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A B S T R A C T

This paper develops a decentralized reinforcement learning (RL) scheme for multi-intersection
adaptive traffic signal control (TSC), called ‘‘CVLight", that leverages data collected from
connected vehicles (CVs). The state and reward design facilitates coordination among agents
and considers travel delays collected by CVs. A novel algorithm, Asymmetric Advantage Actor-
critic (Asym-A2C), is proposed where both CV and non-CV information is used to train the critic
network, while only CV information is used to execute optimal signal timing. Comprehensive
experiments show the superiority of CVLight over state-of-the-art algorithms under a 2-by-
2 synthetic road network with various traffic demand patterns and penetration rates. The
learned policy is then visualized to further demonstrate the advantage of Asym-A2C. A pre-
train technique is applied to improve the scalability of CVLight, which significantly shortens
the training time and shows the advantage in performance under a 5-by-5 road network. A
case study is performed on a 2-by-2 road network located in State College, Pennsylvania, USA,
to further demonstrate the effectiveness of the proposed algorithm under real-world scenarios.
Compared to other baseline models, the trained CVLight agent can efficiently control multiple
intersections solely based on CV data and achieve the best performance, especially under low
CV penetration rates.

1. Introduction

Connected vehicle (CV) refers to the vehicular technology that enables vehicle-to-vehicle (V2V) (or vehicular ad-hoc networks
(VANETs) and vehicle-to-infrastructure (V2I) communication (USDOT, 2019; Di and Shi, 2021). The enabling technology includes
dedicated short-range communication (DSRC) (Abboud et al., 2016), or cellular communication like 5G (Agiwal et al., 2016; Chettri
and Bera, 2020; Khurpade et al., 2018). Connected vehicles will likely generate terabytes of streaming data daily (SAS, 2015), holding
great potential for various transportation applications including traffic signal control (TSC), which is the focus of this paper.

1.1. Literature review

CV can provide more detailed traffic information, real-time vehicle trajectories for example, when compared to traditional
detectors. To incorporate CV data into TSC systems, researchers have developed various TSC strategies in recent years (Liu et al.,
2014, 2017; Li et al., 2016; Li and Ban, 2018; Kim et al., 2019; Hussain et al., 2020; Li and Ban, 2020; Yan et al.). Although these
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Major Notations

Reinforcement Learning

𝐬 State

𝑆 State space

𝑎 Action

𝐴 Action space

𝑜 Observation

𝑂 Observation space

𝑟 Reward

𝑅 Reward space

𝑃𝑟 State transition function

𝛾 Discounted factor

𝜋 Policy

𝑄(𝑠, 𝑎) State–action value function

𝑉 (𝑠) State value function

𝜃 Parameters of critic’s value neural network

𝜙 Parameters of actor’s policy neural network

Traffic Signal Control

𝐼 Set of all intersections

𝐿𝑖𝑛(𝑖) Set of incoming lanes of intersection 𝑖

𝐿𝑜𝑢𝑡(𝑖) Set of outgoing lanes of intersection 𝑖

𝑝𝑖 Current phase of intersection 𝑖

𝑑𝑖 Current phase duration of intersection 𝑖

𝑛𝑖(𝑙) Number of vehicles in lane 𝑙 at intersection 𝑖

𝑥𝑖(𝑙) Scaled average delay per vehicle of lane 𝑙 at intersection 𝑖

𝑡𝑚𝑖𝑛(𝑙) Expected minimum travel time of lane 𝑙

𝐷𝑖 Cumulative delay of all vehicles at intersection 𝑖

𝑃𝑖 Pressure of intersection 𝑖

proposed TSC strategies with CV data significantly outperform traditional traffic signal control methods such as actuated TSC or
fixed-time TSC, usually a 100% CV market penetration rate is assumed. Such a full market may not be achievable in the short
term, thus motivating researchers to develop TSC strategies capable of running on limited CV data, specifically for low CV market
penetration (below 30%) scenarios. In this section, we will mainly focus on TSC strategies that assume only a portion of vehicles
are CVs and categorize them into non-learning based and reinforcement learning (RL) based TSC strategies. Readers who are
interested in a more comprehensive overview of traffic control with connected vehicles can refer to Guo et al. (2019).

1.1.1. Non-learning based TSC with partial CV information
One major non-learning based TSC strategy includes formulating the TSC problem as an optimization problem (Li et al., 2013). At

each time step, a TSC system receives environmental inputs (such as new vehicle arrivals) and updates traffic states (such as queue
lengths) that can be partially or fully observable. The objective of the TSC system is to optimize some performance measurements
(such as total vehicle delays) over a finite period of time. The output is a series of control signals to the TSC system that are
usually represented by traffic signal phase sequences and durations. The most common optimization methods for TSC problems
are mixed-integer linear programming (MILP) (He et al., 2012) and dynamic programming (DP) (Feng et al., 2015, 2016, 2018;
Hu et al., 2019). Beak et al. (2017) further develop a 2-level optimization framework: at the intersection-level a DP is used to
optimize the individual vehicle delays, and at the corridor level an MILP is solved to minimize platoon delays. Greedy rules like a
longest-queue-first algorithm are also adopted to solve the TSC problem (Lee et al., 2013; Goodall et al., 2013).

To provide accurate state variables and objective measurements under low CV penetration rates, various traffic state estimation
methods have been developed. They are categorized into vehicle-level and flow-level estimation methods based on information gran-
ularity. Vehicle-level algorithms estimate trajectories of each vehicle, while flow-level ones focus on aggregate traffic measurements
such as traffic volumes.

For vehicle-level estimation, a majority of studies use CVs to infer positions and speeds of non-CVs (Goodall et al., 2014;
Feng et al., 2015, 2016; Beak et al., 2017). Goodall et al. (2013) propose a predictive microscopic simulation algorithm (PMSA),
which optimizes traffic signal timing based on simulated CVs over a time horizon from a microscopic numerical simulator. Without
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inference of non-CVs, the proposed TSC system (PMSA) requires at least a 50% penetration rate to outperform a conventional TSC
system. Goodall et al. (2014) further estimate unconnected vehicles (denoted by non-CVs) positions to improve the performance
of PMSA under low penetration rates: stopping non-CVs are inserted into detected gaps among CVs and added to simulation with
CVs. Feng et al. (2015, 2016) first divide road segments near intersections into three regions based on vehicle status, namely, a
queuing region, a slow-down region, and a free-flow region. Then locations and speeds of individual non-CVs are estimated within
each region.

Flow-level estimation infers queue lengths (Priemer and Friedrich, 2009; Tiaprasert et al., 2015; Li et al., 2020), platoon arrival
time (He et al., 2012), vehicle densities (Mohebifard and Hajbabaie, 2018; Mohebifard et al., 2019; Al Islam et al., 2020), cumulative
travel time (Lee et al., 2013), or traffic volumes (Zheng and Liu, 2017; Feng et al., 2018). Specifically, queue estimation for signalized
intersections has gained more attention from researchers in recent years (Tiaprasert et al., 2015; Hao and Ban, 2015; Yang and
Menendez, 2018; Gao et al., 2019; Li et al., 2020), especially by utilizing vehicle trajectory data (Hao and Ban, 2015; Yang and
Menendez, 2018). Most recently, some studies focus on extremely low (below 10%) penetration rate scenarios. Feng et al. (2018)
apply a traffic volume estimation method (Zheng and Liu, 2017) to an adaptive TSC system developed in Feng et al. (2015). This
traffic volume estimation method utilizes trajectory data from CVs or navigation devices to estimate current traffic volumes under
a penetration rate as low as 10%. To cope with low penetration rate scenarios, Al Islam et al. (2020) propose two kinds of traffic
state estimation algorithms: one uses combined data from CVs and loop detectors to estimate the non-CV trajectories based on a
car-following model, the other converts vehicle detection time to spatial distributions of CVs and non-CVs. Results of experiments
on a real-world corridor of 4 intersections with real-world traffic demands show that both estimation methods function well under
10% or lower penetration rates.

Table 1 summarizes recent studies on non-learning based TSC with partial observation (i.e. without a 100% CV penetration
rate). Each row represents the reference reviewed above, containing details of their information source, environment, estimation
granularity, estimation methods, benchmarks, required minimum penetration rate, key assumptions, and gap, respectively.

In summary, when it comes to using CV data to estimate traffic states, non-learning based TSC methods usually rely on traffic
models or certain assumptions of traffic. Because the performance of such TSC systems highly depends on the accuracy of traffic
state estimation from CV data, the reliability of the adopted traffic models and assumptions are thus crucial.

1.1.2. Reinforcement Learning (RL) based TSC with partial CV information
One major difference between non-learning based and RL based strategies lies in their dependency on traffic models. RL based

methods do not rely on traffic models, and instead, they learn from past experience and adjust agents’ behavior to local environments.
Recently, RL based multi-intersection TSC problem gains more attention from researchers (Chu et al., 2019; Chacha Chen et al.,

2020; Gong et al., 2019; Yang et al., 2019). Despite an increasing number of papers on RL based TSC using CV data published in
recent years (Kim et al., 2019; Hussain et al., 2020; Yan et al.; Liu et al., 2014, 2017), only a few pay attention to the performance
of proposed RL based TSC systems under low CV penetration rate scenarios, especially in large road networks. Aziz et al. (2019)
evaluate their previous RL based TSC method (Al Islam et al., 2018) under various penetration rates in two real-world road
networks. Wu et al. (2020) also test the performance of their multi-agent RL based TSC algorithm under different penetration
rates. In Zhang et al. (2020), a series of more comprehensive experiments on the proposed RL based TSC method under different
penetration rates and traffic demand patterns are conducted, but those experiments are all limited in an isolated intersection. Key
features of these studies as well as the proposed method of this paper are summarized in Table 2, including their traffic information
source, environment, agent, algorithm, benchmarks, state, action, reward, and gap, respectively.

