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Abstract—Motivated by recent interest in federated submodel
learning, this work explores the fundamental problem of privately
reading from and writing to a database comprised of K files (sub-
models) that are stored across N distributed servers according to
an X -secure threshold secret sharing scheme. One after another,
various users wish to retrieve their desired file, locally process the
information and then update the file in the distributed database
while keeping the identity of their desired file private from any set
of up to 7' colluding servers. The availability of servers changes
over time, so elastic dropout resilience is required. The main
contribution of this work is an adaptive scheme, called ACSA-
RW, that takes advantage of all currently available servers to
reduce its communication costs, fully updates the database after
each write operation even though the database is only partially
accessible due to server dropouts, and ensures a memoryless
operation of the network in the sense that the storage structure
is preserved and future users may remain oblivious of the past
history of server dropouts. The ACSA-RW construction builds
upon cross-subspace alignment (CSA) codes that were originally
introduced for X-secure 7T-private information retrieval and
have been shown to be natural solutions for secure distributed
batch matrix multiplication problems. ACSA-RW achieves the
desired private read and write functionality with elastic dropout
resilience, matches the best results for private-read from PIR
literature, improves significantly upon available baselines for
private-write, reveals a striking symmetry between upload and
download costs, and exploits storage redundancy to accommodate
arbitrary read and write dropout servers up to certain threshold
values. It also answers in the affirmative an open question by
Kairouz et al. for the case of partially colluding servers (i.e.,
tolerating collusion up to a threshold) by exploiting synergistic
gains from the joint design of private read and write operations.

Index Terms—Federated learning, Security, Privacy

I. INTRODUCTION

HE rise of machine learning is marked by fundamental
tradeoffs between competing concerns. Central to this
work are 1) the need for abundant training data, 2) the need
for privacy, and 3) the need for low communication cost.
Federated learning [1]-[4] is a distributed machine learning
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paradigm that aims to address the three concerns simulta-
neously by allowing distributed users/clients (e.g., mobile
phones) to collaboratively train a shared model that is stored
in a cluster of databases/servers (cloud) while keeping their
training data private. The users retrieve the current model,
train the model locally with their own training data, and
then aggregate the modifications as focused updates. Thus,
federated learning allows utilization of abundant training data
while mitigating privacy concerns. Uploading focused updates
(typically the same size as the model) also saves communica-
tion cost compared with uploading training data.

Communicating the full model may be unnecessary for large
scale machine learning tasks where each user’s local data
is primarily relevant to a small part of the overall model.
Federated Submodel Learning (FSL) [5] builds on this obser-
vation by partitioning the model into multiple submodels and
allowing users to selectively train and update the submodels
that are most relevant to their local view. This is the case,
for example, in the binary relevance method for multi-label
classification [6], [[7], which independently trains a series of
binary classifiers (viewed as submodels), one for each label.
Given a sample to be predicted, the compound model predicts
all labels for which the respective classifiers yield a positive
result.

What makes federated submodel learning challenging is
the privacy constraint. The identity of the submodel that is
being retrieved and updated by a user must remain private.
Prior works [5]], [8]-[11] that assume centralized storage of
all submodels are generally able to provide relatively weaker
privacy guarantees such as plausible deniability through dif-
ferential privacy mechanisms that perturb the data, and secure
aggregation that relies on secure inter-user peer-to-peer com-
munication (e.g., the computationally secure inter-user peer-
to-peer communication protocol with the central server as the
relay, based on Diffie-Hellman key exchange). On the other
hand, it is noted recently by Kim and Lee in [12] that if the
servers that store the submodels are distributed, then stronger
information theoretic guarantees suc as “perfect privacy”
(with partially colluding servers, i.e., tolerating collusion up
to a threshold) may be attainable, without the need for user-
to-user communication. Indeed, in this work we focus on this
setting of distributed servers and perfect privacy. The challenge
of federated submodel learning in this setting centers around
three key questions.

By perfect privacy we mean that absolutely no information is leaked about
the identity of a user’s desired submodel to any set of colluding servers up
to a target threshold.



Q1 Private Read: How can a user efficiently retrieve the
desired submodel from the distributed servers without
revealing which submodel is being retrieved?

Q2 Private Write: How can a user efficiently update the
desired submodel to the distributed servers without re-
vealing which submodel is being updated?

Q3 Synergy of Private Read-Write: Are there synergistic
gains in the joint design of retrieval and update opera-
tions, and if so, then how to exploit these synergies?

The significance of these fundamental questions goes well

beyond federated submodel learning. As recognized by [5]

the private read question (Q1) by itself is equivalent to the

problem of Private Information Retrieval (PIR) [13]], [14],

which has recently been studied extensively from an infor-

mation theoretic perspective [[15]—[|50]. Much less is known
about Q2 and Q3, i.e., the fundamental limits of private-write,
and joint read-write solutions from the information theoretic
perspective. Notably, Q3 has also been highlighted previously

as an open problem by Kairouz et al in [2].

The problem of privately reading and writing data from
a distributed memory falls under the larger umbrella of
Distributed Oblivious RAM (DORAM) [51] primitives in
theoretical computer science and cryptography. With a few
limited exceptions (e.g., a specialized 4-server construction
in [52] that allows information theoretic privacy), prior stud-
ies of DORAM generally take a cryptographic perspective,
e.g., privacy is guaranteed subject to computational hardness
assumptions, and the number of memory blocks is assumed
to be much larger than the size of each block. In contrast,
the focus of this work is on Q2 and Q3 under the stronger
notion of information theoretic privacy. Furthermore, because
our motivation comes from federated submodel learning, the
size of a submodel is assumed to be significantly larger than
the number of submodels (see motivating examples in [5[] and
Section [[II-AT0). Indeed, this is a pervasive assumption in the
growing body of literature on information theoretic PIR [15]-
[49]. In a broad sense, our problem formulation in this paper
is motivated by applications of (information theoretic) PIR
that also require private writes. There is no shortage of such
applications, e.g., a distributed database of medical records
that not only allows a physician to privately download the
desired record (private read) but also to update the record
with new information (private write), or a banking service
that would similarly allow private reads and writes of financial
records from authorized entities. Essentially, while FSL serves
as our nominal application of interest based on prior works
that motivated this effort, our problem formulation is broad
enough to capture various distributed file systems that enable
the users to read and write files without revealing the identity
of the target file. The files are viewed as submodels, and the
assumption that the size of the file is significantly larger than
the number of the files captures the nature of file systems that
are most relevant to this work.

