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A B S T R A C T

This paper develops an integrated safety-enhanced reinforcement learning (RL) and model
predictive control (MPC) framework for autonomous vehicles (AVs) to navigate unsignalized
intersections. Researchers have extensively studied how AVs drive along highways. Nonetheless,
how AVs navigate intersections in urban environments remains a challenging task due to the
constant presence of moving road users, including turning vehicles, crossing or jaywalking
pedestrians, and cyclists. AVs are thus required to learn and adapt to a dynamically evolving
urban traffic environment. This paper proposes a design benchmark that allows AVs to sense
the real-time traffic environment and perform path planning. The agent dynamically generates
curves for feasible paths. The ego vehicle attempts to follow these paths under specific
constraints. RL and MPC navigation algorithms run in parallel and are suitably selected to
enhance ego vehicle safety. The ego AV is modeled with lateral and longitudinal dynamics and
trained in a T-intersection using the Twin Delayed Deep Deterministic Policy Gradient (TD3)
algorithm under various traffic scenarios. It is then tested on a straight road and a single or
multi-lane intersections. All these experiments achieve desirable outcomes in terms of crash
avoidance, driving efficiency, comfort, and tracking accuracy. The developed AV navigation
system provides a design benchmark for an adaptive AV that can navigate unsignalized
intersections.

1. Introduction

With expanding tests of Level-4 or Level-5 fully autonomous vehicles (AVs) on public roads (Waymo, 2018; Uber, 2020), future
motorway and traffic systems will be composed of both AVs and human road users. While there exists a number of studies on
AV control with reinforcement learning (RL) along highways (Wu et al., 2017a,b; Kreidieh et al., 2018), how AVs navigate an
urban environment remains a challenging task. Moving road users, including turning vehicles, crossing or jaywalking pedestrians,
and cyclists constantly surround AVs in an urban context. Furthermore, navigating and planning in urban environments implies
a shorter horizon time than on highways. Relevant navigation parameters, such as pose, acceleration, pose error with respect to
waypoints and minimum distance to collision require careful attention in a rapidly changing scenario. This paper aims to develop an
integrated redundant planning and control system for a vehicle dynamic model of AVs to safely navigate unsignalized intersections.
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1.1. Literature review

Research on AVs has been focused on different branches of artificial intelligence (AI). These approaches aim to develop full
environment awareness, more robust perception capability, and full navigation capacities in highly complex environments (Yasuda
et al., 2020). In these contexts, model-based approaches would fail due to the level of detail and complexity required to reproduce
the behavior of the ego vehicle and entities within the environment. Interested readers could refer to a recent survey paper on the
transition from model-based to AI-based control for AVs (Di and Shi, 2021).

Developments in AI are required for online decision making to achieve feasible driving behaviors (Ding et al., 2019). AI
techniques attempt to reproduce and simulate the reasoning and learning of a driver. They are capable of dealing with enormous
amounts of data with diverse quality and precision. These strategies can be classified into human-like methods, approximate
reasoning, logic- and heuristic-based (Claussmann et al., 2017). Human-like methods intend to imitate human decision processes to
solve the navigation problem or to generate driver models. They are commonly used for predictive and reactive planning (Salvucci,
2006). Approximate reasoning methods excel in classifying non-Boolean new knowledge and adapting to future situations. They can
develop an intelligent behavior through demonstrations and explanations. These methods are based on logic and statistics (Bojarski
et al., 2016). Logic-based approaches are expert systems that require a rule knowledge base and an inference system to generate
an intelligent Boolean output. High precision discrete models are needed for these techniques to work properly (Li et al., 2017).
Heuristic algorithms intend to find a complete or approximate set of actions to the navigation problem. Their low computational
cost in semi-complex problems makes them popular. However, they require an expert guideline to find a local solution. This can
lead to losses in optimization and accuracy (Li et al., 2018).

RL constitutes one of the three branches of machine learning, the others being supervised and unsupervised learning. An RL agent
can learn through interactions with its environment. It perceives its states in the environment and performs an action at every time
step to transition into a different state. Thus, the agent intends to cumulatively maximize its reward through interactions (Zhang and
Yu, 2020). In the context of autonomous driving, RL has lead to promising results. The work presented by Isele et al. (2018) describes
an RL policy that outperforms typical heuristic approaches. Bouton et al. (2019) show a solution based on a discretized environment
that employs a learning approach with belief updates. In RL, the problem to resolve is described as a Markov decision process
(MDP). Kamrani et al. (2020) propose an MDP to understand when and how throttle maneuvers should be performed. Furthermore,
stochastic predictive control has been successfully applied to partially observable Markov decision processes (POMDP) (Li et al.,
2019). Multiple-robot systems have also been trained using RL techniques. For example, complex centralized environments provide
the opportunity to validate how simulation-trained robots can perform well in physical scenarios (Fan et al., 2020).

Although deep learning (DL) has been recently used for mobile robotics (Gromniak and Stenzel, 2019; Gu et al., 2020), its
combination with RL has leaned rapidly towards solving high complexity problems in robotics (Liu et al., 2020) and, specifically,
in self-driving cars (Yaqoob et al., 2020). Deep reinforcement learning (DRL) methods are well suited to generalize and scale
interactions with a car’s environment and other agents (Kalashnikov et al., 2018). Studies have demonstrated and verified DRL
performance when generating optimal navigation policies with high-dimensional sensors (Zeng et al., 2020). In the context of
autonomous driving, the work presented by Ma et al. (2021) described the interaction among vehicles and other scenario elements
in a T-intersection. Their learning framework was enhanced with supervised learning by actively using a knowledge base.

RL is a suitable tool for AV navigation in driving environments with diverse road layouts and number of vehicles on the road.
However, a major challenge the RL techniques face nowadays is safety. The RL-based agent should not violate safety constraints.
Policies and actions must be designed such that the agent can produce a safety-enhanced behavior that avoids threatening situations.
Combining RL with other algorithms has proven to be a reliable solution to strengthen its performance (Dulac-Arnold et al.,
2021). Model Predictive control (MPC) is an optimization-based technique that can resolve these issues for nonlinear dynamics
and uncertain constrained systems. This control strategy requires an accurate plant model to develop acceptable predictions. Several
approaches have been proposed to generate a valid and practical model that can be deployed on physical platforms (Karnchanachari
et al., 2020). The works presented in Zanon and Gros (2021), Gros and Zanon (2020), Morinelly and Ydstie (2016) and Zanon et al.
(2019) propose variants of the usage of MPC as a function approximator for RL during the exploration and exploitation phases, ulti-
mately guaranteeing safety and stability. The work by Williams et al. (2017) proposes a multi-layer neural network architecture that
emulates a dynamic model later incorporated into MPC systems. Further research has been done to achieve asymptotic performance
in deep networks like model-free approaches (Chua et al., 2018) and for obstacle avoidance and target tracking (Kordabad et al.,
2021). Typical applications of MPC include longitudinal control and path tracking with time restrictions (Chen et al., 2020; Nam
et al., 2019) and a combined lateral-yaw-longitudinal coupled control (Lin et al., 2019). Similar approaches use MPC to deal with
system state constraints and actuator limitations as a module for an active steering control with direct yaw control strategy (Yang
et al., 2019) and as the main nonlinear component to perform evasive maneuvers and avoid rear end collisions (Chowdhri et al.,
2021). As a model-based technique, MPC could be a potential candidate to address safety concerns in AI-based navigation strategies
like RL (McAllister et al., 2017). Previous efforts have demonstrated that simultaneously running navigation systems can improve
the safety performance of an AV (Xu et al., 2018). A main nominal controller provides driving commands during regular and
hazard-free situations. The actions of a back-up reactive controller can override the nominal navigation module to ensure an AV
safety state (Behere and Torngren, 2015; Kiran et al., 2021). Although diverse control techniques have been merged by following
the described concept, there is still an area of opportunity to explore this approach with AI-based navigation modules. In fact, this
kind of system architecture is one of the challenges that navigation on AVs faces (Amer et al., 2016).

Most research on AI relies on specific physical and virtual scenarios to benchmark the proposed algorithms (Vinitsky et al.,
2018; Claussmann et al., 2020). Continuous action and observation space scenarios present an important challenge due to
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the required computational overhead to produce meaningful results. To tackle this shortcoming, recent works rely on model
discretization (Marchesini and Farinelli, 2020). Novel discretized RL-based methods like ANOA, NavMesh, Robust Action Governor
(RAG), or MaxPain have been proposed to generate safe paths for autonomous systems that can navigate in a wide range of
environments (Wu et al., 2020; Alonso et al., 2020; Li et al., 2021; Wang et al., 2021). Furthermore, accurate modeling of the
plant introduces an additional behavior that is accounted for during training. This dynamic content may affect the performance of
the applied control strategy. Recently, the works presented in Baheri et al. (2020a) and Baheri et al. (2020b) show the potential
use of a continuous state space with discrete actions and a sensor to measure the environment.

1.2. Modeling framework

The approach presented in this work is illustrated in the block diagram of Fig. 1. It shows an ego vehicle that captures
observations 𝑜 through sensing and yields actions 𝑎1,2, which are the propulsion force of the vehicle and a local path to follow.
The RL scheme formulates a reward 𝑟 as a function of the vehicle state 𝑠 and actions 𝑎1,2. Unlike previous efforts in literature, this
work approaches the problem using a more realistic representation of the plant by means of its longitudinal and lateral dynamics,
which play a fundamental role in the responsiveness of the ego vehicle. Due to causality in vehicle dynamics, the applied action
will produce a variation in the vehicle’s pose. To complement the RL action, the lateral control – a pure-pursuit controller (Coulter,
1992) – determines the steering angle to apply to the vehicle based on dynamically generated target waypoints. These waypoints
come from a Frenét frame-based path-planning algorithm (Werling et al., 2010). Despite addressing different degrees of freedom
(DOFs) and levels of the ego vehicle, the different control actions are intrinsically coupled. In fact, the effectiveness of the pure-
pursuit control depends on the so-called look-ahead distance, which is proportional to the vehicle longitudinal speed. On the other
hand, the bandwidth of the trajectory planning algorithm is affected by the rate at which the pose of the vehicle changes in time.
Moreover, the obtained waypoints and the steering angle will influence the reward in RL, as they will affect the performance of
the vehicle while reaching its final destination. A simultaneous MPC module runs a lateral path tracking system and a longitudinal
cruise control system. A safety system uses environmental and internal variables to determine if the RL or MPC lateral/longitudinal
system controls the ego vehicle.

The proposed model follows a hierarchical approach (Fig. 1). First, the environment is perceived by internal and external sensors:
LIDAR and odometer. Sensor measurements are processed by a perception module. These data are transformed into information that
describes the size and location of each element within sensor range of measurement. This information is fed to the path planning
module. The local planner information is transferred to a control module, which is constituted by RL and MPC modules that run
simultaneously. Each module generates command signals for the lateral and longitudinal behavior of the vehicle. Depending on
the state of the environment a binary safety submodule selects what navigation algorithm should take control of the ego vehicle.
This module determines whether the safety distance with the surrounding actors is kept. Collected information from the ego vehicle
and the environment are passed to the continuous reward function to evaluate the performance of the ego vehicle according to the
specified constraints. Finally, the control signals are sent to the 3-DOF dynamics module of the vehicle. The actions performed by
the vehicle affect the environment. Hence, this set of elements closes the control loop.

