THREE CANDIDATE PLURALITY IS STABLEST FOR SMALL
CORRELATIONS
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ABSTRACT. Using the calculus of variations, we prove the following structure theorem for
noise stable partitions: a partition of n-dimensional Euclidean space into m disjoint sets of
fixed Gaussian volumes that maximize their noise stability must be (m — 1)-dimensional, if
m—1 < n. In particular, the maximum noise stability of a partition of m sets in R™ of fixed
Gaussian volumes is constant for all n satisfying n > m — 1. From this result, we obtain:
(i) A proof of the Plurality is Stablest Conjecture for 3 candidate elections, for all corre-
lation parameters p satisfying 0 < p < pg, where po > 0 is a fixed constant (that does
not depend on the dimension n), when each candidate has an equal chance of winning.
(ii) A variational proof of Borell’s Inequality (corresponding to the case m = 2).
The structure theorem answers a question of De-Mossel-Neeman and of Ghazi-Kamath-
Raghavendra. Item (i) is the first proof of any case of the Plurality is Stablest Conjecture
of Khot-Kindler-Mossel-O’Donnell (2005) for fixed p, with the case p — 1~ being solved
recently. Item (i) is also the first evidence for the optimality of the Frieze-Jerrum semidefinite
program for solving MAX-3-CUT, assuming the Unique Games Conjecture. Without the
assumption that each candidate has an equal chance of winning in (i), the Plurality is
Stablest Conjecture is known to be false.
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1. INTRODUCTION

1.1. An Informal Introduction. A voting method or social choice function with m
candidates and n voters is a function

AL om}r = A{1,...,m}.
From the social choice theory perspective, the input of the function f is a list of votes of
n people who are choosing between m candidates. Each of the m candidates is labelled by
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the integers 1,...,m. If the votes are x € {1,...,m}", then z; denotes the vote of person
i € {1,...,n} for candidate x; € {1,...,m}. Given the votes x € {1,...,m}", f(x) is
interpreted as the winner of the election.

It is both natural and desirable to find a voting method whose output is most likely to
be unchanged after votes are randomly altered. One could imagine that malicious third
parties or miscounting of votes might cause random vote changes, so we desire a voting
method f whose output is stable to such changes. In addition to voting motivations, finding
a voting method that is stable to noise has applications to the Unique Games Conjecture
[KKMOO07, MOO10, KM16], to semidefinite programming algorithms such as MAX-CUT
[KKMOO07, IM12], to learning theory [FGRW12], etc. For some surveys on this and related
topics, see [O’D, Kho, Hei20].

The output of a constant function f is never altered by changes to the votes. Also, if
the function f only depends on one of its n inputs, then the output of f is rarely changed
by independent random changes to each of the votes. In these cases, the function f is
rather “undemocratic” from the perspective of social choice theory. In the case of a constant
function, the outcome of the election does not depend at all on the votes. In the case of a
function that only depends on one of its inputs, the outcome of the election only depends
on one voter (so f is called a dictatorship function).

Among “democratic” voting methods, it was conjectured in [KKMOOQ7] and proven in
[IMOO10] that the majority voting method is the voting method that best preserves the
outcome of the election. Below is an informal statement of the main result of [MOO10].

Theorem 1.1 (Majority is Stablest, Informal Version, [MOO10, Theorem 4.4]). Sup-
pose we run an election with a large number n of voters and m = 2 candidates. We make
the following assumptions about voter behavior and about the election method.

e Voters cast their votes randomly, independently, with equal probability of voting for
either candidate.

e Each voter has a small influence on the outcome of the election. (That is, all influ-
ences from Definition 5 are small for the voting method.)

e Fach candidate has an equal chance of winning the election.

Under these assumptions, the majority function is the voting method that best preserves the
outcome of the election, when votes have been corrupted independently each with probability
less than 1/2.

We say a vote z; € {1,2} is corrupted with probability 0 < 6 < 1 when, with probability
J, the vote z; is changed to a uniformly random element of {1, 2}, and with probability 1—4,
the vote x; is unchanged.

For a formal statement of Theorem 1.1, see Theorem 1.8 below.

The primary interest of the authors of [KKMOOQ7] in Theorem 1.1 was proving optimal
hardness of approximation for the MAX-CUT problem. In the MAX-CUT problem, we are
given a finite undirected graph on n vertices, and the objective of the problem is to find
a partition of the vertices of the graph into two sets that maximizes the number of edges
going between the two sets. The MAX-CUT problem is MAX-SNP hard, i.e. if P # NP,
there is no polynomial time (in n) approximation scheme for this problem. Nevertheless,
there is a randomized polynomial time algorithm [GW95] that achieves, in expectation, at

least .87856 ... times the maximum value of the MAX-CUT problem. This algorithm uses
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semidefinite programming. Also, the exact expression for the .87856 ... constant is

2 arccos(p)

min = .87856. ..

“1<p<im 1—p

The authors of [KKMOOQ7] showed that, if the Unique Games Conjecture is true, then
Theorem 1.1 implies that the Goemans-Williamson algorithm’s .87856. .. constant of ap-
proximation cannot be increased. Assuming the validity of the Unique Games Conjecture is
a fairly standard in complexity theory, though the conjecture remains open. See [O’D, Kho]
and the references therein for more discussion on this conjecture, and see [KMS18] for some
recent significant progress.

Theorem 1.1 (i.e. Theorem 1.8) gives a rather definitive statement on the two candidate
voting method that is most stable to corruption of votes. Moreover, the applcation of
Theorem 1.1 gives a complete understanding of the optimal algorithm for solving MAX-
CUT, assuming the Unique Games Conjecture. Unfortunately, the proof of Theorem 1.1
says nothing about elections with m > 2 candidates. Moreover, Theorem 1.1 fails to prove
optimality of the Frieze-Jerrum [FJ95] semidefinite programming algorithm for the MAX-
m-CUT problem. In the MAX-m-CUT problem, we are given a finite undirected graph on
n vertices, and the objective of the problem is to find a partition of the vertices of the graph
into m sets that maximizes the number of edges going between the two sets. So, MAX-CUT
is the same as MAX-2-CUT.

In order to prove the optimality of the Frieze-Jerrum [FJ95] semidefinite programming
algorithm for the MAX-m-CUT problem, one would need an analogue of Theorem 1.1 for
m > 2 voters, where the plurality function replaces the majority function. For this reason,
it was conjectured [KKMOO07, IM12] that the plurality function is the voting method that is
most stable to independent, random vote corruption.

Conjecture 1.2 (Plurality is Stablest, Informal Version, [KKMOO07], [IM12, Conjec-
ture 1.9]). Suppose we run an election with a large number n of voters and m > 3 candidates.
We make the following assumptions about voter behavior and about the election method.

o Voters cast their votes randomly, independently, with equal probability of voting for
each candidate.

e Fach voter has a small influence on the outcome of the election. (That is, all influ-
ences from Definition 5 are small for the voting method.)

e Fach candidate has an equal chance of winning the election.

Under these assumptions, the plurality function is the voting method that best preserves the
outcome of the election, when votes have been corrupted independently each with probability
less than 1/2.

We say a vote x; € {1,...,m} is corrupted with probability 0 < ¢ < 1 when, with
probability ¢, the vote z; is changed to a uniformly random element of {1,...,m}, and with
probability 1 — ¢, the vote z; is unchanged.

In the case that the probability of vote corruption goes to zero, the first author proved the
first known case of Conjecture 1.2 in [Heil9], culminating a series of previous works [CM12,
MR15, BBJ17, Heil7, MN18a, MN18b, Heil8|. Conjecture 1.2 for all fixed parameters
0 < p < 1 was entirely open until now. Unlike the case of the Majority is Stablest (Theorem

1.8), Conjecture 1.2 cannot hold when the candidates have unequal chances of winning the
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election [HMN16]. This realization is an obstruction to proving Conjecture 1.2. It suggested
that existing proof methods for Theorem 1.8 cannot apply to Conjecture 1.2.
Nevertheless, we are able to overcome this obstruction in the present work.

Theorem 1.3 (Main Result, Informal Version). There exists € > 0 such that Conjecture
1.2 holds for m = 3 candidates, for all n > 1, when the probability of a single vote being
corrupted is any number in the range (1/2 —e,1/2).

Theorem 1.3 is the first proven case of the Plurality is Stablest Conjecture.1.2.