Overview: We consider the federated submodel learning set-
ting where the global model is partitioned into K submodels,
and stored among N distributed servers according to an X-
secure threshold secret sharing scheme, i.e., any set of up to X
colluding servers can learn nothing about the stored models,

while the full model can be recovered from the data stored by
any X + K servers. One at a time, users update the submodel
most relevant to their local training data. The updates must be
T-private, i.e., any set of up to 7' colluding servers must not
learn anything about which submodel is being updated. The
contents of the updates must be X a-secure, i.e., any set of up
to XA colluding servers must learn nothing about the contents
of the submodel updates. The size of a submodel is assumed
to be significantly larger than the number of submodels, which
is significantly larger than 1, i.e., L > K > 1 where L is the
size of a submodel and K is the number of submodels. Due
to uncertainties of the servers’ I/O states, link states, etc., an
important concern in distributed systems is to allow resilience
against servers that may temporarily drop out [53]-[57]. To
this end, we assume that at each time ¢, € N, a subset
of servers may be unavailable. These unavailable servers are
referred to as read-dropout servers or write-dropout servers
depending on whether the user intends to perform the private
read or the private write operation. Since the set of dropout
servers changes over time, and is assumed to be known to the
user, the private read and write schemes must adapt to the set
of currently available servers. Note that this is different from
the problem of stragglers in massive distributed computing
applications where the set of responsive servers is not known
in advance, because servers may become unavailable during
the lengthy time interval required for their local computations.
Since our focus is not on massive computing applications, the
server side processing needed for private read and write is not
as time-consuming (at most linear in the size of the global
model) compared with the server side computing required
for massive computing (e.g., massive matrix multiplication)
tasks (polynomial running time typically). So the availabilities,
which are determined in advance by the user before initiating
the read or write operation, e.g., by pinging the servers, are
not expected to change during the read or write operation.
We do allow the server availabilities to change between the
read and write operations due to the delay introduced by
the intermediate processing that is needed at the user to
generate his updated submodel. A somewhat surprising aspect
of private write with unavailable servers is that even though
the data at the unavailable servers cannot be updated, the
collective storage at all servers (including the unavailable ones)
must represent the updated models. The redundancy in coded
storage and the X-security constraints which require that the
stored information at any X servers is independent of the data,
are essential in this regard.

Since the private-read problem (Q1) is essentially a form of
PIR, our starting point is the X-secure T'-private information
retrieval scheme (XSTPIR) of [30]]. In particular, we build on
the idea of cross-subspace alignment (CSA) from [30], and
introduce a new private read-write scheme, called Adaptive
CSA-RW (ACSA-RW) as an answer to Q1 and Q2. ACSA-
RW is a federated submodel learning scheme that guarantees
information-theoretically perfect privacy (with partially col-
Iuding servers), achieves the (conjectured) asymptotic optimal
download cost, and is at least orderwise optimal in its upload
cost (see Section [[II-A3] [[TI-A8] and [TT-A9] for details). ACSA-
RW also answers Q3 in the affirmative for the case of




partially-colluding servers as it exploits query structure from
the private-read operation to reduce the communication cost
for the private-write operation. The evidence of synergistic
gain in ACSA-RW from a joint design of submodel retrieval
and submodel aggregation addresses the corresponding open
problem highlighted in Section 4.4.4 of [2]. The observation
that the ACSA-RW scheme takes advantage of storage re-
dundancy for private read and private write is indicative of
fundamental tradeoffs between download cost, upload cost,
data security level, and storage redundancy for security and
recoverability. In particular, the storage redundancy for X-
security is exploited by private write, while the storage re-
dundancy for robust recoverability is used for private read
(see Theorem [I] and Section for details). It is also
remarkable that the ACSA-RW scheme requires absolutely
no user-user communication, even though the server states
change over time and the read-write operations are adap-
tive. In other words, a user is not required to be aware of
the history of previous updates and the previous availability
states of the servers (see Section for details). The
download cost and the upload cost achieved by each user is
an increasing function of the number of unavailable servers
at the time. When more servers are available, the download
cost and the upload costs are reduced, which provides elastic
dropout resilience (see Theorem [I). To this end, the ACSA-
RW scheme uses adaptive MDS-coded answer strings. This
idea originates from CSA code constructions for the problem
of coded distributed batch computation [58]]. In terms of
comparisons against available baselines, we note (see Section
that ACSA-RW improves significantly in both the
communication efficiency and the level of privacy compared
to [12]. In fact, ACSA-RW achieves asymptotically optimal
download cost when X > XA + 7, and is order-wise optimal
in terms of the upload cost. Compared with the 4 server
construction of information theoretic DORAM in [52]], (where
X =1,T = 1,XA = 0,N = 4) ACSA-RW has better
communication efficiency (the assumption of L > K is
important in this regard). For example, as the ratio L/K
approaches infinity, ACSA-RW achieves total communication
cost (i.e., the summation of the download cost and the upload
cost, normalized by the submodel size) of 6, versus the
communication cost of 8 achieved by the construction in [52].

