal structure from raw data alone66. 
Although there have only been limited applications of causal infer-
ence thus far in the physical sciences67, the diffusion of advances 
in causal inference to catalysis research is likely to have a notable 
impact.

In contrast to the information gap present when interpreting 
black-box models with grey-box methods, glass-box methods pro-
vide a full-resolution explanation of their behaviour. As a result, 
glass-box methods are preferable for applications where develop-
ing scientific insight is the central objective. Although glass-box 
models may have a worse predictive performance compared with 
black-box models in practice due to their functional forms that 
are constrained to enforce modularity, causal structure or simplic-
ity, there is, in theory, no reason that glass-box models cannot be 
competitive in terms of predictive accuracy. For problems where the 
data are well structured and the features are physically linked to the 
target property, there are often little to no performance differences 
between black-box models and simpler glass-box models39.

Challenges and opportunities for progress
Despite the successes of interpretable ML in catalysis thus far, the 
field is still nascent, with substantial challenges to be overcome for 
it to reach its full potential. Below we highlight the critical chal-
lenges that are related to integration with experiment, dataset size, 
model reusability, and explaining interpretations. Addressing these  

challenges will require close collaboration between experimental-
ists, theoreticians and computer scientists.

Integrating interpretable ML with experimental data. Most inter-
pretable ML studies in heterogeneous catalysis thus far have used 
computational datasets due to a lack of suitably large experimen-
tal datasets. Typical ML studies include 100–10,000 training data 
points68, which can be prohibitively time-consuming to obtain 
experimentally. One possible avenue for constructing large experi-
mental datasets for interpretable ML studies is to data-mine the 
wealth of catalyst data already available in the literature. Despite this 
approach being the most straightforward because the data already 
exist, and such processes can be done by applying natural language 
processing (that is, text extraction69), it is questionable if such an 
approach would yield a coherent dataset amenable to interpretable 
ML analysis. Data reporting in the field of heterogeneous catalysis 
often lacks common standards in both experimental operating con-
ditions and catalyst characterization that may limit the interpret-
ability of insights gained from such a dataset. Another approach 
would be proliferating new combinatoric high-throughput catalyst 
synthesis and characterization techniques aided using flow reactors, 
robotics or computer vision70,71. Advances in such approaches will 
facilitate the construction of large experimental datasets with com-
mon operating conditions, which may be more amenable to inter-
pretable ML.

Capturing the experimental complexity of catalysts with 
ML-derived descriptors. An additional challenge facing the inte-
gration of interpretable ML with experiments arises from the 
reliance of most existing interpretable ML studies on computa-
tional descriptors, such as the adsorption energies of surface reac-
tive intermediates2–5. Despite the successes of descriptor-based 
screening approaches in heterogeneous catalysis, we emphasize 
that they have their limitations and can often be inadequate for 
predicting the behaviour of real catalysts under reaction condi-
tions. Descriptor-based approaches often neglect the complexities 
present in real catalytic materials, such as environment-induced 
changes to surface sites, an abundance of diverse surface sites and 
an inability to synthesize the desired surface sites, among many 
others. Consequently, generating new hypotheses and descriptor 
sets that can better predict the behaviour of real catalytic materials 
under reaction conditions is a critical challenge, but one that we are 
optimistic that future applications of interpretable ML can help to 
address.

Dataset size. Even though most ML applications in catalysis thus 
far have relied on computational datasets generated using quan-
tum chemical calculations, these datasets are still expensive and 
time-consuming to generate, as many of the calculations rely on 
high-performance supercomputing resources. Merging black-box 
ML with interpretable ML may aid future efforts. For example, 
approaches that leverage black-box surrogate models (for exam-
ple, active learning28, Bayesian global optimization72 and myopic 
multi-scale sampling73) show promise for efficiently constructing 
large computational datasets for high-throughput catalyst screen-
ing. Researchers could use such datasets not only for screening but 
also to uncover scientific insights using interpretable ML.