Aziz et al. (2019) find that their RL based TSC method cannot learn well under penetration rates below 40%; Zhang et al. (2020)
and Wu et al. (2020) show the robustness of proposed RL based TSC methods against low penetration rates. For instance, the RL
based TSC system in Zhang et al. (2020) leads to an 80% decrease in waiting time at the 20% penetration rate, compared to its
performance at 100% penetration rate. The difference in the performance of these RL based TSC algorithms at low penetration rates
can be explained by the design of RL based TSC systems and experiments. As mentioned before, Zhang et al. (2020) use non-CV
delay as part of rewards during training, but (Aziz et al., 2019) did not. Instead, CV data in Aziz et al. (2019) is utilized to estimate
queue lengths in a simplified way: the distance from the position of the last stopping CV to the stop line is assumed to be the
queue length of that lane. In addition, RL based TSC agents in Aziz et al. (2019) are trained at the 100% penetration rate but tested
under various penetration rates, which are not able to generalize well. As to Wu et al. (2020), a recurrent neural network (RNN)
is applied, which can learn historical information from time-continuous traffic state data. Experiment results show that the system
with an RNN layer is more robust against scenarios with partial observation available (20% penetration rate or higher) than the
same algorithm without such layer.

Previous studies in RL based TSC under various CV penetration rates demonstrate the great potential of RL based methods.
However, an RL based TSC method using CV data and specifically designed for scenarios with low penetration rates and multiple
intersections is missing. It remains unclear what CV information can improve robustness against partial observability. Also, the RL
structure suitable for partially observed systems remains to be explored.

1.2. Contributions of this paper

To mitigate the limits we mentioned in the above section, this paper proposes a reinforcement learning scheme, CVLight, for
the multi-intersection TSC problem without a full CV penetration rate. To investigate what CV information can improve robustness
against partial observation, we incorporate vehicle delays and phase durations into the state design. By exploring the structure of
the actor-critic algorithm, we include the information from both CVs and non-CVs into training.
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Existing research of non-learning based TSC with low penetration rates.

References Information
source

Environment Estimation
granularity

Estimation methods Benchmarks Required
minimum
penetration ratea

Key assumptions Gap

Priemer and
Friedrich (2009)

CV data;
Loop detectors

A real-world network
of 9 intersections
with real-world
traffic data

Flow-level Estimating queue length based
on current and historical CV
data

Well-tuned
fixed-time TSC

33% No constraints on the
number of phases, phase
transitions, sequences or
timings

Non-learning based
methods usually rely
on certain assumptions
or traffic models for
non-CV states
estimation

He et al. (2012) CV data A real-world corridor
of 8 intersections

Flow-level Identifying platoons by
analyzing headways of CVs;
estimating platoon parameters
using a linear regression model.

Well-tuned
fixed-time TSC

40% Penetration rate is given;
Passenger vehicles
constitute a significant
majority of the vehicles
in the network

Lee et al. (2013) CV data;
Loop detectors
or camera

A synthetic isolated
intersection

Flow-level Applying Kalman filtering to
estimate the cumulative travel
times

Actuated TSC 30% Total vehicle counts are
available

Goodall et al. (2013) CV data A real-world corridor
of 4 intersections

Flow-level Populating the CV data into a
microscopic traffic simulation
to measure objective function
from the simulated behavior

Actuated TSC 50% The turning movement of
vehicles are based on
their current lanes

Goodall et al. (2014) CV data A real-world corridor
of 4 intersections

Vehicle-level Estimating the positions of
non-CVs based on the gaps
among stopping CVs

The same TSC
without non-CV
estimation

10%–25% Vehicles behaviors follow
the Wiedemann
car-following model;
Length of CVs and gap
between vehicles are
known

Tiaprasert et al.
(2015)

CV data A synthetic isolated
intersection

Flow-level Estimating queue length based
on stopping and moving CV
data.

Fixed-time TSC;
actuated TSC

Not Available Penetration rate is given;
The individual location
and speed of connected
vehicle can be collected

Feng et al. (2015,
2016)

CV data A real-world isolated
intersection

Vehicle-level Using CV data to estimate
speeds and locations of non-CVs

Actuated TSC 25% (Feng
et al., 2015),
≤ 10% (Feng
et al., 2016)

Road segments of traffic
movements can be
divided into three
regions;

Beak et al. (2017) CV data A synthetic corridor
of 5 intersections

Vehicle-level Using CV data to estimate
speeds and locations of non-CVs

Actuated TSC 25% Road segments of traffic
movements can be
divided into three
regions

Feng et al. (2018) CV data A real-world isolated
intersection

Flow-level Estimating cycle-by-cycle
vehicle arrival times and delays
based on estimated average
historical volume and a limited
number of observed critical CV
trajectories

Actuated TSC <10% Vehicle arrivals follow
Poisson process; Vehicle
length is uniform and
known:
Free travel times are the
same for all vehicles

Mohebifard et al.
(2019)

CV data;
Loop detectors;
Infrastructure to
infrastructure
communications

A real-world network
of 20 intersections

Flow-level Estimating density across
network links using data from
CVs and loop detectors

The solution to
the central
problem

30% The dynamic travel
demand is known;
vehicle counts and stop
bar detectors are
available at all
intersections

Al Islam et al.
(2020)

CV data;
Loop detectors;
Infrastructure to
infrastructure
communications

A real-world corridor
of 4 intersections
with real-world
traffic data

Flow-level (1) Integrating data from CVs
and loop detectors to estimate
the trajectories of non-CVs
based on car-following
concepts.
(2) Converting the temporal
point vehicle detections to a
spatial vehicle distribution on a
link.

Real-world signal
plan in the case
study;
Vistro

0% Stop bar detectors are
available

aThe ‘‘required minimum penetration rate’’ refers to the minimum penetration rate where the proposed method can outperform the performance of its benchmarks in the experimental environment. For studies that do not provide with such information, we use ‘‘Not
Available’’ instead.
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Table 2
Existing research of RL based TSC with low penetration rates.

Reference Informa-
tion
source

Environment Agent Algorithm Benchmarks State Action Reward Gap

Aziz et al.
(2019)

CVs A real-world
4-intersection
corridor;
A real-world
network of 20
intersections

TSC of one
intersection

Q-learning The proposed
algorithm with
different rewards

Estimated queue
lengths

Keep current
phase or change
to the next
phase

Delay;
Energy consumption;
Or energy consumption
with penalty for stops

(1) An RL based TSC
system using CV data
and specifically
designed for scenarios
with low penetration
rates is missing;
(2) It remains unclear
what CV information
could improve
robustness against
partial observation
from CVs;
(3) The RL structure
suitable for partially
observed system
remains to be explored.

Wu et al. (2020) CVs,
camera

A 2-3 synthetica

network
TSC of one
intersection

MARDDPG Fixed-time;
DDPG; SOTL; IDQN

Vehicle location;
Vehicle velocity; Queue
length; Current traffic
light phase; Number of
pedestrians

Keep current
phase or change
to the next
phase

Weighted sum of delay;
Queue length;
Throughput; Blinking
condition of traffic;
Waiting time of
vehicles and
pedestrians

Zhang et al.
(2020)

CVs A synthetic
isolated
intersection

TSC of one
intersection

DQN Agent trained and
tested under the
same scenario;
Fixed-time TSC

The distance to the
nearest detected
vehicle; Number of
detected vehicles;
Amber phase indicator;
Current traffic light
Current phase elapsed
time; Current time of a
day; Current phase

Keep current
phase or change
to the next
phase

Negative value of speed
loss

CVLight (this
paper)

CVs A 2-2 synthetic
network;
A 5-5 synthetic
network;
A 2-2 real-world
network

TSC of one
intersection

Asym-A2Cb Max-Pressure
PressLight DQN
Webster’s method
Actuated TSC

Number of vehicles in
each incoming and
outgoing lane; Average
delay per vehicle of
each incoming lane;
Current traffic signal
phase; Current phase
elapsed time

Choose the next
phase

Negative value of
pressure on the
intersection

aThe ‘‘2-3’’ represents the 2-by-3 road network structure.
bWe will introduce the Asym-A2C in Section 2.4.
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Fig. 1. An illustration of the interaction between RL-TSC agent and traffic environment.

Specifically, the main contributions of this paper are listed below:

1. We model the TSC system that leverages CVs information using a partial observable reinforcement learning scheme, denoted
as CVLight. We design states and rewards for CVLight to foster inter-agent coordination and consider delays and phase
durations.

2. We develop a novel training algorithm, Asymmetric Advantage Actor Critic (Asym-A2C), which utilizes asymmetric informa-
tion: the actor is trained with the partial observation of CVs while the critic is trained with the full observation of both CVs
and non-CVs.