Notation: Bold symbols are used to denote vectors and
matrices, while calligraphic symbols denote sets. By con-
vention, let the empty product be the multiplicative identity,
and the empty sum be the additive identity. For two positive
integers M, N such that M < N, [M : N] denotes the set
{M,M +1,---,N}. We use the shorthand notation [N] for
[1 : N]. N denotes the set of positive integers {1,2,3,---},
and Z* denotes the set N U {0}. For a subset of integers
N C N, N(i),i € [[N]] denotes its i*" element, sorted in
ascending order. The notation diag(Dq, Do, --- ,D,,) denotes
the block diagonal matrix, i.e., the main-diagonal blocks are
square matrices (D1, Dy, --- ,D,,) and all off-diagonal blocks
are zero matrices. For a positive integer K, Ix denotes the
K x K identity matrix. For two positive integers k, K such that
k < K, ex (k) denotes the k' column of the K x K identity

matrix. The notation (’)(alog b) suppresse’ polylog terms. It
may be replaced with O(a log? b) if the field supports the Fast
Fourier Transform (FFT and with O(alog® bloglog(b)) if
it does not]

II. PROBLEM STATEMENT: ROBUST XSTPFSL
(0) (0) (0)
Wi Wi W),

each of which consists of L uniformly i.i. dE] random symbols
from a finite ﬁel(ﬂ F,. In particular, we have

Consider K initial submodels (

in g-ary units. Indeed, finite field symbols are used as a
representation of the submodels, we refer readers to Section
for detailed explanation. Time slots are associated with
users and their corresponding submodel updates, i.e., at time
slot t,t € N, User ¢t wishes to perform the t!" submodel
update. At time t,t € Z*, the K submodels are denoted as

WY),W(") W(f) The submodels are represented as

vectors, i.e., for all t € Z*, k € [K],

W= W wo. whw] @
The K submodels are distributively stored among the N
servers. The storage at server n,n € [N] at time ¢,t € Z* is
denoted as ng ). Note that SSLO) represents the initial storage.

A full cycle of robust XSTPFSL is comprised of two phases
— the read phase and the write phase. At the beginning
of the cycle, User t privately generates the desired index
6;, uniformly from [K], and the user-side randomness Zl(]t),
which is intended to protect the user’s privacy and security.
In the read phase, User ¢ wishes to retrieve the submodel
Wétt_l). At all times, nothing must be revealed about any
(current or past) desired indices (61,62, --,6;) to any set
of up to T' colluding servers. To this end, User ¢ generates
the read-queries Q(lt’et), Q(t’et), e ,Q(t’et)), where Q,(f’et)

is intended for the nt" server, such that,

H (Qﬁf")t) ﬂt,Z,‘})) =0, Vne[N]. ()

2There is another standard definition of the notation © which _fully
suppresses polylog terms, i.e, O(apolylog(b)) is represented by O(a),
regardless of the exact form of polylog(b). The definition used in this paper
emphasizes the dominant factor in the polylog term.

3FFT is used in fast encoding/decoding algorithms, where structured matrix
algebras are involved and convolutions are required.

“If the FFT is not supported by the field, Schonhage—Strassen algorithm
[S9] can be used for fast algorithms that require convolutions, with an extra
factor of loglogb in the complexity.

5Note that the proposed ACSA-RW scheme does not require the assumption
of uniformly i.i.d. model data and uniformly i.i.d. desired index to be correct,
secure and private. The assumption is mainly used for converse arguments
and communication cost metrics. However, we note that the uniformly i.i.d.
model data assumption is in fact not very strong because submodel learning
is performed locally, and it may be possible to achieve (nearly) uniformly
ii.d. model data by exploiting entropy encoding.

SNote that the size of the finite field required is not too large. By our
ACSA-RW scheme (see Theorem , it is sufficient to choose a finite field
with ¢ > 2N.
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(a) The private-read phase of robust XSTPESL. The i*" server is unavailable, i € S,
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(b) The private-write phase of robust XSTPFSL. The ;" server is unavailable, j € S Note that Server i and Server j may be different

SErvers.

Fig. 1: The two phases of robust X-Secure T-Private Federated Submodel Learning (XSTPFSL) with arbitrary realizations of

unavailable servers.

Each of the currently available servers n,n € [N] \S,(.t) is
sent the query Qﬁf /6e) by the user, and responds to the user
with an answer Agf ’gt), such that,

H (ASfﬂ” ‘ SEf”,QS?"”) =0, Vne[NJ\S". @)

From the answers returned by the servers n,n € [N] \Sr(t), the
user must be able to reconstruct the desired submodel Wéﬁfl)

[Correctness]

H W(t*l) A(t,@g) (tagt) 9 =0.
( O ( n )ne[N]\s£‘>’(Q" )nE[N]’ !
(5)

This is the end of the read phase.
Upon finishing the local submodel training, User ¢ privately
generates an incremenﬂ for the 6" submodel. The increment

7In general, the increment is the difference between the new submodel and
the old submodel. We note that no generality is lost by assuming additive
increments because the submodel training is performed locally.

is represented as a vector, A; = [Agt),Agt),--- 7A(Lt)]T,
which consists of L i.i.d. uniformly distributed symbols from
the finite field F,, ie., H(A;) = L in g-ary units. The
increment A; is intended to update the 9%” submodel Wéﬁfl),
such that the next user who wishes to make an update, User

t + 1, is able to retrieve the submodel ng) = Wéﬁfl) + Ay
if 6,11 = 0, and the submodel W) = W™ if 6,1 =
0} # 0;. In other words, for all t € N, k € [K], the submodel

W,(:) is defined recursively as follows.
Wl(et_l) + Ay k=0

(t) _
W, —{ W’(ct—l) k + 0.

User t initializes the write phase by generating the write-
queries Pl(t79‘),P2(t79‘),~-~ ,PJ(\f’et)) For ease of notation,

(6)

let the write-queries be nulls for the write-dropout servers,
ie., P,gt’et) =@ forn € Sg). For all n € [N],

H (Pff"’t) ‘ 0, 210, (Agfﬂt)) . ,At) =0. (7
ne



The user sends the write-query P,(Lt’at) to the nt" server,

n € [N] \Sff ), if the server was available in the read-phase
and therefore already received the read-query. Otherwise, if
the server_was not available during the read phase, then the
user send both read and write queries ( £f 0 , P,(Lt’e‘)). Still,
any set of up to 7' colluding servers must learn nothing about
the desired indices (61,02, - ,6).