Model accessibility and reusability. Most published ML models are 
seldom reused. One reason for this is that models are usually learned 
on datasets generated ad hoc; the development of standardized 
datasets would certainly improve reusability74. An additional bar-
rier to reusability is the considerable amount of domain expertise in 
mathematics and computer science that is required to leverage ML 
models beyond the typical skill set acquired by chemists, materials 
scientists and chemical engineers. Furthermore, the features used 
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in the models can provide an additional barrier to use if they are 
computational or experimental values that are difficult to obtain, 
as opposed to easily accessible tabulated properties. One route to 
expanding the accessibility of machine-learned results would be the 
development of user-friendly web applications that interface with 
ML models, similar to those provided by the Materials Project75. 
Another route is the proliferation of interpretable ML models. We 
believe that interpretable models using easily obtainable tabulated 
properties will help to broaden the community use and impact of 
machine-learned results. For example, a machine-learned stabil-
ity descriptor of perovskites identified using symbolic regression 
has begun to see widespread use, probably due to its closed-form 
expression and easy computability76.

Explaining interpretations. As helpful as interpretation tools 
might be, ML cannot eliminate the role of catalysis scientists in 
advancing scientific theories and hypotheses. While the ML model 
and the interpretability method are critical in yielding insightful 
interpretations, the features used as inputs to the model also play a 
pivotal role in enabling interpretation. Features should be selected 
using domain expertise. We believe that, if possible, the best prac-
tice is to use features that align with earlier physical explanations, 
as the interpretation is likely to be more insightful if it reinforces 
or connects to pre-existing domain knowledge. Such features could 
include electronic and geometric descriptions of surface sites, spec-
troscopic data and experimental operating conditions (temperature, 
pressure and reactant concentrations). Nonetheless, we emphasize 
that there are no universal criteria for choosing features for inter-
pretable ML applications. The features selected depend heavily on 
the system being studied, and therefore the need for domain exper-
tise cannot be eliminated.

Even more importantly, it is up to researchers to contextualize, 
audit and frame interpretable ML models using existing catalysis 
knowledge. It is unlikely that an ML model in and of itself will dis-
cover new or unexpected physics. Quite the opposite is true. If an 
ML model predicts unexpected physics, the model is more likely 
to be incorrect (for example, learning correlation rather than cau-
sation). The power of interpretable ML lies in its ability to enable 
researchers to generate hypotheses more easily from data, which can 
inform additional characterization and experiments. An excellent 
example of using interpretable ML for hypothesis formation was the 
previously mentioned work that used SGD to identify single-atom 
catalysts capable of breaking scaling relations between reaction 
intermediates for the nitrogen reduction reaction51. The researchers 
used SGD to identify that only early transition metals could break 
scaling the relations between N* and NH*. They then performed 
additional electronic-structure analysis to elucidate that early tran-
sition metals are superior due to charge transfer to the support, 
limiting the amount of charge available for bonding electronega-
tive adsorbates. In the same way that the SGD result helped guide 
the subsequent electronic-structure analysis, future applications 
of interpretable ML in catalysis should use ML to guide additional 
computational or experimental corroboration of their hypotheses. 
Ultimately, the interpretations derived from ML models are mean-
ingless unless catalysis researchers can explain them.

Final remarks
It is near certain that applications of ML in heterogeneous cataly-
sis will increase in the future. The field of heterogeneous catalysis 
has many complex problems that are ripe for exploration with ML, 
such as uncovering structure–mechanism–reactivity relationships 
for multi-component catalysts, elucidating the physicochemical 
properties that govern photocatalytic, plasma-catalytic and elec-
trocatalytic reactions, and analysing microscopic and spectroscopic 
data. The early success of ML for accelerating research progress 
inspires confidence in its ability to help tackle these challenges. 

Nevertheless, applications of ML to generate new knowledge and 
hypotheses remain few and far between, mainly because most appli-
cations of ML in catalysis thus far have used black-box models. 
Whereas black-box models can be advantageous from the pragmatic 
standpoint of high predictive accuracy, directly interpreting their 
behaviour is intractable. Several interpretable ML methods have 
been employed in recent heterogeneous catalysis studies, which 
we broadly group into grey-box and glass-box methods. Grey-box 
methods enable the interpretation of black-box models, but relying 
solely on these methods is risky due to a potential information gap 
between the black-box model and the explanation. Glass-box mod-
els, in which interpretation is an inherent feature of the model, are 
superior for applications where developing scientific insight is the 
primary objective. Ultimately, it is our view that further applications 
of interpretable ML methods in heterogeneous catalysis will acceler-
ate knowledge generation in the field.

Data availability
The panels of Fig. 3 and Fig. 4 were adapted from refs. 25,29,34,38,43,49,51,57,63 
and have associated raw data.
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