1.3. Contributions of this paper

The major contributions of this paper are listed as follows:

1. This work implements a simultaneously running nominal RL longitudinal control and path selector, and a reactive MPC
longitudinal cruise control and lateral path tracker. Both systems can independently control the vehicle lateral and
longitudinal dynamics. The coupled RL/MPC architecture represents a redundant fail-safe approach for navigation. Internal
and external states are supervised by a safety system. Both algorithms are run in parallel and the control output is selected
depending on a safety-oriented discrete selector. In addition, the RL-trained and MPC-enhanced agent can be transferred to
environments with different number of vehicles on the road and street layouts.

2. A general RL continuous reward design for AV driving is established, which is a function of longitudinal speed and
acceleration, cross-track error, yaw rate, angle to path, distance to collision, and the cost of the selected path. A continuous
reward and set of actions provide the agent with complete control over the navigation commands of a vehicle (e.g. steering
angle and longitudinal acceleration over the entire planning horizon). This translates into an improved performance in
non-discretized or underrepresented environments.

3. A dynamic trajectory planner generates a set of waypoints that the ego AV must select, depending on terminal lateral,
longitudinal, and obstacle states. This planner enables the ego vehicle to deviate from the original path by selecting and
evaluating a dynamically feasible action. This module helps the training process as the agent does not have to learn how
to perform navigation maneuvers; it only selects the most suitable path for a given scenario. The planner also provides the
agent with reliable paths when facing unexpected situations that require a course change.

4. The agent controls a three-degree-of-freedom (3-DOF) single-track ego vehicle equipped with internal and external sen-
sors (Fraden, 2016). In this work, vehicle dynamics is taken into consideration for the lateral and longitudinal DOFs, which
contrasts the previous effort that the vehicle is modeled as a point governed by kinematic laws.
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Fig. 1. AV navigation block diagram.

In summary, the integrated RL and MPC models, the continuous reward functions, the dynamic waypoint generation, and the
dynamic vehicle model, all add more realism to the autonomous vehicle control.

The paper is organized as follows: Section 2 presents the theoretical framework used for the Frenét path planning algorithm, and
the 3-DOF vehicle model. the RL TD3 algorithm used for the longitudinal control and path selector agent can be found in Section 4.
Section 5 introduces the MPC system used for path tracking and cruise control, and the fail-operational module in charge of selecting
the appropriate navigation algorithm depending on the current state. Section 6 explains the rationale for the experiment design.
Experiment design includes the definition of the environment: layout and traffic elements, states and observations, sensors, actions,
lateral control, and reward design. It also contains the results of the experiment: resulting training curve, navigation demonstration
of the RL and MPC systems, and the transferability to other environments. Finally, Section 7 concludes this work and proposes
future research directions. For notation clarity, a nomenclature list is provided in Appendix A.

2. Path planning

The path planning method for the model is selected after a state-of-the-art comparison among different algorithms. The review
presented by Claussmann et al. (2020) highlights three algorithms that are mostly used in path planning for navigation: Hybrid A*,
Rapidly-exploring Random Tree (RRT), and Frenét Trajectory. Hybrid A* and RRT are pathfinding algorithms, i.e. they are a subset
of graph theory dedicated to solve combinatorial problems through the optimization of a cost function.

Hybrid A* is a variation of A* algorithm for known environments. It applies the Dijkstra algorithm with a heuristic search
procedure to expand the fewest possible nodes to the goal in aims of achieving an optimal path. This approach considers
kinematic constraints for nonholonomic vehicles. It requires a finely tuned heuristic. The graph should be recomputed at every
time step (Dijkstra et al., 1959; Boroujeni et al., 2017; Dolgov et al., 2008).

RRT uses the evolution space to create a kinematic feasible path in unknown environments. This algorithm has been used for
replanning in several robotics applications. Some works have demonstrated its feasibility in high-speed environments by enhancing
RRT with probabilistic optimal nearest neighbors technique. Its main drawback is the poor connectivity that the randomized graph
may have, which leads to low replicability (LaValle et al., 1998; Connell and La, 2017; Hwan Jeon et al., 2013).

Semi-parametric and parametric curves methods are the most popular algorithms used for highway navigation. The main reasons
are that roads can be abstracted as a succession of simple and predefined curves, and that a previously defined set of spline curves can
contain candidates for a soft constrained path, reactive or predictive maneuvers. Some of these methods directly consider kinematic
and dynamic constraints for speed profiles and the continuously changing environment. The curves are a variation of polynomial
interpolations that use control points as inflection points. A decision maker function is required to select the most convenient
maneuver (Von Hundelshausen et al., 2008; Ziegler and Stiller, 2009; Vanholme et al., 2012; Chen et al., 2013; Lima et al., 2015).
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Fig. 2. Trajectory generation in a Frenét frame.

2.1. Frenét path planner

For proper navigation in realistic environments, the proposed vehicle requires an optimal trajectory generation algorithm (Wer-
ling et al., 2010). This module will feed feasible waypoints to the lateral control described in Section 3. In particular, a Frenét frame
method is used by following the scheme shown in Fig. 2.

A moving reference frame along the center line is defined by a tangential vector 𝐭𝑟 and a normal vector 𝐧𝑟. This center line is
the ideal path to follow. Then, a one-dimensional trajectory is generated for the root point 𝐫 and perpendicular offset 𝑑𝑝, according
to

𝐳(𝑠𝑝(𝑡), 𝑑𝑝(𝑡)) = 𝐫(𝑠𝑝(𝑡)) + 𝑑𝑝(𝑡)𝐧𝑟(𝑠𝑝(𝑡)) (1)

where 𝑠𝑝 is the covered arc length of the center line and 𝐭𝑧,𝐧𝑧 are the tangential and normal vectors of the resulting trajectory
𝐳(𝑠𝑝(𝑡), 𝑑𝑝(𝑡)).

Here, we optimize the trajectories by minimizing the cost function 𝐽𝑡 given by the time integral of square of jerk 𝑝𝑝, the third
derivative of position 𝑝𝑝 (Takahashi et al., 1989):

𝐽𝑡(𝑝𝑝(𝑡)) ∶= ∫
𝑡1

𝑡0

𝑝2𝑝(𝜏) 𝑑𝜏 (2)

We assume that the vehicle starts at state 𝑃0 =
[
𝑝𝑝0, 𝑝̇𝑝0, 𝑝̈𝑝0

]
at time 𝑡0 and end at time 𝑡1 = 𝑡0 + 𝑇 in state 𝑃1 =

[
𝑝𝑝1, 𝑝̇𝑝1, 𝑝̈𝑝1

]
. It is

worth noting that quintic polynomials are jerk-optimal connections between states 𝑃0 and 𝑃1. The minimization of the cost function

𝐶 = 𝑘𝑗𝐽𝑡 + 𝑘𝑡𝑔(𝑇 ) + 𝑘𝑝ℎ(𝑝𝑝1) (3)

with defined terms 𝑔, ℎ and parameters 𝑘𝑗 , 𝑘𝑡, 𝑘𝑝 > 0 is also a quintic polynomial. We use the cost function form of Eq. (3) to generate
trajectories for both lateral sides of the vehicle and the longitudinal DOF.

The described method is summarized as follows. To test a dynamic environment, we determine ground truth of trajectories
for each actor to make a prediction. The goal is to generate a feasible and natural optimal path. We generate terminal states that
implement three behaviors including cruise control, lane changes, and car following. Among these candidate paths, an optimum path
is chosen by considering minimizing cost, kinematic feasibility and collision avoidance. The feasibility of each path is evaluated such
that produced lateral dynamics and longitudinal acceleration reference can be properly followed. The generated paths are bound to
the vehicle model, which will be described below.

2.2. Vehicle model

Vehicles are modeled as a 3-DOF representation known as the bicycle model. Here, the left and right wheels of each axle are
lumped into a single wheel. The front axle can steer by means of an angle 𝛿. This angle is considered as an input variable for the
plant. Also, the center of gravity of the vehicle is denoted by point C and the distance between the center of gravity and the wheels
are denoted with 𝑙𝑓 and 𝑙𝑟 for front and rear axles, respectively. Accordingly, the wheelbase is defined as 𝐿 = 𝑙𝑓 + 𝑙𝑟.

The equations governing the dynamics of this vehicle are

𝑚𝑦̈ = −𝑚𝑥̇𝜓̇ + 𝐹𝑦𝑓 + 𝐹𝑦𝑟 (4)

𝐼𝑧𝑧𝜓̈ = 𝑙𝑓𝐹𝑦𝑓 − 𝑙𝑟𝐹𝑦𝑟 (5)

𝑚𝑥̈ = 𝑚𝑦̇𝜓̇ + 𝐹𝑥𝑓 (6)

where 𝑚 is the vehicle mass and 𝐼𝑧𝑧 is the polar moment of inertia with respect to the 𝑧 axis. These expressions exhibit a coupled
dynamic behavior between the longitudinal (𝑥), lateral (𝑦) and yaw (𝜓) DOFs. Furthermore, motion is influenced by the external
lateral forces on the front and rear axles (𝐹𝑦𝑓 and 𝐹𝑦𝑟) and the longitudinal force on the front axle (𝐹𝑥𝑓 ). Roll, pitch and vertical
dynamics are assumed uncoupled and hence, neglected in this representation.
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Table 1
Vehicle model parameters.

Parameter [unit] Symbol Value

Distance from COG to front axle [m] 𝑙𝑓 1.4
Distance from COG to rear axle [m] 𝑙𝑟 1.6
Mass [kg] 𝑚 2000
Yaw polar moment of inertia [kgm2] 𝐼𝑧𝑧 4000
Front tire cornering stiffness [kN∕rad] 𝐶𝛼𝑓 12
Rear tire cornering stiffness [kN∕rad] 𝐶𝛼𝑟 11

Fig. 3. Pure-pursuit kinematic lateral control of the vehicle.

The maximum speed assumed in an urban environment is 20 m∕s. Thus, aerodynamic contributions can be discarded for a
class-B-sized vehicle. Assuming flat road scenarios and negligible rolling resistance, the longitudinal force component on the front
axle 𝐹𝑥𝑓 contains only a propulsion contribution due to the powertrain of the vehicle. Like the steering angle 𝛿, the propulsion force
is an input of the vehicle model.

