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Abstract. Using the calculus of variations, we prove the following structure theorem for
noise stable partitions: a partition of n-dimensional Euclidean space into m disjoint sets of
fixed Gaussian volumes that maximize their noise stability must be (m− 1)-dimensional, if
m−1 ≤ n. In particular, the maximum noise stability of a partition of m sets in R

n of fixed
Gaussian volumes is constant for all n satisfying n ≥ m− 1. From this result, we obtain:
(i) A proof of the Plurality is Stablest Conjecture for 3 candidate elections, for all corre-

lation parameters ρ satisfying 0 < ρ < ρ0, where ρ0 > 0 is a fixed constant (that does
not depend on the dimension n), when each candidate has an equal chance of winning.

(ii) A variational proof of Borell’s Inequality (corresponding to the case m = 2).
The structure theorem answers a question of De-Mossel-Neeman and of Ghazi-Kamath-
Raghavendra. Item (i) is the first proof of any case of the Plurality is Stablest Conjecture
of Khot-Kindler-Mossel-O’Donnell (2005) for fixed ρ, with the case ρ → 1− being solved
recently. Item (i) is also the first evidence for the optimality of the Frieze-Jerrum semidefinite
program for solving MAX-3-CUT, assuming the Unique Games Conjecture. Without the
assumption that each candidate has an equal chance of winning in (i), the Plurality is
Stablest Conjecture is known to be false.
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1. Introduction

1.1. An Informal Introduction. A voting method or social choice function with m
candidates and n voters is a function

f : {1, . . . ,m}n → {1, . . . ,m}.
From the social choice theory perspective, the input of the function f is a list of votes of
n people who are choosing between m candidates. Each of the m candidates is labelled by
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the integers 1, . . . ,m. If the votes are x ∈ {1, . . . ,m}n, then xi denotes the vote of person
i ∈ {1, . . . , n} for candidate xi ∈ {1, . . . ,m}. Given the votes x ∈ {1, . . . ,m}n, f(x) is
interpreted as the winner of the election.
It is both natural and desirable to find a voting method whose output is most likely to

be unchanged after votes are randomly altered. One could imagine that malicious third
parties or miscounting of votes might cause random vote changes, so we desire a voting
method f whose output is stable to such changes. In addition to voting motivations, finding
a voting method that is stable to noise has applications to the Unique Games Conjecture
[KKMO07, MOO10, KM16], to semidefinite programming algorithms such as MAX-CUT
[KKMO07, IM12], to learning theory [FGRW12], etc. For some surveys on this and related
topics, see [O’D, Kho, Hei20].
The output of a constant function f is never altered by changes to the votes. Also, if

the function f only depends on one of its n inputs, then the output of f is rarely changed
by independent random changes to each of the votes. In these cases, the function f is
rather “undemocratic” from the perspective of social choice theory. In the case of a constant
function, the outcome of the election does not depend at all on the votes. In the case of a
function that only depends on one of its inputs, the outcome of the election only depends
on one voter (so f is called a dictatorship function).

Among “democratic” voting methods, it was conjectured in [KKMO07] and proven in
[MOO10] that the majority voting method is the voting method that best preserves the
outcome of the election. Below is an informal statement of the main result of [MOO10].

Theorem 1.1 (Majority is Stablest, Informal Version, [MOO10, Theorem 4.4]). Sup-
pose we run an election with a large number n of voters and m = 2 candidates. We make
the following assumptions about voter behavior and about the election method.

• Voters cast their votes randomly, independently, with equal probability of voting for
either candidate.

• Each voter has a small influence on the outcome of the election. (That is, all influ-
ences from Definition 5 are small for the voting method.)

• Each candidate has an equal chance of winning the election.

Under these assumptions, the majority function is the voting method that best preserves the
outcome of the election, when votes have been corrupted independently each with probability
less than 1/2.

We say a vote xi ∈ {1, 2} is corrupted with probability 0 < δ < 1 when, with probability
δ, the vote xi is changed to a uniformly random element of {1, 2}, and with probability 1−δ,
the vote xi is unchanged.

For a formal statement of Theorem 1.1, see Theorem 1.8 below.
The primary interest of the authors of [KKMO07] in Theorem 1.1 was proving optimal

hardness of approximation for the MAX-CUT problem. In the MAX-CUT problem, we are
given a finite undirected graph on n vertices, and the objective of the problem is to find
a partition of the vertices of the graph into two sets that maximizes the number of edges
going between the two sets. The MAX-CUT problem is MAX-SNP hard, i.e. if P 6= NP ,
there is no polynomial time (in n) approximation scheme for this problem. Nevertheless,
there is a randomized polynomial time algorithm [GW95] that achieves, in expectation, at
least .87856 . . . times the maximum value of the MAX-CUT problem. This algorithm uses
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semidefinite programming. Also, the exact expression for the .87856 . . . constant is

min
−1≤ρ≤1

2

π

arccos(ρ)

1− ρ
= .87856 . . .

The authors of [KKMO07] showed that, if the Unique Games Conjecture is true, then
Theorem 1.1 implies that the Goemans-Williamson algorithm’s .87856. . . constant of ap-
proximation cannot be increased. Assuming the validity of the Unique Games Conjecture is
a fairly standard in complexity theory, though the conjecture remains open. See [O’D, Kho]
and the references therein for more discussion on this conjecture, and see [KMS18] for some
recent significant progress.

Theorem 1.1 (i.e. Theorem 1.8) gives a rather definitive statement on the two candidate
voting method that is most stable to corruption of votes. Moreover, the applcation of
Theorem 1.1 gives a complete understanding of the optimal algorithm for solving MAX-
CUT, assuming the Unique Games Conjecture. Unfortunately, the proof of Theorem 1.1
says nothing about elections with m > 2 candidates. Moreover, Theorem 1.1 fails to prove
optimality of the Frieze-Jerrum [FJ95] semidefinite programming algorithm for the MAX-
m-CUT problem. In the MAX-m-CUT problem, we are given a finite undirected graph on
n vertices, and the objective of the problem is to find a partition of the vertices of the graph
into m sets that maximizes the number of edges going between the two sets. So, MAX-CUT
is the same as MAX-2-CUT.

In order to prove the optimality of the Frieze-Jerrum [FJ95] semidefinite programming
algorithm for the MAX-m-CUT problem, one would need an analogue of Theorem 1.1 for
m > 2 voters, where the plurality function replaces the majority function. For this reason,
it was conjectured [KKMO07, IM12] that the plurality function is the voting method that is
most stable to independent, random vote corruption.

Conjecture 1.2 (Plurality is Stablest, Informal Version, [KKMO07], [IM12, Conjec-
ture 1.9]). Suppose we run an election with a large number n of voters and m ≥ 3 candidates.
We make the following assumptions about voter behavior and about the election method.

• Voters cast their votes randomly, independently, with equal probability of voting for
each candidate.

• Each voter has a small influence on the outcome of the election. (That is, all influ-
ences from Definition 5 are small for the voting method.)

• Each candidate has an equal chance of winning the election.

Under these assumptions, the plurality function is the voting method that best preserves the
outcome of the election, when votes have been corrupted independently each with probability
less than 1/2.

We say a vote xi ∈ {1, . . . ,m} is corrupted with probability 0 < δ < 1 when, with
probability δ, the vote xi is changed to a uniformly random element of {1, . . . ,m}, and with
probability 1− δ, the vote xi is unchanged.

In the case that the probability of vote corruption goes to zero, the first author proved the
first known case of Conjecture 1.2 in [Hei19], culminating a series of previous works [CM12,
MR15, BBJ17, Hei17, MN18a, MN18b, Hei18]. Conjecture 1.2 for all fixed parameters
0 < ρ < 1 was entirely open until now. Unlike the case of the Majority is Stablest (Theorem
1.8), Conjecture 1.2 cannot hold when the candidates have unequal chances of winning the
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election [HMN16]. This realization is an obstruction to proving Conjecture 1.2. It suggested
that existing proof methods for Theorem 1.8 cannot apply to Conjecture 1.2.
Nevertheless, we are able to overcome this obstruction in the present work.

Theorem 1.3 (Main Result, Informal Version). There exists ε > 0 such that Conjecture
1.2 holds for m = 3 candidates, for all n ≥ 1, when the probability of a single vote being
corrupted is any number in the range (1/2− ε, 1/2).

Theorem 1.3 is the first proven case of the Plurality is Stablest Conjecture.1.2.

1.2. More Formal Introduction. Using a generalization of the Central Limit Theorem
known as the invariance principle [MOO10, IM12], there is an equivalence between the
discrete problem of Conjecture 1.2 and a continuous problem which is known as the Standard
Simplex Conjecture [IM12]. For more details on this equivalence, see Section 7 of [IM12]We
begin by providing some background for the latter conjecture, stated in Conjecture 1.6 below.
For any k ≥ 1, we define the Gaussian density as

γk(x) := (2π)−k/2e−‖x‖2/2, 〈x, y〉 :=
n+1∑

i=1

xiyi, ‖x‖2 := 〈x, x〉,

∀ x = (x1, . . . , xn+1), y = (y1, . . . , yn+1) ∈ R
n+1.

(1)

Let z1, . . . , zm ∈ R
n+1 be the vertices of a regular simplex in R

n+1 centered at the origin.
For any 1 ≤ i ≤ m, define

Ωi := {x ∈ R
n+1 : 〈x, zi〉 = max

1≤j≤m
〈x, zj〉}. (2)

We refer to any sets satisfying (2) as cones over a regular simplex.
Let f : Rn+1 → [0, 1] be measurable and let ρ ∈ (−1, 1). Define the Ornstein-Uhlenbeck

operator with correlation ρ applied to f by

Tρf(x) :=

∫

Rn+1

f(xρ+ y
√

1− ρ2)γn+1(y) dy

= (1− ρ2)−(n+1)/2(2π)−(n+1)/2

∫

Rn+1

f(y)e
− ‖y−ρx‖2

2(1−ρ2) dy, ∀x ∈ R
n+1.

(3)

Tρ is a parametrization of the Ornstein-Uhlenbeck operator, which gives a fundamental
solution of the (Gaussian) heat equation

d

dρ
Tρf(x) =

1

ρ

(
−∆Tρf(x) + 〈x,∇Tρf(x)〉

)
, ∀ x ∈ R

n+1. (4)

Here ∆ :=
∑n+1

i=1 ∂
2/∂x2i and ∇ is the usual gradient on R

n+1. Tρ is not a semigroup, but it
satisfies Tρ1Tρ2 = Tρ1ρ2 for all ρ1, ρ2 ∈ (0, 1). We have chosen this definition since the usual
Ornstein-Uhlenbeck operator is only defined for ρ ∈ [0, 1].

Definition 1.4 (Noise Stability). Let Ω ⊆ R
n+1 be measurable. Let ρ ∈ (−1, 1). We

define the noise stability of the set Ω with correlation ρ to be
∫

Rn+1

1Ω(x)Tρ1Ω(x)γn+1(x) dx
(3)
= (2π)−(n+1)(1− ρ2)−(n+1)/2

∫

Ω

∫

Ω

e
−‖x‖2−‖y‖2+2ρ〈x,y〉

2(1−ρ2) dxdy.
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Equivalently, if X = (X1, . . . , Xn+1), Y = (Y1, . . . , Yn+1) ∈ R
n+1 are (n + 1)-dimensional

jointly Gaussian distributed random vectors with EXiYj = ρ·1(i=j) for all i, j ∈ {1, . . . , n+1},
then ∫

Rn+1

1Ω(x)Tρ1Ω(x)γn+1(x) dx = P((X, Y ) ∈ Ω× Ω).