1.2. More Formal Introduction. Using a generalization of the Central Limit Theorem

known as the invariance principle [MOO10, IM12], there is an equivalence between the

discrete problem of Conjecture 1.2 and a continuous problem which is known as the Standard

Simplex Conjecture [IM12]. For more details on this equivalence, see Section 7 of [IM12]We

begin by providing some background for the latter conjecture, stated in Conjecture 1.6 below.
For any k > 1, we define the Gaussian density as

n+1

o) i= @m) R gy = S g el = () 0
i=1
Vo= (21, ., Tpns1),¥ = (Y1, Yns1) € R™TL
Let 21,..., 2z, € R be the vertices of a regular simplex in R"*! centered at the origin.
For any 1 <1 < m, define
Q; = {z e R"": (z,2) = max (,2,)}. (2)
1<j<m

We refer to any sets satisfying (2) as cones over a regular simplex.
Let f: R™™ — [0, 1] be measurable and let p € (—1,1). Define the Ornstein-Uhlenbeck
operator with correlation p applied to f by

1,f(x) = : f@p+yv1—p)(y) dy
) (3)
_ lly—p=z||

_ (1 _ p2)—(n+1)/2(2ﬂ_)—(n+1)/2 f(y)e 2(1—p2) dy, Ve € R

]Rn+1

T, is a parametrization of the Ornstein-Uhlenbeck operator, which gives a fundamental
solution of the (Gaussian) heat equation

d 1 — —
3T @) = ;< ~ BT, (@) + (@, VT,f(2))),  VoeR™. (4)
Here A := Z?jll 0%/02? and V is the usual gradient on R"*!. T, is not a semigroup, but it
satisfies T, T, = T}, ,, for all p;, p2 € (0,1). We have chosen this definition since the usual
Ornstein-Uhlenbeck operator is only defined for p € [0, 1].

Definition 1.4 (Noise Stability). Let @ C R be measurable. Let p € (—1,1). We
define the noise stability of the set €2 with correlation p to be

—llzl?~llyl%+2p¢z,y)
/ Lo(2)T)la(@) (@) de & (2m) " (1 — p?)=2 / / e dady,
Rn+1 A QJao




Equivalently, if X = (X1,...,X,11),Y = (Y1,...,Y1) € R*™ are (n + 1)-dimensional
jointly Gaussian distributed random vectors with EX;Y; = p-1(,—;) for all,j € {1,...,n+1},
then

/Rn+1 lo(2)T,1q(x) Y (z) dz =P((X,Y) € Q x Q).

Maximizing the noise stability of a Euclidean partition is the continuous analogue of
finding a voting method that is most stable to random corruption of votes, among voting
methods where each voter has a small influence on the election’s outcome.

Problem 1.5 (Standard Simplex Problem, [IM12]). Letm > 3. Fizay,...,a, > 0 such
that Y " a; = 1. Fiz p € (0,1). Find measurable sets Q... 0y, C R with U, Q; = R*
and Yn+1(€%) = a; for all 1 < i < m that mazimize

S [ T )

subject to the above constraints. (Here ~ypy1(S2 fQ Tnp1(x)dz V1 <i<m.)
We can now state the continuous version of ConJecture 1.2

Conjecture 1.6 (Standard Simplex Conjecture [IM12]). Let Qy,...Q,, C R"™ mazi-
mize Problem 1.5. Assume that m —1<n+1. Fiz p e (0,1). Let z1,...,2, € R" be the
vertices of a reqular simplex in R""1 centered at the origin. Then 3 w € R" ! such that, for
all1 <i<m,
Qi =w+ {x e R"": (z,2) = max (z,z;)}.
1<j<m

It is known that Conjecture 1.6 is false when (aq,...,a,) # (1/m,...,1/m) [HMN16]. In
the remaining case that a; = 1/m for all 1 <i < m, it is assumed that w = 0 in Conjecture
1.6.

For expositional simplicity, we separately address the case p < 0 of Conjecture 1.6 in
Section 7 below.

1.3. Plurality is Stablest Conjecture. As previously mentioned, the Standard Simplex
Conjecture [IM12] stated in Conjecture 1.6 is essentially equivalent to the Plurality is Stablest
Conjecture from Conjecture 1.2. After making several definitions, we state a formal version
of Conjecture 1.2 as Conjecture 1.7 below.

Ifg: {1,...,m}" - R and 1 <i <n, we denote

E(g):=m™ Y gw)

we{l,...,m}m
Ei(9) (Wi, -+, Wis1, Wity - -+, Wo) i=m " Z glwr, ... wy)
w;€{1,....m}
\V/(Wl, cee Wil Wi, - - ,wn) S {]_7 o ,m}”.
Define also the i** influence of g, i.e. the influence of the i** voter of g, as
Inf;(g) := E[(g — Eig)°]. (5)
Let
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If f:{1,...,m}"™ — A,, we denote the coordinates of f as f = (f1,...,fm). For any
w € Z", we denote ||w||, as the number of nonzero coordinates of w. The noise stability of
g:{1,...,m}" — R with parameter p € (—1,1) is

S,g :=m™" Z g(Ww)E,g(6)

wed{l,...,m}n
3 L~ (m— 1)\l 71—y o=l
St Y g 3 () )
we{l,...,m}m oe{l,....m}n

Equivalently, conditional on w, E,g(d) is defined so that for all 1 < i < n, §; = w; with
probability %_1”, and 0; is equal to any of the other (m — 1) elements of {1,...,m} each
with probability %, and so that d1,...,0, are independent.

The noise stability of f: {1,...,m}" — A,, with parameter p € (—1,1) is
Sof =Y S,fi
i=1

Let m > 2, k > 3. For each j € {1,...,m}, let ; = (0,...,0,1,0,...,0) € R™ be the 5

unit coordinate vector. Define the plurality function PLUR,,,: {1,...,m}" — A,, for m
candidates and n voters such that for all w € {1,...,m}".

e; Af {ie{l,...om}:wi =4} > |{i € {l,...,m}: w; =7},
PLUR,, »(w) == Vre{l,....,m}\{j}

L 3" e; ,otherwise.

We can now state the more formal version of Conjecture 1.2.

Conjecture 1.7 (Plurality is Stablest, Discrete Version). For any m > 2, p € [0, 1],
e > 0, there exists T > 0 such that if f: {1,...,m}" — A, satisfies Inf;(f;) < 7 for all
1<i<nand foralll1<j<m, and if Ef = 3" ¢;, then

S,f < lim S,PLUR,,,, +¢.

n—oo

The main result of the present paper (stated in Theorem 1.10 below) is: 3 pg > 0 such
that Conjecture 1.7 is true for m = 3 for all 0 < p < pg, for all n > 1. The only previously
known case of Conjecture 1.7 was the following.

Theorem 1.8 (Majority is Stablest, Formal, Biased Case, [MOO10, Theorem 4.4]).
Congecture 1.7 is true when m = 2.

For an even more general version of Theorem 1.8, see [MOO10, Theorem 4.4]. In particular,
the assumption on Ef can be removed, though we know this cannot be done for m > 3
[HMN16].

1.4. Our Contribution. The main structure Theorem below implies that sets optimizing
noise stability in Problem 1.5 are inherently low-dimensional. Though this statement might
seem intuitively true, since many inequalities involving the Gaussian measure have low-
dimensional optimizers, this statement has not been proven before. For example, Theorem
1.9 was listed as an open question in [DMN17, DMN18] and [GKR18]. Indeed, the lack of

Theorem 1.9 has been one main obstruction to a solution of Conjectures 1.5 and 1.7.
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Theorem 1.9 (Main Structure Theorem/ Dimension Reduction). Fiz p € (0,1).
Let m > 2 with m < n+2. Let Q,...Q,, C R"" mazimize Problem 1.5. Then, after

rotating the sets )y, ..., and applying Lebesque measure zero changes to these sets, there
exist measurable sets ), ... Q CR™ 1 such that,
Q; = Q) x Rm+2) V1<i<m.

In the case m = 2, Theorem 1.9 is (almost) a variational proof of Borell’s inequality, since
it reduces Problem 1.5 to a one-dimensional problem.