Lateral force contributions depend on the cornering stiffness of the front and rear tires (𝐶𝛼𝑓 and 𝐶𝛼𝑟):

𝐹𝑦𝑓 = 2𝐶𝛼𝑓
(
𝛿 − 𝜃𝑣𝑓

)
(7)

𝐹𝑦𝑓 = 2𝐶𝛼𝑟
(
−𝜃𝑣𝑟

)
(8)

where the tire velocity angles are given by

𝜃𝑣𝑓 ≈
𝑦̇ + 𝑙𝑓 𝜓̇

𝑥̇
(9)

𝜃𝑣𝑟 ≈
𝑦̇ − 𝑙𝑟𝜓̇

𝑥̇
(10)

Lateral dynamics is described by the nonlinear model presented in Eqs. (4) to (6) (Jazar, 2009). Its global expressions can be
obtained by substituting Eqs. (9) into (7), and (10) into (8), Finally, resulting Eqs. (7) and (8) should be substituted into (4) and
(5) to yield Eqs. (11) and (12).

𝑚𝑦̈ = −𝑚𝑥̇𝜓̇ + 2

[
𝐶𝛼𝑓

(
𝛿 −

𝑦̇ + 𝑙𝑓 𝜓̇

𝑥̇

)
+ 𝐶𝛼𝑟

𝑙𝑟𝜓̇ − 𝑦̇

𝑥̇

]
(11)

𝐼𝑧𝑧𝜓̈ = 2

[
𝑙𝑓𝐶𝛼𝑓

(
𝛿 −

𝑦̇ + 𝑙𝑓 𝜓̇

𝑥̇

)
− 𝑙𝑟𝐶𝛼𝑟

𝑙𝑟𝜓̇ − 𝑦̇

𝑥̇

]
(12)

The parameters for the vehicle model used in this study are listed in Table 1. This model is used to reproduce the dynamic
behavior of the ego vehicle in the RL framework. This representation has been extensively used due to its ability to reproduce
accurate vehicle dynamic behavior (Miloradović et al., 2019). In RL, model-based approaches are sample efficient when compared
to on-policy gradient methods (Wang et al., 2019). In addition, this model is also used to implement an MPC-based safety module,
as demonstrated in Section 5.

3. Lateral control

To obtain a steering action, a pure-pursuit kinematic lateral control is proposed based on Coulter (1992). In this strategy, a
look-ahead distance 𝑙𝑑 is defined between the rear axle of the vehicle and a target waypoint. The goal is to obtain a steering angle
𝛿 that defines a trajectory curvature between the rear axle and the target.
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From the representation in Fig. 3, the curvature of the path is determined as

𝜅 =
1

𝑅1

=
2 sin 𝛼

𝑙𝑑
(13)

where 𝑅1 is the curved path radius and 𝛼 is the angle between the vehicle heading and the look-ahead distance vector. Alternatively,
this curvature can be seen as a function of the cross-track error 𝜀𝑐𝑡, i.e. the lateral distance between the vehicle heading and the
target waypoint:

𝜅 =
2

𝑙2
𝑑

𝜀𝑐𝑡 (14)

From the rear-axle kinematics of the bicycle model, the steering angle can be determined as

𝛿 = arctan (𝜅𝐿) = arctan

(
2𝐿 sin 𝛼

𝑙𝑑

)
(15)

Hence, the steering angle can be seen as a function of the cross-track error 𝜀𝑐𝑡, which needs to be minimized in order to track the
desired trajectory. To ensure a continuous update of the steering angle, the target waypoint needs to move in space as the vehicle
navigates through its path. Furthermore, as the vehicle travels faster, this target waypoint must be placed further away from the
vehicle to guarantee proper path following. These considerations allow defining a look-ahead distance as a linear function of the
vehicle speed 𝑥̇

𝑙𝑑 = 𝐾𝑑 𝑥̇ (16)

and hence, Eq. (15) can be updated accordingly:

𝛿 = arctan

(
2𝐿 sin 𝛼

𝐾𝑑 𝑥̇

)
(17)

Thus, the pure-pursuit lateral control defines a steering angle that depends on its longitudinal speed and the waypoints that the
vehicle must follow.

4. Longitudinal control and path selector

To solve the longitudinal throttle problem and to select an appropriate path, we use the RL framework. Conventionally, there
are two kinds of RL methods: value-based methods and policy-based methods. Value-based RL methods, such as Q-learning, exploit
the learned value function to guide the selection of the actions. Policy-based methods, e.g. REINFORCE, optimize the cumulative
reward directly (Sutton and Barto, 2018). However, value-based RL methods suffer from high dimensional space, and policy-based
RL methods are vulnerable to the issue of high variance. To solve those issues, the actor–critic framework was proposed (Konda and
Tsitsiklis, 2000; Sutton and Barto, 2018; Shou and Di, 2020; Shou et al., 2022). Subsequently, many RL algorithms, such as Deep
Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2015), Proximal Policy Optimization (PPO) (Schulman et al., 2017), and Soft
Actor–Critic (SAC) (Haarnoja et al., 2018) were built based on this framework.

We propose to use Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm (Fujimoto et al., 2018), a more advanced
version of DDPG (Lillicrap et al., 2015). DDPG learns the Q-value function and the policy in the continuous action space
simultaneously. Specifically, the Q-value is updated based on Q-learning minibatch updates by minimizing the target and the current
Q-values:

(𝜃) = E𝑠,𝑎,𝑠′ [(𝑟 (𝑠, 𝑎) + 𝛾 max
𝑎′

𝑄𝜃′
(
𝑠′, 𝑎′

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

target

−𝑄𝜃(𝑠, 𝑎))
2] (18)

where 𝜃′ denotes the target network corresponding to the value network 𝑄𝜃 , 𝛾 is the discount factor, E is the expectation, (𝜃) is
the loss function for the Q-value, 𝑟 is the reward function, 𝑠 the state, and 𝑎 the action. With a target network, the algorithm avoids
regressing on a rapidly changing value, which makes the learning process much more stable. As for the policy network, following
Eq. (19), it is going to learn an approximate maximizer to 𝑎∗(𝑠).

𝑎∗(𝑠) = argmax
𝑎
𝑄∗(𝑠, 𝑎) (19)

However, DDPG suffers from the issue of overestimation bias (Fujimoto et al., 2018). Because of the gathering numerical error
of Q-values, poor states are going to have high values, resulting in unstable and sub-optimal behaviors. Compared to the DDPG
algorithm, TD3 is better for fixing function approximation errors both in the Q-value networks and the policy network. There are
two Q-value functions in TD3, and the policy is updated less frequently than those two Q-functions. With those mechanisms, TD3
could properly address the issue of overestimation when learning the Q-value functions and have a better performance.

In this research, because the ego vehicle could only obtain the information of other vehicles by sensors, instead of knowing the
global information 𝑠, the actor could only take the observation 𝑜 as input. And the input to the Q-value network is also based on 𝑜
and 𝑎. Then the loss function becomes:

(𝜃) = E𝑜,𝑎,𝑜′ [(𝑟 (𝑜, 𝑎) + 𝛾 max
𝑎′

𝑄𝜃′
(
𝑜′, 𝑎′

)
−𝑄𝜃(𝑜, 𝑎))

2] (20)
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Fig. 4. Set of potential paths for 𝑎2.

and the approximate maximizer becomes:

𝑎∗(𝑜) = argmax
𝑎
𝑄∗(𝑜, 𝑎) (21)

This RL scheme will be applied to solve the navigation at intersections. The state and observation vectors need to be defined
according to the environment. The state is denoted as 𝑠 = [𝑋, 𝑌 , 𝜓, 𝑥̇], including non-ego vehicle and environment information. Thus,
𝑠 is a vector, whose dimension is dependent on the total number of non-ego vehicles. The observation of the proposed POMDP is
defined as 𝑜 =

[
𝑋, 𝑌 , 𝜓, 𝑥̇, 𝑥̈, 𝜀𝑐𝑡,𝑓𝑝,𝑓𝑝,]

. The first two elements (𝑋 ∈ 𝑊𝑥 and 𝑌 ∈ 𝑊𝑦) are the coordinates [m] of the ego vehicle
with respect to the world frame. The third element is the yaw, i.e. the angular rotation of the vehicle with respect to the world-fixed
𝑍-axis (𝜓 ∶ [−𝜋, 𝜋]). The next two elements are the longitudinal speed [m∕s] and acceleration [m∕s2] of the vehicle along its local
𝑥 axis (𝑥̇ and ẍ). The cross track error (𝜀𝑐𝑡) is the distance in meters from the desired path to the position of the vehicle. The cost
function of the selected trajectory  evaluates the selected Frenét path in terms of time, longitudinal, and lateral deviation. The
collision checker 𝑓𝑝 is a Boolean operator that verifies whether the selected path leads to a collision state. Finally,  is a flattened
vector that contains the states of the elements surrounding the ego vehicle.

Consequently, the agent interacts directly with the throttle and braking (action 1), and steering (action 2) systems of the ego
vehicle. Both actions are continuous. Action 1 (𝑎1) controls the power train of the vehicle. This action is defined in the [−1, 1]

interval. Before 𝑎1 is fed to the vehicle as the input force 𝐹𝑘, it is multiplied by a gain 𝐹𝑚𝑎𝑥. This gain is constrained by a rate
limiter. The throttle and braking system is defined by Eq. (22).

𝐹𝑘 =

⎧
⎪⎨⎪⎩

𝐹𝑘−1 +
𝐹𝑚𝑎𝑥
5
, 𝐹̇𝑘 ≥ 𝐹𝑚𝑎𝑥

5

𝐹𝑘−1 + 𝐹̇𝑘, −𝐹𝑚𝑎𝑥 < 𝐹̇𝑘 <
𝐹𝑚𝑎𝑥
5

𝐹𝑘−1 − 𝐹𝑚𝑎𝑥, 𝐹̇𝑘 ≤ −𝐹𝑚𝑎𝑥

(22)

Action 2 (𝑎2) selects one of the N potential trajectories generated by the path planner presented in Section 2. Its action space is
defined in the [−1, 1] interval. Each value of 𝑎2 maps to one of the calculated Frenét paths. The origin of each path 𝑖 is located at
the current ego vehicle position. Each endpoint ranges from the center of the left adjacent to the center of the right adjacent lane
(Fig. 4).

Actor network. The actor takes the observation 𝑜 as input, and outputs the optimal action, 𝑎∗(𝑜), with respect to the approximate
maximum Q-value. Due to the complicated continuous action space and observation space, we decide to use a neural network by
utilizing its property of universal function approximator. It is also called the policy network, denoted as 𝜋𝜙(𝑜). See Table B.6 for
more implementation details. Because the action space is continuous, it is intractable to calculate the maximum Q-value according
to 𝑎 directly. Therefore, the actor uses the deterministic policy gradient to update its parameters:

∇𝜙𝐽 (𝜙) =
1

𝑁

∑
∇𝑎𝑄𝜃1 (𝑜, 𝑎)∇𝜙𝜋𝜙(𝑜) (23)

where 𝑄𝜃1 (𝑜, 𝑎) is one of the Q-value functions, and ∇𝜙𝜋𝜙(𝑜) is the output gradient of the policy network with respect to itself.