Maximizing the noise stability of a Euclidean partition is the continuous analogue of
finding a voting method that is most stable to random corruption of votes, among voting
methods where each voter has a small influence on the election’s outcome.

Problem 1.5 (Standard Simplex Problem, [IM12]). Let m ≥ 3. Fix a1, . . . , am > 0 such
that

∑m
i=1 ai = 1. Fix ρ ∈ (0, 1). Find measurable sets Ω1, . . .Ωm ⊆ R

n+1 with ∪m
i=1Ωi = R

n+1

and γn+1(Ωi) = ai for all 1 ≤ i ≤ m that maximize
m∑

i=1

∫

Rn+1

1Ωi
(x)Tρ1Ωi

(x)γn+1(x) dx,

subject to the above constraints. (Here γn+1(Ωi) :=
∫
Ωi
γn+1(x) dx ∀ 1 ≤ i ≤ m.)

We can now state the continuous version of Conjecture 1.2.

Conjecture 1.6 (Standard Simplex Conjecture [IM12]). Let Ω1, . . .Ωm ⊆ R
n+1 maxi-

mize Problem 1.5. Assume that m− 1 ≤ n+ 1. Fix ρ ∈ (0, 1). Let z1, . . . , zm ∈ R
n+1 be the

vertices of a regular simplex in R
n+1 centered at the origin. Then ∃ w ∈ R

n+1 such that, for
all 1 ≤ i ≤ m,

Ωi = w + {x ∈ R
n+1 : 〈x, zi〉 = max

1≤j≤m
〈x, zj〉}.

It is known that Conjecture 1.6 is false when (a1, . . . , am) 6= (1/m, . . . , 1/m) [HMN16]. In
the remaining case that ai = 1/m for all 1 ≤ i ≤ m, it is assumed that w = 0 in Conjecture
1.6.
For expositional simplicity, we separately address the case ρ < 0 of Conjecture 1.6 in

Section 7 below.

1.3. Plurality is Stablest Conjecture. As previously mentioned, the Standard Simplex
Conjecture [IM12] stated in Conjecture 1.6 is essentially equivalent to the Plurality is Stablest
Conjecture from Conjecture 1.2. After making several definitions, we state a formal version
of Conjecture 1.2 as Conjecture 1.7 below.
If g : {1, . . . ,m}n → R and 1 ≤ i ≤ n, we denote

E(g) := m−n
∑

ω∈{1,...,m}n
g(ω)

Ei(g)(ω1, . . . , ωi−1, ωi+1, . . . , ωn) := m−1
∑

ωi∈{1,...,m}
g(ω1, . . . , ωn)

∀ (ω1, . . . , ωi−1, ωi+1, . . . , ωn) ∈ {1, . . . ,m}n.
Define also the ith influence of g, i.e. the influence of the ith voter of g, as

Infi(g) := E[(g − Eig)
2]. (5)

Let
∆m := {(y1, . . . , ym) ∈ R

m : y1 + · · ·+ ym = 1, ∀ 1 ≤ i ≤ m, yi ≥ 0}. (6)
5



If f : {1, . . . ,m}n → ∆m, we denote the coordinates of f as f = (f1, . . . , fm). For any
ω ∈ Z

n, we denote ‖ω‖0 as the number of nonzero coordinates of ω. The noise stability of
g : {1, . . . ,m}n → R with parameter ρ ∈ (−1, 1) is

Sρg := m−n
∑

ω∈{1,...,m}n
g(ω)Eρg(δ)

= m−n
∑

ω∈{1,...,m}n
g(ω)

∑

σ∈{1,...,m}n

(
1− (m− 1)ρ

m

)n−‖σ−ω‖0 (1− ρ

m

)‖σ−ω‖0
g(σ).

Equivalently, conditional on ω, Eρg(δ) is defined so that for all 1 ≤ i ≤ n, δi = ωi with

probability 1−(m−1)ρ
m

, and δi is equal to any of the other (m− 1) elements of {1, . . . ,m} each

with probability 1−ρ
m

, and so that δ1, . . . , δn are independent.
The noise stability of f : {1, . . . ,m}n → ∆m with parameter ρ ∈ (−1, 1) is

Sρf :=
m∑

i=1

Sρfi.

Let m ≥ 2, k ≥ 3. For each j ∈ {1, . . . ,m}, let ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ R
m be the jth

unit coordinate vector. Define the plurality function PLURm,n : {1, . . . ,m}n → ∆m for m
candidates and n voters such that for all ω ∈ {1, . . . ,m}n.

PLURm,n(ω) :=





ej , if |{i ∈ {1, . . . ,m} : ωi = j}| > |{i ∈ {1, . . . ,m} : ωi = r}| ,
∀ r ∈ {1, . . . ,m} \ {j}

1
m

∑m
i=1 ei , otherwise.

We can now state the more formal version of Conjecture 1.2.

Conjecture 1.7 (Plurality is Stablest, Discrete Version). For any m ≥ 2, ρ ∈ [0, 1],
ε > 0, there exists τ > 0 such that if f : {1, . . . ,m}n → ∆m satisfies Infi(fj) ≤ τ for all
1 ≤ i ≤ n and for all 1 ≤ j ≤ m, and if Ef = 1

m

∑m
i=1 ei, then

Sρf ≤ lim
n→∞

SρPLURm,n + ε.

The main result of the present paper (stated in Theorem 1.10 below) is: ∃ ρ0 > 0 such
that Conjecture 1.7 is true for m = 3 for all 0 < ρ < ρ0, for all n ≥ 1. The only previously
known case of Conjecture 1.7 was the following.

Theorem 1.8 (Majority is Stablest, Formal, Biased Case, [MOO10, Theorem 4.4]).
Conjecture 1.7 is true when m = 2.

For an even more general version of Theorem 1.8, see [MOO10, Theorem 4.4]. In particular,
the assumption on Ef can be removed, though we know this cannot be done for m ≥ 3
[HMN16].

1.4. Our Contribution. The main structure Theorem below implies that sets optimizing
noise stability in Problem 1.5 are inherently low-dimensional. Though this statement might
seem intuitively true, since many inequalities involving the Gaussian measure have low-
dimensional optimizers, this statement has not been proven before. For example, Theorem
1.9 was listed as an open question in [DMN17, DMN18] and [GKR18]. Indeed, the lack of
Theorem 1.9 has been one main obstruction to a solution of Conjectures 1.5 and 1.7.
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Theorem 1.9 (Main Structure Theorem/ Dimension Reduction). Fix ρ ∈ (0, 1).
Let m ≥ 2 with m ≤ n + 2. Let Ω1, . . .Ωm ⊆ R

n+1 maximize Problem 1.5. Then, after
rotating the sets Ω1, . . .Ωm and applying Lebesgue measure zero changes to these sets, there
exist measurable sets Ω′

1, . . .Ω
′
m ⊆ R

m−1 such that,

Ωi = Ω′
i × R

n−m+2, ∀ 1 ≤ i ≤ m.

In the case m = 2, Theorem 1.9 is (almost) a variational proof of Borell’s inequality, since
it reduces Problem 1.5 to a one-dimensional problem.

In the case m = 3, Theorem 1.9 says that Conjecture 1.6 for arbitrary n + 1 reduces to
the case n + 1 = 2, which was solved for small ρ > 0 in [Hei14]. That is, Theorem 1.9 and
the main result of [Hei14] imply:

Theorem 1.10 (Main; Plurality is Stablest for Three Candidates and Small Cor-
relation). There exists ρ0 > 0 such that Conjecture 1.7 is true for m = 3 and for all
0 < ρ < ρ0.

In [Hei14] it is noted that ρ0 = e−20·31014 suffices in Theorem 1.10.
We can also prove a version of Theorem 1.9 when ρ < 0. See Theorem 7.9 and the

discussion in Section 7. One difficulty in proving Theorem 1.9 directly for ρ < 0 is that it is
not a priori obvious that a minimizer of Problem 1.5 exists in that case.

1.5. Noninteractive Simulation of Correlated Distributions. As mentioned above,
Theorem 1.9 answers a question in [DMN17, DMN18] and [GKR18]. Their interest in The-
orem 1.9 stems from the following problem. Let (X, Y ) ∈ R

n be a random vector. Let
(X1, Y1), (X2, Y2), . . . be i.i.d. copies of (X, Y ). Suppose there are two players A and B.
Player A has access to X1, X2, . . . and player B has access to Y1, Y2, . . .. Without commu-
nication, what joint distributions can players A and B jointly simulate? For details on the
relation of this problem to Theorem 1.9, see [DMN17, DMN18] and [GKR18].

1.6. Outline of the Proof of the Structure Theorem. In this section we outline the
proof of Theorem 1.9 in the case m = 2. The proof loosely follows that of a corresponding
statement [MR15, BBJ17] for the Gaussian surface area (which was then adapted to multiple
sets in [MN18a, MN18b, Hei18]), with a few key differences. For didactic purposes, we
will postpone a discussion of technical difficulties (such as existence and regularity of a
maximizer) to Section 2.1.

Fix 0 < a < 1. Suppose there exists Ω,Ωc ⊆ R
n+1 are measurable sets maximizing

∫

Rn+1

1Ω(x)Tρ1Ω(x)γn+1(x)dx,

subject to the constraint γn+1(Ω) = a. A first variation argument (Lemma 3.1 below) implies
that Σ := ∂Ω is a level set of the Ornstein-Uhlenbeck operator applied to 1Ω. That is, there
exists c ∈ R such that

Σ = {x ∈ R
n+1 : Tρ1Ω(x) = c}. (7)

Since Σ is a level set, a vector perpendicular to the level set is also perpendicular to Σ.
Denoting N(x) ∈ R

n+1 as the unit length exterior pointing normal vector to x ∈ ∂Ω, (7)
implies that

∇Tρ1Ω(x) = −N(x)
∥∥∇Tρ1Ω(x)

∥∥ . (8)
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(It is not obvious that there must be a negative sign here, but it follows from examining
the second variation.) We now observe how the noise stability of Ω changes as the set is
translated infinitesimally. Fix v ∈ R

n+1, and consider the variation of Ω induced by the
constant vector field v. That is, let Ψ: Rn+1 × (−1, 1) → R

n+1 such that Ψ(x, 0) = x
and such that d

ds
|s=0Ψ(x, s) = v for all x ∈ R

n+1, s ∈ (−1, 1). For any s ∈ (−1, 1), let

Ω(s) = Ψ(Ω, s). Note that Ω(0) = Ω. Denote f(x) := 〈v,N(x)〉 for all x ∈ Σ. Then define

S(f)(x) := (1− ρ2)−(n+1)/2(2π)−(n+1)/2

∫

Σ

f(y)e
− ‖y−ρx‖2

2(1−ρ2) dy, ∀ x ∈ Σ.