Upon receiving the write-queries, each of the servers n,n €
[N] \Sl(f ) updates its storage based on the existing storage
S¢ and the queries for the two phases (Py(f’et), st ’et)),
ie.,

H (SEP ‘ SEf‘thﬂ"f’,QSfﬁ”) =0. (8)

On the other hand, the write-dropout servers are unable to

perform any storage update.
S® = git-b vn e S®. 9)

Next, let us formalize the security and privacy constraints.
T-privacy guarantees that at any time, any set of up to 7" col-
luding servers learn nothing about the indices (61,62, - ,0;)
from all the read and write queries and storage states.

[T-Privacy]
{0 (0008, | (700

Qo) )—(er [NLIT|=T,teN,

(10)

TEt],neT

where for all n € [N], we define PT(LO’QO) = 510’90) = Q.
Similarly, any set of up to XA colluding servers must learn
nothing about the increments (Aq, Ag, -+ | Ay).

[X A-Security]
(1805

lef,e») =0,YX C [N],|X| = Xa,t € N.
TE[t],neX
(11)

The storage at the N servers is formalized according to
a threshold secret sharing scheme. Specifically, the storage at
any set of up to X colluding servers must reveal nothing about
the submodels. Formally,

(0) (0) _
H(Sn (Wk )kE[K],ZS> 0,¥ne[N], (12)

[X -Security]

H((WE),cp(89),0) =0

VX C [N],|X| = X,t € 7",

(S(‘r—l) P(‘r—l,G.,._l)
nex " e ’

13)

8For ease of exposition we will assume in the description of the scheme
that during the read phase, the read queries are sent to all servers that are
available during the read phase, or will become available later during the write
phase, so that only the write-queries need to be sent during the write phase.

where for all n € [N], we define S;;* = (). Note that Zg is
the private randomness used by the secret sharing scheme that
implements X -secure storage across the IV servers.

There is a subtle difference in the security constraint that we
impose on the storage, and the previously specified security
and privacy constraints on updates and queries. To appreciate
this difference let us make a distinction between the notions
of an internal adversary and an external adversary. We say that
a set of colluding servers forms an internal adversary if those
colluding servers have access to not only their current storage,
but also their entire history of previous stored values and
queries. Essentially the internal adversary setting represents
a greater security threat because the servers themselves are
dishonest and surreptitiously keep records of all their history
in an attempt to learn from it. In contrast, we say that a
set of colluding servers forms an external adversary if those
colluding servers have access to only their current storage,
but not to other historical information. Essentially, this repre-
sents an external adversary who is able to steal the current
information from honest servers who do not keep records
of their historical information. Clearly, an external adversary
is weaker than an internal adversary. Now let us note that
while the T-private queries and the Xa-secure updates are
protected against internal adversaries, the X-secure storage
is only protected against external adversaries. This is mainly
because we will generally assume X > max(Xa,T), ie.,
a higher security threshold for storage, than for updates and
queries. Note that once the number of compromised servers
exceeds max(Xa,T), the security of updates and the privacy
of queries is no longer guaranteed. In such settings the security
of storage is still guaranteed, albeit in a weaker sense (against
external adversaries). On the other hand if the number of
compromised servers is small enough, then indeed secure
storage may be guaranteed in a stronger sense, even against
internal adversaries. We refer the reader to Remark [6] for
further insight into this aspect.

The independence among various quantities of interest is
specified for all £ € N as follows.

" ((W’iooke[m H(Ar)rergs 0)re (Zg))fe[t] ’ZS>
=H ((Wz(co))kem) +H ((Ar)fe[t]) +H ((9T)Te[t]>

v H ((Z,(]))TGHJ + H(Zs).

To evaluate the performance of a robust XSTPFSL scheme,
we consider the following metrics. The first two metrics focus
on communication cost. For t € N, the download cost D; is
the expected (over all realizations of queries) number of g-ary
symbols downloaded by User ¢, normalized by L. The upload
cost Uy is the expected number of g-ary symbols uploaded
by User ¢, also normalized by L. The next metric focuses
on storage efficiency. For ¢ € Z*, the storage efficiency is
defined as the ratio of the total data content to the total storage

resources consumed by a scheme, i.e., n(t) = KL

S H(S57)
If 7*) takes the same value for all ¢ € Z*, we use the compact
notation 7 instead.

(14)



III. MAIN RESULT: THE ACSA-RW SCHEME FOR
PRIVATE READ/WRITE

The main contribution of this work is the ACSA-RW
scheme, which allows private read and private write from
N distributed servers according to the problem statement
provided in Section [lI} The scheme achieves storage efficiency
K./N, ie., it uses a total storage of (KLN/K_)log, q bits
across N servers in order to store the K L log, ¢ bits of actual
data, where K. € N, and allows arbitrary read-dropouts and
write-dropouts as long as the number of dropout servers is
less than the corresponding threshold values. The thresholds
are defined below and their relationship to redundant storage
dimensions is explained in Section [[II-A

Read-dropout threshold: S™" £ N — (K, + X + T —1).