Critic network. There are two critic networks in the TD3 algorithm (see Table B.7). They take the observation 𝑜 and the action 𝑎
as input, and output the Q-value for this observation-action pair. When calculating the value of the targets, TD3 uses the smaller
value of those two Q-values, which helps addressing the issue of Q-value over-estimation:

𝑦← 𝑟 + 𝛾𝑚𝑖𝑛𝑖=1,2𝑄𝜃′
𝑖
(𝑜′, 𝑎̃) (24)
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Fig. 5. A simplified version of TD3 only including the actor and two critic networks.

where 𝑜′ is a mini-batch of next observations sampled from the replay buffer, 𝑄𝜃′
𝑖
is the target network, and 𝑎̃ is generated by the

target policy network. Denoting these two Neural Networks as 𝑄𝜃1 (𝑜, 𝑎) and 𝑄𝜃2 (𝑜, 𝑎) allows for approximation of current model
𝑄(𝑜, 𝑎). Those two critic networks are updated by minimizing the loss below:

1

𝑁

∑
(𝑦 −𝑄𝜃𝑖 (𝑜, 𝑎))

2 (25)

To summarize, Fig. 5 presents a simplified version of the algorithm to clarify the relationships among the environment, the actor,
and two critic networks. The TD3 algorithm for longitudinal control is summarized in Algorithm 1 (adapted from Fujimoto et al.
(2018)). It begins with the initialization of the replay buffer, two critic networks, and a policy network. With each neural network,
a corresponding target network is initialized, following the logic of line 2 in Algorithm 1. At each time step 𝑡, an action 𝑎𝑡 is selected
from 𝜋𝜙 with exploration noise 𝜖. By executing 𝑎𝑡, the reward 𝑟𝑡 and the new observation 𝑜𝑡+1 are observed, composed of a tuple (𝑜𝑡,
𝑎𝑡, 𝑟𝑡, 𝑜𝑡+1), which is later stored in the replay buffer 𝑅. With random sampling of a mini-batch of transitions from the replay buffer,
two critic networks are updated by minimizing the matching loss. At a slower rate 𝑇𝑢𝑝𝑑𝑎𝑡𝑒, the policy network is updated based on
the sampled deterministic policy gradient, and the target networks are updated with respect to the parameters of the corresponding
networks.

The vehicle dynamics model, the pure pursuit controller, and the RL training algorithm for longitudinal control and path selector
are combined to generate a TD3-based agent that can navigate in different road layouts and number of vehicles on the road. They
provide the agent with a realistic dynamic model, feasible paths to follow, and navigation constraints. This helps the RL algorithm
maintain a more stable performance. This framework can have drawbacks when facing unexpected situations. A fail-operational
system based on MPC, which will be described in Section 5, is proposed to handle these events and ensure the safe navigation of
the ego vehicle.

5. Safety enhancement

To enhance the safe operation of the ego vehicle, a MPC strategy is run in parallel to the RL-based method. The proposed nominal
RL-based navigation system has a broad field of action. It can select any of the calculated Frenét paths and can modify the vehicle’s
acceleration profile according to the selected maneuver. Whenever a critical situation is identified, the safety enhancement system
will switch from RL to MPC until the detected hazard is avoided. MPC will provide hard-constrained navigation and maneuverability
features: safe lane keeping and cruise control. This module is explained in Section 5.1. Its simplicity aims to reduce the computational
load of the overall system, as well as to increment the ease of implementation.

5.1. Model Predictive Control (MPC)

MPC is based on real-time model execution and optimization to yield the most suitable command to the controlled plant. To this
end, expressions (11) are (12) are linearized and integrated with a first-order longitudinal model:

𝑥 = −
1

𝜏𝑎
𝑥̈ +

1

𝜏𝑎
𝑎𝑟𝑒𝑓 (26)
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Algorithm 1 TD3: Twin Delayed Deep Deterministic policy gradient algorithm for longitudinal control

1: Randomly initialize two critic networks 𝑄(𝑜, 𝑎|𝜃1), 𝑄(𝑜, 𝑎|𝜃2) and policy network 𝜋(𝑜|𝜙) with weights 𝜃1, 𝜃2, 𝜙
2: Initialize target networks 𝑄′(𝑜, 𝑎|𝜃′

1
), 𝑄′(𝑜, 𝑎|𝜃′

2
), 𝜋′(𝑜|𝜙′) with weights 𝜃′

1
← 𝜃1, 𝜃

′
2
← 𝜃2, 𝜙

′
← 𝜙

3: Initialize the Replay Buffer 𝑅
4: for epoch = 0, 1, 2, ...,𝑀 do
5: the initial observation: 𝑜0 = (𝑋0, 𝑌0, 𝜓0, 𝑥̇0,0) defined in Section 4
6: for t = 0, 1, 2, ..., 𝑇 do
7: Select action 𝑎𝑡 = 𝜋𝜙(𝑜𝑡) + 𝜖, i.e. the longitudinal force 𝐹𝑥𝑓 , according to 𝜋𝜙 with exploration noise 𝜖 ∼  (0, 𝜎)

8: Execute 𝑎𝑡, and observe the reward 𝑟𝑡 and obtain the new observation 𝑜𝑡+1 = (𝑋𝑡+1, 𝑌𝑡+1, 𝜓𝑡+1, 𝑥̇𝑡+1,𝑡+1) from the new
state 𝑠𝑡+1

9: Store transition (𝑜𝑡, 𝑎𝑡, 𝑟𝑡, 𝑜𝑡+1) into 𝑅
10:

11: Sample a size N mini-batch transitions (𝑜, 𝑎, 𝑟, 𝑜′) from 𝑅
12: Set 𝑎̃ ← 𝜋𝜙′

(
𝑜′
)
+ 𝜖, 𝜖 ∼ 𝑐𝑙𝑖𝑝( (0, 𝜎̃),−𝑐, 𝑐) by the target policy network

13: Set 𝑦← 𝑟 + 𝛾𝑚𝑖𝑛𝑖=1,2𝑄𝜃′
𝑖
(𝑜′, 𝑎̃) by the target critic networks

14: Update each critic 𝑄𝜃𝑖 , 𝑖 = {1, 2} by minimizing the loss 1

𝑁

∑(
𝑦 −𝑄𝜃𝑖 (𝑜, 𝑎)

)2

15: if 𝑡 mod 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 = 0 then
16: Update the policy network 𝜋𝜙 by the sampled deterministic policy gradient:

∇𝜙𝐽 =
1

𝑁

∑
∇𝑎𝑄𝜃1 (𝑜, 𝑎)|𝑎=𝜋𝜙(𝑜)∇𝜙𝜋𝜙(𝑜)

17: Update the target networks:

𝜃′
1
← 𝜏𝜃1 + (1 − 𝜏)𝜃′

1

𝜃′
2
← 𝜏𝜃2 + (1 − 𝜏)𝜃′

2

𝜙′
← 𝜏𝜙 + (1 − 𝜏)𝜙′

18: end if
19: end for
20: end for

where 𝑎𝑟𝑒𝑓 is the longitudinal acceleration set-point, and 𝜏𝑎 is a time lag constant (Rajamani, 2006).

Model linearization. A linear time-varying representation is desirable to obtain a simple, yet precise control law able to adapt to
different operating conditions. To this end, Taylor series are applied around a linearization point (𝑥̇0 = 𝑓 (𝑥0, 𝑢0)).

̇̃𝑥 = 𝐴(𝑡)𝑥̃ + 𝐵(𝑡)𝑢̃ (27)

where 𝐴(𝑡) and 𝐵(𝑡) represent the state and input matrix Jacobians of the nonlinear model. Note that the resulting state-space
representation is time-varying, and its variables are expressed around the linearization point 𝑥̃ = 𝑥 − 𝑥0; 𝑢̃ = 𝑢 − 𝑢0.

The Euler method is used to discretize the model. The discrete state-space representation uses 𝑘 to abbreviate the time sample:

𝑥̃𝑘+1 = 𝐴𝑘𝑥̃𝑘 + 𝐵𝑘𝑢̃𝑘 (28)

State prediction. Let 𝑢̃𝑘 = 𝑢̃𝑘−1 + 𝛥𝑢̃𝑘, therefore, (28) can be expressed as:

𝑥̃𝑘+1 = 𝐴𝑥̃𝑘 + 𝐵(𝑢̃𝑘−1 + 𝛥𝑢̃𝑘) (29)

For convenience, an extended state vector is defined as

𝜉𝑘 =

[
𝑥̃𝑘
𝑢̃𝑘−1

]
(30)

and an output vector 𝜂𝑘, so that

𝜉𝑘+1 = 𝐴̃𝜉𝑘 + 𝐵̃𝛥𝑢𝑘 (31)

𝜂𝑘 = 𝐶̃𝜉𝑘 (32)

where

𝐴̃ =

[
𝐴 𝐵

0 𝐼

]
, 𝐵̃ =

[
𝐵

𝐼

]
, 𝐶̃ =

[
𝐶 0

]
(33)

Note that the obtained representation is written in terms of deviations (Lin et al., 2019). With this approach, an adaptive MPC
law is able to yield incremental commands with respect to the previous command. Moreover, linearization points 𝑥0, 𝑢0 should be
updated at each time step to be consistent with the updated plant model.
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Assuming 𝑁𝑝 as the prediction horizon and 𝑁𝑐 as the control horizon, the compact form of the output is:

𝜂𝑘 = 𝛤𝜉𝑘 + 𝛩𝛥𝑈𝑘 (34)

where,

𝜂𝑘 =
[
𝜂𝑘+1 ⋯ 𝜂𝑘+𝑁𝑝

]⊺
(35)

𝛤 =
[
𝐶̃𝐴̃ 𝐶̃𝐴̃2 ⋯ 𝐶̃𝐴̃𝑁𝑐 ⋯ 𝐶̃𝐴̃𝑁𝑝

]⊺
(36)

𝛥𝑈𝑘 =
[
𝛥𝑢̃𝑘 𝛥𝑢̃𝑘+1 ⋯ 𝛥𝑢̃𝑘+𝑁𝑐

]⊺
(37)

𝛩 =

⎡⎢⎢⎢⎢⎢⎢⎣

𝐶̃𝐵̃ 0 ⋯ 0

𝐶̃𝐴̃𝐵̃ 𝐶̃𝐵̃ ⋯ 0

⋮ ⋮ ⋱ ⋮

𝐶̃𝐴̃𝑁𝑐−1𝐵̃ 𝐶̃𝐴̃𝑁𝑐−2𝐵̃ ⋯ 𝐶̃𝐵̃

⋮ ⋮ ⋱ ⋮

𝐶̃𝐴̃𝑁𝑝−1𝐵̃ 𝐶̃𝐴̃𝑁𝑝−2𝐵̃ ⋯ 𝐶̃𝐴̃𝑁𝑝−𝑁𝑐 𝐵̃

⎤⎥⎥⎥⎥⎥⎥⎦

(38)

Quadratic programming is used to optimize using the following cost function:

𝐽𝑠 =
1

2
𝑒
⊺

𝑘+𝑁𝑝
𝑆𝑒𝑘+𝑁𝑝 +

1

2

𝑁𝑝−1∑
𝑖=0

[
𝑒
⊺

𝑘+𝑖
𝑄𝑒𝑘+𝑖 + 𝛥𝑢̃

⊺

𝑘+𝑖
𝑅𝛥𝑢̃𝑘+𝑖

]
(39)

Through (39), a constrained minimization problem is established and solved in real time according to the prediction horizon
𝑁𝑝 to obtain an optimal command at each time step. A combined MPC framework is used to control the lateral and longitudinal
modules of a 3DOF vehicle.