A second variation argument (Lemma 4.5 below) implies that, if f is Gaussian volume-
preserving, i.e.

∫
Σ
f(x)γn+1(x) dx = 0, then

1

2

d2

ds2

∣∣∣
s=0

∫

Rn+1

1Ω(s)(x)Tρ1Ω(s)(x)γn+1(x) dx

=

∫

Σ

(
S(f)(x)−

∥∥∇Tρ1Ω(x)
∥∥ f(x)

)
f(x)γn+1(x) dx.

(9)

Somewhat unexpectedly, the function f(x) = 〈v,N(x)〉 is almost an eigenfunction of the
operator S (by Lemma 5.1), in the sense that

S(f)(x) =
1

ρ
f(x)

∥∥∇Tρ1Ω(x)
∥∥ , ∀ x ∈ Σ. (10)

Equation (10) is the key fact use in the proof of the main theorem, Theorem 1.9. Equation
(10) follows from (8) and the divergence theorem (see Lemma 5.1 for a proof of (10).)
Plugging (10) into (9),

∫

Σ

〈v,N(x)〉γn+1(x) dx = 0 =⇒ 1

2

d2

ds2

∣∣∣
s=0

∫

Rn+1

1Ω(s)(x)Tρ1Ω(s)(x)γn+1(x) dx

=
(1
ρ
− 1

)∫

Σ

〈v,N(x)〉2
∥∥∇Tρ1Ω(x)

∥∥ γn+1(x) dx.

(11)
The set

V :=
{
v ∈ R

n+1 :

∫

Σ

〈v,N(x)〉γn+1(x) dx = 0
}

has dimension at least n, by the rank-nullity theorem. Since Ω maximizes noise stability,
the quantity on the right of (11) must be non-positive for all v ∈ V , implying that f = 0
on Σ (except possibly on a set of measure zero on Σ). (One can show that

∥∥∇Tρ1Ω(x)
∥∥ > 0

for all x ∈ Σ. See Lemma 4.8.) That is, for all v ∈ V , 〈v,N(x)〉 = 0 for all x ∈ Σ (except
possibly on a set of measure zero on Σ). Since V has dimension at least n, there exists a
measurable discrete set Ω′ ⊆ R such that Ω = Ω′×R

n after rotating Ω, concluding the proof
of Theorem 1.9 in the case m = 2.
Theorem 1.9 follows from the realization that all of the above steps still hold for arbitrary

m in Conjecture 1.5. In particular, the key lemma (10) still holds. See Lemmas 5.1 and 5.4
below.
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Remark 1.11. In the case that we replace the Gaussian noise stability of Ω with the
Euclidean heat content ∫

Rn+1

1Ω(x)Pt1Ω(x) dx, ∀ t > 0

Ptf(x) :=

∫

Rn+1

f(x+ y
√
t)γn+1(y) dy, ∀x ∈ R

n+1, ∀ f : Rn+1 → [0, 1],

then the corresponding operator S from the second variation of the Euclidean heat content
satisfies

S(f)(x) := t(n+1)/2(2π)−(n+1)/2

∫

Σ

f(y)e−
‖y−x‖2

2t dy, ∀ x ∈ Σ,

and then the analogue of (9) for f(x) := 〈v,N(x)〉 is
S(f)(x) = f(x)

∥∥∇Pt1Ω(x)
∥∥ , ∀ x ∈ Σ,

so that the second variation corresponding to f = 〈v,N〉 is automatically zero. This fact
is expected, since a translation does not change the Euclidean heat content. However,
this example demonstrates that the key property of the above proof is exactly (10). More
specifically, f is an “almost eigenfunction” of S with “eigenvalue” 1/ρ that is larger than
1. It seems plausible that other semigroups could also satisfy an identity such as (10), since
(10) seems related to hypercontractivity. We leave this open for further research.

2. Existence and Regularity

2.1. Preliminaries and Notation. We say that Σ ⊆ R
n+1 is an n-dimensional C∞ mani-

fold with boundary if Σ can be locally written as the graph of a C∞ function on a relatively
open subset of {(x1, . . . , xn) ∈ R

n : xn ≥ 0}. For any (n + 1)-dimensional C∞ manifold
Ω ⊆ R

n+1 such that ∂Ω itself has a boundary, we denote

C∞
0 (Ω;Rn+1) := {f : Ω → R

n+1 : f ∈ C∞(Ω;Rn+1), f(∂∂Ω) = 0,

∃ r > 0, f(Ω ∩ (B(0, r))c) = 0}. (12)

We also denote C∞
0 (Ω) := C∞

0 (Ω;R). We let div denote the divergence of a vector field in
R

n+1. For any r > 0 and for any x ∈ R
n+1, we let B(x, r) := {y ∈ R

n+1 : ‖x− y‖ ≤ r}
be the closed Euclidean ball of radius r centered at x ∈ R

n+1. Here ∂∂Ω refers to the
(n− 1)-dimensional boundary of Ω.

Definition 2.1 (Reduced Boundary). A measurable set Ω ⊆ R
n+1 has locally finite

surface area if, for any r > 0,

sup

{∫

Ω

div(X(x)) dx : X ∈ C∞
0 (B(0, r),Rn+1), sup

x∈Rn+1

‖X(x)‖ ≤ 1

}
<∞.

Equivalently, Ω has locally finite surface area if ∇1Ω is a vector-valued Radon measure such
that, for any x ∈ R

n+1, the total variation

‖∇1Ω‖ (B(x, 1)) := sup
partitions

C1,...,Cm of B(x,1)
m≥1

m∑

i=1

‖∇1Ω(Ci)‖

9



is finite [CL12]. If Ω ⊆ R
n+1 has locally finite surface area, we define the reduced boundary

∂∗Ω of Ω to be the set of points x ∈ R
n+1 such that

N(x) := − lim
r→0+

∇1Ω(B(x, r))

‖∇1Ω‖ (B(x, r))

exists, and it is exactly one element of Sn := {x ∈ R
n+1 : ‖x‖ = 1}.

The reduced boundary ∂∗Ω is a subset of the topological boundary ∂Ω. Also, ∂∗Ω and ∂Ω
coincide with the support of ∇1Ω, except for a set of n-dimensional Hausdorff measure zero.

Let Ω ⊆ R
n+1 be an (n+1)-dimensional C2 submanifold with reduced boundary Σ := ∂∗Ω.

Let N : Σ → Sn be the unit exterior normal to Σ. Let X ∈ C∞
0 (Rn+1,Rn+1). We write X

in its components as X = (X1, . . . , Xn+1), so that divX =
∑n+1

i=1
∂
∂xi
Xi. Let Ψ: Rn+1 ×

(−1, 1) → R
n+1 such that

Ψ(x, 0) = x,
d

ds
Ψ(x, s) = X(Ψ(x, s)), ∀ x ∈ R

n+1, s ∈ (−1, 1). (13)

For any s ∈ (−1, 1), let Ω(s) := Ψ(Ω, s). Note that Ω(0) = Ω. Let Σ(s) := ∂∗Ω(s), ∀
s ∈ (−1, 1).

Definition 2.2. We call {Ω(s)}s∈(−1,1) as defined above a variation of Ω ⊆ R
n+1. We also

call {Σ(s)}s∈(−1,1) a variation of Σ = ∂∗Ω.

For any x ∈ R
n+1 and any s ∈ (−1, 1), define

V (x, s) :=

∫

Ω(s)

G(x, y) dy. (14)

Below, when appropriate, we let dx denote Lebesgue measure, restricted to a surface
Σ ⊆ R

n+1.

Lemma 2.3 (Existence of a Maximizer). Let 0 < ρ < 1 and let m ≥ 2. Then there exist
measurable sets Ω1, . . . ,Ωm maximizing Problem 1.5.

Proof. Define ∆m as in (6). Let f : Rn+1 → ∆m. We write f in its components as f =
(f1, . . . , fm). The set D0 := {f : Rn+1 → ∆m} is norm closed, bounded and convex, therefore
it is weakly compact and convex. Consider the function

C(f) :=
m∑

i=1

∫

Rn+1

fi(x)Tρfi(x)γn+1(x) dx.

This function is weakly continuous on D0, and D0 is weakly compact, so there exists f̃ ∈ D0

such that C(f̃) = maxf∈D0 C(f). Moreover, C is convex since for any 0 < t < 1 and for any
10



f, g ∈ D0,

tC(f) + (1− t)C(g)− C(tf + (1− t)g)

=
m∑

i=1

∫

Rn+1

(
tfi(x)Tρfi(x) + (1− t)gi(x)Tρgi(x)

− (tfi(x) + (1− t)gi(x))Tρ[tfi(x) + (1− t)gi(x)]
)
γn+1(x) dx

= t(1− t)
m∑

i=1

∫

Rn+1

(
(fi(x)− gi(x))Tρ[fi(x)− gi(x)]

)
γn+1(x) dx ≥ 0.

Here we used that

∫

Rn+1

h(x)Tρh(x)γn+1(x) dx =

∫

Rn+1

(T√ρh(x))
2γn+1(x) dx ≥ 0, (15)

for all measurable h : Rn+1 → [−1, 1].
Since C is convex, its maximum must be achieved at an extreme point ofD0. Let e1, . . . , em

denote the standard basis of Rm, so that f takes its values in {e1, . . . , em}. Then, for any
1 ≤ i ≤ m, define Ωi := {x ∈ R

n+1 : f(x) = ei}, so that fi = 1Ωi
∀ 1 ≤ i ≤ m. �

Lemma 2.4 (Regularity of a Maximizer). Let Ω1, . . . ,Ωm ⊆ R
n+1 be the measurable sets

maximizing Problem 1.5, guaranteed to exist by Lemma 2.3. Then the sets Ω1, . . . ,Ωm have
locally finite surface area. Moreover, for all 1 ≤ i ≤ m and for all x ∈ ∂Ωi, there exists a
neighborhood U of x such that U ∩ ∂Ωi is a finite union of C∞ n-dimensional manifolds.

Proof. This follows from a first variation argument and the strong unique continuation prop-
erty for the heat equation. We first claim that there exist constants (cij)1≤i<j≤m such that

Ωi ⊇ {x ∈ R
n+1 : Tρ1Ωi

(x) > Tρ1Ωj
(x) + cij, ∀ j ∈ {1, . . . ,m} \ {i}}, ∀ 1 ≤ i ≤ m. (16)

By the Lebesgue density theorem [Ste70, 1.2.1, Proposition 1], we may assume that, for
all i ∈ {1, . . . , k}, if y ∈ Ωi, then we have limr→0 γn+1(Ωi ∩B(y, r))/γn+1(B(y, r)) = 1.
We prove (16) by contradiction. Suppose there exist c ∈ R, j, k ∈ {1, . . . ,m} with j 6= k

and there exists y ∈ Ωj and z ∈ Ωk such that

Tρ(1Ωj
− 1Ωk

)(y) < c, Tρ(1Ωj
− 1Ωk

)(z) > c.