15)

Write-dropout threshold: S 2 X — (XA + T —1).
(16)

It is worth emphasizing that the ACSA-RW scheme does
not just tolerate dropout servers, it adapts (hence the elastic
resilience) to the number of available servers so as to reduce its
communication cost. The elasticity would be straightforward if
the only concern was the private-read operation because known
replicated-storage based PIR schemes can be adapted to the
number of available servers. This is because when the subset of
servers that is unable to respond is known in advance, the prob-
lem simply reduces to replicated-storage based PIR with fewer
servers. What makes the elasticity requirement non-trivial is
that the scheme must accommodate both private read and
private write. The private-write requirements are particularly
intriguing, almost paradoxical in that the coded storage across
all N servers needs to be updated to be consistent with the
new submodels, even though some of those servers (the write-
dropout servers) are unavailable, so their stored information
cannot be changed. Furthermore, as server states continue
to change over time, future updates need no knowledge of
prior dropout histories. Also of interest are the tradeoffs
between storage redundancy and the resources needed for
private-read and private-write functionalities. Because many
of these aspects become more intuitively transparent when
L > K > 1, the asymptotic setting is used to present the main
result in Theorem[I] In particular, by suppressing minor terms
(which can be found in the full description of the scheme),
the asymptotic setting reveals an elegant symmetry between
the upload and download costs. The remainder of this section
is devoted to stating and then understanding the implications
of Theorem [I} The scheme itself is presented in the form of
the proof of Theorem [I]in Section

Theorem 1. In the limit L/ K — oo, for all t € N the ACSA-
RW scheme achieves the following download, upload cost pair
(Dy, Uy) and storage efficiency n:

N — |8 N —|SP K,
(Dta Uf) = ‘ (|t) ) | (|t) y = 77>
S:)hresh _ | Sr | Sgresh _ ‘ Sw | N
17)

for any K. € N such that |S,§t)| < Gthresh, |S$)| < Sthresh - gnd
the field size ¢ > N + max { Stresh Gihresh jg %

Remark 1. For non-asymptotic region, the ACSA-RW scheme
achieves the same download cost, and the upload cost
achieved is shown in the formal presentation of the scheme,
(102).

A. Observations

1) Storage Redundancy and Private Read/Write Thresh-
olds: The relationship between redundant storage dimensions
and the private read/write thresholds is conceptually illustrated
in Figure [2]

The total storage utilized by the ACSA-RW scheme across
N servers is represented as the overall N dimensional space
in Figure 2] Out of this, the actual data occupies only K.
dimensions, which is why the storage efficiency of ACSA-RW
is K./N. Because the storage must be X-secure, i.e., any set
of up to X colluding servers cannot learn anything about the
data, it follows that out of the /N dimensions of storage space,
X dimensions are occupied by information that is independent
of the actual data. The storage redundancy represented by
these X dimensions will be essential to enable the private-
write functionality. But first let us consider the private-read
operation for which we have a number of prior results on
PIR as baselines for validating our intuition. From Figure [2]
we note that outside the X dimensions of redundancy that
was introduced due to data-security, the T-privacy constraint
adds a storage redundancy of another 7' — 1 dimensions that
is shown in red. To understand this, compare the asymptotic
(large K) capacity of MDS-PIR [[60]: Cuvps.pir = 1 — K./N
with the (conjectured) asymptotic capacity of MDS-TPIR [25]],
[26]: Cmps-tpir = 1 — (K.+T —1)/N. To achieve a non-zero
value of the asymptotic capacity, the former requires N > K,
but the latter requires N > K. + T — 1. Equivalently, the
former allows a read-dropout threshold of N — K. while the
latter allows a read-dropout threshold of N — (K. + T — 1).
In fact, going further to the (conjectured) asymptotic capacity
of MDS-XSTPIR [27], which also includes the X-security
constraint, we note that a non-zero value of capacity requires
N > K.+ X + T — 1. Intuitively, we may interpret this as:
the X-security constraint increases the demands on storage
redundancy by X dimensions and the T'-privacy constraint
increases the demands on storage redundancy by another 7'—1
dimensions. This is what is represented in Figure [2| Aside
from the K. dimensions occupied by data, the X dimensions
of redundancy added by the security constraint, and the 7' — 1
dimensions of redundancy added by the 7T'-privacy constraint,
the remaining dimensions at the right end of the figure are used
to accommodate read-dropouts. Indeed, this is what determines
the read-dropout threshold, as we note from Figure [2| that
N — (X + K.+ (T —1)) = Sthresh Now consider the private-
write operation which is novel and thus lacks comparative
baselines. What is remarkable is the synergistic aspect of
private-write, that it does not add further redundancy beyond
the X dimensions of storage redundancy already added by
the X-security constraint. Instead, it operates within these X
dimensions to create further sub-partitions. Within these X
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Fig. 2: Conceptual partitioning of total server storage space (N dimensions) into data content (K. dimensions), storage
redundancy that is exploited by private-write (X dimensions), and storage redundancy that is exploited by private-read (N —

K. — X dimensions).

dimensions, a total of XA + 71" — 1 dimensions are used to
achieve X a-secure updates that also preserve T'-privacy, and
the remaining dimensions are used to accommodate write-
dropout servers, giving us the write-dropout threshold as
X — (Xao + T —1) = Shresh Remarkably in Figure 2} the
(Key XA, T — 1, Shresh) partition structure for private-write
replicates at a finer level the original (K., X,T — 1, Sthresh)
partition structure of private-read. Also remarkable is a new
constraint introduced by the private-write operation that is
not encountered in prior works on PIR — the feasibility of
ACSA-RW requires X > T'. Whether or not this constraint is
fundamental in the asymptotic setting of large K is an open
problem for future work.

2) On Finite Field Representation of Submodels: Recall
that we assume finite field symbol representation of the
submodels. It is crucial to note that this allows arbitrary
mapping (including quantization and possibly compression)
of the real-valued submodels to the discrete alphabet (finite
field vectors in this case), and does not require any form
of “homomorphism” to be satisfied by the mapping. For
example, initially, the N distributed servers collectively store

(W,(CO)) in an X-secured form where for all k € [K],
ke[K

W,(CO) = f(QkO)) and f(-) is an arbitrary mapping of the real-
valued submodel to a finite field vector. Upon retrieving the
desired submodel Wéo), the user is able to recover the finite
field representation Wéo) of the desired submodel, from which
there must be some mapping to a (quantized) real—yalued
submodel, say g(-). The user applies g(-) to obtain Qg(o) as
the (quantized) old submodel, and trains locally to obtain the
new real-valued submodel, Qél). Applying the mapping f(-)
on the new real-valued submodel, the user obtains its finite
field representation W((,l) =f (Q((,l)). Now the user computes
the increment A; = W((,l) - W((,O), and updates the desired
submodel in the distributed database depending on which of
the servers are available in the private write phase. Note that
this requires no assumption of homomorphism in the mappings
f(-) and g(-), which can be arbitrary. As a side remark, while
our focus is only on communication costs, it is worthwhile to
point out that computational complexity concerns may also be
important in the choice of mappings f(-) and g(-).