In the case m = 3, Theorem 1.9 says that Conjecture 1.6 for arbitrary n + 1 reduces to
the case n + 1 = 2, which was solved for small p > 0 in [Heil4]. That is, Theorem 1.9 and
the main result of [Heil4] imply:

Theorem 1.10 (Main; Plurality is Stablest for Three Candidates and Small Cor-
relation). There ezists py > 0 such that Conjecture 1.7 is true for m = 3 and for all
0<p<po.

In [Heild] it is noted that py = =203 suffices in Theorem 1.10.

We can also prove a version of Theorem 1.9 when p < 0. See Theorem 7.9 and the
discussion in Section 7. One difficulty in proving Theorem 1.9 directly for p < 0 is that it is
not a priori obvious that a minimizer of Problem 1.5 exists in that case.

1.5. Noninteractive Simulation of Correlated Distributions. As mentioned above,
Theorem 1.9 answers a question in [DMN17, DMN18] and [GKR18]. Their interest in The-
orem 1.9 stems from the following problem. Let (X,Y) € R"™ be a random vector. Let
(X1,Y1),(X2,Y2),... be i.i.d. copies of (X,Y’). Suppose there are two players A and B.
Player A has access to X1, Xs,... and player B has access to Y7, Y5, .... Without commu-
nication, what joint distributions can players A and B jointly simulate? For details on the
relation of this problem to Theorem 1.9, see [DMN17, DMN18| and [GKR18].

1.6. Outline of the Proof of the Structure Theorem. In this section we outline the
proof of Theorem 1.9 in the case m = 2. The proof loosely follows that of a corresponding
statement [MR15, BBJ17] for the Gaussian surface area (which was then adapted to multiple
sets in [MN18a, MN18b, Heil8|), with a few key differences. For didactic purposes, we
will postpone a discussion of technical difficulties (such as existence and regularity of a
maximizer) to Section 2.1.

Fix 0 < a < 1. Suppose there exists 2, Q¢ C R*™! are measurable sets maximizing

/Rn+1 lo(2)T,10(x) Yt (x)de,

subject to the constraint v, 11(€2) = a. A first variation argument (Lemma 3.1 below) implies
that X := 09 is a level set of the Ornstein-Uhlenbeck operator applied to 1g. That is, there
exists ¢ € R such that
Y= {z eR"": T,1g(x) = c}. (7)
Since X is a level set, a vector perpendicular to the level set is also perpendicular to X.
Denoting N(z) € R™! as the unit length exterior pointing normal vector to x € 99, (7)
implies that
VT,1o(x) = —=N(z) |[VT,1a(z)| . (8)
7



(It is not obvious that there must be a negative sign here, but it follows from examining
the second variation.) We now observe how the noise stability of Q2 changes as the set is
translated infinitesimally. Fix v € R™™!, and consider the variation of € induced by the
constant vector field v. That is, let ¥: R*"™ x (=1,1) — R""! such that ¥(z,0) = x
and such that f—slszo\lf(x,s) = v for all x € R"™ s € (—1,1). For any s € (—1,1), let
Q) = W(Q, s). Note that Q© = Q. Denote f(z) := (v, N(x)) for all # € ¥. Then define

2
_lly—p=z||

S(H(x) = (1 - ﬂz)_("“)”(?ﬂ)_(”“)/z/ fly)e 2= dy, Vel
)

A second variation argument (Lemma 4.5 below) implies that, if f is Gaussian volume-
preserving, i.e. [, f(2)¥p11(z)dz = 0, then

1 d?
2 ds?

| o @ @ o) do
s=0 Rn+1

0
= [ (5@ = 9T 10| 1)) f @) ()

Somewhat unexpectedly, the function f(z) = (v, N(x)) is almost an eigenfunction of the
operator S (by Lemma 5.1), in the sense that

S(U)@ = 2@ [T i@, vees. (10)

Equation (10) is the key fact use in the proof of the main theorem, Theorem 1.9. Equation
(10) follows from (8) and the divergence theorem (see Lemma 5.1 for a proof of (10).)
Plugging (10) into (9),

1 d?
/E<U, N($)>’Yn+1(1’) der =0 — 5@

[ L@ Tl @ei(o) ds
s=0 JRrn+1

= (5-1) [ 0. N@? VT 10 30 ) da
(1)
The set

Vi {ve R /E@, N(@)) i () do = 0

has dimension at least n, by the rank-nullity theorem. Since {2 maximizes noise stability,
the quantity on the right of (11) must be non-positive for all v € V', implying that f = 0
on Y (except possibly on a set of measure zero on ). (One can show that [|[VT,1q(z)|| > 0
for all z € ¥. See Lemma 4.8.) That is, for all v € V, (v, N(x)) = 0 for all x € ¥ (except
possibly on a set of measure zero on X). Since V has dimension at least n, there exists a
measurable discrete set 2 C R such that Q = Q' x R™ after rotating €2, concluding the proof
of Theorem 1.9 in the case m = 2.

Theorem 1.9 follows from the realization that all of the above steps still hold for arbitrary
m in Conjecture 1.5. In particular, the key lemma (10) still holds. See Lemmas 5.1 and 5.4

below.
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Remark 1.11. In the case that we replace the Gaussian noise stability of {2 with the
Euclidean heat content

/ lo()Plo(x)dz,  Vi>0
Rn+1

Pif(z) = fe+yVhma(y)dy, VYeeR™, VR - 0,1],
Rn+1
then the corresponding operator S from the second variation of the Euclidean heat content
satisfies

S = 1m0 [ gy ay, vaes
and then the analogue of (9) for f(z) := (v, N(z)) is
S(f)(z) = f(z) [|[VP1a(z)

so that the second variation corresponding to f = (v, N) is automatically zero. This fact
is expected, since a translation does not change the Euclidean heat content. However,
this example demonstrates that the key property of the above proof is exactly (10). More
specifically, f is an “almost eigenfunction” of S with “eigenvalue” 1/p that is larger than
1. Tt seems plausible that other semigroups could also satisfy an identity such as (10), since
(10) seems related to hypercontractivity. We leave this open for further research.

Ve,

2. EXISTENCE AND REGULARITY

2.1. Preliminaries and Notation. We say that ¥ C R""! is an n-dimensional C'*° mani-
fold with boundary if ¥ can be locally written as the graph of a C* function on a relatively
open subset of {(z1,...,z,) € R": x, > 0}. For any (n + 1)-dimensional C'*° manifold
Q) C R*™! such that 9 itself has a boundary, we denote

CE(QR™) = {f: Q = R f e C°(QR™), £(009Q) =

3r >0, f(2N(B(0,7))°) = 0}.
We also denote C§°(€2) := C3°(€;R). We let div denote the divergence of a vector field in
R™™. For any r > 0 and for any x € R"" we let B(z,r) := {y € R"™: |z —y| < r}

be the closed Euclidean ball of radius r centered at x € R™t!. Here 00f) refers to the
(n — 1)-dimensional boundary of €.

(12)

Definition 2.1 (Reduced Boundary). A measurable set  C R™""! has locally finite
surface area if, for any r > 0,

sup{/ div(X(z))dz: X € C°(B(0,7),R™™), sup || X(z)| < 1} < 00.
Q zeRnH1

Equivalently, €2 has locally finite surface area if V1 is a vector-valued Radon measure such
that, for any € R""!, the total variation

Vil (B(z,1)) = sup Z IVig(C

partitions



is finite [CL12]. If Q C R™*! has locally finite surface area, we define the reduced boundary
9*Q of Q to be the set of points x € R"*! such that

) Vio(Blz,r))
N@) == o L B, )

exists, and it is exactly one element of S™ := {z € R"*!: |[z] = 1}.

The reduced boundary 0*(2 is a subset of the topological boundary 0€). Also, 0*€2 and 02
coincide with the support of V1g, except for a set of n-dimensional Hausdorff measure zero.

Let Q C R™"! be an (n+1)-dimensional C? submanifold with reduced boundary ¥ := 9*().
Let N: ¥ — S™ be the unit exterior normal to 3. Let X € Cg°(R™™!, R™). We write X
in its components as X = (Xi,...,X,.1), so that divX = Z"H 9 .- Xi Let Wi R™ x

(—1,1) — R™*! such that

W(z,0) = =, %\m ) = X(U(z,5)), VecR™, se(-1,1).  (13)

For any s € (—1,1), let Q) := ¥(Q,s). Note that Q0 = Q. Let X = 9*Q®) v
€ (—1,1).