By (3), Tρ(1Ωj
−1Ωk

)(x) is a continuous function of x. And by the Lebsgue density theorem,
there exist disjoint measurable sets Uj, Uk with positive Lebesgue measure such that Uj ⊆
Ωj, Uk ⊆ Ωk such that γn+1(Uj) = γn+1(Uk) and such that

Tρ(1Ωj
− 1Ωk

)(y′) < c, ∀ y′ ∈ Uj, Tρ(1Ωj
− 1Ωk

)(y′) > c, ∀ y′ ∈ Uk. (17)
11



We define a new partition of Rn+1 such that Ω̃j := Uk ∪ Ωj \ Uj, Ω̃k := Uj ∪ Ωk \ Uk, and

Ω̃i := Ωi for all i ∈ {1, . . . ,m} \ {j, k}. Then
m∑

i=1

∫

Rn+1

1Ω̃i
(x)Tρ1Ω̃i

(x)γn+1(x) dx−
m∑

i=1

∫

Rn+1

1Ωi
(x)Tρ1Ωi

(x)γn+1(x) dx

=

∫

Rn+1

1Ω̃j
(x)Tρ1Ω̃j

(x)γn+1(x) dx−
∫

Rn+1

1Ωj
(x)Tρ1Ωj

(x)γn+1(x) dx

+

∫

Rn+1

1Ω̃k
(x)Tρ1Ω̃k

(x)γn+1(x) dx−
∫

Rn+1

1Ωk
(x)Tρ1Ωk

(x)γn+1(x) dx

=

∫

Rn+1

[1Ωj
− 1Uj

+ 1Uk
](x)Tρ[1Ωj

− 1Uj
+ 1Uk

]γn+1(x) dx

+

∫

Rn+1

[1Ωk
− 1Uk

+ 1Uj
]Tρ[1Ωk

− 1Uk
+ 1Uj

]γn+1(x) dx

−
∫

Rn+1

1Ωj
(x)Tρ1Ωj

(x)γn+1(x) dx−
∫

Rn+1

1Ωk
(x)Tρ1Ωk

(x)γn+1(x) dx

= 2

∫

Rn+1

[−1Uj
+ 1Uk

](x)Tρ[1Ωj
− 1Ωk

]γn+1(x) dx

+ 2

∫

Rn+1

[1Uj
− 1Uk

]Tρ[1Uj
− 1Uk

]γn+1(x) dx
(17)∧(15)
> 0.

This contradicts the maximality of Ω1, . . . ,Ωm. We conclude that (16) holds.
We now fix 1 ≤ i < j ≤ m and we upgrade (16) by examining the level sets of

Tρ(1Ωi
− 1Ωj

)(x), ∀ x ∈ R
n+1.

Fix c ∈ R and consider the level set

Σ := {x ∈ R
n+1 : Tρ(1Ωi

− 1Ωj
)(x) = c}.

This level set has Hausdorff dimension at most n by [Che98, Theorem 2.3].
From the Strong Unique Continuation Property for the heat equation [Lin90], Tρ(1Ωi

−
1Ωj

)(x) does not vanish to infinite order at any x ∈ R
n+1, so the argument of [HS89, Lemma

1.9] (see [HL94, Proposition 1.2] and also [Che98, Theorem 2.1]) shows that in a neighborhood
of each x ∈ Σ, Σ can be written as a finite union of C∞ manifolds. That is, there exists a
neighborhood U of x and there exists an integer k ≥ 1 such that

U ∩ Σ = ∪k
i=1{y ∈ U : DiTρ(1Ωi

− 1Ωj
)(x) 6= 0, DjTρ(1Ωi

− 1Ωj
)(x) = 0, ∀ 1 ≤ j ≤ i− 1}.

Here Di denotes the array of all iterated partial derivatives of order i ≥ 1. We therefore
have

Σij := (∂∗Ωi) ∩ (∂∗Ωj) ⊇ {x ∈ R
n+1 : Tρ(1Ωi

− 1Ωj
)(x) = cij},

and the Lemma follows. �

From Lemma 2.4 and Definition 2.1, for all 1 ≤ i < j ≤ m, if x ∈ Σij, then the unit normal
vector Nij(x) ∈ R

n+1 that points from Ωi into Ωj is well-defined on Σij,
(
(∂Ωi)∩ (∂Ωj)

)
\Σij

has Hausdorff dimension at most n− 1, and

Nij(x) = ± ∇Tρ(1Ωi
− 1Ωj

)(x)∥∥∇Tρ(1Ωi
− 1Ωj

)(x)
∥∥ , ∀ x ∈ Σij. (18)
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In Lemma 4.5 below we will show that the negative sign holds in (18) when Ω1, . . . ,Ωm

maximize Problem 1.5.

3. First and Second Variation

In this section, we recall some standard facts for variations of sets with respect to the
Gaussian measure. Here is a summary of notation.

Summary of Notation.

• Tρ denotes the Ornstein-Uhlenbeck operator with correlation parameter ρ ∈ (−1, 1).
• Ω1, . . . ,Ωm denotes a partition of Rn+1 into m disjoint measurable sets.
• ∂∗Ω denotes the reduced boundary of Ω ⊆ R

n+1.
• Σij := (∂∗Ωi) ∩ (∂∗Ωj) for all 1 ≤ i, j ≤ m.
• Nij(x) is the unit normal vector to x ∈ Σij that points from Ωi into Ωj, so that
Nij = −Nji.

Throughout the paper, unless otherwise stated, we define G : Rn+1 × R
n+1 → R to be the

following function. For all x, y ∈ R
n+1, ∀ ρ ∈ (−1, 1), define

G(x, y) = (1− ρ2)−(n+1)/2(2π)−(n+1)e
−‖x‖2−‖y‖2+2ρ〈x,y〉

2(1−ρ2)

= (1− ρ2)−(n+1)/2γn+1(x)γn+1(y)e
−ρ2(‖x‖2+‖y‖2)+2ρ〈x,y〉

2(1−ρ2)

= (1− ρ2)−(n+1)/2(2π)−(n+1)/2γn+1(x)e
−‖y−ρx‖2

2(1−ρ2) .

(19)

We can then rewrite the noise stability from Definition 1.4 as

∫

Rn+1

1Ω(x)Tρ1Ω(x)γn+1(x) dx =

∫

Ω

∫

Ω

G(x, y) dxdy.

Our first and second variation formulas for the noise stability will be written in terms of G.

Lemma 3.1 (The First Variation [CS07]; also [HMN16, Lemma 3.1, Equation (7)]). Let
X ∈ C∞

0 (Rn+1,Rn+1). Let Ω ⊆ R
n+1 be a measurable set such that ∂Ω is a locally finite

union of C∞ manifolds. Let {Ω(s)}s∈(−1,1) be the corresponding variation of Ω. Then

d

ds

∣∣∣
s=0

∫

Rn+1

1Ω(s)(y)G(x, y) dy =

∫

∂Ω

G(x, y)〈X(y), N(y)〉 dy. (20)

The following Lemma is a consequence of (20) and Lemma 2.4.

Lemma 3.2 (The First Variation for Maximizers). Suppose Ω1, . . . ,Ωm ⊆ R
n+1 maxi-

mize Problem 1.5. Then for all 1 ≤ i < j ≤ m, there exists cij ∈ R such that

Tρ(1Ωi
− 1Ωj

)(x) = cij, ∀ x ∈ Σij.
13



Proof. Fix 1 ≤ i < j ≤ m and denote fij(x) := 〈X(x), Nij(x)〉 for all x ∈ Σij. From Lemma
3.1, if X is nonzero outside of Σij, we get

1

2

d

ds

∣∣∣
s=0

m∑

i=1

∫

Rn+1

1
Ω

(s)
i

(x)Tρ1Ω(s)
i

(x)γn+1(x) dx

=

∫

Ωi

G(x, y)

∫

Σij

〈X(x), Nij(x)〉 dx dy +
∫

Ωj

G(x, y)

∫

Σij

〈X(x), Nji(x)〉 dx dy

(3)∧(19)
=

∫

Σij

Tρ(1Ωi
− 1Ωj

)(x)fij(x) dx.

We used above Nij = −Nji. If Tρ(1Ωi
− 1Ωj

)(x) is nonconstant, then we can construct
fij supported in Σij with

∫
∂∗Ωi′

fij(x)γn+1(x)dx = 0 for all 1 ≤ i′ ≤ m to give a nonzero

derivative, contradicting the maximality of Ω1, . . . ,Ωm (as in Lemma 2.4 and (17)). �

Theorem 3.3 (General Second Variation Formula, [CS07, Theorem 2.6]; also [Hei15,
Theorem 1.10]). Let X ∈ C∞

0 (Rn+1,Rn+1). Let Ω ⊆ R
n+1 be a measurable set such that ∂Ω

is a locally finite union of C∞ manifolds. Let {Ω(s)}s∈(−1,1) be the corresponding variation of
Ω. Define V as in (14). Then

1

2

d2

ds2

∣∣∣
s=0

∫

Rn+1

∫

Rn+1

1Ω(s)(y)G(x, y)1Ω(s)(x) dxdy

=

∫

Σ

∫

Σ

G(x, y)〈X(x), N(x)〉〈X(y), N(y)〉 dxdy +
∫

Σ

div(V (x, 0)X(x))〈X(x), N(x)〉 dx.

4. Noise Stability and the Calculus of Variations

We now further refine the first and second variation formulas from the previous section.
The following formula follows by using G(x, y) := γn+1(x)γn+1(y) ∀ x, y ∈ R

n+1 in Lemma
3.1 and in Theorem 3.3.

Lemma 4.1 (Variations of Gaussian Volume, [Led01]). Let Ω ⊆ R
n+1 be a measurable

set such that ∂Ω is a locally finite union of C∞ manifolds. Let X ∈ C∞
0 (Rn+1,Rn+1). Let

{Ω(s)}s∈(−1,1) be the corresponding variation of Ω. Denote f(x) := 〈X(x), N(x)〉 for all
x ∈ Σ := ∂∗Ω. Then

d

ds

∣∣∣
s=0

γn+1(Ω
(s)) =

∫

Σ

f(x)γn+1(x) dx.

d2

ds2

∣∣∣
s=0

γn+1(Ω
(s)) =

∫

Σ

(div(X)− 〈X, x〉)f(x)γn+1(x) dx.

Lemma 4.2 (Extension Lemma for Existence of Volume-Preserving Variations,
[Hei18, Lemma 3.9]). Let X ′ ∈ C∞

0 (Rn+1,Rn+1) be a vector field. Define fij := 〈X ′, Nij〉 ∈
C∞

0 (Σij) for all 1 ≤ i < j ≤ m. If

∀ 1 ≤ i ≤ m,
∑

j∈{1,...,m}\{i}

∫

Σij

fij(x)γn(x) dx = 0, (21)
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then X ′|∪1≤i<j≤mΣij
can be extended to a vector field X ∈ C∞

0 (Rn+1,Rn+1) such that the

corresponding variations {Ω(s)
i }1≤i≤m,s∈(−1,1) satisfy

∀ 1 ≤ i ≤ m, ∀ s ∈ (−1, 1), γn+1(Ω
(s)
i ) = γn+1(Ωi).

Lemma 4.3. Define G as in (19). Let f : Σ → R be continous and compactly supported.
Then ∫

Σ

∫

Σ

G(x, y)f(x)f(y) dxdy ≥ 0.