3. We demonstrate the advantage of CVLight over benchmarks using a comprehensive list of numerical experiments. We also
demonstrate that, by utilizing pre-trained models of small road networks, CVLight can be applied to larger road networks at
lower computation costs.

The remainder of this paper is structured as follows. Section 2 presents the basics of reinforcement learning in the context of
TSC with CVs and outlines the CVLight model. The proposed model is then examined in Section 3 to validate the design, including
performance comparison, sensitivity analysis, and scalability in road networks sizes. In Section 4, CVLight is compared to multiple
benchmarks on real-world intersections. Finally, we conclude the paper and present future research directions in Section 5.

2. Reinforcement Learning based Traffic Signal Control (RL-TSC)

In this section, we will introduce concepts and terminologies in reinforcement learning based traffic signal control (RL-TSC),
taking one state-of-the-art RL-TSC algorithm known as PressLight (Wei et al., 2019) as an example. Based on this, we discuss the
limitation of Presslight under scenarios without a full penetration rate and propose a new model, CVLight.

Prior to delving into the introduction of RL and our proposed model, we first define major notations that will be used in the
subsequent sections.

2.1. Preliminaries

For an isolated intersection, we regard the control unit of traffic signals as an agent, and all other things as environment. The TSC
problem can be formulated as a Markov decision process (MDP), which is specified by a tuple of (𝑆,𝐴,𝑅, 𝑃 𝑟, 𝛾). The state space 𝑆

contains all necessary information describing the environment, such as the queue length of each lane. 𝐴 is a set of actions that an
agent can perform to interact with the environment, e.g. to determine the length of the next traffic signal phase. Given a certain
state 𝑠 ∈ 𝑆, the agent chooses one action 𝑎 ∈ 𝐴 following its policy 𝜋(𝑎|𝑠), which maps from the state to actions in the action space
𝐴.

The state transition function 𝑃𝑟 is a perfect model of the environment’s mechanism. As shown in Fig. 1, once the newly chosen
action is executed, the agent can observe a new state 𝑠′ based on 𝑃𝑟 and receive a reward 𝑟 ∈ 𝑅. The goal of RL is to find the
optimal policy 𝜋∗ that can maximize the return, which is a function of a sequence of rewards weighted by a discounted factor 𝛾. To
estimate the expected return under a certain circumstance, two kinds of value functions are proposed: a state value function 𝑉 𝜋 (𝑠)

estimates how favorable it is to be in the state 𝑠 under policy 𝜋; and a state–action value function 𝑄𝜋 (𝑠, 𝑎) estimates how favorable
it is to take action 𝑎 from state 𝑠 under policy 𝜋. For a complicated real-world traffic environment, the state transition function 𝑃𝑟

is unknown. In this case, the MDP problem can be solved by Temporal Difference (TD) techniques, such as Q-learning and Policy
Gradients. More details about RL can be found in Sutton et al. (1998).
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Fig. 2. An example of the state for PressLight.

To better illustrate how an RL-TSC problem is formulated, we use PressLight (Wei et al., 2019) as an example. Theoretically
grounded by a popular TSC algorithm, Maxpressure (Varaiya, 2013), PressLight is proven to outperform Maxpressure and other
recent RL-TSC algorithms, such as GRL (Van der Pol and Oliehoek, 2016), under multi-intersections control scenarios.

The state of PressLight is defined as a vector of the current traffic signal phase and the number of vehicles in each incoming and
outgoing lane. For the intersection shown in Fig. 2, the state vector can be represented as:

𝑠 = [

phase
⏞⏞⏞
(1, 0) , (3, 1, 4, 2)

⏟⏞⏞⏟⏞⏞⏟
number of vehicles
in incoming lanes

,

number of vehicles
in outgoing lanes
⏞⏞⏞⏞⏞⏞⏞
(0, 0, 0, 1) ],

where the first entry of 𝑠, a one-hot vector, represents the current green phase for the North–South direction (denoted by NS-allow
phase); the vector (3, 1, 4, 2) refers to the numbers of vehicles in incoming lanes from incoming lane 1 (denoted by In-1) to In-4,
respectively; similarly, each entry of the vector (0, 0, 0, 1) represents the number of vehicles in the corresponding outgoing lane, from
Out-1 to Out-4 (Car 6 and 13 are not counted as they are not in any incoming or ongoing lane).

Observing the current state 𝑠, the PressLight agent chooses its action 𝑎. The action is an index of one signal phase that will
be executed as the next phase. If the index is the same as the index of the current phase, the current phase will continue for a
pre-defined length of time, e.g. 7 s; if not, TSC will first execute a yellow phase and an all-red clearance phase consecutively for a
pre-defined length of time and then execute the chosen traffic signal phase for the minimum green time.

After the execution of action 𝑎, the agent can observe a new state 𝑠′ and receive a reward 𝑟, which indicates how good its
chosen action is. For PressLight, the reward is calculated based on the current pressure, which is defined as the sum of the difference
between the numbers of vehicles in incoming lanes and outgoing lanes of all phases and is presented in Eq. (2.6). For simplicity, we
use the traffic state 𝑠 presented in Fig. 2(a) as an example for pressure calculation. Assuming no turning traffic flows, the pressure
of the NS-allow phase is the sum of the difference between the number of vehicles in In-2 and Out-2 and the difference between
the number of vehicles in In-4 and Out-4. Thus, the pressure of NS-allow phase is 3. Similarly, the pressure of EW-allow phase is 7
and the total pressure of this intersection is 10 (here we do not consider the lane capacity in Eq. (2.6)).

2.2. CVLight for a single intersection

The previous example in Section 2.1 is a simple scenario where the RL agent can obtain complete information about the
environment. However, it might not work in the CV setting. When only partial traffic information is known, the problem becomes
a Partially Observable Markov Decision Process (POMDP). In POMDP, agents cannot obtain complete information about the
environment’s state; instead, they can only obtain partial information, denoted by observation 𝑜 ∈ 𝑂, where 𝑂 is the observation
space. It is not appropriate to directly apply PressLight to scenarios with CV penetration rates below 100%. For example, in Fig. 3(a),
if only four vehicles are CVs and the number of vehicles in observation can only be measured based on CVs, then the observation 𝑜

can be significantly different from the state 𝑠. Under such a circumstance, the PressLight agent is not able to detect the congestion
on In-1 and In-3 and may learn wrong policies due to the significant difference between states and observations.
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Fig. 3. An example of state and observation for CVLight (Note that In-1, for example, represents the incoming lane 1 and Out-1 represents the outgoing lane
1).

To cope with the issues mentioned above, we propose CVLight and introduce its state, action, and reward design in the
single-intersection TSC problem.

(1) State. The state 𝑠 is defined as a vector of current phase 𝑝, elapsed time of current phase (named as phase duration 𝑑),
number of vehicles in each incoming lane 𝑛(𝑙) (𝑙 ∈ 𝐿𝑖𝑛, 𝐿𝑖𝑛 is a set of incoming lanes), number of vehicles in each ongoing lane 𝑛(𝑚)
(𝑚 ∈ 𝐿𝑜𝑢𝑡, 𝐿𝑜𝑢𝑡 is a set of outgoing lanes), and delay ratio 𝑥(𝑙) (𝑙 ∈ 𝐿𝑖𝑛), which is the ratio of the average delay per vehicle of each
incoming lane and the total minimum travel time of all vehicles in the incoming lanes. In summary, the state 𝑠 is written as below:

𝑠 = [

𝑝ℎ𝑎𝑠𝑒
⏞⏞⏞

𝑝 , 𝑑
⏟⏟⏟

phase duration

,

number of vehicles
in incoming lanes

⏞⏞⏞
𝑛(𝑙) , 𝑛(𝑚)

⏟⏟⏟
number of vehicles
in outgoing lanes

,

average delay per
vehicle in incoming lanes

⏞⏞⏞
𝑥(𝑙) ], 𝑓𝑜𝑟 𝑙 ∈ 𝐿𝑖𝑛, 𝑚 ∈ 𝐿𝑜𝑢𝑡. (2.1)

Below we will describe how the value of each component is obtained.

• The phase 𝑝 is a one-hot vector that indicates the current traffic phase at the intersection.
• Due to the limited available information from CVs, if the RL agent cannot observe CVs in one direction, it is possible that the
RL agent maintains the green light in another direction for a very long time, which is unrealistic and unfair. Considering this,
we include phase duration 𝑑 into the state, which enables the agent to build a connection between the phase duration and
the observed delay of vehicles.

• Similar to PressLight (Wei et al., 2019) and Maxpressure (Varaiya, 2013), we include the number of vehicles in each incoming
and outgoing lane as part of the state. Specifically, 𝑛(𝑙) is the vehicle count in a certain lane within a given detected radius.
In this paper, the detected radius is 200 m. If the lane length is shorter than this default radius, the radius will be adjusted to
the actual lane length. We divide the road into three segments for each lane so as to provide spatial distribution information
of vehicles to the agent (Yang and Menendez, 2018; Wei et al., 2019).