Definition 2.2. We call {Q(* }se( 1,1) as defined above a variation of Q C R™*!. We also
call {20 }5E _1,1) a variation of ¥ = 9%(}

For any x € R™! and any s € (—1,1), define

V(z,s) = /Q Glay)dy, (14)

Below, when appropriate, we let dx denote Lebesgue measure, restricted to a surface
¥ C R,

Lemma 2.3 (Existence of a Maximizer). Let 0 < p < 1 and let m > 2. Then there exist
measurable sets Qq, ..., €, maximizing Problem 1.5.

Proof. Define A,, as in (6). Let f: R"™ — A,,. We write f in its components as f =
(fi,-- -y fm)- Theset Dy := {f: R"" — A, } is norm closed, bounded and convex, therefore
it is weakly compact and convex. Consider the function

Z )T, fi(2)Ynt1(x) da.

Rn+l

This function is weakly continuous on Dy, and Dy is weakly compact, so there exists f € Dy

such that C(f) = max e p, C(f). Moreover, C' is convex since for any 0 < ¢ < 1 and for any
10



(C(f) + (L= C(g) ~ Cltf + (1~ )9
=3 [ (T + (1 = D@ T

= (tfi(@) + (1 = OGN [fi(@) + (1 = Dgi(2)])yns1 (2) de

m

=t(1-0)) / () = DT (@) = ()] ) (@) d > 0
i=1 Rn+1
Here we used that
| @b ) de = [ (@) () de 2 0 (19
Rn+1 Rn+1
for all measurable h: R — [—1,1].

Since C'is convex, its maximum must be achieved at an extreme point of Dy. Let ey, ..., €,
denote the standard basis of R™, so that f takes its values in {ey,..., e, }. Then, for any
1 <i<m,define Q; :={xr € R"™: f(x) =¢;}, sothat f; =1q V1 <i<m. O
Lemma 2.4 (Regularity of a Maximizer). Let Q,...,Q,, C R" be the measurable sets
mazximizing Problem 1.5, guaranteed to exist by Lemma 2.3. Then the sets 2y, ..., have

locally finite surface area. Moreover, for all 1 < i < m and for all x € 0S);, there exists a
neighborhood U of x such that U N 0$2; is a finite union of C*° n-dimensional manifolds.

Proof. This follows from a first variation argument and the strong unique continuation prop-
erty for the heat equation. We first claim that there exist constants (¢;;)1<i<j<m such that

Q2 {z e R"™: T 1, (z) > T,1q,(x) + ¢, Vi€ {L,....m}\ {i}}, V1<i<m. (16)

By the Lebesgue density theorem [Ste70, 1.2.1, Proposition 1], we may assume that, for
all i € {1,...,k}, if y € Q;, then we have lim, 0 7,,+1(2; N B(y, 7))/ ni1(B(y, 7)) = 1.

We prove (16) by contradiction. Suppose there exist ¢ € R, j, k € {1,...,m} with j # k
and there exists y € {}; and z € ), such that

Tp(lﬂj - 1Qk>(y) < TP<1QJ‘ - 1Qk><z> > C.

By (3), Tp(1a, — 1o, ) () is a continuous function of 2. And by the Lebsgue density theorem,
there exist disjoint measurable sets U;, U, with positive Lebesgue measure such that U; C
Q;, Uy C Qy such that v,41(U;) = Y41 (Ug) and such that

Tp(lgj — 1Qk)(y/) <, Vy' € Uj, Tp(lgj — 1Qk)<y/) > c, Vy’ e U,. (17)

11



We define a new partition of R**! such that Qj = U, UQ; \ Uj, S~2k = U; UQ \ U, and
Q= foralli e {1,...,m}\ {j,k}. Then

Z/Rn“ 1g (2)T)1g, (%) yny1(z) dz — Z/R Lo, (2)T) 1o, () Vs (z) da

n+1

B /Rn+1 151’ (m)Tplﬁj (IB)’)/,Hl(-f) do = / 19]‘ ($)Tplﬂj (x)7n+1 ($) dx

Rn+1

+/Rn+1 1g, (2)Tplg, (2) V1 () d:z:—/R 1o, (2)T, 1o, (2)Yns (z) da

n+1

= [ o = L+ 10J@T 1o, — L, + e (0) da
‘|—/ [1Qk - 1U,C + 1Uj]Tp[IQk - ]'Uk + 1Uj]'7n+1($) dx
Rn+1

) / Lo, (@)Tyla, ()41 () do - / Loy (2)T) Loy ()04 (2) da

Rn+1

2 [ [l + L)@l 1o (o) do
Rn 1

(17)A(15)
+ 2/ [1Uj - 1Uk]TP[1Uj - 1Uk]7n+1(x> dz >
Rn+1

This contradicts the maximality of 2y, ..., €,. We conclude that (16) holds.
We now fix 1 <i < j <m and we upgrade (16) by examining the level sets of
Ty(lg, — 1lg,)(z),  VzeR".
Fix ¢ € R and consider the level set
Yi={r e R"": T,(1g, — lo,)(z) = c}.

This level set has Hausdorff dimension at most n by [Che98, Theorem 2.3].

From the Strong Unique Continuation Property for the heat equation [Lin90], T,(1lq, —
lo,)(x) does not vanish to infinite order at any € R, so the argument of [HS89, Lemma
1.9] (see [HL94, Proposition 1.2] and also [Che98, Theorem 2.1]) shows that in a neighborhood
of each x € ¥, ¥ can be written as a finite union of C'*° manifolds. That is, there exists a
neighborhood U of x and there exists an integer k > 1 such that

UNYS=U_{y € U: D'T)(1lg, — 1q,)(2) # 0, D'T,(1lg, — 1g,)(z) =0, V1 < j <i—1}.

Here D' denotes the array of all iterated partial derivatives of order i > 1. We therefore
have

Y = (07Q) N (0°) 2 {x e R™: T)(1g, — Lo,)(x) = cij},

and the Lemma follows. O

From Lemma 2.4 and Definition 2.1, for all 1 <7 < j < m, if & € ¥;;, then the unit normal
vector Ny;(z) € R™*! that points from €; into Q; is well-defined on X5, ((9%) N (99;)) \ Xy
has Hausdorff dimension at most n — 1, and
va(lgz - 19])(1')
HVTP(lﬂi - 19])(x)||

12




In Lemma 4.5 below we will show that the negative sign holds in (18) when Q4,...,Q,,
maximize Problem 1.5.

3. FIRST AND SECOND VARIATION

In this section, we recall some standard facts for variations of sets with respect to the
Gaussian measure. Here is a summary of notation.
Summary of Notation.

e T, denotes the Ornstein-Uhlenbeck operator with correlation parameter p € (—1,1).
e O,...,0,, denotes a partition of R"™! into m disjoint measurable sets.

e 0% denotes the reduced boundary of Q C R**1,

o X, = (0"Q) N (0*Q) for all 1 < 4,5 < m.

e N;;j(z) is the unit normal vector to x € 3;; that points from €; into €;, so that
Throughout the paper, unless otherwise stated, we define G: R*™! x R*™! — R to be the
following function. For all z,y € R"* V p € (—1,1), define

—llel?~llyl%+2p¢z.y)

G(:}:,y) = (1 _ pQ)—(n+1)/2(2ﬂ_)—(n+1)e 30-02)

—p2(nzu2+uyu§)+2p<z,y>

=(1- 02)_(n+1)/27n+1(x)’YnJrl(y)@ 21-e%)

2
—lly—pz]|

_ (1 - p2)7(n+1)/2(271_>7(n+1)/2,.yn+1(x)e 21-p2)

(19)

We can then rewrite the noise stability from Definition 1.4 as

/R . La(@)Llo(@) (@) dr = /Q /Q G(x,y) dzdy.

Our first and second variation formulas for the noise stability will be written in terms of G.

Lemma 3.1 (The First Variation [CS07]; also [HMN16, Lemma 3.1, Equation (7)]). Let
X € CRR™L R Let Q C R™™ be a measurable set such that OQ is a locally finite
unton of C* manifolds. Let {Q(S)}SE(_M) be the corresponding variation of Q2. Then

d

ds

s=0 /qu 19(5) (y)G(x, y) dy = 20 G(SL’, y) <X(y>7 N(y)) dy (20)

The following Lemma is a consequence of (20) and Lemma 2.4.