Proof. If g : Rn+1 → R is continuous and compactly supported, then it is well known that
∫

Σ

∫

Σ

G(x, y)g(x)g(y) dxdy ≥ 0,

since e.g. G(x,y)
γn+1(x)γn+1(y)

is the Mehler kernel, which can be written as an (infinite-dimensional)

positive semidefinite matrix. That is, there exists an orthonormal basis {ψi}∞i=1 of L2(γn+1)
(of Hermite polynomials) and there exists a sequence of nonnegative real numbers {λi}∞i=1

such that the following series converges absolutely pointwise:

G(x, y)

γn+1(x)γn+1(y)
=

∞∑

i=1

λiψi(x)ψi(y), ∀ x, y ∈ R
n+1.

From Mercer’s Theorem, this is equivalent to : ∀ p ≥ 1, for all z(1), . . . , z(p) ∈ R
n, for all

β1, . . . , βp ∈ R,
p∑

i,j=1

βiβjG(z
(i), z(j)) ≥ 0.

In particular, this holds for all z(1), . . . , z(p) ∈ ∂Ω ⊆ R
n+1. So, the positive semidefinite

property carries over (by restriction) to ∂Ω. �

4.1. Two Sets. For didactic purposes, we first present the second variation of noise stability
when m = 2 in Conjecture 1.5.

Lemma 4.4 (Second Variation of Noise Stability). Let Ω ⊆ R
n+1 be a measurable

set such that ∂Ω is a locally finite union of C∞ manifolds. Let X ∈ C∞
0 (Rn+1,Rn+1). Let

{Ω(s)}s∈(−1,1) be the corresponding variation of Ω. Denote f(x) := 〈X(x), N(x)〉 for all
x ∈ Σ := ∂∗Ω. Then

1

2

d2

ds2

∣∣∣
s=0

∫

Rn+1

∫

Rn+1

1Ω(s)(y)G(x, y)1Ω(s)(x) dxdy =

∫

Σ

∫

Σ

G(x, y)f(x)f(y) dxdy

+

∫

Σ

〈∇Tρ1Ω(x), X(x)〉f(x)γn+1(x) dx

+

∫

Σ

Tρ1Ω(x)
(
div(X(x))− 〈X(x), x〉

)
f(x)γn+1(x) dx.

(22)
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Proof. For all x ∈ R
n+1, we have V (x, 0)

(14)
=

∫
Ω
G(x, y) dy

(3)
= γn+1(x)Tρ1Ω(x). So, from

Theorem 3.3,

1

2

d2

ds2

∣∣∣
s=0

∫

Rn+1

∫

Rn+1

1Ω(s)(y)G(x, y)1Ω(s)(x) dxdy

=

∫

Σ

∫

Σ

G(x, y)〈X(x), N(x)〉〈X(y), N(y)〉 dxdy

+

∫

Σ

(
n+1∑

i=1

Tρ1Ω(x)
∂

∂xi
Xi(x)− xiTρ1Ω(x)Xi(x)

+
∂

∂xi
Tρ1Ω(x)Xi(x))〈X(x), N(x)〉γn+1(x) dx.

That is, (22) holds. �

Lemma 4.5 (Volume Preserving Second Variation of Maximizers). Suppose Ω,Ωc ⊆
R

n+1 maximize Problem 1.5 for 0 < ρ < 1 and m = 2. Let {Ω(s)}s∈(−1,1) be the corresponding
variation of Ω. Denote f(x) := 〈X(x), N(x)〉 for all x ∈ Σ := ∂∗Ω. If

∫

Σ

f(x)γn+1(x) dx = 0,

Then there exists an extension of the vector field X|Σ such that the corresponding variation
of {Ω(s)}s∈(−1,1) satisfies

1

2

d2

ds2

∣∣∣
s=0

∫

Rn+1

∫

Rn+1

1Ω(s)(y)G(x, y)1Ω(s)(x) dxdy

=

∫

Σ

∫

Σ

G(x, y)f(x)f(y) dxdy −
∫

Σ

∥∥∇Tρ1Ω(x)
∥∥ (f(x))2γn+1(x) dx.

(23)

Moreover,

∇Tρ1Ω(x) = −N(x)
∥∥∇Tρ1Ω(x)

∥∥ , ∀ x ∈ Σ. (24)

Proof. From Lemma 3.1, Tρ1Ω(x) is constant for all x ∈ Σ. So, from Lemma 4.1 and Lemma
4.2, the last term in (22) vanishes, i.e.

1

2

d2

ds2

∣∣∣
s=0

∫

Rn+1

∫

Rn+1

1Ω(s)(y)G(x, y)1Ω(s)(x) dxdy

=

∫

Σ

∫

Σ

G(x, y)〈X(x), N(x)〉〈X(y), N(y)〉 dxdy

+

∫

Σ

〈∇Tρ1Ω(x), X(x)〉〈X(x), N(x)〉γn+1(x) dx.

(Here ∇ denotes the gradient in R
n+1.) Since Tρ1Ω(x) is constant for all x ∈ ∂Ω by Lemma

3.2, ∇Tρ1Ω(x) is parallel to N(x) for all x ∈ ∂Ω. That is,

∇Tρ1Ω(x) = ±
∥∥∇Tρ1Ω(x)

∥∥N(x), ∀ x ∈ ∂Ω. (25)

In fact, we must have a negative sign in (25), otherwise we could find a vector field X
supported near x ∈ ∂Ω such that (25) has a positive sign, and then since G is a positive
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semidefinite function by Lemma 4.3, we would have

1

2

d2

ds2

∣∣∣
s=0

∫

Rn+1

∫

Rn+1

1Ω(s)(y)G(x, y)1Ω(s)(x) dxdy

≥
∫

Σ

〈∇Tρ1Ω(x), X(x)〉〈X(x), N(x)〉γn+1(x) dx > 0,

a contradiction. In summary,

1

2

d2

ds2

∣∣∣
s=0

∫

Rn+1

∫

Rn+1

1Ω(s)(y)G(x, y)1Ω(s)(x) dxdy

=

∫

Σ

∫

Σ

G(x, y)〈X(x), N(x)〉〈X(y), N(y)〉 dxdy

−
∫

Σ

∥∥∇Tρ1Ω(x)
∥∥ 〈X(x), N(x)〉2γn+1(x) dx.

�

4.2. More than Two Sets. We can now generalize Section 4.1 to the case of m > 2 sets.

Lemma 4.6 (Second Variation of Noise Stability, Multiple Sets). Let Ω1, . . . ,Ωm ⊆
R

n+1 be a partition of Rn+1 into measurable sets such that ∂Ωi is a locally finite union of

C∞ manifolds for all 1 ≤ i ≤ m. Let X ∈ C∞
0 (Rn+1,Rn+1). Let {Ω(s)

i }s∈(−1,1) be the
corresponding variation of Ωi for all 1 ≤ i ≤ m. Denote fij(x) := 〈X(x), Nij(x)〉 for all
x ∈ Σij := (∂∗Ωi) ∩ (∂∗Ωj). We let N denote the exterior pointing unit normal vector to
∂∗Ωi for any 1 ≤ i ≤ m. Then

1

2

d2

ds2

∣∣∣
s=0

m∑

i=1

∫

Rn+1

∫

Rn+1

1
Ω

(s)
i

(y)G(x, y)1
Ω

(s)
i

(x) dxdy

=
∑

1≤i<j≤m

∫

Σij

[( ∫

∂∗Ωi

−
∫

∂∗Ωj

)
G(x, y)〈X(y), N(y)〉 dy

]
fij(x) dx

+

∫

Σij

〈∇Tρ(1Ωi
− 1Ωj

)(x), X(x)〉fij(x)γn+1(x) dx

+

∫

Σij

Tρ(1Ωi
− 1Ωj

)(x)
(
div(X(x))− 〈X(x), x〉

)
fij(x)γn+1(x) dx.

(26)

Proof. From Lemma 4.4,

1

2

d2

ds2

∣∣∣
s=0

∫

Rn+1

∫

Rn+1

1
Ω

(s)
i

(y)G(x, y)1
Ω

(s)
i

(x) dxdy

=

∫

∂∗Ωi

∫

∂∗Ωi

G(x, y)〈X(x), N(x)〉〈X(y), N(y)〉 dxdy

+

∫

∂∗Ωi

〈∇Tρ1Ωi
(x), X(x)〉〈X(x), N(x)〉γn+1(x) dx

+

∫

∂∗Ωi

Tρ1Ωi
(x)

(
div(X(x))− 〈X(x), x〉

)
〈X(x), N(x)〉γn+1(x) dx.

Summing over 1 ≤ i ≤ m and using Nij = −Nji completes the proof. �
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Below, we need the following combinatorial Lemma, the case m = 3 being treated in
[HMRR02, Proposition 3.3].

Lemma 4.7 ([Hei19, Lemma 4.6]). Let m ≥ 3. Let

D1 := {(xij)1≤i 6=j≤m ∈ R
(m2 ) : ∀ 1 ≤ i 6= j ≤ m, xij = −xji,

∑

j∈{1,...,m} : j 6=i

xij = 0}.

D2 := {(xij)1≤i 6=j≤m ∈ R
(m2 ) : ∀ 1 ≤ i 6= j ≤ m, xij = −xji,

∀ 1 ≤ i < j < k ≤ m xij + xjk + xki = 0}.

Let x ∈ D1 and let y ∈ D2. Then
∑

1≤i<j≤m xijyij = 0.

Proof. D1 is defined to be perpendicular to vectors in D2, and vice versa. That is, D1 and D2

are orthogonal complements of each other, and in terms of vector spaces, D1 ⊕D2 = R
(m2 ).

Consequently, the inner product of any x ∈ D1 and y ∈ D2 is zero. �

Lemma 4.8 (Volume Preserving Second Variation of Maximizers, Multiple Sets).
Let Ω1, . . . ,Ωm ⊆ R

n+1 be a partition of Rn+1 into measurable sets such that ∂Ωi is a locally

finite union of C∞ manifolds for all 1 ≤ i ≤ m. Let X ∈ C∞
0 (Rn+1,Rn+1). Let {Ω(s)

i }s∈(−1,1)

be the corresponding variation of Ωi for all 1 ≤ i ≤ m. Denote fij(x) := 〈X(x), Nij(x)〉 for
all x ∈ Σij := (∂∗Ωi) ∩ (∂∗Ωj). We let N denote the exterior pointing unit normal vector to
∂∗Ωi for any 1 ≤ i ≤ m. Then

1

2

d2

ds2

∣∣∣
s=0

m∑

i=1

∫

Rn+1

∫

Rn+1

1
Ω

(s)
i

(y)G(x, y)1
Ω

(s)
i

(x) dxdy

=
∑

1≤i<j≤m

∫

Σij

[( ∫

∂∗Ωi

−
∫

∂∗Ωj

)
G(x, y)〈X(y), N(y)〉 dy

]
fij(x) dx

−
∫

Σij

∥∥∇Tρ(1Ωi
− 1Ωj

)(x)
∥∥ (fij(x))2γn+1(x) dx.