• Travel delay of a vehicle is defined as the difference between the current travel time and the expected minimum travel time
of lane 𝑙, denoted by 𝑡𝑚𝑖𝑛(𝑙). The minimum travel time of all vehicles in that lane and is defined as

𝑡𝑚𝑖𝑛(𝑙) =
𝑙𝑒𝑛𝑔𝑡ℎ(𝑙)

𝑣𝑚𝑎𝑥(𝑙)
, (2.2)

where

– 𝑙𝑒𝑛𝑔𝑡ℎ(𝑙) is the length of lane 𝑙;
– 𝑣𝑚𝑎𝑥(𝑙) is the speed limit of lane 𝑙.

Therefore, the scaled average delay per vehicle in incoming lane 𝑙, 𝑥(𝑙), is defined as

𝑥(𝑙) =

∑
𝑣∈𝑉 (𝑙,𝑡)

(
𝑡 − 𝑡0(𝑣, 𝑙) − 𝑡𝑚𝑖𝑛(𝑙)

)

𝑛(𝑙) 𝑡𝑚𝑖𝑛(𝑙)
, 𝑙 ∈ 𝐿𝑖𝑛, (2.3)
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where

– 𝑉 (𝑙, 𝑡) is the set of all vehicles in lane 𝑙 at time step 𝑡;
– 𝑡 is the current time step;
– 𝑡0(𝑣, 𝑙) is the time step when vehicle 𝑣 enters lane 𝑙.

Since the delay is cumulative over time, it would contain more historical information than the number of vehicles in a lane,
even with limited CV data available. Thus, we add the average delay per vehicle into our state as well to better utilize the CV
information, especially for low penetration rate scenarios.

(2) Observation. We assume that CVs will send their real-time locations and IDs using V2I technologies to both the upstream
and downstream intersections. Partial information that is observed by CVs is denoted below (note that we include the traffic signal
information, 𝑝 and 𝑑, into 𝑜𝐶𝑉 as well):

𝑜𝐶𝑉 = [

𝑝ℎ𝑎𝑠𝑒
⏞⏞⏞

𝑝 , 𝑑
⏟⏟⏟

phase duration

,

number of CVs
in incoming lanes

⏞⏞⏞
𝑛𝐶𝑉 (𝑙) , 𝑛𝐶𝑉 (𝑚)

⏟⏟⏟
number of CVs
in outgoing lanes

,

average delay per
CV in incoming lanes

⏞⏞⏞
𝑥𝐶𝑉 (𝑙) ], 𝑓𝑜𝑟 𝑙 ∈ 𝐿𝑖𝑛, 𝑚 ∈ 𝐿𝑜𝑢𝑡. (2.4)

Partial information of non-CVs (denoted by 𝑜
𝐶𝑉
), which is not observed by CVs, is denoted as:

𝑜
𝐶𝑉

= [

number of non-CVs
in incoming lanes

⏞⏞⏞
𝑛
𝐶𝑉

(𝑙) , 𝑛
𝐶𝑉

(𝑚)
⏟⏟⏟

number of non-CVs
in outgoing lanes

,

average delay per
non-CV in incoming lanes

⏞⏞⏞
𝑥
𝐶𝑉

(𝑙) ], 𝑓𝑜𝑟 𝑙 ∈ 𝐿𝑖𝑛, 𝑚 ∈ 𝐿𝑜𝑢𝑡. (2.5)

(2) Action. Traffic signal phases are acyclic. Once the RL agent observes 𝑜𝐶𝑉 , it can select one phase 𝑝 as its action 𝑎 from
its phase set (action set) 𝐴. If 𝑝 is the same as the current phase, the current phase will continue for a certain period of time (in
this paper, we use the minimum green time, which is 7 s); or if 𝑝 is different from the current phase, the intersection will first
consecutively experience a yellow phase (1 s) and an all-red clearance phase (2 s), and then execute the chosen phase 𝑝 for a
minimum green time. To avoid extreme behavior such as keeping one phase for a long time, we enforce the maximum green time
(40 s by default) for phase duration. Once the current phase duration exceeds the maximum green time, the agent will be enforced
to choose the phase with the highest probability apart from the current phase as the next phase.

(3) Reward. The reward 𝑟 adopts the reward from PressLight (Wei et al., 2019), which is the negative value of the pressure:

𝑟 = −𝑃 = −

||||||

∑

(𝑙,𝑚)∈𝐿𝑝ℎ𝑎𝑠𝑒

(
𝑛(𝑙)

𝑛𝑚𝑎𝑥(𝑙)
−

𝑛(𝑚)

𝑛𝑚𝑎𝑥(𝑚)

)||||||
, (2.6)

where

– 𝑃 is the pressure;
– 𝐿𝑝ℎ𝑎𝑠𝑒 is a set of combinations of incoming lane 𝑙 ∈ 𝐿𝑖𝑛 and outgoing lane 𝑚 ∈ 𝐿𝑜𝑢𝑡 of each traffic movement controlled by
traffic signal phases;

– 𝑛(𝑙) is the number of vehicles in lane 𝑙;
– 𝑛𝑚𝑎𝑥(𝑙) is the capacity of lane 𝑙, i.e. the maximum number of vehicles the lane can store.

2.3. CVLight for multiple intersections

We will introduce the agent design of CVLight for scenarios of multiple intersections.
(1) State.

𝑠𝑖 = [

𝑝ℎ𝑎𝑠𝑒
⏞⏞⏞

𝑝𝑖 , 𝑑𝑖
⏟⏟⏟

phase duration

,

number of vehicles
in incoming lanes

⏞⏞⏞
𝑛𝑖(𝑙) , 𝑛𝑖(𝑚)

⏟⏟⏟
number of vehicles
in outgoing lanes

,

average delay per
vehicle in incoming lanes

⏞⏞⏞
𝑥𝑖(𝑙) ], 𝑓𝑜𝑟 𝑙 ∈ 𝐿𝑖𝑛(𝑖), 𝑚 ∈ 𝐿𝑜𝑢𝑡(𝑖), (2.7)

where the subscript is the index of each intersection. 𝐿𝑖𝑛(𝑖) and 𝐿𝑜𝑢𝑡(𝑖) are sets of incoming and outgoing lanes of the intersection 𝑖,
respectively.

(2) Observation.

𝑜𝑖,𝐶𝑉 = [

𝑝ℎ𝑎𝑠𝑒
⏞⏞⏞

𝑝𝑖 , 𝑑𝑖
⏟⏟⏟

phase duration

,

number of CVs
in incoming lanes

⏞⏞⏞
𝑛𝑖,𝐶𝑉 (𝑙) , 𝑛𝑖,𝐶𝑉 (𝑚)

⏟⏞⏟⏞⏟
number of CVs
in outgoing lanes

,

average delay per
CV in incoming lanes

⏞⏞⏞
𝑥𝑖,𝐶𝑉 (𝑙) ], 𝑓𝑜𝑟 𝑙 ∈ 𝐿𝑖𝑛(𝑖), 𝑚 ∈ 𝐿𝑜𝑢𝑡(𝑖). (2.8)
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Fig. 4. An illustration of the Asymmetric Advantage Actor–Critic (Asym-A2C) algorithm.

𝑜
𝑖,𝐶𝑉

= [

number of non-CV
in incoming lanes

⏞⏞⏞
𝑛
𝑖,𝐶𝑉

(𝑙) , 𝑛
𝑖,𝐶𝑉

(𝑚)
⏟⏞⏟⏞⏟

number of non-CVs
in outgoing lanes

,

average delay per
non-CV in incoming lanes

⏞⏞⏞
𝑥
𝑖,𝐶𝑉

(𝑙) ], 𝑓𝑜𝑟 𝑙 ∈ 𝐿𝑖𝑛(𝑖), 𝑚 ∈ 𝐿𝑜𝑢𝑡(𝑖). (2.9)

(2) Action. Intersection 𝑖 chooses action 𝑎𝑖 independently, once it observes the 𝑜𝑖,𝐶𝑉 . Note that agents take actions asyn-
chronously, and thus the time steps when agents make new actions can be different from each other.

(3) Reward. The reward of each intersection is the same as in the single-intersection setting as in Eq. (2.6), and we use the
subscript to indicate the reward of the intersection 𝑖:

𝑟𝑖 = −𝑃𝑖 = −

||||||

∑

(𝑙,𝑚)∈𝐿𝑝ℎ𝑎𝑠𝑒(𝑖)

(
𝑛𝑖(𝑙)

𝑛𝑚𝑎𝑥(𝑙)
−

𝑛𝑖(𝑚)

𝑛𝑚𝑎𝑥(𝑚)

)||||||
, (2.10)

where

– 𝑃𝑖 is the pressure of intersection 𝑖;
– 𝐿𝑝ℎ𝑎𝑠𝑒(𝑖) is a set of combinations of incoming lane 𝑙 ∈ 𝐿𝑖𝑛(𝑖) and outgoing lane 𝑚 ∈ 𝐿𝑜𝑢𝑡(𝑖) of each traffic movement controlled
by traffic signal phases at intersection 𝑖;

– 𝑛𝑖(𝑙) is the number of vehicles in lane 𝑙;
– 𝑛𝑚𝑎𝑥(𝑙) is the capacity of lane 𝑙, i.e. the maximum number of vehicles the lane can store.

Using pressure as the reward is proved to be able to guide agents to maximize the throughput of the system and thus minimize
the travel time of all vehicles (Wei et al., 2019). Cooperation among agents is achieved by incorporating traffic information not
only from incoming lanes but also from outgoing lanes into the reward calculation, which naturally connects the upstream and
downstream intersections.