Adaptive cruise control. This longitudinal system makes the AV travel at a desired speed as long as a reference distance threshold
detector is not triggered. If the detector is activated, the AV keeps a safe distance between the vehicles in its lane. This is, the
control tracking target, either the desired 𝑥̇ or a non-collision distance, is achieved by modifying the throttle of the ego vehicle. The
feedback data when the control goal is set to the 𝑥̇ comes from the odometer, while for the non-collision distance is a function of
the processed LIDAR data and the odometer.

Lane keeping. The lateral system employs processed LIDAR data that provides the size and location of the lanes to ensure a safe
travel withing a road. This MPC system uses road (𝜅) and vehicle properties (𝜖𝑐𝑡, 𝑥̇, relative 𝜓) as feedback data. The controller
computes an angle (𝛿) to minimize 𝜓 respect to the lane centerline and 𝜖𝑐𝑡.

5.2. Safety module

A hard constraint safety node is dedicated to continuously search for critical parameters of the ego vehicle state and its
surroundings. Lateral and longitudinal nodes can be triggered separately according to the situation in which the agent is. The
safety node switches bidirectionally from RL to MPC lateral and longitudinal commands. A solid-state zero-switching relay mode
is used to implement the transitions between states. This type of relay can change between two states with a hysteretic (bistable)
nature of two thresholds (𝑥𝐿 and 𝑥𝐻 ) (Fig. 7). State 1 (red) will run and will not change to state 2 (blue) unless 𝑥 reaches 𝑥𝐿.
Similarly, state 2 will only change when parameter 𝑥 reaches 𝑥𝐻 . Interval [𝑥𝐿, 𝑥𝐻 ] is dedicated to ensure less-frequent transitions
between states. The changes of state in the switching relay function with hysteresis will determine which algorithm controls the
lateral and/or longitudinal elements of the vehicle. This switching function prevents the system to continuously oscillate between
navigation algorithms (chattering). This ensures a smoother navigation as each algorithm has sufficient room to control the ego
vehicle.

Longitudinal safety function. This safety function is defined such that RL is state 1 and MPC is state 2. The parameter that determines
the value of the relay triggers is the distance to collision in meters to the leading and trailing vehicles. Triggers are defined as
𝑥𝐿 = 45 m and 𝑥𝐻 = 50 m.

Lateral safety function. This safety function is defined such that MPC is state 1 and RL is state 2. The function is composed by two
parameters: yaw rate 𝜓̇ and cross-track error 𝜀𝑐𝑡. Triggers for the yaw rate are defined as 𝜓̇𝐿 = 0.02 rad∕s and 𝜓̇𝐻 = 0.04 rad∕s.
Similarly, the triggers for the cross-track error are 𝜀𝐿 = 3.5 m and 𝜀𝐻 = 4 m.

6. Experiments

This section describes the employed approach to develop a RL agent capable of controlling the throttle and navigation path of
a three-degree-of-freedom (3-DOF) vehicle.
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Fig. 6. T-intersection. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Switching relay function with hysteresis. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

6.1. Experiment design

We assume that the ego AV can only observe its surroundings using LIDAR sensors, without any connectivity with other objects.
The developed work is thus a partially observable Markov decision process. The agent needs to estimate its posterior distributions
in potential valid environment states using noisy or incomplete measurements, control effects and environment dynamics (Thrun
et al., 2006). This means it is composed of a state 𝑠 which is not fully observable, observation 𝑜, reward function 𝑟(𝑜), actions 𝑎, a
transition model 𝑝(𝑠′|𝑠, 𝑎).

This implies that a POMDP on a physical state space can be solved as a traditional MDP on observations. Better decision-
making and optimal behavior of a POMDP rely heavily on gathering information from the environment and the agent to reduce
uncertainty (Russell and Norvig, 2009). The proposed agent controls an ego vehicle, the properties of which are described in the
following subsections.

6.1.1. Environment
The agent controlling the ego vehicle requires a proper environment with diverse potential trajectories. These paths should be

as general as possible, such that the agent can be extensible to other scenarios with different layouts and traffic concentration. This
section presents the scenario used for training and initial validation of the performance of the agent.

Street layout and environment characteristics. The right-hand traffic T-intersection environment is composed of a main road and a
side road. These roads have a topology defined as four-lane, two-direction, and no-passing. The main road is 300-m long and the
secondary road is 158-m long. Each lane is 4-m wide. The outer parts of the road are delimited by solid white lines. Lanes are divided
by double solid yellow lines. Both roads intersect perpendicularly at the middle of the main road (Fig. 6(a)). The intersection area
has no lane markings.

The environment and the actors are set to an initial state at the end of each episode. The reset function adds randomness to this
setup to avoid overfitting and to generate new valid environments for the TD3-agent.
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Table 2
Parameters of the traffic elements.

Parameter [unit] Vehicle Bicycle Pedestrian

Length [m] 4.7 2.2 0.24
Width [m] 1.8 0.6 0.45
Height [m] 1.4 1.5 1.7
Minimum speed [m∕s] 4.16 3 1
Maximum speed [m∕s] 20 4.5 1.4

Table 3
Valid vehicle initial poses.

Spawn area 𝑋 [m] 𝑌 [m] 𝜓 [deg]

𝑍𝐴 [160, 300] [150, 158] |𝜓| ≥ 150

𝑍𝐵 [0, 140] [142, 150] |𝜓| ≤ 30

𝑍𝐶 [150, 158] [0, 140] |𝜓 − 90| ≤ 30

Spawning of traffic elements. The environment can be populated with three types of elements: pedestrians, cyclists and vehicles.
Table 2 shows the main properties of each traffic element. The speed of pedestrians and cyclists was defined according to what was
presented in Fitzpatrick et al. (2006). Pedestrians and cyclists usually cross at crosswalks. These areas are bounded by the following
coordinates: Crosswalk 1: 𝑋 ∈ [158, 160] m and 𝑌 ∈ [142, 158] m, Crosswalk 2: 𝑋 ∈ [140, 142] m and 𝑌 ∈ [142, 158] m, and Crosswalk
3: 𝑋 ∈ [142, 158] m and 𝑌 ∈ [140, 142] m. Pedestrians can be spawned in the vicinity of any end of a crosswalk and can randomly
choose which one to use. Jaywalkers are also considered. These types of element can appear at any side of the street and cross.

Vehicles, cyclists, and pedestrians must have valid poses at the beginning of any episode. Elements are spawned depending on
their type. Vehicles should appear on roads with the appropriate heading direction. Table 3 shows ranges of valid poses. Each
starting area, as defined by these valid poses, will contain at least two vehicles. The distance between them should be greater or
equal to 15 m as long as they are inside the environment boundaries (Fig. 6(b)).

Vehicle paths and speed profiles. Vehicles can navigate the environment through valid paths according to their initial spawn area.
Given initial spawn areas 𝑍𝐴, 𝑍𝐵 , and 𝑍𝐶 , let 𝑍

′
𝐴
, 𝑍′

𝐵
, and 𝑍′

𝐶
be the adjacent lanes with opposite direction. Vehicles starting in

area 𝑍𝐴 can navigate to 𝑍
′
𝐵
or 𝑍′

𝐶
. Similarly vehicles that appear on area 𝑍𝐵 can head to 𝑍

′
𝐴
or 𝑍′

𝐶
, and those that with initial pose

in 𝑍𝐶 to 𝑍
′
𝐴
and 𝑍′

𝐵
. Maneuvers as driving backwards, U-turns, and invading sidewalks or opposite direction lanes are prohibited.

Vehicles start navigating at a speed 𝑣 ∈ [𝑣𝑚𝑖𝑛, 𝑣𝑚𝑎𝑥] (See Table 2). Once they arrive at the intersection, they reduce their speed to
a maximum of 𝑣0∕2. Their speed increases linearly until they drive out of the intersection at a speed close to 3𝑣0∕4. The vehicle
speeds up once it reaches its destination area.

6.1.2. Sensors
The ego vehicle is aware of the information from other vehicles and pedestrians only through sensors. Below we will detail how

sensing data is collected and what information is extracted from which sensor.

Odometer. These sensors measure the revolutions of the wheels of the ego vehicle. Depending on their resolution they can measure
fractions or full revolutions (Thrun et al., 2006). The ego vehicle is equipped with highly sensitive devices that provide information
on its pose [𝑋, 𝑌 , 𝜓] and its time derivatives over a defined sampling time.

LIDAR. A Light Detection and Ranging (LIDAR) is an active type of sensor mainly used to measure distances (Chazette et al., 2016).
The ego vehicle is equipped with one of these devices. The sensor is placed on the roof of the vehicle and aims towards the front.
Its properties can be found in Table 4. The sensor output generates a 32 × 2250 × 3 point cloud. A point cloud is a set of points in
a defined space that represent the geometry of an object (Demarsin et al., 2007).

The point cloud elements are clustered by computing the minimum Euclidean distance between points. Each cluster is labeled
and the vector 𝑖 is generated. The vector 𝑃𝑖 contains the location in three dimensions [𝑥, 𝑦, 𝑧] and the size in each dimension [𝑤, 𝑙, ℎ]

of the detected element.

6.1.3. Reward
The navigation agent requires a reward that considers internal and external sensor data. The proposed function considers

odometry readings, lateral control error, and the influence of actors in the environment. The complete function is shown in Eq. (40).
It is a linear combination of coefficients and nonlinear sub-functions.

Each sub-function is carefully chosen to represent the expected behavior of the longitudinal speed (𝑟𝑥̇), longitudinal acceleration
(𝑟𝑥̈), cross-track error (𝑟𝜀𝑐𝑡 ), yaw rate of the vehicle (𝑟𝜓̇ ), angle to path 𝑟𝛽 , distance to collision (𝑟𝑑), and the selected path cost
function (𝑟𝑓𝑝 ).

𝑟 = 𝐾(𝑤1𝑟𝑥̇ +𝑤2𝑟𝑥̈ +𝑤3𝑟𝜀𝑐𝑡 +𝑤4𝑟𝜓̇ +𝑤5𝑟𝛽 +𝑤6𝑟𝑑 +𝑤7𝑟𝑓𝑝 ) (40)

We will subsequently introduce how to compute each component of the reward.
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Table 4
LIDAR parameters.