(27)

Also,

∇Tρ(1Ωi
− 1Ωj

)(x) = −Nij(x)
∥∥∇Tρ(1Ωi

− 1Ωj
)(x)

∥∥ , ∀ x ∈ Σij. (28)

Moreover,
∥∥∇Tρ(1Ωi

− 1Ωj
)(x)

∥∥ > 0 for all x ∈ Σij, except on a set of Hausdorff dimension
at most n− 1.
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Proof. From Lemma 3.2, there exist constants (cij)1≤i<j≤m such that Tρ(1Ωi
− 1Ωj

)(x) = cij
for all 1 ≤ i < j ≤ m, for all x ∈ Σij. So, from Lemma 4.6,

1

2

d2

ds2

∣∣∣
s=0

m∑

i=1

∫

Rn+1

∫

Rn+1

1
Ω

(s)
i

(y)G(x, y)1
Ω

(s)
i

(x) dxdy

=
∑

1≤i<j≤m

∫

Σij

[( ∫

∂∗Ωi

−
∫

∂∗Ωj

)
G(x, y)〈X(y), N(y)〉 dy

]
〈X(x), Nij(x)〉 dx

+

∫

Σij

〈∇Tρ(1Ωi
− 1Ωj

)(x), X(x)〉〈X(x), Nij(x)〉γn+1(x) dx

+ cij

∫

Σij

(
div(X(x))− 〈X(x), x〉

)
〈X(x), Nij(x)〉γn+1(x) dx.

The last term then vanishes by Lemma 4.7. That is,

1

2

d2

ds2

∣∣∣
s=0

m∑

i=1

∫

Rn+1

∫

Rn+1

1
Ω

(s)
i

(y)G(x, y)1
Ω

(s)
i

(x) dxdy

=
∑

1≤i<j≤m

∫

Σij

[( ∫

∂∗Ωi

−
∫

∂∗Ωj

)
G(x, y)〈X(y), N(y)〉 dy

]
〈X(x), Nij(x)〉 dx

+

∫

Σij

〈∇Tρ(1Ωi
− 1Ωj

)(x), X(x)〉〈X(x), Nij(x)〉γn+1(x) dx.

Meanwhile, if 1 ≤ i < j ≤ m is fixed, it follows from Lemma 3.2 that

∇Tρ(1Ωi
− 1Ωj

)(x) = ±Nij(x)
∥∥∇Tρ(1Ωi

− 1Ωj
)(x)

∥∥ , ∀ x ∈ Σij. (29)

In fact, we must have a negative sign in (29), otherwise we could find a vector field X
supported near x ∈ Σij such that (25) has a positive sign, and then since G is a positive
semidefinite function by Lemma 4.3, we would have

1

2

d2

ds2

∣∣∣
s=0

m∑

i=1

∫

Rn+1

∫

Rn+1

1
Ω

(s)
i

(y)G(x, y)1
Ω

(s)
i

(x) dxdy

≥
∫

Σij

〈∇Tρ(1Ωi
− 1Ωj

)(x), X(x)〉〈X(x), N(x)〉γn+1(x) dx > 0,

a contradiction. In summary,

1

2

d2

ds2

∣∣∣
s=0

m∑

i=1

∫

Rn+1

∫

Rn+1

1
Ω

(s)
i

(y)G(x, y)1
Ω

(s)
i

(x) dxdy

=
∑

1≤i<j≤m

∫

∂Σij

[( ∫

∂Ωi

−
∫

∂Ωj

)
G(x, y)〈X(y), Nij(y)〉 dy

]
〈X(x), Nij(x)〉 dx

−
∫

Σij

∥∥∇Tρ(1Ωi
− 1Ωj

)(x)
∥∥ 〈X(x), Nij(x)〉2γn+1(x) dx.

�
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5. Almost Eigenfunctions of the Second Variation

For didactic purposes, we first consider the case m = 2, and we then later consider the
case m > 2.

5.1. Two Sets. Let Σ := ∂∗Ω. For any bounded measurable f : Σ → R, define the following
function (if it exists):

S(f)(x) := (1− ρ2)−(n+1)/2(2π)−(n+1)/2

∫

Σ

f(y)e
− ‖y−ρx‖2

2(1−ρ2) dy, ∀ x ∈ Σ. (30)

Lemma 5.1 (Key Lemma, m = 2, Translations as Almost Eigenfunctions). Let
Ω,Ωc maximize Problem 1.5 for m = 2. Let v ∈ R

n+1. Then

S(〈v,N〉)(x) = 〈v,N(x)〉1
ρ

∥∥∇Tρ1Ω(x)
∥∥ , ∀ x ∈ Σ.

Proof. Since Tρ1Ω(x) is constant for all x ∈ ∂Ω by Lemma 3.2, ∇Tρ1Ω(x) is parallel to N(x)
for all x ∈ ∂Ω. That is (24) holds, i.e.

∇Tρ1Ω(x) = −N(x)
∥∥∇Tρ1Ω(x)

∥∥ , ∀ x ∈ Σ. (31)

From Definition 3, and then using the divergence theorem,

〈v,∇Tρ1Ω(x)〉 = (1− ρ2)−(n+1)/2(2π)−(n+1)/2
〈
v,

∫

Ω

∇xe
− ‖y−ρx‖2

2(1−ρ2) dy
〉

= (1− ρ2)−(n+1)/2(2π)−(n+1)/2 ρ

1− ρ2

∫

Ω

〈v, y − ρx〉e−
‖y−ρx‖2

2(1−ρ2) dy

= −(1− ρ2)−(n+1)/2(2π)−(n+1)/2ρ

∫

Ω

divy

(
ve

− ‖y−ρx‖2

2(1−ρ2)

)
dy

= −(1− ρ2)−(n+1)/2(2π)−(n+1)/2ρ

∫

Σ

〈v,N(y)〉e−
‖y−ρx‖2

2(1−ρ2) dy

(30)
= −ρ S(〈v,N〉)(x).

(32)

Therefore,

〈v,N(x)〉
∥∥∇Tρ1Ω(x)

∥∥ (31)
= −〈v,∇Tρ1Ω(x)〉

(32)
= ρ S(〈v,N〉)(x).

�
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Remark 5.2. To justify the use of the divergence theorem in (32), let r > 0 and note that
we can differentiate under the integral sign of Tρ1Ω∩B(0,r)(x) to get

∇Tρ1Ω∩B(0,r)(x) = (1− ρ2)−(n+1)/2(2π)−(n+1)/2
〈
v,

∫

Ω∩B(0,r)

∇xe
− ‖y−ρx‖2

2(1−ρ2) dy
〉

= (1− ρ2)−(n+1)/2(2π)−(n+1)/2 ρ

1− ρ2

∫

Ω∩B(0,r)

〈v, y − ρx〉e−
‖y−ρx‖2

2(1−ρ2) dy

= −(1− ρ2)−(n+1)/2(2π)−(n+1)/2ρ

∫

Ω∩B(0,r)

divy

(
ve

− ‖y−ρx‖2

2(1−ρ2)

)
dy

= −(1− ρ2)−(n+1)/2(2π)−(n+1)/2ρ

∫

(Σ∩B(0,r))∪(Ω∩∂B(0,r))

〈v,N(y)〉e−
‖y−ρx‖2

2(1−ρ2) dy.

(33)
Fix r′ > 0. Fix x ∈ R

n+1 with ‖x‖ < r′. The last integral in (33) over Ω ∩ ∂B(0, r) goes
to zero as r → ∞ uniformly over all such ‖x‖ < r′. Also ∇Tρ1Ω(x) exists a priori for all
x ∈ R

n+1, while

∥∥∇Tρ1Ω(x)−∇Tρ1Ω∩B(0,r)(x)
∥∥ (3)
=

ρ√
1− ρ2

∥∥∥∥
∫

Rn+1

y1Ω∩B(0,r)c(xρ+ y
√

1− ρ2)γn+1(y) dy

∥∥∥∥

≤ ρ√
1− ρ2

sup
w∈Rn+1 : ‖w‖=1

∫

Rn+1

|〈w, y〉| 1B(0,r)c(xρ+ y
√

1− ρ2)γn+1(y) dy.

And the last integral goes to zero as r → ∞, uniformly over all ‖x‖ < r′.

Lemma 5.3 (Second Variation of Translations). Let v ∈ R
n+1. Let Ω,Ωc maximize

Problem 1.5 for m = 2. Let {Ω(s)}s∈(−1,1) be the variation of Ω corresponding to the constant
vector field X := v. Assume that∫

Σ

〈v,N(x)〉γn+1(x) dx = 0.

Then

1

2

d2

ds2

∣∣∣
s=0

∫

Rn+1

1Ω(s)(x)Tρ1Ω(s)(x)γn+1(x) dx =
(1
ρ
− 1

)∫

Σ

‖∇Tρ1Ω(x)‖〈v,N(x)〉2γn+1(x) dx.

Proof. Let f(x) := 〈v,N(x)〉 for all x ∈ Σ. From Lemma 4.5,

1

2

d2

ds2

∣∣∣
s=0

∫

Rn+1

1Ω(s)(x)Tρ1Ω(s)(x)γn+1(x) dx

=

∫

Σ

(
S(f)(x)− ‖∇Tρ1Ω(x)‖f(x)

)
f(x)γn+1(x) dx.

Applying Lemma 5.1, S(f)(x) = f(x)1
ρ
‖∇Tρ1Ω(x)‖ ∀ x ∈ Σ, proving the Lemma. Note also

that
∫
Σ
‖∇Tρ1Ω(x)‖〈v,N(x)〉2γn+1(x) dx is finite priori by the divergence theorem and (24):

∞ >

∣∣∣∣
∫

Ω

〈
v,−x+∇〈v,∇Tρ1Ω(x)〉

〉
γn+1(x) dx

∣∣∣∣ =
∣∣∣∣
∫

Ω

div
(
v〈v,∇Tρ1Ω(x)〉γn+1(x)

)
dx

∣∣∣∣

=

∣∣∣∣
∫

Σ

〈v,N(x)〉〈v,∇Tρ1Ω(x)〉γn+1(x) dx

∣∣∣∣
(24)
=

∣∣∣∣
∫

Σ

‖∇Tρ1Ω(x)‖〈v,N(x)〉2γn+1(x) dx

∣∣∣∣ .
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5.2. More than Two Sets. Let v ∈ R
n+1 and denote fij := 〈v,Nij〉 for all 1 ≤ i, j ≤ m.

For simplicity of notation in the formulas below, if 1 ≤ i ≤ m and if a vector N(x) appears
inside an integral over ∂Ωi, then N(x) denotes the unit exterior pointing normal vector to
Ωi at x ∈ ∂∗Ωi. Similarly, for simplicity of notation, we denote 〈v,N〉 as the collection of
functions (〈v,Nij〉)1≤i<j≤m. For any 1 ≤ i < j ≤ m, define

Sij(〈v,N〉)(x) := (1− ρ2)−(n+1)/2(2π)−(n+1)/2
(∫

∂Ωi

−
∫

∂Ωj

)
〈v,N(y)〉e−

‖y−ρx‖2

2(1−ρ2) dy, ∀ x ∈ Σij.