2.4. Training algorithm: Asymmetric Advantage Actor–Critic method

In this subsection, we will propose a new training algorithm for CVLight, the Asymmetric Advantage Actor–Critic (Asym-A2C)
method, which can be viewed as an asymmetric variant of the Advantage Actor–Critic method (Mnih et al., 2016).

The novelty of Asym-A2C is to leverage its actor–critic architecture to feed asymmetric inputs into the critic and the actor: the
critic is fed with full state information while the actor’s access is restricted to partially observed information from CVs.

Fig. 4 details our implementation of Asym-A2C in a multi-intersection scenario where all agents are independent of each other and
own the exact same structure as agent 𝑖 (Shou and Di, 2020; Shou et al., 2022). For the Asym-A2C algorithm, the critic, parametrized
by 𝜃, estimates the value function (state value or the state–action value), and the actor subsequently updates its parameters 𝜙 in the
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direction suggested by the critic. Deep neural networks are used to estimate the value function for the critic as well as the policy
model for the actor. For agent 𝑖, it observes the full observation 𝑜𝑖, which is composed of observation from CVs (i.e. 𝑜𝑖,𝐶𝑉 ) and that
from non-CVs (i.e. 𝑜

𝑖,𝐶𝑉
). For the actor, we assume it can only receive information from CVs, i.e. the observation for the actor is

𝑜𝑖,𝐶𝑉 . Based on the policy network 𝜙𝑖, that the actor then chooses one action 𝑎𝑖 from its action space 𝐴𝑖 (we denote the 𝑘th action in
the action space by 𝑎𝑘𝑖 where 𝑘 ∈ {1, 2,… , |𝐴𝑖|} and |𝐴𝑖| is the number of all possible actions). After the execution of 𝑎𝑖, the agent
can receive a new observation 𝑜′𝑖 as well as a reward 𝑟𝑖. An experience tuple (𝑜𝑖, 𝑎𝑖, 𝑟𝑖, 𝑜

′
𝑖) is then stored into the experience replay

buffer of agent 𝑖. In the same way, other agents in the environment store experience tuples into their experience replay buffers
independently.

We assume the training process is off-line and the critic can receive information from both CVs and non-CVs, i.e. 𝑜𝑖 includes
𝑜𝑖,𝐶𝑉 and 𝑜

𝑖,𝐶𝑉
. During training, experience tuples are sampled from the agent’s experience replay buffer and used to update the

critic network using the following gradient:

∇𝜃𝑖
𝐿(𝜃𝑖) = (𝑟𝑖 + 𝛾 max

𝑎′
𝑖

𝑄𝜃𝑖
(𝑜′𝑖 , 𝑎

′
𝑖))∇𝜃𝑖

𝑄𝜃𝑖
(𝑜𝑖, 𝑎𝑖) (2.11)

where

– 𝛾 is the discounted factor;
– 𝑎′𝑖 is the next action that maximizes the value function given the next observation 𝑜′𝑖 .

Each update on the parameter of the value network 𝜃𝑖 will allow the agent 𝑖 to better estimate the value function given the
observation and action.

The policy network is then updated using the gradient computed as follows:

∇𝜙𝑖
𝐽 (𝜙𝑖) = E𝜋𝜙𝑖

[∇𝜙𝑖
log𝜋𝜙𝑖 (𝑎𝑖|𝑜𝑖,𝐶𝑉 )𝐴(𝑜𝑖, 𝑎𝑖)], (2.12)

where 𝐴(𝑜𝑖, 𝑎𝑖) = 𝑄𝜃(𝑜𝑖, 𝑎𝑖) − 𝑉 (𝑜𝑖) is called the advantage of action 𝑎𝑖 in the observed state 𝑜𝑖. Intuitively, it can be treated as a
measure of how much better action 𝑎𝑖 is compared to the average. 𝑉 (𝑜𝑖) is the baseline, which reduces the gradient size and leads
to a much lower variance estimate of the policy gradient (Mnih et al., 2016). Each update on the policy network 𝜙𝑖 will increase
the probability of choosing a suitable action so as to achieve a 𝑄𝜃(𝑜𝑖, 𝑎𝑖) higher than the average state value function 𝑉 (𝑜𝑖) for the
observation 𝑜𝑖.

Now, we summarize key ideas of Asym-A2C as follows:

1. In the training stage, each critic can evaluate the actor’s behavior using information from both CVs and non-CVs at each
intersection, while each actor can only observe CV data. Specifically, the input of the critic is composed of traffic observations
of CVs and non-CVs. But for the actor, it still can only get information from CVs. To some degree, the critic helps the actor
to build a connection between observed CV data and the traffic states of all vehicles;

2. In the execution (or test) stage, actors select their best actions following the learned policies solely using CV data.

As a comparison, we also propose the Symmetric A2C (denoted by Sym-A2C) where both the actor and the critic receive the same
input observation from CV only. We denote the CVLight that utilizes the Asym-A2C and Sym-A2C as CVLight (Asym) and CVLight
(Sym), respectively. To make a fair comparison, we allow both the CVLight (Asym) agent and the CVLight (Sym) agent to receive
rewards based on the traffic states of CVs and non-CVs.

As to the settings of our neural networks, for each CVLight agent, the policy neural network consists of two hidden layers. Each
layer consists of 2|𝑜𝐶𝑉 | fully connected neurons and exponential linear unit (ELU) activation functions, where |𝑜𝐶𝑉 | is the length
of the partial observation vector 𝑜𝐶𝑉 . The value neural network is composed of two hidden layers. Each layer consists of 2|𝑜| fully
connected neurons and ELU activation functions. An Adam optimizer (Kingma and Ba, 2014) with a learning rate 1e−4 is adopted
for both value and policy networks. The experience replay buffer size, batch size, and discount rate 𝛾 are 10,000, 128, and 0.99,
respectively.

3. Numerical experiments

In this section, we conduct experiments under synthetic road networks and compare the proposed CVLight model with other
benchmark models. Experiment settings are introduced in Section 3.1. In Section 3.2, we investigate the performance of CVLight and
benchmarks under different traffic demand levels and penetration rates. Based on this, we visualize and interpret the learned policies
of CVLight in Section 3.3. Furthermore, the sensitivity analysis on the maximum green time (denoted by gmax) and the minimum
green time (denoted by gmin) is conducted in Section 3.4. We then discuss the scalability in road network sizes in Section 3.5.

Hyperparameters in different experiments are summarized in Table 3. The first and second columns list different experiments and
corresponding road networks. The remaining columns (3 to 6 for train and 7 to 10 for test) are values of different hyperparameters.
All unmentioned hyperparameters are kept as default, such as the 10% left turn and 10% right turn proportion. We use bold values
to specify the difference of hyperparameters in train and test procedures. In each subsection, we will come back to this table and
explain the experiment setting in detail.



Transportation Research Part C 141 (2022) 103728

12

Z. Mo et al.

Table 3
Settings of numerical experiments.

Experiments Road
networks

Train Test

Demanda Gmin (s) Gmax (s) penb (%) Demand Gmin (s) Gmax (s) pen (%)

Generalizability in
traffic demands

2-2 Dynamic 7 40 {10,20,30,
50,70,100}

Dynamic,
600,800

7 40 {10,20,30,
50,70,100}

Generalizability in
penetration rates

2-2 600 7 40 𝟏𝟎 600 7 40 {𝟏𝟎, 𝟐𝟎, 𝟑𝟎,
𝟓𝟎, 𝟏𝟎𝟎}

SAc on gmin 2-2 600 {5,7,10} 40 {10,30} 600 {5,7,10} 40 {10,30}
SA on gmax 2-2 600 7 {40,60,120} {10,30} 600 7 {40,60,120} {10,30}

aNumbers here represent fixed demands in the unit of vehicles/hour/lane. ‘‘Dynamic’’ means the demand is changing according to a fixed pattern, which is
detailed in Table 4 and Fig. 6.
b ‘‘pen’’ here represents the CV penetration rate.
c ‘‘SA’’ here represents sensitivity analysis.

Fig. 5. Illustration of the road network.

3.1. Experiment settings

In this subsection, we introduce the setting of our numerical experiments, including our environment set-up, the measurement
of performance, and benchmark algorithms.

3.1.1. Environment set-up

Road Network
We first introduce a synthetic isolated intersection, based on which we can introduce larger road networks. Fig. 5(a) illustrates

the structure of a 4-way intersection with two incoming and two outgoing lanes on each way. For each way, each incoming lane
consists of one go-straight and right-turn lane and one left-turn lane. The length of each lane is 200 m and CVs can be detected by
the RL-TSC agent when they are within 200 m of the intersection.

A 2-phase signal timing plan is used: one phase is the green phase for traffic movement 1 and 3 (represented by arrows in
Fig. 5(a)); the other is the green phase for traffic movement 2 and 4. Note that traffic movement here is defined as the traffic that
is allowed to pass the intersection under a certain phase and travels in the same direction.

Two road networks, 2-2 and 5-5, are configured. Each intersection in the road networks follows the same 2-phase signal timing
plan as the isolated intersection shown in Fig. 5(a). Fig. 5(a) illustrates the 2-2 network of 4 intersections and Fig. 5(c) illustrates the
5-5 network of 25 intersections. We set the East–West (EW) roads as the arterials and the North–South (NS) roads as the side-streets.
The length of each lane in the road network is 200 m.