Lemma 3.2 (The First Variation for Maximizers). Suppose 1, ...,Q,, C R"™ mazi-
mize Problem 1.5. Then for all 1 < ¢ < j < m, there exists c;j € R such that

T,(1g, — 1g,)(7) = ¢4, Vo e ;.
13



Proof. Fix 1 < i < j < m and denote f;;(z) := (X (x), N;;(z)) for all z € ¥;;. From Lemma
3.1, if X is nonzero outside of XJ;;, we get

s— OZ/]Rn-H Q() Tplg(s)( )’YTH—I( )d
:/Qi G(I,?J)/E <X(~T)1Nij($)>dl’dy+/9 G(I,y)/E (X(z), Nji(x)) de dy

ij J ij

o [ s oo

ij

2ds

We used above N;; = —Nj;. If T,(1g, — 1g,)(z) is nonconstant, then we can construct
fij supported in X;; with [o.  fi;j(2)Yps1(2)dz = 0 for all 1 < 7 < m to give a nonzero
derivative, contradicting the maximality of €2,...,,, (as in Lemma 2.4 and (17)). O

Theorem 3.3 (General Second Variation Formula, [CS07, Theorem 2.6]; also [Heil5,
Theorem 1.10]). Let X € C°(R™ ! R, Let Q@ C R™™ be a measurable set such that 9

is a locally finite union of C*° manifolds. Let {Q) }se(—1,1) be the corresponding variation of
Q. Define V as in (14). Then

1 d?
/ / Lo (¥)G (2, y)1ge () dzdy
s=0 Jrn+1 JRn+1

2ds?
=/Z/EG(5”7y)<X(93)’N($)><X(y)>N(y)>dxdy+/EdiV(V(%O)X(fv))<X(:v),N(:n)>dx.

4. NOISE STABILITY AND THE CALCULUS OF VARIATIONS

We now further refine the first and second variation formulas from the previous section.
The following formula follows by using G(z,v) := Yns1(2)Vnr1(y) ¥V 2,y € R™ in Lemma
3.1 and in Theorem 3.3.

Lemma 4.1 (Variations of Gaussian Volume, [Led01]). Let Q C R™™ be a measurable
set such that 9 is a locally finite union of C™ manifolds. Let X € C§(R"™ R"). Let
{9} se(_1.1) be the corresponding variation of Q. Denote f(z) := (X (z),N(x)) for all
x € X :=0"Q. Then

d

el Szo%H(Q(S)) = /zf(x)%ﬂ(x) dz

ds

d2
ds? s

() = / (div(X) — (X, 2)) f (@) () do.

Lemma 4.2 (Extension Lemma for Existence of Volume-Preserving Variations,
[Heil8, Lemma 3.9]). Let X' € C3°(R™, R™™) be a vector field. Define fi; == (X', Ni;) €
Ce(Zi) foralll <i<j<m. If

je{1,..., m}\{z



then X'l ...z, can be extended to a vector field X € Cg(R™ R"Y) such that the

corresponding variations {QES)}lgigm,se(—l,l) satisfy

V1 <1< m, Vs € (_17 1)7 ’Yn-ﬁ-l(Qz('S)) = ’yn-i-l(Qz)

Lemma 4.3. Define G as in (19). Let f: ¥ — R be continous and compactly supported.

Then
/E /E G, y) f(x) () dady > 0.

Proof. If g: R™*! — R is continuous and compactly supported, then it is well known that

// (z,y)g(x)g(y) dedy > 0,

— Gy g the Mehler kernel, which can be written as an (infinite-dimensional))
Trt1(z) In+1(Y)

positive semidefinite matrix. That is, there exists an orthonormal basis {1;}5°; of La(vn41)
(of Hermite polynomials) and there exists a sequence of nonnegative real numbers {2,
such that the following series converges absolutely pointwise:

since e.g.

Gz,
At () iy Va,y € R™
Vo1 (@) Yns1(y Z
From Mercer’s Theorem, this is equivalent to : V p > 1, for all 2z, ... 2 ¢ R", for all
517"'7ﬁp GR,

p
S B8 GED, 20 > 0.

ij=1
In particular, this holds for all 2z, ... 2 € 99 C R™'. So, the positive semidefinite
property carries over (by restriction) to 0. O

4.1. Two Sets. For didactic purposes, we first present the second variation of noise stability
when m = 2 in Conjecture 1.5.

Lemma 4.4 (Second Variation of Noise Stability). Let Q@ C R™™ be a measurable
set such that 9 is a locally finite union of C™ manifolds. Let X € C§(R"™ R"). Let
{Q©)} 41,1y be the corresponding variation of Q. Denote f(z) := (X(x),N(z)) for all
x € X :=0*Q. Then

1 d2
/ / Low (1)G (2, y)lge (x dﬂﬁdy—// (z,y)f(z)f(y)dzdy
5=0 Jrn+1 JRpn+1

2ds?
(VT,la(x), X (2))f () yns1(2) dz (22)

+ [ Tla()(div(X () = (X (@), 2)) f(@)5001(2) d.
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Proof. For all z € R™ we have V(z,0) = Jo Gz, y)dy © Ynt1(x)Tola(z). So, from
Theorem 3.3,

%;_; 5=0 /Rnﬂ /R Lo )G(@,y)low (@) drdy
- / / G, y) (X (x), N(@)) (X (y), N(y)) dardy
/ HZHT Lo(2) 5~ Xi(x) — 2T, 1o(2) Xi(x)
" %Tplfz(wm(asmxuxN<x>>%+1<x> da.
That is, (22) holds. .

Lemma 4.5 (Volume Preserving Second Variation of Maximizers). Suppose €2, Q¢ C

R™ mazimize Problem 1.5 for 0 < p < 1 and m = 2. Let {Q®}4¢(_1.1) be the corresponding
variation of Q). Denote f(x) := (X (x), N(z)) for all x € ¥ := 0*Q. If

/E F (@) (z) dz = 0,

Then there ezists an extension of the vector field X s, such that the corresponding variation

of {2} L1 satisfies

1 d2
sasl L[ )G e ) dody
2ds s=0 Jrn+1 JRn+1 (23)
://G(x,y)f(x) y) dedy — /HVT lo(x H N2 Vpg1 () da.
nJ%
Moreover,
VT,lg(z) = —=N(z) |V, 1a(z)||, Vzel. (24)

Proof. From Lemma 3 1 T,1q(x) is constant for all x € ¥. So, from Lemma 4.1 and Lemma
4.2, the last term in (22) vanishes, i.e.

;i:? s= o/Rn+1 /Rn+1 Loe) (¥)G (2, y)Loe () dzdy
- / /EG(x’yxX(x)’N(ﬂ?))(X(y);N(y)>dxdy
+ L(valQ(x)aX($)><X($),N(x>>/yn+l(x> dr.

(Here V denotes the gradient in R"*1.) Since T,1g() is constant for all z € 9 by Lemma
3.2, VT,1q(x) is parallel to N(z) for all z € 9. That is,

VT lg(z) = + ||V 1a(z)|| N(z), V€ 0. (25)

In fact, we must have a negative sign in (25), otherwise we could find a vector field X

supported near x € 02 such that (25) has a positive sign, and then since G is a positive
16



semidefinite function by Lemma 4.3, we would have
1 d2
/ / Low (¥)G (2, y) 1w (z) dzdy
s=0 Rn+1 Rn+1

2ds
> [ (FT,10(). X)X @), N@a(a)do > 0

a contradiction. In summary,

%(?_; $=0 /Rn+1 /]RnH Lo (¥)G (2, y) oo (z) dzdy
_ / / Gz, y){X (z), N(2))/(X (), N(y)) dedy

/HVT lo(x H N Vg1 () da.