(34)

Lemma 5.4 (Key Lemma, m ≥ 2, Translations as Almost Eigenfunctions). Let
Ω1, . . . ,Ωm maximize problem 1.5. Fix 1 ≤ i < j ≤ m. Let v ∈ R

n+1. Then

Sij(〈v,N〉)(x) = 〈v,Nij(x)〉
1

ρ

∥∥∇Tρ(1Ωi
− 1Ωj

)(x)
∥∥ , ∀ x ∈ Σij.

Proof. From Lemma 4.8, i.e. (28),

∇Tρ(1Ωi
− 1Ωj

)(x) = −Nij(x)
∥∥∇Tρ(1Ωi

− 1Ωj
)(x)

∥∥ , ∀ x ∈ Σij. (35)

From Definition 3, and then using the divergence theorem,

〈v,∇Tρ1Ωi
(x)〉 = (1− ρ2)−(n+1)/2(2π)−(n+1)/2

〈
v,

∫

Ωi

∇e−
‖y−ρx‖2

2(1−ρ2) dy
〉

= (1− ρ2)−(n+1)/2(2π)−(n+1)/2 ρ

1− ρ2

∫

Ωi

〈v, y − ρx〉e−
‖y−ρx‖2

2(1−ρ2) dy

= −(1− ρ2)−(n+1)/2(2π)−(n+1)/2)ρ

∫

Ωi

div
(
ve

− ‖y−ρx‖2

2(1−ρ2)

)
dy

= −(1− ρ2)−(n+1)/2(2π)−(n+1)/2ρ

∫

∂∗Ωi

〈v,N(y)〉e−
‖y−ρx‖2

2(1−ρ2) dy.

(36)

The use of the divergence theorem is justified in Remark 5.2. Therefore,

〈v,Nij(x)〉
∥∥∇Tρ(1Ωi

− 1Ωj
)(x)

∥∥ (35)
= −〈v,∇Tρ(1Ωi

− 1Ωj
)(x)〉

(36)
= (1− ρ2)−(n+1)/2(2π)−(n+1)/2ρ

(∫

∂∗Ωi

−
∫

∂∗Ωj

)
〈v,N(y)〉e−

‖y−ρx‖2

2(1−ρ2) dy

(34)
= ρ Sij(〈v,N〉)(x).

�

Lemma 5.5 (Second Variation of Translations, Multiple Sets). Let v ∈ R
n+1. Let

Ω1, . . . ,Ωm maximize problem 1.5. For each 1 ≤ i ≤ m, let {Ω(s)
i }s∈(−1,1) be the variation of

Ωi corresponding to the constant vector field X := v. Assume that
∫

∂Ωi

〈v,N(x)〉γn+1(x) dx = 0, ∀ 1 ≤ i ≤ m.
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Then

1

2

d2

ds2

∣∣∣
s=0

m∑

i=1

∫

Rn+1

1
Ω

(s)
i

(x)Tρ1Ω(s)
i

(x)γn+1(x) dx

=
(1
ρ
− 1

) ∑

1≤i<j≤m

∫

Σij

‖∇Tρ(1Ωi
− 1Ωj

)(x)‖〈v,Nij(x)〉2γn+1(x) dx.

Proof. For any 1 ≤ i < j ≤ m, let fij(x) := 〈v,Nij(x)〉 for all x ∈ Σ. From Lemma 4.5,

1

2

d2

ds2

∣∣∣
s=0

m∑

i=1

∫

Rn+1

1Ω(s)(x)Tρ1Ω(s)(x)γn+1(x) dx

=
∑

1≤i<j≤m

∫

Σij

(
Sij(〈v,N〉)(x)− ‖∇Tρ(1Ωi

− 1Ωj
)(x)‖fij(x)

)
fij(x)γn+1(x) dx.

Applying Lemma 5.4, Sij(〈v,N〉)(x) = fij(x)
1
ρ
‖∇Tρ(1Ωi

− 1Ωj
)(x)‖, proving the Lemma.

Note also that
∑

1≤i<j≤m

∫
Σij

‖∇Tρ(1Ωi
− 1Ωj

)(x)‖〈v,Nij(x)〉2γn+1(x) dx is finite priori by

the divergence theorem since

∞ >

∣∣∣∣
∫

Ωi

〈
v,−x+∇〈v,∇Tρ1Ωi

(x)〉
〉
γn+1(x) dx

∣∣∣∣ =
∣∣∣∣
∫

Ωi

div
(
v〈v,∇Tρ1Ωi

(x)〉γn+1(x)
)
dx

∣∣∣∣

=

∣∣∣∣
∫

Ωi

div
(
v〈v,∇Tρ1Ωi

(x)〉γn+1(x)
)
dx

∣∣∣∣ =
∣∣∣∣
∫

∂∗Ωi

〈v,∇Tρ(1Ωi
)(x)〉〈v,N(x)〉γn+1(x) dx

∣∣∣∣ .

Summing over 1 ≤ i ≤ m then gives

∞ >

∣∣∣∣∣
∑

1≤i<j≤m

∫

Σij

〈v,∇Tρ(1Ωi
− 1Ωj

)(x)〉〈v,Nij(x)〉γn+1(x) dx.

∣∣∣∣∣

(28)
=

∣∣∣∣∣
∑

1≤i<j≤m

∫

Σij

‖∇Tρ(1Ωi
− 1Ωj

)(x)‖〈v,Nij(x)〉2γn+1(x) dx.

∣∣∣∣∣ .

�

6. Proof of the Main Structure Theorem

Proof of Theorem 1.9. Let m ≥ 2. Let 0 < ρ < 1. Fix a1, . . . , am > 0 such that
∑m

i=1 ai = 1.
Let Ω1, . . .Ωm ⊆ R

n+1 be measurable sets that partition R
n+1 such that γn+1(Ωi) = ai

for all 1 ≤ i ≤ m that maximize Problem 1.5. These sets exist by Lemma 2.3 and from
Lemma 2.4 their boundaries are locally finite unions of C∞ n-dimensional manifolds. Define
Σij := (∂∗Ωi) ∩ (∂∗Ωj) for all 1 ≤ i < j ≤ m.
By Lemma 3.2, for all 1 ≤ i < j ≤ m, there exists cij ∈ R such that

Tρ(1Ωi
− 1Ωj

)(x) = cij, ∀ x ∈ Σij.

By this condition, the regularity Lemma 2.4, and the last part of Lemma 4.8,

∇Tρ(1Ωi
− 1Ωj

)(x) = −Nij(x)
∥∥∇Tρ(1Ωi

− 1Ωj
)(x)

∥∥ , ∀ x ∈ Σij.
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Moreover, by the last part of Lemma 4.8, except for a set σij of Hausdorff dimension at most
n− 1, we have ∥∥∇Tρ(1Ωi

− 1Ωj
)(x)

∥∥ > 0, ∀ x ∈ Σij \ σij. (37)

Fix v ∈ R
n+1, and consider the variation of Ω1, . . . ,Ωm induced by the constant vector

field X := v. For all 1 ≤ i < j ≤ m, define Sij as in (34). Define

V :=
{
v ∈ R

n+1 :
∑

j∈{1,...,m}\{i}

∫

Σij

〈v,Nij(x)〉γn+1(x) dx = 0, ∀ 1 ≤ i ≤ m
}
.

From Lemma 5.5,

v ∈ V =⇒ 1

2

d2

ds2

∣∣∣
s=0

m∑

i=1

∫

Rn+1

1
Ω

(s)
i

(x)Tρ1Ω(s)
i

(x)γn+1(x) dx

=
(1
ρ
− 1

) ∑

1≤i<j≤m

∫

Σij

‖∇Tρ(1Ωi
− 1Ωj

)(x)‖〈v,Nij(x)〉2γn+1(x) dx.

Since 0 < ρ < 1, (37) implies

v ∈ V =⇒ 〈v,Nij(x)〉 = 0, ∀ x ∈ Σij, ∀ 1 ≤ i < j ≤ m. (38)

The set V has dimension at least n+2−m, by the rank-nullity theorem, since V is the null
space of the linear operator M : Rn+1 → R

m defined by

(M(v))i :=
∑

j∈{1,...,m}\{i}

∫

Σij

〈v,Nij(x)〉γn+1(x) dx, ∀ 1 ≤ i ≤ m

and M has rank at most m− 1 (since
∑m

i=1(M(v))i = 0 for all v ∈ R
n+1). So, by (38), after

rotating Ω1, . . . ,Ωm, we conclude that there exist measurable Ω′
1, . . . ,Ω

′
m ⊆ R

m−1 such that

Ωi = Ω′
i × R

n+2−m, ∀ 1 ≤ i ≤ m.

�

7. The Case of Negative Correlation

In this section, we consider the case that ρ < 0 in Problem 1.5. When ρ < 0 and
h : Rn+1 → [−1, 1] is measurable, then quantity

∫

Rn+1

h(x)Tρh(x)γn+1(x) dx

could be negative, so a few parts of the above argument do not work, namely the existence
Lemma 2.3. We therefore replace the noise stability with a more general bilinear expression,
guaranteeing existence of the corresponding problem. The remaining parts of the argument
are essentially identical, mutatis mutandis. We indicate below where the arguments differ in
the bilinear case.

When ρ < 0, we look for a minimum of noise stability, rather than a maximum. Corre-
spondingly, we expect that the plurality function minimizes noise stability when ρ < 0. If
ρ < 0, then (3) implies that

∫

Rn+1

h(x)Tρh(x)γn+1(x) dx =

∫

Rn+1

h(x)T(−ρ)h(−x)γn+1(x) dx.

24



So, in order to understand the minimum of noise stability for negative correlations, it suffices
to consider the following bilinear version of the standard simplex problem with positive
correlation.

Problem 7.1 (Standard Simplex Problem, Bilinear Version, Positive Correlation,
[IM12]). Let m ≥ 3. Fix a1, . . . , am > 0 such that

∑m
i=1 ai = 1. Fix 0 < ρ < 1. Find

measurable sets Ω1, . . .Ωm,Ω
′
1, . . .Ω

′
m ⊆ R

n+1 with ∪m
i=1Ωi = ∪m

i=1Ω
′
i = R

n+1 and γn+1(Ωi) =
γn+1(Ω

′
i) = ai for all 1 ≤ i ≤ m that minimize

m∑

i=1

∫

Rn+1

1Ωi
(x)Tρ1Ω′

i
(x)γn+1(x) dx,

subject to the above constraints.

Conjecture 7.2 (Standard Simplex Conjecture, Bilinear Version, Positive Cor-
relation [IM12]). Let Ω1, . . .Ωm,Ω

′
1, . . .Ω

′
m ⊆ R

n+1 minimize Problem 1.5. Assume that
m− 1 ≤ n+ 1. Fix 0 < ρ < 1. Let z1, . . . , zm ∈ R

n+1 be the vertices of a regular simplex in
R

n+1 centered at the origin. Then ∃ w ∈ R
n+1 such that, for all 1 ≤ i ≤ m,

Ωi = −Ω′
i = w + {x ∈ R

n+1 : 〈x, zi〉 = max
1≤j≤m

〈x, zj〉}.