Traffic Demand
All our experiments use synthetic traffic demand data, as shown in Table 4 and Fig. 6. For Table 4, the first column lists the

traffic demand patterns. The second and third columns detail the traffic demand on the arterial and side-street. Fig. 6 presents the
dynamic traffic demand patterns, which correspond to the first and second rows in Table 4. The 𝑦-axis represents demands and
𝑥-axis represents the simulation times. Blue line and orange line mean the demands on the arterials and side-streets, respectively.

For each stage in the dynamic traffic demand, the simulation length is 600 s. For a fixed demand, the simulation length is 1800 s.
Vehicles’ inter-arrival times follow a binomial distribution by default, i.e. the vehicle arrival process follows a Poisson process. For
experiments in this section, both left-turn and right-turn proportions are set to be 10%. Given a penetration rate, we randomly



Transportation Research Part C 141 (2022) 103728

13

Z. Mo et al.

Table 4
Traffic demands.

Demand patterns Arrival rate (vehicles/h/lane)

Arterial (EW) Side-street (NS)

Dynamic (train) 500-700-1000a 250-350-500
Dynamic (test) 300-600-800 150-300-400

Fixed
600 300
800 400

aThe series of numbers represents the demands in different stages in the dynamic traffic demand, which is
illustrated in Fig. 6. For example, 500-700-1000 means the traffic demand starts from 500 veh/h/lane, increases
to 700 veh/h/lane, and ends with 1000 veh/h/lane.

Fig. 6. Dynamic traffic demand patterns. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

assign vehicles to be CVs based on an equal probability of selection. Vehicles that are not chosen to be CVs are the non-CVs in the
simulation.

SUMO Simulation
We conduct experiments in SUMO, an open-source, microscopic, and time-discrete and space-continuous traffic simulation

package designed to handle large networks (Behrisch et al., 2011; Krajzewicz et al., 2012; Lopez et al., 2018). The simulation
of our experiments is round-based, and the duration of each round is 1800 s by default in this paper.

3.1.2. Performance measurement
To measure the performance of a given model in one round of simulation in the execution stage, we use the average travel delay

per vehicle per intersection in a road network as the metric, denoted by 𝑀𝑑𝑒𝑙𝑎𝑦, formulated as:

𝑀𝑑𝑒𝑙𝑎𝑦 =
1

|𝐼|
∑

𝑖∈𝐼

𝐷̄𝑖, (3.1)

𝐷̄𝑖 =
1

|𝑇 |

|𝑇 |∑

𝑡=0

(
𝐷𝑖,𝑡∑

𝑙∈𝐿𝑖𝑛(𝑖)
𝑛𝑖(𝑙, 𝑡)

), (3.2)

𝐷𝑖,𝑡 =
∑

𝑙∈𝐿𝑖𝑛(𝑖)

∑

𝑣∈𝑉 (𝑙,𝑡)

(𝑡 − 𝑡0(𝑣, 𝑙) − 𝑡𝑚𝑖𝑛(𝑙)), (3.3)

where

– |𝐼| is the number of intersections on the road network and 𝐼 is a set of all intersections in the road network;
– 𝐷̄𝑖 is the average travel delay per vehicle at the intersection 𝑖;
– |𝑇 | is the running time of one round in the simulation;
– 𝐿𝑖𝑛(𝑖) is the set of incoming lanes at intersection 𝑖;
– 𝑛𝑖(𝑙, 𝑡) is the number of vehicles in lane 𝑙 at time 𝑡;
– 𝐷𝑖,𝑡 is cumulative travel delay of all vehicles in all incoming lanes at intersection 𝑖 at time 𝑡;

– 𝑉 (𝑙, 𝑡) is the set of all vehicles in lane 𝑙 at time 𝑡;
– 𝑡 is the time step;
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– 𝑡0(𝑣, 𝑙) is the time step when vehicle 𝑣 arrives at lane 𝑙;
– 𝑡𝑚𝑖𝑛(𝑙) is the expected minimum travel time of lane 𝑙.

The final measurement of performance is the mean and standard deviation of 𝑀𝑑𝑒𝑙𝑎𝑦 of all test rounds. We conduct 96 rounds
of tests by default for all experiments.

3.1.3. Benchmarks

To demonstrate the performance of CVLight, we compare it with various popular benchmark TSC algorithms, including both RL
based and non-learning based TSC algorithms.

• Max-pressure. Max-pressure (Varaiya, 2013) algorithm is a state-of-the-art network-level traffic signal control method, which
greedily chooses the phase with the maximum pressure.

• Adaptive Webster.Webster’s method (Webster, 1958) is one of the classic TSC methods and is widely applied in the real world.
To cope with dynamic traffic demands, an adaptive version is developed (Genders and Razavi, 2019), where the algorithm
would periodically update its parameters using the most recent traffic statistics.

• Deep Q-Network (DQN) based TSC. DQN (Mnih et al., 2015) is a classic reinforcement learning algorithm, using a deep
neural network to estimate the Q-value function. We adopt this algorithm from Genders and Razavi (2019).

• PressLight. PressLight (Wei et al., 2019) is another representative state-of-the-art network-level traffic signal control method,
based on the Max-pressure.

It is worth noting that these benchmark algorithms are not designed for scenarios without the full knowledge of the traffic. To
make a fair comparison, we modify the reward calculation for RL based benchmark algorithms: for both PressLight and DQN-based
TSC, the reward is calculated based on all vehicles’ information.

3.2. Performance comparison

In this subsection, we compare the performance of CVLight algorithms and that of baselines under different traffic demands and
penetration rates. Specifically, we investigate the generalizability of CVLight in demand patterns and penetration rates: agents are
trained under one setting and tested under other settings that they have not seen in training, which are detailed in the first and
second rows in Table 3.

3.2.1. Generalizability in traffic demands

To investigate model generalizability in traffic demands, we train our models under one dynamic traffic demand pattern and
test them under another dynamic and two fixed traffic demand patterns, as shown in the first row of Table 3. Fig. 7 compares the
performance between CVLight and benchmark algorithms under the 2-2 road network with various penetration rates and traffic
demands. In Fig. 7, each sub-figure illustrates the performance of CVLight and benchmark algorithms under a certain test demand.
The 𝑥-axis is the CV penetration rate and the 𝑦-axis represents the average delay per vehicle per intersection. The blue, orange,
green, red, purple, and brown lines represent the performance of CVLight (Sym), CVLight (Asym), PressLight, Maxpressure, DQN,
and Webster’s, respectively. The traffic demand is detailed in Table 4. During tests, all models do not have access to the non-CV
information.

From Fig. 7, we can interpret the results from the following two perspectives:

Comparison between CVLight algorithms and other baselines. CVLight agents can achieve the lowest average delay with
small standard deviation values under the three test demand levels, compared to benchmark algorithms. As the train and test traffic
demands are different, the good performance of CVLight agents indicates that they can generalize well to unseen traffic demand
levels. Specifically, under relatively low penetration rates (below 50%), CVLight (Asym) and CVLight (Sym) can achieve the most
significant advantage over all other benchmark algorithms across all three test scenarios. One explanation for this is the advantage
of adding delay and phase duration information into the state, which contain cumulative information over time and provide a more
accurate description of the true traffic state than the number of vehicles does under a low penetration rate.

Comparison between CVLight (Asym) and CVLight (Sym). Across the three test scenarios, under an extremely low penetration
rate (10%), CVLight (Asym) shows an advantage over CVLight (Sym). A2C-Asym enables the CVLight agent to better build
connections between the observation from CVs only and the state from all vehicles. During training, the critic of CVLight (Asym)
can access information from all vehicles and therefore evaluate the action chosen by the actor in a more accurate way.

To better describe training process, Fig. 8 shows the training losses of each actor and critic of all CVLight (Asym) agents in the
experiment in Fig. 7(a). In Fig. 8, the 𝑥-axis is the training iteration index, and the 𝑦-axis is the loss value. The blue lines represent
the progressions of the training losses of the critics (left column) and actors (right column), each row representing one agent. The
dashed black lines and numbers represent the average loss values in the last 1000 iterations. From Fig. 8, all actors and critics
converge well.
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Fig. 7. Performance comparison under a 2-by-2 road network. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

3.2.2. Generalizability in penetration rates

We evaluate the generalizability of our proposed model under unseen penetration rates: we train our models under 10%

penetration rate and test them under 10%, 30%, 50%, and 100% penetration rates, as shown in the second row of Table 3. The

results are shown in Table 5. The first column lists the names of algorithms and the second to the sixth columns present the average

delay achieved by each algorithm under 10%, 20%, 30%, 50%, and 100% penetration rates, respectively. Each entry in the table is

the mean value and standard deviation of average delays across all test rounds. We can interpret the results as below:
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Fig. 8. Training losses of all CVLight (Asym) agents in the experiment in Fig. 7(a).

CVLight (Asym) and CVLight (Sym) show good generalizability in penetration rates: their performance under an unseen high

penetration rate, e.g. 100%, can achieve the same level as their performance under 10%, while PressLight and DQN agents fail to

generalize well to such a high penetration rate. The good performance of CVLight can be contributed to the state design, which

includes both current traffic information, e.g. the number of vehicles in each lane, and time-cumulative information, e.g. average

delay in each lane. CVLights significantly decrease the average delay compared to baselines across all test penetration rates.
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Table 5
Performance comparison on generalizability in penetration rate.