Parameter [unit] Default setting

Update interval [s] 0.1
Location 𝑥 [m] 1.5
Location 𝑦 [m] 0
Height [m] 1.6
Max range [m] 120
Range accuracy [m] 0.002
Azimuth resolution [deg] 0.16
Elevation resolution [deg] 1.25
Azimuth limits [deg] [−180, 180]

Elevation limits [deg] [−20, 20]

Traveled distance. The traveled distance to the goal is the first part of the reward function (Eq. (41)). A goal is defined as the
terminal state in which the agent completes its navigation task. This function is constituted by the subtraction of two elements: the
total length in meters of the path the vehicle needs to travel to reach the goal (𝑑𝑡) and the distance in meters pending to the goal
(𝑑𝑔). The first term is computed at the beginning of the run and used subsequently as a constant. The second term is calculated at
every instant 𝑘. During the first instants, 𝑑𝑡 and 𝑑𝑔 are almost equal and therefore the reward is low. The reward increases linearly
as the vehicle travels towards the goal. The only scenario in which this term would award a decreasing or negative value is if it
incrementally drives away from the goal. The reward function presented in Eq. (40) is multiplied by this value to provide the agent
with a progress estimator (Matignon et al., 2006).

𝐾 = 𝑑𝑡 − 𝑑𝑔 (41)

Longitudinal speed. The dynamic model of the vehicle that is employed considers speeds and forces on the vehicle’s 𝑥 and 𝑦 axes. The
speeds on the 𝑦 axes can be ignored due to the simulation conditions defined in the environment. The ego vehicle should navigate
at acceptable speeds to guarantee continuous traffic. Valid speeds are defined in the interval 𝑥̇ ∈ [5, 20] m∕s, such that 𝑥̇𝑚𝑖𝑛 is the
lower boundary and 𝑥̇𝑚𝑎𝑥 the upper boundary. Boundaries are expressed as a Boolean function. This function penalizes non-valid
speeds, while valid speeds generate a positive value.

𝑟𝑥̇ =

{
2, 𝑥̇𝑚𝑖𝑛 ≤ 𝑥̇ ≤ 𝑥̇𝑚𝑎𝑥

−1, otherwise
(42)

Longitudinal acceleration. A similar approach is used for the longitudinal acceleration. The standard (Secretary, 2019) indicates that
an aggressive braking maneuver has a magnitude of 9.65 m∕s2 against the motion direction. As the agent should avoid aggressive
maneuvers, the valid acceleration interval is defined as 𝑥̈ ∈ [−5, 1.5] m∕s2, such that 𝑥̈𝑚𝑖𝑛 is the lower boundary and 𝑥̈𝑚𝑎𝑥 the upper
boundary. A Boolean function is also employed (Eq. (43)) with 𝑥̈𝑚𝑖𝑛 and 𝑥̈𝑚𝑎𝑥 as boundaries. This function penalizes non-valid
accelerations, while valid accelerations generate a positive reward. For typical automotive applications, powertrains can attain
longitudinal accelerations up to 0.5 g, whereas safe braking must not exceed 1 g of deceleration (Genta, 2009).

𝑟𝑥̈ =

{
1, 𝑥̈𝑚𝑖𝑛 ≤ 𝑥̈ ≤ 𝑥̈𝑚𝑎𝑥

−1, otherwise
(43)

Cross-track error. The difference between a desired location on a trajectory and the measured location of a vehicle is known as the
cross-track error (Borhaug and Pettersen, 2005). Minimizing this error results on effecting path following by the agent. A compound
Boolean function is employed to compute the cross-track error reward (Eq. (44)). A reward is given to the agent for navigating at
the center of each lane 𝛬𝑗 . It is acceptable to have small deviations 𝜆 from the desired path as disturbances can occur. This function
penalizes path deviations.

𝑟𝜀𝑐𝑡 =

{
2, 𝛬𝑗 ± 𝜆

−1, otherwise
(44)

Yaw rate. A similar approach as used for the longitudinal speed and acceleration is proposed for the yaw rate. As the agent should
avoid aggressive maneuvers, the valid yaw rate interval is defined as 𝜓̇ ∈ [−8, 8] deg∕s2, such that 𝜓̇𝑚𝑖𝑛 is the lower boundary and
𝜓̇𝑚𝑎𝑥 the upper boundary. A Boolean function is also employed (Eq. (45)) with 𝜓̇𝑚𝑖𝑛 and 𝜓̇𝑚𝑎𝑥 as boundaries. This function penalizes
non-valid yaw rates, while valid values generate a positive reward.

𝑟𝜓̇ =

{
1, 𝜓̇𝑚𝑖𝑛 ≤ 𝜓̇ ≤ 𝜓̇𝑚𝑎𝑥

−1, otherwise
(45)

Angle to path. A similar approach as used for the yaw rate is implemented for the heading error to the desired path. The valid
maximum interval is defined as 𝛽 ∈ [−5, 5] deg. A Boolean function is employed (Eq. (46)) with 𝛽𝑚𝑖𝑛 and 𝛽𝑚𝑎𝑥 as boundaries. This
function penalizes non-valid angles, whereas valid angles generate a positive reward.

𝑟𝛽 =

{
1, 𝛽𝑚𝑖𝑛 ≤ 𝛽 ≤ 𝛽𝑚𝑎𝑥

−1, otherwise
(46)
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Distance to collision. A dynamic threshold 𝜏𝑐 is used to compute a safe distance prior to collision. This threshold is proportional to
the longitudinal speed 𝑥̇ of the ego vehicle. A Boolean function is employed (Eq. (47)). This function penalizes risky distances to
collision, while safe distances generate a positive reward.

𝑟𝑑 =

{
1, 𝑑𝑐 ≥ 𝜏𝑐

−1, otherwise
(47)

Selected path cost function. The cost function that was presented in Eq. (3) is used to evaluate the performance of the selected path.
The cost function considers lateral, longitudinal and time deviations from the global planner path. Positive costs imply a poorly
selected path, and negative costs denote a locally optimal path. Thus, the signal value is multiplied by −1 to penalize poor paths
and reward favorable paths.

𝑟𝑓𝑝 = −𝐶 (48)

6.2. Integrated training algorithm

Algorithm 2 outlines the TD3-training integrated with path planning and lateral control, longitudinal control, and safety
enhancement module. The results of the presented experiment setup are presented in Section 6.3.

Algorithm 2 Integrated planning and control algorithm for the ego vehicle

1: Initialize all the networks mentioned in Algorithm 1
2: Define ego vehicle and environment (road and traffic elements)
3: Define vehicle sensors
4: for epoch = 0, 1, 2, ...,𝑀 do
5: Observe the initial state: 𝑜0 = (𝑋0, 𝑌0, 𝜓0, 𝑥̇0,0) defined in Section 4
6: for 𝑡 = 0, 1, 2, ..., 𝑇 do
7: Determine local path-planning 𝑔, ℎ, 𝑘𝑗 , 𝑘𝑡, 𝑘𝑝 and lateral control parameters 𝐾𝑑
8: Run the safety enhancement module to evaluate environment variables to select the navigation algorithm.
9: if navigation = Frenét then
10: Generate path planning terminal states for ego vehicle considering cruise control, lane changes and follower vehicles
11: Evaluate path-planning cost function 𝐶𝑡
12: Check trajectories to ensure acceleration and curvature constraints
13: Select collision-free optimal waypoints
14: Select next waypoint from path according to 𝑙𝑑 = 𝐾𝑑 𝑥̇𝑡
15: Calculate steering angle 𝛿𝑡 based on next waypoint and vehicle speed 𝑥̇𝑡.
16: else if navigation = MPC then
17: Select horizon 𝑡 for path tracking and cruise control
18: Calculate the error between the current state with optimal state.
19: Calculate steering angle 𝛿𝑡 and throttle 𝑥̈.
20: end if
21: Select actions 𝑎𝑡 = 𝜋𝜙(𝑠𝑡) + 𝜖 according to 𝜋𝜙 with exploration noise 𝜖 ∼  (0, 𝜎)

22: Execute 𝑎𝑡, observe the reward 𝑟𝑡 and the new state 𝑜𝑡+1 = (𝑋𝑡+1, 𝑌𝑡+1, 𝜓𝑡+1, 𝑥̇𝑡+1,𝑡+1) based on the bicycle model
23: Store transition (𝑜𝑡, 𝑎𝑡, 𝑟𝑡, 𝑜𝑡+1) into 𝑅
24: Sample a size N mini-batch transitions (𝑜, 𝑎, 𝑟, 𝑜′) from 𝑅
25: Update each critic 𝑄𝜃𝑖 , 𝑖 = {1, 2}

26: if 𝑡 mod 𝑇𝑢𝑝𝑑𝑎𝑡𝑒 = 0 then
27: Update the policy network 𝜋𝜙
28: Update the target networks 𝜃′

1
, 𝜃′

2
, 𝜙′

29: end if
30: end for
31:end for

6.3. Training results

The TD3-agent was trained in parallel for twenty thousand iterations (16 h approx. of computational time) on a workstation
with a 16-core AMD Ryzen 9TM 3950X processor and 64 GB of RAM. The selected hyperparameters can be found in Table B.8.
The amount of LIDAR data introduces significant computational burden during training. Computers with low core count processors
struggled to train over 100 iterations without reaching a memory allocation crash. The results of the training can be found in Fig. 8.
A variable-step solver was chosen for the model to achieve stability due to the continuous nature of the space state and dynamics
of the system. The randomized spawn and behavior of the traffic elements, as well as the scenarios are the cause of the distinctive
form of the curve.
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Table 5
Navigation system performance.

Method Velocity Acceleration Distance to collision Completion time Success rate
[m∕s] [m∕s2] [m] [s] [%]

RL
min: 10.08 min: −0.345 min: 4.01

10.71 94.1max: 23.15 max: 3.08 max: 50.93
avg: 18.73 avg: 2.14 avg: 31.53

MPC
min: 1.62 min: −5.06 min: 34.56

29.88 97.3max: 15.33 max: 4.56 max: 74.51
avg: 5.23 avg: −0.31 avg: 61.62

RL/MPC min: 1.54 min: −6.81 min: 32.17
26.04 99.8RL duty: 71.1% max: 16.34 max: 5.23 max: 56.32

MPC duty: 28.9% avg: 6.10 avg: −0.33 avg: 43.61

The RL and the coupled RL/MPC systems were tested and validated ten thousand times each, in a variety of road topologies: two-
or four-lane, two directions, passing or no-passing, single road or T-intersection or crossroad (Sections 6.3.1 and 6.4). A road layout
was selected at random for each run. The main road was always 300-m long and the secondary road ranged from 158- to 300-m
long. Similarly, a number of 4-m wide lanes was chosen for the given test. Pedestrians, bicycles, and vehicles were spawned with
randomized behaviors (Table 2), positions (Table 3), and paths. One to four pedestrians could appear during each test. Jaywalking
was one of their potential behaviors if their spawning region was not any of the defined crosswalks. A maximum of two bicycle
riders could appear in the environment. Their behavior was set to follow a path on the center of a given lane. However, they could
change a lane randomly or stop during navigation. A minimum of two and a maximum of twelve vehicles were spawned in the
roads, depending on the given layout and number of lanes. Their initial positions were zones 𝑍𝐴, 𝑍𝐵 , 𝑍𝐶 , and 𝑍𝐷 accordingly. No
more than three vehicles could appear in each zone. A test is considered successful if the ego vehicle navigates from a given initial
position to a desired final position without collisions, and the longitudinal velocity and acceleration are between desired limits.