3) Optimality: Asymptotic (large K) optimality of ACSA-
RW remains an open question in general. Any attempt to
resolve this question runs into other prominent open problems
in the information-theoretic PIR literature, such as the asymp-

totic capacity of MDS-TPIR [25], [26] and MDS-XSTPIR
[27] that also remain open. Nevertheless, it is worth noting
that Theorem [I] matches or improves upon the best known
results in all cases where such results are available. In par-
ticular, the private-read phase of ACSA-RW scheme recovers
a universally robust X-secure T-private information retrieval
[30], [61]] scheme. When K. = 1,X > XA + T, it achieves
the asymptotic capacity; and when K. > 1, X > XA + T,
it achieves the conjectured asymptotic capacity [27]. While
much less is known about optimal private-write schemes, it
is clear that ACSA-RW significantly improves upon previous
work as explained in Section [[II-A8| Notably, both upload and
download costs are O(1) in KI| i.e., they do not scale with K.
Thus, at the very least the costs are orderwise optimal. Another
interesting point of reference is the best case scenario, where
we have no dropout servers, |S£t)| =0, |81(Ut )| = 0. The total
communication cost of ACSA-RW in this case, i.e., the sum of
upload and download costs, is D; + U; = N ﬁ + ﬁ ,
which is minimized when K, = 1, Sthresh = Gthresh g X =
(N+Xa—1)/2. For large N, we have D, + U, =~ 2+2 =4,
thus in the best case scenario, ACSA-RW is optimal within a
factor of 2. Finally, on a speculative note, perhaps the most
striking aspect of Theorem [I|is the symmetry between upload
and download costs, which (if not coincidental) bodes well
for their fundamental significance and information theoretic
optimality.

4) The Choice of Parameter K.: The choice of the param-
eter K. in ACSA-RW determines the storage efficiency of the
scheme, n = K./N. At one extreme, we have the smallest
possible value of K, i.e., K. = 1, which is the least efficient
storage setting, indeed the storage efficiency is analogous to
replicated storage, each server uses as much storage space
as the size of all data (K L log, ¢ bits). This setting yields the
best (smallest) download costs. The other extreme corresponds
to the maximum possible value of K., which is obtained as
K. = N — (X +T) because the dropout thresholds cannot be
smaller than 1. At this extreme, storage is the most efficient,
but there is no storage redundancy left to accommodate any
read dropouts, and the download cost of ACSA-RW takes its
maximal value, equal to N. Remarkably, the upload cost of
the private-write operation does not depend on K .. However,
K., is significant for another reason; it determines the access
complexity (see Remark of both private read and write

9Note that this is true even if L is of the same order as K.



operations, i.e., the number of bits that are read from or written
to by each available server. In particular, the access complexity
of each available server in the private read or write phases
is at most (KL/K.)logs, g, so for example, increasing K.
from 1 to 2 can reduce the access complexity in half, while
simultaneously doubling the storage efficiency.

5) Tradeoff between Upload and Download Costs: The
trade-off between the upload cost and the download cost of the
ACSA-RW scheme is illustrated via two examples in Figure
[Bl where we have N = 10, Xo = T = 1 for the blue solid
curve, and N = 10, XA = 1,T = 2 for the red solid curve.
For both examples, we set K. = 1 and assume that there
are no dropout servers. The trade-off is achieved with various
choices of X. For the example shown in the blue solid curve,
we set X = (2,3,4,5,6,7,8). For the example in the red solid
curve, we set X = (3,4,5,6,7). Note that the most balanced
trade-off point is achieved when X = N/2.
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Fig. 3: Upload, download costs pairs (U;, D;) of the ACSA-
RW scheme in the asymptotic setting L > K > 1, for N =
10, XA =T =1 (the blue curve) and N = 10, XA = 1,7 =
2 (the red curve), with various choices of X. Both examples
assume that K, = 1 and there are no dropout servers.

6) Synergistic Gains from Joint Design of Private Read and
Write: A notable aspect of the ACSA-RW scheme, which
answers in the affirmative an open question raised in Section
4.4.4 of [2] for the case of partially-colluding servers, is the
synergistic gain from the joint design of the read phase and
the write phase. While the details of the scheme are non-trivial
and can be found in Section let us provide an intuitive
explanation here by ignoring some of the details. As a sim-
plification, let us ignore security constraints and consider the
database represented by a vector W = [Wy, Wy, -+ Wg]T
that consists of symbols from the K submodels. Suppose the
user is interested in W, for some index 6, € [K] that must be
kept private. Note that Wy, = W'ex (0;), where e (6;) is
the standard basis vector, i.e., the desired symbol is obtained
as an inner product of the database vector and the basis vector
ek (0;). To do this privately, the basis vector is treated by the
user as a secret and a linear threshold secret-sharing scheme