Algorithms CV penetration rate

10% 20% 30% 50% 100%

CVLight
(Asym)

4.53 ± 0.36 4.34 ± 0.30 4.24 ± 0.30 4.14 ± 0.25 4.09 ± 0.27

CVLight
(Sym)

4.58 ± 0.39 4.43 ± 0.35 4.33 ± 0.29 4.30 ± 0.29 4.25 ± 0.31

Presslight 4.94 ± 0.33 5.38 ± 0.36 5.53 ± 0.47 6.15 ± 0.65 9.13 ± 1.99

DQN 5.39 ± 0.36 5.62 ± 0.42 5.87 ± 0.99 6.98 ± 4.75 33.37 ± 17.50

Fig. 9. Policy visualization for CVLight (Asym) and CVLight (Sym) under 2-2 with dynamic traffic demand and 10% penetration rate. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Specifically, CVLight (Asym) achieves the minimal average delay in general across all test penetration rates, which can be contributed
to the Asym-A2C.

3.3. Learned policy interpretation

Learned policies of CVLight (Asym) and CVLight (Sym) are illustrated as in Fig. 9. Those policies correspond to the 10%
penetration rate case in Fig. 7(a). Fig. 9 presents the visualization of the learned policy of CVLight agents, where the left and
right sub-figures are results of CVLight(Asym) and CVLight(Sym), respectively. The 𝑥-axis is the simulation time step, the left 𝑦-axis
is the number of vehicles that are waiting in the incoming lane of the arterial, and the right 𝑦-axis is the probability of choosing a
green phase or a red phase (i.e. not selecting the green phase) in the arterial direction. Actors of CVLight agents can only observe
CVs, i.e. orange lines in the figure, and make decisions based on that information. The green dot or red dot represents the action
(i.e. the next phase to be executed) that the agent chose at every decision time and the position of each dot shows the probability
of selecting such action based on the learned policy. The red dot at around 1570 s in Fig. 9(b) is caused by the enforcement of the
maximum green time (40 s), considering the 6 green dots before the red dot and the 7 s interval between each pair of dots. We can
analyze the result as below:

Comparing Fig. 9(a) to (b), CVLight (Asym) agent can better balance the traffic flow in both the arterial and the side-street
directions and avoid congestion: it learns to give longer green phases to the arterial direction while switching to the side-street
direction for a short time when it observes few CVs in the arterial direction. Specifically, we can compare the actions of CVLight
(Asym) and CVLight (Sym) at simulation time 1550 s when both agents do not observe any CVs in the arterial direction: CVLight
(Asym) chooses to give green phase to the side-street while CVLight (Sym) continues to give green phase to the arterial until the
enforcement of the maximum green time at around 1570 s. Such extreme behavior of CVLight (Sym), i.e. keeping a certain phase
for a long time, can explain the performance difference between CVLight (Asym) and CVLight (Sym) under the 10% penetration
rate as shown in Fig. 7(a). This demonstrates the effectiveness of Asym-A2C: by incorporating non-CV information into training,
CVLight (Asym) agent can learn to make better decisions under a low penetration rate scenario.

To further investigate the effectiveness of Asym-A2C, Fig. 10 illustrates the relative importance (Gevrey et al., 2003) of each
delay related neuron in the input layer of the CVLight (Asym) critic neural network. For each input neuron indexed by 𝑗, the relative
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Fig. 10. Relative importance of delay related neurons in the input layer of the CVLight (Asym) critic neural network. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

importance, denoted by 𝑅𝐼(%)𝑗 , is presented as below:

𝑅𝐼(%)𝑗 =

∑𝑁ℎ

ℎ=1
𝑄𝑗ℎ

∑𝑁ℎ

ℎ=1

∑𝑁𝑗

𝑗=1
𝑄𝑗ℎ

× 100, (3.4)

𝑄𝑗ℎ =
|𝑊𝑗ℎ|

∑𝑁𝑗

𝑗=1
|𝑊𝑗ℎ|

, (3.5)

where

– 𝑗 is the input neuron index;
– ℎ is the hidden neuron index;

– 𝑁𝑗 is the number of neurons in the input layer;

– 𝑁ℎ is the number of neurons in the next hidden layer;
– |𝑊𝑗ℎ| is the absolute value of the input-hidden layer connection weight between input neuron 𝑗 and hidden neuron ℎ.

The two sub-figures in Fig. 10 correspond to the experiments in Fig. 7(a) under penetration rates 10% and 100%, respectively.

The 𝑥-axis represents the indices of delay related neurons in the input layer, where the 1st to 8th neurons relate to the CV delay

information (each neuron corresponds to one incoming lane of the intersection) and the 9th to 16th neurons relate to the non-CV

delay information. The y-axis represents the relative importance of the inputs. The orange bars represent the relative importance

of neurons corresponding to the CV delay and the purple bars represent the relative importance of neurons corresponding to the

non-CV delay. To highlight the difference between CV and non-CV delay related neurons, we generate the relative importance using

weights with absolute values higher than 0.267, which is the limit of the He uniform weights initialization (He et al., 2015) in our

case (the limit is the
√
6∕|𝑜𝑖|, where the |𝑜𝑖| is the number of neurons in the input layer of the critic neural network of agent 𝑖, which

is 84 in this experiment). From Fig. 10(a), the non-CV delay related neurons contain higher values of the relative importance than

the CV delay related neurons do in general, which shows that non-CV delay information gains more attention from the agent under

the 10% penetration rate scenario. Fig. 10(b) shows that the CV related neurons contain higher values in the relative importance

than the non-CV related neurons do, which means CV delay information is more representative under the 100% penetration rate. In

summary, relative importance of delay related input layer neurons shows that the critic of CVLight (Asym) agent does learn to rely

more on the non-CV delay information under a low penetration rate scenario. This also explains the superiority of CVLight (Asym)

over CVLight (Sym) under low penetration rate scenarios.
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Table 6
Performance comparison under different control intervals (gmin).

Algorithms Gmin 5 Gmin 7 Gmin 10

10%a 30% 10% 30% 10% 30%

CVLight
(Asym)

8.27 ± 0.98 4.48 ± 0.24 4.53 ± 0.36 3.82 ± 0.24 4.35 ± 0.20 3.92 ± 0.18

CVLight
(Sym)

10.8 ± 1.27 5.28 ± 0.38 4.58 ± 0.39 3.90 ± 0.25 4.50 ± 0.25 4.23 ± 0.18

PressLight 10.67 ± 1.80 6.03 ± 0.46 4.94 ± 0.33 4.85 ± 0.35 4.81 ± 0.32 4.75 ± 0.27

DQN 17.22 ± 6.88 11.27 ± 1.50 5.39 ± 0.36 5.04 ± 0.31 9.15 ± 1.21 5.04 ± 0.27

Maxpressure 9.22 ± 0.98 7.11 ± 0.68 9.07 ± 0.95 6.47 ± 0.37 6.98 ± 2.08 5.45 ± 0.48

aThe percentages here refer to the CV penetration rates.

3.4. Sensitivity analysis

In this subsection, we conduct sensitivity analysis (SA) on our proposed model using numerical experiments. We investigate the
robustness of our proposed model under different control intervals (minimum green times) and maximum green times.

All experiments conducted in this section are based on the 2-2 road network with a fixed traffic demand, i.e. 600 veh/h/lane for
the arterial and 300 veh/h/lane for the side-street. We only focus on low penetration rates of 10% and 30% where average delays
of different models are the most distinct according to Fig. 7.

3.4.1. Control interval
We conduct experiments under 3 different control intervals: 5, 7, and 10 s, which are shown as the third row of Table 3. The

results are shown in Table 6. The first column is the names of different models. The remaining columns are organized in two
hierarchies. The top level columns are three different values of control intervals. The second level columns are two penetration
rates. Each entry is the mean and standard deviation of the average delay after 96 test rounds. For each column, the minimal
average delay is in bold. We can interpret the results in three perspectives:

Influence of the control interval on the performance of CVLight. Comparing the performance of CVLight under gmin 5 and
gmin 7, a too short control interval, i.e. gmin 5, deteriorates the performance of CVLight under a low penetration rate, as agents
switch the phase more frequently than necessary when CVs are not observed. Due to lack of flexibility, CVLight agents also suffer
from a too long control interval when they gain more information from CVs, comparing the performance of CVLight under gmin 7
and gmin 10 with the 30% penetration rate.

Comparison between CVLight algorithms and baselines. CVLight (Asym) and CVLight (Sym) significantly decrease the
average delay compared to baselines across all control intervals and penetration rates.

Comparison between CVLight (Asym) and CVLight (Sym). CVLight (Asym) achieves the minimal average delay in general.
CVLight (Asym) has a notable improvement compared to CVLight (Sym), in which the biggest improvement is 23.4% (5 s Gmin and
10% penetration rate).