O

4.2. More than Two Sets. We can now generalize Section 4.1 to the case of m > 2 sets.

Lemma 4.6 (Second Variation of Noise Stability, Multiple Sets). Let Qq,...,Q,, C
R™ be a partition of R"*! into measurable sets such that 09 is a locally finite union of
C> manifolds for all 1 < i < m. Let X € CPR" R"™). Let {QES)}SE(_M) be the
corresponding variation of Q; for all 1 < i < m. Denote f;j(x) := (X(z), Nij(x)) for all
x € X = (0*) N (0%Q;). We let N denote the exterior pointing unit normal vector to
0*Q; for any 1 <i < m. Then

;i:? = OZ /RW /Rnﬂ ol 7, y) g () drdy
> / / /BQ (y)yN(y)>dy} fiy(x) da

1<i<j<m (26)
n / (VT (10, — 10,)(2), X(2)) fis (@) s (z) de

ij

[T 00 = 10)(@) (A(X (@) = (X(@).2)) i) o)

Proof. From Lemma 4.4,

1 d2
/ / ( G(z,y)l Q) ) () dedy
s=0 Rn+1 Rn+1 l

2ds?
B / o oo, G (X (@), N@))(X(y), N(y) dady

[ (T, X (@)X (), N ) s d

+ /8*9. T,1q,(x) (diV(X(I)) — <X<I>,$>> (X (x), N(2)) Vg () de.

Summing over 1 <7 < m and using N,;; = —N;; completes the proof. O
17



Below, we need the following combinatorial Lemma, the case m = 3 being treated in
[HMRRO02, Proposition 3.3].

Lemma 4.7 ([Heil9, Lemma 4.6]). Let m > 3. Let

m
2

D1 = {(xij)lgi;éjgm € R( )I V1 S ) 7éj S m, Tij = —Tji, Z Tij = 0}

DQ = {(xij)lgi;éjgm € R(T;) V1 S 1 #] S m, ill'ij = —l'ji,

Letx € Dy and let y € Dy. Then 3oy, Tij¥ij = 0.

Proof. Dy is defined to be perpendicular to vectors in Dy, and vice versa. That is, D; and D,

are orthogonal complements of each other, and in terms of vector spaces, D; & Dy = R(%).
Consequently, the inner product of any x € Dy and y € D, is zero. 0

Lemma 4.8 (Volume Preserving Second Variation of Maximizers, Multiple Sets).
Let Q4,...,Q, CR"! be a partition of R into measurable sets such that 09 is a locally
finite union of C* manifolds for all 1 <i < m. Let X € C2(R"™ R™1). Let {0 }oe 1)
be the corresponding variation of Q; for all 1 <i < m. Denote f;;(x) = (X (z), Nij(x)) for
all x € ¥y = (0"Q;) N (0*QY;). We let N denote the exterior pointing unit normal vector to
0*Q; for any 1 <i <m. Then

1 s G ]- s d d
SOZ/W+1 /Rn+1 QU(?J) (z,y) Q§>(x) ray

k3

= > [ ([ -] Jewpxwwalmwa e

1<i<j<m

1 d?
2 ds?

o / Hva(lQi - 1QJ)($)H (fij(x))2’yn+1(x) dz.

)

Also,

VT,(1lg, — lo,)(z) = —Ny(2) |[VT (1o, — 1,)(2)||,  Vaz €%y (28)

Moreover, ||VT,(1g, — 19])(33)” > 0 for all x € ¥;;, except on a set of Hausdorff dimension
at most n — 1.
18



Proof. From Lemma 3.2, there exist constants (c;j)1<i<j<m such that T(1g, — 1o,)(z) = ¢y
forall 1 <i<j <m, for all z € ¥;;. So, from Lemma 4.6,

o= OZ/RHH /Rnﬂl @ Y)G(,y) 10 () drdy
> / /aQ / | (y)7N<y)>dy} (X (x), Nyj(2)) dw

1<i<j<m

+/E (VT,(lg, — 1q,)(x), X (2))(X (2), Nij(2)) Y01 (2) dz

ij

1 d?
2ds?

ey [ (VX)) = (X)) (X @), Vi) o)

ij

The last term then vanishes by Lemma 4.7. That is,

5= OZ/RHH /Rn+1 0@ (W) G(@,y) 1o (v) dedy
- /z /89 /89 X(y), N(y)) dy| (X (z), Nij(z)) dz

1<i<j<m

+/E (VT,(lo, — lo,)(x), X (2))(X (), Nij()) Yn+1 () da.

ij

1 d?
2 ds?

Meanwhile, if 1 < i < j < m is fixed, it follows from Lemma 3.2 that
VT,(1lg, — lg,)(z) = £Ny;(2) |[VT,(1a, — 1,)(2)||,  Vz € Xy (29)

In fact, we must have a negative sign in (29), otherwise we could find a vector field X
supported near xz € 3;; such that (25) has a positive sign, and then since G is a positive
semidefinite function by Lemma 4.3, we would have

o (z) dzd
- oz/Rn+1/Rn+1 ol 7,y) 1o (7) dedy

> [ (V010 = 10,)(@) X @)X (@), N@)) i (a) da >0,

ij

1 d?
2ds?

a contradiction. In summary,

s:oZ/]R . /]R+ Lo (¥)G (2, y)1ge (1) drdy
i=1 YR JReAL

o / / / Gl ) y)N<y>>dy]<x<x>,zvij<x>>dx

- [ 1950, - o) @) (X D2 (2) da

ij

1 d?
2 ds?
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5. ALMOST EIGENFUNCTIONS OF THE SECOND VARIATION

For didactic purposes, we first consider the case m = 2, and we then later consider the
case m > 2.

5.1. Two Sets. Let X := 0*). For any bounded measurable f: > — R, define the following
function (if it exists):

2
_ lly—p=z||

S(f)(x) = (1= p*)~ D2 (2) =D/ / fly)e -4 dy,  Vzel. (30)
)

Lemma 5.1 (Key Lemma, m = 2, Translations as Almost Eigenfunctions). Let
Q, Q¢ mazximize Problem 1.5 for m = 2. Let v € R""L. Then

S((v, NY)(z) = @,N@:»% IST10()|, Vres.

Proof. Since T,1g(z) is constant for all z € 9Q by Lemma 3.2, VT,1o(x) is parallel to N(z)
for all z € 0€2. That is (24) holds, i.e.

VT,lg(z) = —=N(z) ||VT,1qa(z)

: Vel (31)

From Definition 3, and then using the divergence theorem,

N2 — _ly—pal®
(0, T a(@)) = (1= ) 002 m o2y, [ T, 5555 )
Q

_ lly—pz|?
= (1= ) O 2m) R / (v, y — pr)e 2071 dy
- Q

2
_lly—pz||

~- (1 _p2)—(n+1)/2(2,ﬂ)—(n+l)/2p/ div, (Ue ) ) dy (32)
Q

lly—pa|?

= (1= ) n)y 0 [ (o N T dy
)3

(30

2 pS((v, N)) ().
Therefore,

(v, N(@)) VT, 10@)| E (0, VT, 10()) 2 pS((v, N))(@).
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Remark 5.2. To justify the use of the divergence theorem in (32), let » > 0 and note that
we can differentiate under the integral sign of T,1onp(0, (%) to get

= B
VT, lonpon () = (1 _p2>—(n+1)/2(27r)—(n+1)/2<U7/ Ve 02 dy>
QNB(0,r)
— (1 _ 2)—(n+1)/2(27r)—(n+1)/2 P <U B x)e_ I\Qy(l—figf d
N g 1= p* JonB(o, I Y
o2
L (1= )2 (g2, / div, <U€* Loy > ay
QNB(0,r)
ly—pz|®
=-(1- pZ)‘("+”/2(27T)‘("+1)/2,0/ (v, N(y)ye 2 dy.
(ZNB(0,r))U(QNIB(0,r))
(33)

Fix ' > 0. Fix z € R""™ with ||z]| < r’. The last integral in (33) over Q N dB(0,7) goes

to zero as r — oo uniformly over all such ||z| < 7. Also VT,1o(x) exists a priori for all
x € R while

VT, 10(x) = VT, lanson (@) 2 —L

V1= p?
P /
S m sup / - |<wa y>| 1B(0,r)c($p + Yy - pQ)’Yn-i-l(y) dy
— Rn

weR™M L |Jw||=1

/ » Ylonsore(zp +yv 1 — p?) Vi1 (y) dyH
Rn

And the last integral goes to zero as r — oo, uniformly over all ||z|| < 7.

Lemma 5.3 (Second Variation of Translations). Let v € R"™. Let Q,Q° mazimize
Problem 1.5 form = 2. Let {Q(s)}se(,m) be the variation of £ corresponding to the constant
vector field X :=v. Assume that

/Z (0, N(@)) 91 (2) d = 0,

Then

1 d? 1 —
32l L e @D oo @) de = (5 =1) [ 19T 0@l N@) () d.