The complete performance data of each navigation system is presented in Table 5. The RL agent successfully completed 94.1%
of the tests. The main cause of this success rate is the agent facing extreme situations as pedestrians or other vehicles behaving
differently with respect to training. The ego vehicle has a greedy behavior when controlled by RL. This is reflected in the 10.71 [s]

it takes to reach the navigation goal. Also, the RL-controlled vehicle violates the maximum speed constraint imposed by the reward
function. Its longitudinal control presents low variability in the acceleration command. Finally, the RL driving policy is aggressive,
as it can attain a minimum of 4.01m to collision. By converse, the MPC module had a higher 97.3% success rate when compared
to RL. A conservative driving policy yields a safer behavior. This approach has a negative impact on the completion time: 29.88 [s].
The MPC system never surpasses the velocity nor acceleration limits, as both are hard constraints in MPC. There is a high range
of variability in the acceleration, with broader ranging among positive and negative values. This kind of behavior could induce
chattering, thus hindering passenger comfort. The coupled RL-MPC system achieved a 99.8% success rate. The combination of both
navigation modules enhances navigational safety, as the resulting success rate is higher than that of the single control strategies.
In addition, the completion time outperforms the slowest technique (MPC). The MPC module controls how greedy the RL system
behaves, while maintaining a larger distance to collision with the surrounding elements (32.17 m at minimum). Each system handles
the situations in which the counterpart did not perform as expected.

From Table 5, it is worth noting that velocity and acceleration variables for the combined strategy are significantly closer to the
metrics of the MPC approach. Therefore, it could be assumed that the MPC safety-enhanced navigation module dominates during
vehicle operation. However, a duty cycle analysis of the ten thousand iterations included in Table 5 revealed that the MPC strategy
takes control of the ego vehicle for 28.9% of the time. This means that RL-based navigation dominates with a duty cycle of 71.1%.
The combination of both strategies can be detected through the distance to collision. In the RL/MPC approach, its minimum is
closer to the one of the MPC-based system, whereas its maximum approaches that of the RL-based system. The average distance to
collision in the RL/MPC approaches the arithmetic mean of both systems’ averages.

6.3.1. Navigation algorithm demonstration
The trained TD3-agent was tested in the training scenario on a wide range of combinations of starting points, speeds, and paths.

Three samples from those tests are presented: one for the RL, the other for the MPC, and another for the coupled RL/MPC system
controlling the ego vehicle.

To give means of comparison, three cases are simulated with the same environment layout. The ego vehicle starts in zone 𝑍𝐴.
Its initial pose is set to 𝜉0 = [𝑋, 𝑌 , 𝜓] = [275 m, 156 m, 180 deg], and 𝑥̇ = 15 m∕s. The path is set to 𝑍𝐴 → 𝑍′

𝐵
. Two extra vehicles

are spawned in front of and behind it with a gap of 35 m each. Another vehicle is placed on the adjacent lane. Six extra vehicles
are evenly distributed between zones 𝑍𝐵 and 𝑍𝐶 with initial speeds of 12 m∕s. The complexity of this path is low as there is a
continuous traffic flow in that lane.

The three approaches are evaluated with the following metrics: pose (𝜉 = [𝑥, 𝑦]⊺), cross-track error 𝜀𝑐𝑡, distance to collision,
velocity (𝑥̇), and acceleration (ẍ). These metrics are presented through four graphs in Figs. 9 (RL), 10 (MPC) and 11 (RL/MPC).
The pose plot shows the world-based position in meters for 𝑋 and 𝑌 with the lateral distance between the vehicle heading and the
target waypoint. The distance to collision plot depicts the Euclidean distance in meters to the closest vehicle surrounding the ego
vehicle. The velocity plot illustrates the velocity behavior of the ego vehicle, whereas the acceleration plot presents its throttle/brake
activity. The throttle command is bounded by two dashed lines limited at [−9.6, 4.905] m∕s2. The outcomes of each test are described
in the following paragraphs.
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Fig. 8. Evolution of the average reward through reinforcement learning training.

Fig. 9. Performance metrics during navigation with RL.

Test 1 (RL). It can be noted from Figs. 9(c) and 9(d) how the ego vehicle increases its speed until the distance with the leading

vehicle (Fig. 9(b)) reaches a maximum value (𝑡 ≈ 7 s). This encourages the agent to increase the throttle (𝑡 ≈ 9.5 s). The leading

vehicle slows down while entering the intersection. Thus, the distance to collision decreases. Causing the acceleration to be set

to a value close to zero. This behavior is kept while navigating in the intersection until the goal state is reached. The cross-track

error is kept close to zero during the whole navigation maneuver. Also, a minimum safe distance is kept with the leading vehicle

and acceleration does not surpass safety limits. Soft constraints are embedded in the RL navigation system through the Frenét path

planner.

Test 2 (MPC). It can be noted from Figs. 10(c) and 10(d) how the ego vehicle decreases its speed until the distance with the leading

vehicle (Fig. 10(b)) reaches a minimum value (𝑡 = 10 s) at the intersection. From this point the speed is slowly increased. The

distance to collision with the leading vehicle increases. The cross-track error is close to zero during the whole navigation maneuver.

During navigation, safe distance is kept with the leading vehicle. Acceleration does not overcome safety limits. The MPC module

implements hard constraints on the navigation system by continuously monitoring the environment. It prevents any risky situation

from occurring.
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Fig. 10. Performance metrics during navigation with MPC.

Test 3 (RL/MPC). Two extra plots are added to check the interaction between the longitudinal (Fig. 11(e)) and lateral (Fig. 11(f))
algorithms. The operation of the safety-enhanced system for longitudinal and lateral commands can be seen through these plots.
Section 5.2 explains how the transitions between RL and MPC are done. It can be noted from Figs. 11(c) and 11(d) how the ego
vehicle initially decreases its speed to keep a 4 s distance with the leading vehicle (Fig. 11(b)), and to safely navigate the intersection.
This behavior is kept until the leading vehicle is far enough. Then speed is increased. Acceleration does not surpass safety limits.
The cross-track error is close to zero during the whole navigation maneuver. The coupled RL and MPC system achieved smooth
transitions that guarantees full navigation in the test environment. The integrated navigation system implements soft and hard
constraints. It prevents the vehicle from going into potential hazardous situations.

6.4. Transferability to other environments

After the coupled RL-MPC agent is tested in modified conditions of the training scenario, its generalization to other scenarios is
validated. Three extra scenarios were developed: a single lane straight and a double lane crossroad. The straight road represents a
simpler and the crossroad a more complex environment. The metrics are the same as the ones presented in Section 6.3.1.

6.4.1. Single-lane straight road
This scenario is a subset of the original T-intersection environment. Only zones 𝑍𝐴, 𝑍

′
𝐴
, 𝑍𝐵 and 𝐵′ are valid. The ego vehicle

starts this simulation in zone 𝑍𝐵 . Its initial pose is set to [𝑋, 𝑌 , 𝜓] = [25 m, 144 m, 0 deg], and 𝑥̇ = 15 m∕s (Fig. 12). Its path is set
to 𝑍𝐵 → 𝑍′

𝐴
. Two extra vehicles are spawned ahead and behind it with a gap of 35 m and 45 m, respectively. Two extra vehicles

are evenly distributed in zone 𝑍𝐵 with initial speeds of 7 m∕s. The complexity of this path is very low. Therefore, two jaywalkers
are added. They are spawned such that they can affect indirectly the trajectory of the ego vehicle. Initially the ego vehicle slows
down to keep a safe distance with the leading vehicle. The first jaywalker appears in front of the leading vehicle at 𝑡 ≈ 10 s, which
causes a sudden brake (Figs. 12(c) and 12(d)). The leading vehicle slows down again at 𝑡 ≈ 22 s because of the second jaywalker.
Consequently, the speed is decreased. Finally, The ego vehicle continues with its navigation commands until it reaches its goal. The
ego vehicle deviates from its original path to compensate the behavior of other elements in the environment. The cross-track error is
compensated at the end of the navigation. The fail-operational module takes control of the ego vehicle when unexpected situations
are faced, and the main navigation system does not respond as expected.

6.4.2. Single-lane crossroad
This scenario is an extension of the original T-intersection environment. The road that includes zones 𝑍𝐶 and 𝑍

′
𝐶
are extended

such that zones 𝑍𝐷 and 𝑍′
𝐷
are created. The ego vehicle starts this simulation in zone 𝑍𝐶 . Its initial pose is set to [𝑋, 𝑌 , 𝜓] =

[156 m, 25 m, 90 deg], and 𝑥̇ = 15 m∕s (Fig. 13(a)). Its path is set to 𝑍𝐶 → 𝑍′
𝐷
. Two extra vehicles are spawned in front of and



Transportation Research Part C 139 (2022) 103662

19

R. Bautista-Montesano et al.

Fig. 11. Performance metrics RL-MPC coupled navigation for test 3.

behind it with a gap of 15 m and 25 m respectively. Six extra vehicles are evenly distributed in zones 𝑍𝐵 , 𝑍𝐶 and 𝑍𝐷 with initial
speeds of 10 m∕s. The complexity of this path is very high. Four jaywalkers are added. They are spawned such that they can directly
or indirectly affect the trajectory of the ego vehicle. The first jaywalker appears in front of the leading vehicle at 𝑡 ≈ 2 s, which
causes a sudden brake as the distance to collision is reduced (Fig. 13(b)). Changes in speed and acceleration can also be observed in
Figs. 13(c) and 13(d). The ego vehicle slows down to adjust to the speed of the leading vehicle as it approaches the intersection. The
ego vehicle carefully approaches the intersection 𝑡 ≈ [14, 20] s, giving enough room for crossing vehicles. A pedestrian uses Crosswalk
1 at 𝑡 ≈ 17 s causing the leading vehicle to yield. This disturbance can be spotted in the velocity and acceleration plots. It causes
the ego vehicle to apply the brake and to navigate at low speeds. Simultaneously, another vehicle coming from area 𝑍𝐷 enters the
intersection, compromising the integrity of the agent. A safety distance of at least 𝑡 = 4 s. After it has merged to area 𝑍′

𝐷
, the ego

vehicle continues navigating and maintaining a valid minimum distances to collision until it reaches its goal. The fail-operational
module actively took control of the ego vehicle by keeping a safe distance with the surrounding vehicles and pedestrian in a complex
environment.