is used to generate shares that are sent to the servers. The
servers return the inner products of the stored data and the
secret-shared basis vector, which effectively form the secret
shares of the desired inner product. Once the user collects
sufficiently many secret shares, (s)he is able to retrieve the
desired inner product, and therefore the desired symbol Wy, .
This is the key to the private read-operation. Now during the
write phase, the user wishes to update the database to the new
state: W' = [y, -- Wo,—1, W, + Ay, W41+ -- , Wkl,
which can be expressed as W/ = W + A,ex (0;). This can be
accomplished by sending the secret-shares of Asex (6;) to the
N servers. The key observation here is the following: since
the servers (those that were available during the read phase)
have already received secret shares of ex(6;), the cost of
sending the secret-shares of Aex (6;) is significantly reduced.
Essentially, it suffices to send secret shares of A; which can be
multiplied with the secret shares of ex (6;) to generate secret
shares of Aser (6;) at the servers. This is much more efficient
because A;ex (0;) is a K x 1 vector, while the dimension of
Ay is 1 (scalar), and K > 1. This is the intuition behind
the synergistic gains from the joint design of private read and
write operations that are exploited by ACSA-RW. Note that the
servers operate directly on secret shares, as in homomorphic
encryption [62]], and that these operations (inner products and
scalar multiplications) are special cases of secure distributed
batch matrix multiplications. The reason for the need of barch
matrix multiplication in FSL is that each submodel consists of
multiple symbols, and as such multiple symbols, instead of just
one, are retrieved/updated during the read/write cycle of FSL.
Since CSA codes, which take advantage of batch processing
and vectorized codewords to gain additional communication
efficiencies, have been shown to be natural solutions for
secure distributed batch matrix multiplications [50], [58], it
is intuitively to be expected that CSA schemes should lead
to communication-efficient solutions for the private read-write
implementation as described above.

7) How to Fully Update a Distributed Database that is
only Partially Accessible: A seemingly paradoxical aspect of
the write phase of ACSA-RW is that it is able to force the
distributed database across all IV servers to be fully consistent
with the updated data, even though the database is only
partially accessible due to write-dropout servers. Let us explain
the intuition behind this with a toy exampleEG] where we have
N = 2 servers and X = 1 security level is required. For
simplicity we have only one file/submodel, i.e., K = 1, so
there are no privacy concerns. The storage at the two servers
is 4 =W+ Z, So = Z, where W is the data (submodel)
symbol, and Z is the random noise symbol used to guarantee
the X = 1 security level, i.e., the storage at each server
individually reveals nothing about the data . The storage
can be expressed in the following form.
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G
10The toy example is not strictly a special case of the ACSA-RW scheme,
because the number of servers N = 2 is too small to guarantee any privacy.
However, the example serves to demonstrate the key idea.
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so that G is the coding function, and the data can be recovered
as Sl — 52 =W.

Now suppose the data ¥ needs to be updated to the new
value W/ = W + A. The updated storage 57,55 should be
such that the coding function is unchanged (still the same G
matrix) and the updated data can similarly be recovered as
S1 — S5 = W’. Remarkably this can be done even if one
of the two servers drops out and is therefore inaccessible. For
example, if Server 1 drops out, then we can update the storage
only at Server 2 to end up with S7 = S; = W + Z, and
Sy =7 — A, such that indeed S7 — S = W’ and the coding
function is unchanged.

3-[21-b JE2-6 I
S 1S5 |0 1| Z—A |0 1| |Z' |

Similarly, if Server 2 drops out, then we can update the
storage only at Server 1 to end up with S = W + A+ Z,
and S, = Sy = Z, such that we still have S| — S, = W' and
the coding function is unchanged.

=82l ] e

SLl o [S2| |01 Z | |0 1| Z |-
This, intuitively, is how the paradox is resolved, and a dis-
tributed database is fully updated even when it is only partially
accessible. Note that the realization of the “noise” symbol
is different for various realizations of the dropout servers,
7'+ 7.

While the toy example conveys a key idea, the general-
ization of this idea to the ACSA-RW scheme is rather non-
trivial. Let us shed some light on this generalization, which
is made possible by the construction of an “ACSA null-
shaper”, see Definition [§| Specifically, by carefully placing
nulls of the CSA code polynomial in the update equation, the
storage of the write-dropout servers in SS ) is left unmodified.
It is important to point out that the storage structure (i.e.,
ACSA storage, see Definition is preserved, just as the
coding function is left unchanged in the toy example above.
Let us demonstrate the idea with a minimal example where
X =2T=1,Xa=0,N = 4. Let us define the following
functions.

S(a) =W +aZ; + a*Z,, 21
Q(a) = ex(0;) + aZ’, (22)

where W = [IWW;, Wy, --- | Wk] is a K x 1 vector of the K
data (submodel) symbols, Z1,Z5,Z’ are uniformly and inde-
pendently distributed noise vectors that are used to protect data
security and the user’s privacy, respectively. Let o, ao, a3, oy
be 4 distinct non-zero elements from a finite field F,. The
storage at the 4 servers is S(ai), S(az2), S(as), S(as),
respectively. Similarly, the read-queries for the 4 servers are
Q(a1), Qag), Q(as), Q(ay), respectively. We note that the
storage vectors and the query vectors can be viewed as secret
sharings of W and e (6;) vectors with threshold of X = 2
and T = 1, respectively. Now let us assume that Sg ) — {1}
for some t € N, i.e., Server 1 drops out. Let us define the
function Q(a) = (a3 — @)/, which is referred to as ACSA
null-shaper, and consider the following update equation.

S'(a) = S(a) + Q(a)AQ(a). (23)

Inspecting the second term on the RHS, we note that

Qa)A+Q(w)
= ail(oél —a)A¢(ex(0:) +aZ') 24

1
= aAt (aleK(Ht) + Oé(OélZ/ - eK(9t>) - QQZ/) (25)
=/, (eK(Ht) +a(Z - ozl_leK(Gt)) — a2a1_1Z') , (26)
= A (ex(6) +aly - o?hy). 27)

where I; = Z/ — afleK(Qt) and I, = al_IZ’. Evidently, by
the update equation, the user is able to update the symbol of
the 0!" message with the increment A;, while maintaining the
storage as a secret sharing of threshold 2, i.e.,

§'(a)

= (W + Aver(0y)) + Zy + Ady) + 2 (Zy + A).
(28)

However, by the definition of ACSA null-shaper, we have
Q(a1) = 0. Thus S'(e1) = S(aq), and we do not have to
update the storage at the Server 1. In other words, I, and I,
are artificially correlated interference symbols such that the
codeword Q(1)Q(cr) is zero, and accordingly, the storage
of Server 1 is left unmodified. Note that ACSA null-shaper
does not affect the storage structure because X =2 > T = 1.
The idea illustrated in this minimal example indeed generalizes
to the full ACSA-RW scheme, see Section for details.