Proof. Let f(z) := (v, N(z)) for all x € ¥. From Lemma 4.5,

1 d?
2 ds2 0/ . Lo () Tplge) () Yner (z) do
S= Rn+1

I
T

(SU@) = IV, 10@)1f () F(@) 3011 () de.

Applying Lemma 5.1, S(f)(x f(x)%"valg)(iL‘)H V x € ¥, proving the Lemma. Note also
that [, [|[VT,10(2)||(v, N(2))*vn11(x) dz is finite priori by the divergence theorem and (24):

/Q <v, —x+ V(U,valg(x)>>%+1(ac) dz /Qdiv (U(U,VTplg(x»%H(m)) dz

x>

—_ (24)

/Z (0, N(@)) (0, VT Lo(2)) s (z) da

/2 19,10 ()| 0, N (@) () da
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O

5.2. More than Two Sets. Let v € R""! and denote f;; := (v, Nj;) for all 1 <i,5 < m.
For simplicity of notation in the formulas below, if 1 < i < m and if a vector N(x) appears
inside an integral over 0€;, then N(z) denotes the unit exterior pointing normal vector to
Q; at x € 0*Q;. Similarly, for simplicity of notation, we denote (v, N) as the collection of
functions ((v, Nyj))1<i<j<m. For any 1 <i < j < m, define

lly—pz|?

(0. M) (o) 1= (1= 2y e ( [ = [ Yo v S g, va e s
(34)

Lemma 5.4 (Key Lemma, m > 2, Translations as Almost Eigenfunctions). Let
i, ..., Qn mazimize problem 1.5. Fiz 1 <i < j <m. Let v € R""'. Then

Sii((v, N))(x) = (v, Nyj(x)) - HVT 19])(33)!! : Ve X,
Proof. From Lemma 4.8, i.e. (28),

VT,(1lg, — lg,)(z) = —=Ny(2) [|[VT (1, — 1g,)(z)||,  Vz € Xy (35)

From Definition 3, and then using the divergence theorem,

= lly—pz|?
(0, VT 1o, (2)) = (1= p?) " 02(2m) 0402y, | Fe 20000 ay)
Q;

_lly—paz?
= (1= ) amy e L [ gy e S ay
Q;

1—p
ly=pz|? (36)
—(1— ,02)_("+1)/2(27T)_("+1)/2)p/ div(ve_m> dy
Q;
ly—pz>
=—(1 —p2)‘(”+1)/2(27r)“”+”/2p/ (v, N(y))e >0 dy.
The use of the divergence theorem is justified in Remark 5.2. Therefore,
35)
(v, Nz] ) VT, (1o, — 1a,) H ® (0, VT, (1g, — 10,)(x))
y—pz|>
21— pyeaany e [ / o Ny o
(34)
pSii((v, N)) ().
O

Lemma 5.5 (Second Variation of Translations, Multiple Sets). Let v € R"™!. Let
Q1,...,Q,,, mazimize problem 1.5. For each 1 < i <m, let {QES)}SE(,M) be the variation of
Q; corresponding to the constant vector field X :=v. Assume that

| e N@pa@de =0, Yi<i<m
o0
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Then

1 d2 =
51l 0 2 [ e O g (@) da
=(5-1) 2 [ 190~ 10 @0 Ny @) s )
1<i<j<m

Proof. For any 1 <i < j <m, let fi;(z) :== (v, N;;(z)) for all z € X. From Lemma 4.5,

1 d?
ezl oz/]Rn+1 Low (@) Tyl (€)Y (7) dz
= 3 [ (Salte M@ = 19T (o, — 10 )@ )) o 0)
1<i<j<m X
Applying Lemma 5.4, S;;({(v, N))(z) = fm( )%HV p(lo, — 1g,)(2)||, proving the Lemma.
Note also that >, icp, fzij IVT,(1q, ,) (@) (v, Nij(2))*yns1(2) dz is finite priori by

the divergence theorem since

/Q. <v, —x + V(v,VTplgi(x)>>%H(x) dezl =

oo >

/Q. div <U<U’ VT,1q, <x>>’7n+1($)> dx

_ /Q ‘div(v(v,valgi(x))’ynH(a:)) de| = /6 m_(v,vT,,(mi)(x))(U,N(x)mﬂ(x)dx.

Summing over 1 < ¢ < m then gives

S [, 0. FT 00— 10 ) N 0)

1<i<j<m

2 / 19T, (10, = 1a,) (@) (0, Nig(2)) 29041 (x) de. |

1<i<j<m

6. PROOF OF THE MAIN STRUCTURE THEOREM

Proof of Theorem 1.9. Let m > 2. Let 0 < p < 1. Fix a4, ..., a, > 0 such that > " a; = 1.
Let Q1,...Q, C R"" be measurable sets that partition R"™! such that v,.1() = a;
for all 1 < ¢ < m that maximize Problem 1.5. These sets exist by Lemma 2.3 and from
Lemma 2.4 their boundaries are locally finite unions of C* n-dimensional manifolds. Define
i = (0") N (0"Q;) forall 1 <i < j<m.

By Lemma 3.2, for all 1 <+¢ < j < m, there exists ¢;; € R such that

T,(1g, — 1g,)(7) = ¢y, Vo e ;.
By this condition, the regularity Lemma 2.4, and the last part of Lemma 4.8,
VT,(1g, — 1g,)(z) = —Ny( HVT lo, — lo,)(@)||,  Va eIy



Moreover, by the last part of Lemma 4.8, except for a set o;; of Hausdorff dimension at most
n — 1, we have
VT, (1o, — 10,)(z)|| >0,  Vz e\ oy (37)

Fix v € R and consider the variation of Qy,...,€,, induced by the constant vector
field X :=wv. For all 1 <i < j <m, define S;; as in (34). Define

V= {’U c R Z / (v, Nij(2))Yn+1(z) dz = 0, V1<i< m}
je{l,..mP\{i} Y >
From Lemma 5.5,

1 d? ¢
veEV —= 5@ 0 Z/Rn+1 1Q§s)(I)Tplﬂgs)(x)/yn+l($) dz

1 —

-(-1) X / VT, (10, — 1a,) (@) v, Nij(@))* 31 () da.

P 1<i<j<m  ij

Since 0 < p < 1, (37) implies
veV = (v,N;;(z)) =0, Ve, VlI<i<j<m. (38)

The set V' has dimension at least n 4+ 2 —m, by the rank-nullity theorem, since V' is the null
space of the linear operator M : R"*1 — R™ defined by

(M(v)); == Z / (v, Nij(x)) Vi1 () dz, Vi<i<m

FE(Lm\fi} 7 i

and M has rank at most m — 1 (since > ;" (M (v)); = 0 for all v € R**!). So, by (38), after

rotating €, ..., $,,, we conclude that there exist measurable },...,Q/ C R™"! such that
Q; = Q) x R, V1<i<m.

O

7. THE CASE OF NEGATIVE CORRELATION

In this section, we consider the case that p < 0 in Problem 1.5. When p < 0 and
h: R™™! — [—1,1] is measurable, then quantity

[ M@ T @ () do

could be negative, so a few parts of the above argument do not work, namely the existence
Lemma 2.3. We therefore replace the noise stability with a more general bilinear expression,
guaranteeing existence of the corresponding problem. The remaining parts of the argument
are essentially identical, mutatis mutandis. We indicate below where the arguments differ in
the bilinear case.

When p < 0, we look for a minimum of noise stability, rather than a maximum. Corre-
spondingly, we expect that the plurality function minimizes noise stability when p < 0. If
p < 0, then (3) implies that

/Rn-‘rl h(x)T,h(x)yp1(z) doe = /]R"‘H h(z)T(—ph(—=2)Yns1 () d.
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So, in order to understand the minimum of noise stability for negative correlations, it suffices
to consider the following bilinear version of the standard simplex problem with positive
correlation.

Problem 7.1 (Standard Simplex Problem, Bilinear Version, Positive Correlation,
[IM12]). Let m > 3. Fiz a1,...,ay > 0 such that Y " a; = 1. Fiz 0 < p < 1. Find
measurable sets Q... Qp, Q). QL CR™ with UM, Q; = U™, QL = R and v,,1() =
Va1 () = a; for all 1 < i < m that minimize

Z/ 1Qi(x)Tpng(x)7n+1(ZE) dzx,
i=1 YR

subject to the above constraints.