3.4.2. Maximum green time
We conduct experiments under 3 different maximum green times: 40, 60, and 120 s, which are shown in the fourth row of

Table 3. The results are shown in Table 7. It shares the same structure as Table 6 except for the top level of the columns, which are
values of the maximum green time. We can interpret the results from three perspectives:

Influence of the maximum green time on the performance of CVLight. Under the 10% penetration rate scenario, a too long
maximum green time can influence the performance of CVLight as agents might continue to give a certain direction green phase
for too long when CVs in another direction are not observed. Comparing the performance of CVLight algorithms under the 30%
penetration rate across the three gmax values and the its performance under the 10% penetration rate across the three gmax values,
we can see that the effect of gmax on the performance will not be that significant when penetration rate gets higher as agents can
make better decisions with more information from CVs.

Comparison between CVLight algorithms and baselines. CVLight (Asym) and CVLight (Sym) significantly decrease the
average delay compared to baselines across all maximum green times and penetration rates.

Comparison between CVLight (Asym) and CVLight (Sym). Across the three max green times, CVLight (Asym) notably
outperforms CVLight (Sym) in terms of the average delay.

3.5. Scalability in road network sizes

In this subsection, we demonstrate the scalability of CVLight in terms of road network sizes by applying pre-trained CVLight for
a 5-5 road network.

To further improve the scalability of CVLight, we use a pre-train technique to speed up the convergence in neural networks
training. The pre-train technique allows RL agents to load the pre-trained RL models, as long as they share the same neural network
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Table 7
Performance comparison under different maximum green times (gmax).

Algorithms Gmax 40 Gmax 60 Gmax 120

10%a 30% 10% 30% 10% 30%

CVLight
(Asym)

4.53 ± 0.36 3.82 ± 0.24 4.71 ± 0.38 3.92 ± 0.22 5.18 ± 0.55 3.88 ± 0.18

CVLight
(Sym)

4.58 ± 0.39 3.90 ± 0.25 5.12 ± 0.51 4.00 ± 0.23 5.53 ± 0.95 4.06 ± 0.41

PressLight 4.94 ± 0.33 4.85 ± 0.35 6.74 ± 0.95 5.30 ± 0.41 6.49 ± 1.07 4.98 ± 0.46

DQN 5.39 ± 0.36 5.04 ± 0.31 8.22 ± 1.29 6.60 ± 0.47 10.77 ± 2.91 6.77 ± 0.75

Maxpressure 9.07 ± 0.95 6.47 ± 0.37 8.89 ± 0.96 6.50 ± 0.45 8.88 ± 0.97 6.54 ± 0.47

aThe percentages here refer to the CV penetration rates.

Table 8
Traffic demands.

Stages Road
network

Demand
patterns

Arrival rate (vehicles/h/lane)

Arterial
(E-W)

Arterial
(W-E)

Side-street
(N-S)

Side-street
(S-N)

Pre-train 2-2 Fixed 300 300 150 150
Training 5-5 Dynamic 500-700-1000a 250-350-500 250-350-500 125-175-250

aThe series of numbers represents the demands in different stages in the dynamic traffic demand. For example,
500-700-1000 means the traffic demand starts from 500 veh/h/lane, increases to 700 veh/h/lane, and ends with
1000 veh/h/lane.

Fig. 11. Illustration of traffic demand patterns for pre-train and training.

structures, and continue the training until convergence. Under the 10% or the 30% penetration rate, CVLight agents are pre-trained
on the 2-2 road network with a fixed traffic demand pattern for 12,000 iterations, and then are loaded and trained for another
12,000 iterations on the 5-5 road network with a dynamic traffic demand pattern. To better demonstrate the effectiveness of the
pre-train technique, we design traffic demand patterns that are significantly different between the pre-train stage and the training
stage, as summarized in Table 8 and Fig. 11. For Table 8, the first column gives the stages, the second column presents the road
network, the third column indicates the traffic demand patterns, and the fourth to sixth columns detail the arrival rate in each
direction. Such traffic patterns are also illustrated in Fig. 11 where arrows represent the directions of arriving vehicles.

Comparison on convergence speed. We test the performance of the CVLight (Asym) agents under the 5-5 road network after
every 2000 iterations in training with or without the pre-train technique and the result is detailed in Fig. 12. For Fig. 12, the 𝑥-axis
is the iteration index during training and the 𝑦-axis represents the average delay per vehicle per intersection in a logarithmic scale.
The blue line is the performance of CVLight (Asym) with the pre-train technique and the orange line is the performance of CVLight
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Fig. 12. Comparison between CVLight (Asym) with and without pre-train in the convergence speed. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 9
Performance comparison between CVLight (Asym) with pre-train and baselines in the 5-5 network.

Algorithms CV penetration rate

10% 30%

CVLight (Asym) with pre-train 6.21 ± 0.62 5.43 ± 0.85

Presslight 6.83 ± 0.55 5.54 ± 0.68

Maxpressure 7.85 ± 0.95 6.32 ± 0.20

DQN 8.70 ± 0.64 5.96 ± 0.34

Websters 11.02 ± 1.84 7.73 ± 1.43

(Asym) without the pre-train technique. The numbers above the blue line are the average delays of CVLight (Asym) with pre-train
at corresponding iterations. From the result, we can see CVLight (Asym) with pre-train can converge in a much faster way than that
without using the pre-train technique does. We train our models on one c5a.xlarge AWS EC2 instance with 16 vCPUs and 32 GB
memory. The processors are the 2nd generation 3.3 GHz AMD EPYC 7002 series. By using the pre-train technique, the model begins
to converge at the 6000th iteration, which is a 50% improvement compared to the total 12 000 iterations.

Comparison on performance under 5-5. Under the 5-5 road network with 10% and 30% penetration rates, the performance
comparison between CVLight and baseline models is presented in Table 9. The first column of Table 9 lists the algorithms and
the second to third columns show the average delay as well as the standard deviation of each algorithm under the 10% and 30%
penetration rates, respectively. From Table 9, CVLight (Asym) with pre-train can notably outperform all benchmark algorithms,
which demonstrates the good scalability of CVLight.

4. Case study on real-world intersections

In addition to synthetic intersections, we conduct experiments on a real-world road network of 4 intersections. In this section,
we first introduce the new experiment set-up in Section 4.1 and then present experiment results in Section 4.2.

4.1. Environment set-up

Fig. 13 illustrates the intersection structure, traffic patterns, and traffic signal phase setting for the case study environment.
Fig. 13(a) shows the road network structure and traffic flows of a real-world 2-by-2 network located in the intersections of Beaver
Avenue and College Avenue from Atherton Street to Burrowes Street in State College, Pennsylvania, USA. The Beaver Avenue and
College Avenue are arterials with unidirectional traffic; the Atherton Street and the Burrowes Street are side-streets with bidirectional
traffic. For a better comparison with PressLight (Wei et al., 2019), we select this real-world road network because PressLight also
gets tested under the corridor on the Beaver Avenue in the same area. Fig. 13(b) details the traffic signal phase setting for each
intersection in the road network. Each row represents the signal timing plan for one intersection and each cell inside one row
indicates one green phase, consisting of traffic movements that are allowed for that phase.

Vehicles’ inter-arrival times follow a binomial distribution, with the same dynamic demand pattern shown in Table 4 and Fig. 6.
Both the left-turn proportion and right-turn proportion are set as 10%. In this section, we focus on the performance comparison of
CVLight (Asym) and other benchmark algorithms, considering the superior performance of CVLight (Asym) in Section 3.
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Fig. 13. Illustrations of intersection structure, traffic movements, and signal phase setting in the real-world road network.

Fig. 14. Performance comparison under a real-world 2-by-2 road network. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

4.2. Result analysis

Fig. 14 illustrates the result of the performance comparison between CVLight (Asym) and baselines. The 𝑥-axis is the CV
penetration rate and the 𝑦-axis represents the average delay per vehicle per intersection. The blue, orange, green, red, and purple
lines represent the performance of CVLight (Asym), PressLight, Maxpressure, DQN, and Webster’s, respectively. From Fig. 14,
CVLight (Asym) can outperform all other benchmark algorithms across all penetration rates.

5. Conclusions and future research

This paper develops the CVLight model that learns with information from CVs and non-CVs and executes with data collected
from CVs only. The model is characterized by the state and reward design that facilitates coordination among agents and utilizes
travel delay and phase duration. We propose the Asym-A2C that takes advantage of the structure of the actor-critic algorithm so as to
include non-CV information into the training process. Results of extensive experiments under various traffic demands, penetration
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rates, as well as road networks, demonstrate the superiority of CVLight over other state-of-the-art benchmark algorithms and its
good generalizability in penetration rates and traffic demands. By visualizing the learned policies of CVLight agents and the relative
importance of input layer neurons in the critic neural network, we show how the Asym-A2C algorithm and our state design contribute
to the good performance of CVLight (Asym), especially under low penetration rate scenarios. Moreover, the scalability of CVLight
is further improved through the pre-train technique, which significantly decreases the training time of CVLight under a 5-by-5 road
network.

Future work is threefold: (1) We plan to explore more state-of-the-art neural network interpretability methods to better interpret
the learned policies of agents. (2) We will further improve the scalability of CVLight by introducing other deep learning methods,
such as parameter sharing. (3) Scenarios like extremely low CV penetration can still be challenging for TSC. Following the suit of
some existing studies, we will combine state estimation methods, such as queue estimation, with RL-TSC so as to further improve
our model performance.
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