6.4.3. Multiple-lane crossroad
The agent is tested on a multiple lane scenario extended from the one presented in Section 6.4.2. Zones 𝑍𝐴, 𝑍

′
𝐵
, 𝑍𝐶 and 𝑍

′
𝐷
are

extended as the topology of the roads becomes two-lane, tow-direction, passing. The ego vehicle starts this simulation in zone 𝑍𝐶 .
Its initial pose is set to [𝑋, 𝑌 , 𝜓] = [156 m, 25 m, 90 deg], and 𝑥̇ = 5 m∕s (Fig. 14(a)). Its path is set to 𝑍𝐶 → 𝑍′

𝐴
. Three extra vehicles

with the same path are spawned in the same road and randomly distributed on its lanes. Nine extra vehicles are evenly distributed
in zones 𝑍𝐵 , 𝑍𝐶 and 𝑍𝐷 with initial speeds of 12 m∕s. The complexity of this scenario is very high. Due to the modifications of
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Fig. 12. Performance metrics RL-MPC coupled navigation for Section 6.4.1.

Fig. 13. Performance metrics RL-MPC coupled navigation for Section 6.4.2.

the road, the ego vehicle is allowed to change lanes. The task of the vehicle is to reach its goal in the shortest time possible. The
TD3-controlled vehicle starts driving forward in the slow-speed lane as it has to turn right. It increases it speed. At 𝑡 ≈ 12 s it finds
the first vehicle that is heading with the same direction but with a lower speed. The distance to collision is reduced (Fig. 14(b)).
However this does not affect the behavior of the vehicle. At this point the vehicle must turn right. This maneuver can be found
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Fig. 14. Performance metrics RL-MPC coupled navigation for Section 6.4.3.

in the 𝑡 ≈ [16, 20] s interval. This event can be clearly appreciated in Figs. 14(c) and 14(d). The vehicle briefly uses the adjacent
lane while turning. A conservative navigation strategy is kept until the ego vehicle merges into the destination road. The vehicle
increases its speed to its destination. This behavior continues until it reaches the goal.

6.4.4. Multiple-lane crossroad with slopes
An extension of the street layout presented in Section 6.4.3 is used to test the performance of the vehicle on sloped roads. The

ego vehicle starts this simulation in zone 𝑍𝐶 . Its initial pose is set to [𝑋, 𝑌 ,𝑍, 𝜓] = [156 m, 25 m,−10 m, 90 deg], and 𝑥̇ = 15 m∕s

(Fig. 15(a)). Its path is set to 𝑍𝐶 → 𝑍′
𝐵
. Extra vehicles are spawned as in the previous layout. The vehicle starts increasing its speed

due to the wide gap between the leading vehicle and itself (Fig. 15(b)). When the safety distance is reduced to a minimum, the
vehicle brakes and slowly navigates to the intersection. It then finds a gap to merge to its target road (Figs. 15(c) and 15(d)). Once
it is on the destination road, it slowly approaches to its goal as there is a vehicle in front of it. The 𝑍-component of the pose of
the vehicle is shown in Fig. 15(e). The fail-operational module overrides the navigation whenever the distance to collision reaches
hazardous levels. It is responsible for the navigation approach at the intersection and the road merging.

7. Conclusions and future research

This work develops a coupled reinforcement learning and model predictive control methods for autonomous vehicles to navigate
unsignalized intersections. In a virtual environment, internal and external data are acquired with an odometer and a LIDAR. These
data are then fed into a perception system that provides location and behavior information to the agent. A dynamic model of the
ego vehicle allows for a more realistic representation of the plant. Furthermore, continuous states and control actions are proposed.
The ego vehicle is enhanced with a path planner and lateral controller. An reinforcement learning agent controls the longitudinal
acceleration, and selects the navigation path of an ego vehicle. The proposed reward function integrates a combination of nonlinear
functions that account for safety, efficiency, and comfort. The agent is trained with the TD3 algorithm, which grants suitable stability
and robustness during training. The ego vehicle is trained in a T-intersection environment. Reinforcement learning- and model
predictive control-based navigation systems run simultaneously. A safety-enhanced module uses environmental information to select
the system that controls the vehicle.

The model is trained within a T-intersection road. It is further tested and validated in other environments including sloped single-
or multiple-lane straight road and a crossroad, both achieving satisfactory performance in terms of vehicle integrity and time to
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Fig. 15. Performance metrics RL-MPC coupled navigation for Section 6.4.4.

complete its navigation task. Thus, the achieved architecture enables the possibility of migrating the model to different physical
platforms.

The developed work implements a safety-enhanced approach to reinforcement learning-based navigation systems. The specifi-
cations of the employed sensors, the vehicle dynamics model, the soft and hard safety constraints, the model predictive controller,
and the reward design add more realism to the simulations. These characteristics make this approach more feasible to transfer
into a physical platform. The safety module proposed in this work prevents an uncontrolled and rapid switching behavior between
algorithms. This module also ensures the navigation of the vehicle to be collision-hazard free.

Navigation of AVs at urban intersections is a relatively understudied field compared to that along highways. We show that the
proposed design benchmark can help future researchers explore the extensibility related to reward functions, navigation scenarios,
and sensing information. Therefore, there are many open research questions along these lines:

1. The ego vehicle will be enhanced with visual and inertial sensors to acquire further information of the internal and external
states. Sensor fusion techniques will be explored to minimize the uncertainty of the environment.

2. Alternative architecture configurations will be evaluated by replacing local path planning and lateral control subsystems.
Configuration space, probabilistic sampling or artificial forces can be used as path planners or safety evaluation nodes.
Potential controllers can be kinematic or predictive subsystems.
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Table B.6
Actor network layout properties.

Layer name Type Size Characteristics

State Feature input 544
actorFC1 Fully connected 50 Weights: 50 × 544, Bias: 50 × 1
actorReLU1 ReLU activation 50
actorFC2 Fully connected 50 Weights: 50 × 50, Bias: 50 × 1
actorReLU2 ReLU activation 50
actorFC3 Fully connected 1 Weights: 1 × 50, Bias: 1 × 1
Action Hyperbolic tangent 1

Table B.7
Critic network layout properties.

Layer name Layer type Size Characteristics

Action Feature input 1
CriticAction Fully connected 25 Weights: 25 × 1, Bias: 25 × 1
State Feature input 544
CriticStateFC1 Fully connected 50 Weights: 50 × 544, Bias: 50 × 1
CriticReLU1 ReLU activation 50
CriticStateFC2 Fully connected 25 Weights: 25 × 50, Bias: 25 × 1
add Addition 25
CriticCommonReLU2 ReLU activation 25
CriticOutput Fully connected 1 Weights: 1 × 25, Bias: 1 × 1

Table B.8
Agent hyperparameters.

Hyperparameter Critic network Actor network

Learn rate 0.001 0.0001
Regularization factor 0.0001 0.0001
Gradient threshold 1 1
Sample time 0.1 s

Target smooth factor 0.001
Discount factor 0.999
Minibatch size 128
Experience buffer length 106

3. Background vehicles will be enhanced with a wide range of reactive and navigation behaviors to better help understand the

interaction between vehicles in various navigation scenarios.
4. A multi-agent RL framework will be developed to train multiple AVs that collaboratively navigate an intersection.
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Appendix A. List of symbols

Path planning

𝐫 Root point
𝐭𝑟, 𝐧𝑟 Tangential and normal vectors of 𝐫
𝐭𝑧, 𝐧𝑧 Tangential and normal vectors of 𝐳
𝐳 Computed trajectory
𝐶 Trajectory cost function
𝑑𝑝 Perpendicular offset
𝑔 Time-dependent cost parameter
ℎ Final position-dependent cost parameter
𝐽𝑡 Trajectory optimization function
𝑘𝑗 , 𝑘𝑡, 𝑘𝑝 Trajectory cost function coefficients
𝑝 Position
𝑃0 Initial state vector
𝑃1 Final state vector
𝑝𝑝 Position
𝑠𝑝 Arc length of the centerline
𝑇 Time step
𝑡0 Initial time
𝑡1 Final time

Vehicle model

𝛿 Steering angle
𝜃𝑣𝑓 , 𝜃𝑣𝑟 Velocity angles of the front and rear tires
𝐶𝛼𝑓 , 𝐶𝛼𝑟 Cornering stiffness of the front and rear tires
𝐹𝑥𝑓 External longitudinal force on the front axle
𝐹𝑦𝑓 , 𝐹𝑦𝑟 External lateral forces on the front and rear axles
𝐼𝑧𝑧 Polar moment of inertia with respect to the 𝑧 axis
𝐿 Wheelbase
𝑙𝑓 , 𝑙𝑟 Distance between the center of gravity and the front and rear axles
𝑚 Mass
𝑥,𝑦,𝜓 Longitudinal, lateral and yaw DOFs of the vehicle

Reinforcement learning

𝛾 Discount factor
E Expectation
𝑅 Replay buffer
(𝜃) The loss function for the Q-value
∇𝜙 Output gradient
𝜋 Policy network
𝜋′ Target network for the policy network
𝑜 Observation
𝑝 Probability function
𝑄𝜃′ Target network for the critic network
𝑄𝜃 Critic network
𝑠 State
𝑋, 𝑌 World-frame coordinates of the ego vehicle
𝑍𝐴, 𝑍𝐵 , 𝑍𝐶 , 𝑍𝐷 Road zones

Lateral control

𝛼 Angle between the heading and look-ahead distance vectors
𝛿 Steering angle
𝜅 Curvature of a path
𝜀𝑐𝑡 Cross-track error
𝐾𝑑 Speed gain
𝑙𝑑 Look-ahead distance
𝑅1 Curved path radius
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Reward

𝛽 Angle to path
𝜆 Road deviation
𝛬𝑗 Lane center
𝑖 Frenét path
𝜏𝑐 Dynamic collision threshold distance
𝑎𝑖 Actions
𝑑𝑐 Distance to collision
𝐹𝑘 Input force
𝐹𝑚𝑎𝑥 Maximum input force
𝐾 Progress estimation gain
𝑟𝑑 Distance-to-collision reward
𝑟𝛽 Angle-to-path reward
𝑟𝑥̈ Longitudinal acceleration reward
𝑟𝑥̇ Longitudinal speed reward
𝑟𝜓̇ Yaw rate reward
𝑟𝑓𝑝 Selected path reward

𝑟𝜀𝑐𝑡 Cross-track error reward
𝑤𝑖 Reward function weights

Safety

𝜂 Extended output vector
𝜏𝑎 Longitudinal model time constant
𝐴̃ Extended state matrix
𝐵̃ Extended input matrix
𝐶̃ Extended output matrix
𝑥̃, 𝑢̃ State and input linearization points
𝜉 Extended state vector
𝐴 State matrix Jacobian
𝐵 Input matrix Jacobian
𝑒 Error
𝐽𝑠 Safety MPC cost function
𝑘 Time sample index
𝑁𝑐 Control horizon
𝑁𝑝 Prediction horizon

Appendix B. Neural network layout

See Tables B.6–B.8.
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