In the case that ai = 1/m for all 1 ≤ i ≤ m, it is assumed that w = 0 in Conjecture 7.2.
Since we consider a bilinear version of noise stability in Problem 7.1, existence of an

optimizer is easier than in Problem 1.5.

Lemma 7.3 (Existence of a Minimizer). Let 0 < ρ < 1 and let m ≥ 2. Then there exist
measurable sets Ω1, . . .Ωm,Ω

′
1, . . .Ω

′
m that minimize Problem 7.1.

Proof. Define ∆m as in (6). Let f, g : Rn+1 → ∆m. The set D0 := {f : Rn+1 → ∆m} is
norm closed, bounded, and convex, therefore it is weakly compact and convex. Consider the
function

C(f, g) :=
m∑

i=1

∫

Rn+1

fi(x)Tρgi(x)γn+1(x) dx.

This function is weakly continuous on D0 × D0, and D0 × D0 is weakly compact, so there

exists f̃ , g̃ ∈ D0 such that C(f̃ , g̃) = minf,g∈D C(f, g). Since C is bilinear and D0 is convex,
the minimum of C must be achieved at an extreme point of D0 ×D0. Let e1, . . . , em denote
the standard basis of Rm, so that f, g takes their values in {e1, . . . , em}. Then, for any
1 ≤ i ≤ m, define Ωi := {x ∈ R

n+1 : f(x) = ei} and Ω′
i := {x ∈ R

n+1 : g(x) = ei}. Note that
fi = 1Ωi

and gi = 1Ω′
i
for all 1 ≤ i ≤ m. �

Lemma 7.4 (Regularity of a Minimizer). Let Ω1, . . . ,Ωm,Ω
′
1, . . . ,Ω

′
m ⊆ R

n+1 be the
measurable sets minimizing Problem 1.5, guaranteed to exist by Lemma 7.3. Then the sets
Ω1, . . . ,Ωm,Ω

′
1, . . . ,Ω

′
m have locally finite surface area. Moreover, for all 1 ≤ i ≤ m and for

all x ∈ ∂Ωi, there exists a neighborhood U of x such that U ∩ ∂Ωi is a finite union of C∞

n-dimensional manifolds. The same holds for Ω′
1, . . . ,Ω

′
m.

We denote Σij := (∂∗Ωi) ∩ (∂∗Ωj),Σ
′
ij := (∂∗Ω′

i) ∩ (∂∗Ω′
j) for all 1 ≤ i < j ≤ m.
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Lemma 7.5 (The First Variation for Minimizers). Suppose Ω1, . . . ,Ωm,Ω
′
1, . . . ,Ω

′
m ⊆

R
n+1 minimize Problem 7.1. Then for all 1 ≤ i < j ≤ m, there exists cij, c

′
ij ∈ R such that

Tρ(1Ωi
− 1Ωj

)(x) = cij, ∀ x ∈ Σij.

Tρ(1Ω′
i
− 1Ω′

j
)(x) = c′ij, ∀ x ∈ Σij.

We denote Nij(x) as the unit exterior normal vector to Σij for all 1 ≤ i < j ≤ m.
Also denote N ′

ij(x) as the unit exterior normal vector to Σ′
ij for all 1 ≤ i < j ≤ m. Let

Ω1, . . . ,Ωm,Ω
′
1, . . . ,Ω

′
m ⊆ R

n+1 be a partition of Rn+1 into measurable sets such that ∂Ωi, ∂Ω
′
i

are a locally finite union of C∞ manifolds for all 1 ≤ i ≤ m. Let X,X ′ ∈ C∞
0 (Rn+1,Rn+1).

Let {Ω(s)
i }s∈(−1,1) be the variation of Ωi corresponding to X for all 1 ≤ i ≤ m. Let

{Ω′(s)
i }s∈(−1,1) be the variation of Ω′

i corresponding to X ′ for all 1 ≤ i ≤ m. Denote
fij(x) := 〈X(x), Nij(x)〉 for all x ∈ Σij and f

′
ij(x) := 〈X ′(x), N ′

ij(x)〉 for all x ∈ Σ′
ij. We let

N denote the exterior pointing unit normal vector to ∂∗Ωi for any 1 ≤ i ≤ m and we let N ′

denote the exterior pointing unit normal vector to ∂∗Ω′
i for any 1 ≤ i ≤ m.

Lemma 7.6 (Volume Preserving Second Variation of Minimizers, Multiple Sets).
Let Ω1, . . . ,Ωm,Ω

′
1, . . . ,Ω

′
m ⊆ R

n+1 be two partitions of Rn+1 into measurable sets such that
∂Ωi, ∂Ω

′
i are a locally finite union of C∞ manifolds for all 1 ≤ i ≤ m. Then

d2

ds2

∣∣∣
s=0

m∑

i=1

∫

Rn+1

∫

Rn+1

1
Ω

(s)
i

(y)G(x, y)1
Ω

′(s)
i

(x) dxdy

=
∑

1≤i<j≤m

∫

Σ′
ij

[( ∫

∂∗Ωi

−
∫

∂∗Ωj

)
G(x, y)〈X(y), N(y)〉 dy

]
f ′
ij(x) dx

+
∑

1≤i<j≤m

∫

Σij

[( ∫

∂∗Ω′
i

−
∫

∂∗Ω′
j

)
G(x, y)〈X ′(y), N ′(y)〉 dy

]
fij(x) dx

+

∫

Σ′
ij

‖∇Tρ(1Ωi
− 1Ωj

)(x)‖(f ′
ij(x))

2γn+1(x) dx

+

∫

Σij

‖∇Tρ(1Ω′
i
− 1Ω′

j
)(x)‖(fij(x))2γn+1(x) dx.

(39)

Also,
∇Tρ(1Ωi

− 1Ωj
)(x) = N ′

ij(x)‖∇Tρ(1Ωi
− 1Ωj

)(x)‖, ∀ x ∈ Σ′
ij.

∇Tρ(1Ω′
i
− 1Ω′

j
)(x) = Nij(x)‖∇Tρ(1Ω′

i
− 1Ω′

j
)(x)‖, ∀ x ∈ Σij.

(40)

Moreover, ‖∇Tρ(1Ωi
− 1Ωj

)(x)‖ > 0 for all x ∈ Σ′
ij, except on a set of Hausdorff dimension

at most n − 1, and ‖∇Tρ(1Ω′
i
− 1Ω′

j
)(x)‖ > 0 for all x ∈ Σij, except on a set of Hausdorff

dimension at most n− 1.

Equation (40) and the last assertion require a slightly different argument than previ-
ously used. To see the last assertion, note that if there exists 1 ≤ i < j ≤ m such that∥∥∇Tρ(1Ωi

− 1Ωj
)(x)

∥∥ = 0 on an open set in Σ′
ij, then choose X ′ supported in this open

set so that the third term of (39) is zero. Then, choose Y such that sum of the first two
terms in (39) is negative. Multiplying then X by a small positive constant, and noting that
the fourth term in (39) has quadratic dependence on X, we can create a negative second
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derivative of the noise stability, giving a contradiction. We can similarly justify the positive
signs appearing in (40) (as opposed to the negative signs from (28)).
Let v ∈ R

n+1. For simplicity of notation, we denote 〈v,N〉 as the collection of functions
(〈v,Nij〉)1≤i<j≤m and we denote 〈v,N ′〉 as the collection of functions (〈v,N ′

ij〉)1≤i<j≤m. For
any 1 ≤ i < j ≤ m, define

Sij(〈v,N〉)(x) := (1− ρ2)−(n+1)/2(2π)−(n+1)/2
(∫

∂Ωi

−
∫

∂Ωj

)
〈v,N(y)〉e−

‖y−ρx‖2

2(1−ρ2) dy, ∀ x ∈ Σij′

S ′
ij(〈v,N ′〉)(x) := (1− ρ2)−(n+1)/2(2π)−(n+1)/2

(∫

∂Ω′
i

−
∫

∂Ω′
j

)
〈v,N ′(y)〉e−

‖y−ρx‖2

2(1−ρ2) dy ∀ x ∈ Σij.

(41)

Lemma 7.7 (Key Lemma, m ≥ 2, Translations as Almost Eigenfunctions). Let
Ω1, . . . ,Ωm,Ω

′
1, . . . ,Ω

′
m ⊆ R

n+1 minimize problem 7.1. Fix 1 ≤ i < j ≤ m. Let v ∈ R
n+1.

Then

Sij(〈v,N〉)(x) = −〈v,N ′
ij(x)〉

1

ρ
‖∇Tρ(1Ωi

− 1Ωj
)(x)‖, ∀ x ∈ Σ′

ij.

S ′
ij(〈v,N ′〉)(x) = −〈v,Nij(x)〉

1

ρ
‖∇Tρ(1Ω′

i
− 1Ω′

j
)(x)‖, ∀ x ∈ Σij.

When compared to Lemma 5.4, Lemma 7.7 has a negative sign on the right side of the
equality, resulting from the positive sign in (40) (as opposed to the negative sign on the right
side of (28)). Lemmas 7.6 and 7.7 then imply the following.

Lemma 7.8 (Second Variation of Translations, Multiple Sets). Let 0 < ρ < 1. Let

v ∈ R
n+1. Let Ω1, . . . ,Ωm minimize problem 1.5. For each 1 ≤ i ≤ m, let {Ω(s)

i }s∈(−1,1) be
the variation of Ωi corresponding to the constant vector field X := v. Assume that

∫

∂Ωi

〈v,N(x)〉γn+1(x) dx =

∫

∂Ω′
i

〈v,N(x)〉γn+1(x) dx = 0, ∀ 1 ≤ i ≤ m.

Then

d2

ds2

∣∣∣
s=0

m∑

i=1

∫

Rn+1

1
Ω

(s)
i

(x)Tρ1Ω′(s)
i

(x)γn+1(x) dx

=
(
− 1

ρ
+ 1

) ∑

1≤i<j≤m

∫

Σij

‖∇Tρ(1Ω′
i
− 1Ω′

j
)(x)‖〈v,Nij(x)〉2γn+1(x) dx

+
(
− 1

ρ
+ 1

) ∑

1≤i<j≤m

∫

Σ′
ij

‖∇Tρ(1Ωi
− 1Ωj

)(x)‖〈v,N ′
ij(x)〉2γn+1(x) dx.

Since ρ ∈ (0, 1), −1
ρ
+ 1 < 0. (The analogous inequality in Lemma 5.5 was 1

ρ
− 1 > 0.)

Repeating the argument of Theorem 1.9 then gives the following.

Theorem 7.9 (Main Structure Theorem/ Dimension Reduction, Negative Corre-
lation). Fix 0 < ρ < 1. Let m ≥ 2 with 2m ≤ n+3. Let Ω1, . . .Ωm,Ω

′
1, . . .Ω

′
m ⊆ R

n+1 min-
imize Problem 7.1. Then, after rotating the sets Ω1, . . .Ωm,Ω

′
1, . . .Ω

′
m and applying Lebesgue
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measure zero changes to these sets, there exist measurable sets Θ1, . . .Θm,Θ
′
1, . . .Θ

′
m ⊆ R

2m−2

such that,

Ωi = Θi × R
n−2m+3, Ω′

i = Θ′
i × R

n−2m+3 ∀ 1 ≤ i ≤ m.
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