Conjecture 7.2 (Standard Simplex Conjecture, Bilinear Version, Positive Cor-
relation [IM12]). Let Qy,...Q,, Q... C R™™ minimize Problem 1.5. Assume that
m—1<n+1. Fiz0<p<l1. Let z1,...,2, € R"™ be the vertices of a reqular simplex in
R™* centered at the origin. Then 3 w € R™™ such that, for all 1 < i < m,

Q= =w+{zeR"": (z,2) = max (z,2)}.
1<5<m

In the case that a; = 1/m for all 1 <7 < m, it is assumed that w = 0 in Conjecture 7.2.
Since we consider a bilinear version of noise stability in Problem 7.1, existence of an
optimizer is easier than in Problem 1.5.

Lemma 7.3 (Existence of a Minimizer). Let 0 < p < 1 and let m > 2. Then there exist
measurable sets Qy, ..., 2y, ... Q) that minimize Problem 7.1.

Proof. Define A,, as in (6). Let f,g: R"™" — A,,. The set Dy := {f: R"" — A, } is
norm closed, bounded, and convex, therefore it is weakly compact and convex. Consider the

function
m

C(f,9) =) - [i(@)T,9i(2)ynia1 () da.
i=1
This fUPCtiOH is weakly continuous on Dy x Dy, and Dy x Dg is weakly compact, so there
exists f,g € Dy such that C(f,g) = minszep C(f, g). Since C' is bilinear and Dy is convex,
the minimum of C' must be achieved at an extreme point of Dy x Dy. Let ey, ..., e, denote
the standard basis of R™, so that f,g takes their values in {ej,...,e,}. Then, for any
1 <i<m, define Q; := {x € R"™: f(z) =¢;} and Q := {z € R"™: g(z) = ¢;}. Note that
fi=1q, andgizlgg forall 1 < <m. [

Lemma 7.4 (Regularity of a Minimizer). Let Q,...,Q,,Q,..., Q2 C R"™ be the
measurable sets minimizing Problem 1.5, guaranteed to exist by Lemma 7.3. Then the sets
Qyyeo, Q. Q0 have locally finite surface area. Moreover, for all 1 < i < m and for
all x € 0%);, there exists a neighborhood U of x such that U N 0%); is a finite union of C'*
n-dimensional manifolds. The same holds for ,... Q.

We denote X;; 1= (9*Q;) N (0Q), X5 = (0*Q) N (9*Q)) for all 1 <i < j < m.
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Lemma 7.5 (The First Variation for Minimizers). Suppose Q1,...,Q,,Q, ..., Q. C
R minimize Problem 7.1. Then for all 1 <i < j < m, there exists Cij, c;j € R such that

T,(1g, — 1g,)(7) = ¢y, Vo e ;.
T)(la; — 193_)(1’) =c Vo e Xy

YR

We denote N;;(z) as the unit exterior normal vector to ¥;; for all 1 < i < j < m.
Also denote Nj;(z) as the unit exterior normal vector to Xj; for all 1 < i < j < m. Let
Q1o D0, Q.. QL C R™ be a partition of R™ into measurable sets such that 9€2;, 9
are a locally finite union of C* manifolds for all 1 <7 < m. Let X, X’ € CJ°(R™ R"*1).
Let {Qgs)}se(,m) be the variation of €); corresponding to X for all 1 < i < m. Let
{Q;(S)}se(_lgl) be the variation of ) corresponding to X’ for all 1 < ¢ < m. Denote
fij(x) == (X(x), Nij(z)) for all z € 35 and fi; () := (X'(x), Nj;(v)) for all z € ;. We let
N denote the exterior pointing unit normal vector to 0*(2; for any 1 <1i < m and we let N’
denote the exterior pointing unit normal vector to 9*(2; for any 1 <i < m.

Lemma 7.6 (Volume Preserving Second Variation of Minimizers, Multiple Sets).
Let Qu, .oy, Qo Q2 C R be two partitions of R™ into measurable sets such that
08, 02, are a locally finite union of C* manifolds for all 1 <i <m. Then

;—SZQ s=0 ; /Rn+1 /]Rn+1 1955)(y)G(x,y) 1Q;<s) (x) dady
- 1<z’<zj<m/éj [(/Q - /a*szj )G<I’y) X w). N dy] fij(@) de
+ Z /Z [(/Q - /m )G(:v,y)<X’(y), N'(y)) dy} fi(z)dz (39)
+ [ IV, (00, = 1)@ () (o) do
+ /E IVT,(1a; — o) (@)|(fij ()i (2) da.
Also,
VT, (1o, — lo,)(z) = Nj;(2)|VT,(1e, — lo,)(x)|,  Vz e, o
VT,(lg; — 1g))(x) = Ny (@) [VT, (1o, — 1o ) ()], Vo € Sy

Moreover, ||VT,(1g, — 1g,)(z)|| > 0 for all z € 35, except on a set of Hausdorff dimension
at most n — 1, and ||va(1Q; — lg)(2)|| > 0 for all x € Xy, except on a set of Hausdorff

dimension at most n — 1.

Equation (40) and the last assertion require a slightly different argument than previ-
ously used. To see the last assertion, note that if there exists 1 < ¢ < j < m such that
|VT,(1g, — 1g,)(z)|| = 0 on an open set in Yi;, then choose X’ supported in this open
set so that the third term of (39) is zero. Then, choose Y such that sum of the first two
terms in (39) is negative. Multiplying then X by a small positive constant, and noting that

the fourth term in (39) has quadratic dependence on X, we can create a negative second
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derivative of the noise stability, giving a contradiction. We can similarly justify the positive
signs appearing in (40) (as opposed to the negative signs from (28)).

Let v € R™"!. For simplicity of notation, we denote (v, N) as the collection of functions
((v, Nij))1<i<j<m and we denote (v, N') as the collection of functions ((v, Nj;))i<i<j<m. For
any 1 <i < j < m, define

lly—pz|?

Si(lo M) (a) = (1= ) D3m0 [ YN e I ay, va ey

2
IIy pz||

SL((v, N'))(z) = (1 _p2)—(n+1)/2(27r)—(n+1)/2</ _/ ><U,N'( ¢ A dyVr € Ty,
o, Joq
(41)
Lemma 7.7 (Key Lemma, m > 2, Translations as Almost Eigenfunctions). Let

Q1o 0, ., QL C R minimize problem 7.1. Fiz 1 <i < j < m. Let v € R*™.
Then

Sii((v, N))(x) = —<U,N{j(x)>%llva(1Qi —1lo)@)l,  VaeXi

Sii((o, N'Y) () = —(u, Nij(x»%Hva(lQ; —1o)(@)], VYael

When compared to Lemma 5.4, Lemma 7.7 has a negative sign on the right side of the
equality, resulting from the positive sign in (40) (as opposed to the negative sign on the right
side of (28)). Lemmas 7.6 and 7.7 then imply the following.

Lemma 7.8 (Second Variation of Translations, Multiple Sets). Let 0 < p < 1. Let

v € R Let O, ..., Q,, minimize problem 1.5. For each 1 < i < m, let {QZ(-S)}SG(_M) be
the variation of €); corresponding to the constant vector field X = v. Assume that

/ (v, N(2))yni1(x) do = / (v, N(2))ynt1(x)dz =0, V1<i<m.
082; o9,

Then

5= OZ/Rn+1 Q(S) z)T,1 '(b)( )Yn+1(x) dz
B <_%+1 2 / IVT,(1a; — 1) (@) [[(v, Nij (2))* o1 (x) de

1<i<j<m

d32

<—%+1BE;W/ V7, (16, = L) (@] (0, N (2) ()

Since p € (0,1), —% + 1 < 0. (The analogous inequality in Lemma 5.5 was % —-1>0)
Repeating the argument of Theorem 1.9 then gives the following.

Theorem 7.9 (Main Structure Theorem/ Dimension Reduction, Negative Corre-
lation). Fiz 0 < p < 1. Let m > 2 with 2m <n+3. Let Qy,...Qp, Q... Q. C R min-

imize Problem 7.1. Then, after rotating the sets Qq,...Qn, Q1, ... Q. and applying Lebesgue
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measure zero changes to these sets, there exist measurable sets ©1,...0,,,0],...0! C R*m2

such that,
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