8) Comparison with [|12)]: Let us compare our ACSA-RW
solution with that in [12]. The setting in [12] corresponds to
X=0,T=1,XaA=0, and |Sq(f)| = |87(>t)| =0 for all t € N.
Note that our ACSA-RW scheme for X = 1,7 =1,XA =0
and K. = 1 applies to the setting of [12] (X = 1 security
automatically satisfies X = 0 security). To make the compari-
son more transparent, let us briefly review the construction in
[12], where at any time ¢,t € Z*, each of the N servers stores
the K submodels in the following coded form.

w4 DA, V€ [K]. (29)

are distinct random scalars
generated by User ¢ and we set zéi) = 1. For completeness
we define Ag = 0,2 = 0, W) = W% vk € [K]. In

addition, the N servers store the random scalars (z,(:))

For all ¢ € N, (z,(f))k -
€

. . ke(K]’
as well as the increment A; according to a secret sharing

scheme of threshold 1. In the retrieval phase, User ¢ retrieves
the coded desired submodel Wétt_z) + z(g:_l)At_l privately
according to a capacity-achieving replicated storage based PIR
scheme, e.g., [[14]]. Besides, User ¢ also downloads the secret

(H))

shared random scalars (zk and the increment A;_4

ke[K]

to correctly recover the desired submodel ng_l). In the

update phase, User ¢ uploads to each of the N servers the
following update vectors Pg) for all k£ € [K].

P® — Zl(:_l)At—l, k#6;1,

¥ k=0,_1.

Z]E:t) At —
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Also, User t uploads the secret shared random scalars
(t))
(Zk ke[K

perform an update, each of the IV servers updates all of the
submodels k € [K] according to the following equation.

and the increment A; to the N servers. To

(Wl(:fz) i Z](ctil)At—1> n P](Ct) _ W}(gtfl) + z,(f)At- (31)

Perhaps the most significant difference between our ACSA-
RW scheme and the construction in [12] is that the latter
does not guarantee the privacy of successive updates, i.e.,
by monitoring the storage at multiple time slots, the servers
are eventually able to learn about the submodel indices from
past updateﬂ On the other hand, our construction guarantees
information theoretic privacy for an unlimited number of
updates, without extra storage overhead. Furthermore, we note
that the normalized download cost achieved by the construc-
tion in [12]] cannot be less than 2, whereas ACSA-RW achieves
download cost of less than 2 with large enough NN. For the
asymptotic setting L/K — oo, the upload COSIFZI achieved
by [12] is at least 2N + 1, while ACSA-RW achieves the
upload cost of at most N. The lower bound of upload cost of
XSTPFSL is characterized in [[12] as N K. However, our con-
struction of ACSA-RW shows that it is possible to do better["]
In particular, for the asymptotic setting K — oo, L/K — oo,
the upload cost of less than [V is achievable by the ACSA-RW
scheme.

9) Comparison with [52|]: Let us also briefly review the
4-server information-theoretic DORAM construction in [52]
to see how our ACSA-RW scheme improves upon it. Note
that the setting considered in [52] is a special case of our
problem where X = 1,7 = 1,XA = 0,K. = 1 and
|S1(,f)| = |S£t)| = 0 for all ¢ € N. First, we note that in the
asymptotic setting L/K — oo, the upload cost achieved by
the ACSA-RW is the same as that in [[52]. Therefore, for this
comparison we focus on the read phase and the download cost.
Specifically, the information-theoretic DORAM construction
in [52] partitions the four servers into two groups, each of
which consists of 2 servers. For the retrieval phase, the first
group emulates a 2-server PIR, storing the K submodels
secured with additive random noise, i.e., W + Z. The second
group emulates another 2-server PIR storing the random noise
Z. To retrieve the desired submodel privately, the user exploits
a PIR scheme to retrieve the desired secured submodel, as well
as the corresponding random noise. Therefore, with capacity-
achieving PIR schemes, the download cost is 4 (for large

"This is because the update vectors (30) for the K submodels at any time
t can be viewed as Py = span{At, At,l}. For any two consecutive time
slots ¢ and t+1, it is possible to determine span{A;} = span{A¢, A¢_1}N
span{A¢41, At} = Py N Pig1. Due to the fact that for User ¢, the update
vector for the ¢ | submodel only lies in span{A;}, any curious server is
able to obtain information about 6;_1 from Py if A; is linearly independent
of Atfl.

12In [[12] the achieved upload cost is N LK + L+ K. However, in terms of
average upload compression, e.g., by entropy encoding, allows lower upload
cost. For example, in the asymptotic setting L/K — oo, the upload cost of
(2N +141/(N — 1)) may be achievable.

31t is assumed in [[12] that for the desired submodel, the user uploads
L symbols for the update, while for other submodels, the user should also
upload (K — 1)L symbols to guarantee the privacy. However, it turns out that
the uploaded symbols for the update of the desired submodel and the symbols
for the purpose of guaranteeing the privacy do not have to be independent.

K). On the other hand, our ACSA-RW scheme avoids the
partitioning of the servers and improves the download cost by
jointly exploiting all 4 servers. Remarkably, with the idea of
cross-subspace alignment, out of the 4 downloaded symbols,
the interference symbols align within 2 dimensions, leaving
2 dimensions interference-free for the desired symbols, and
consequently, the asymptotically optimal download cost of 2
is achievable. Lastly, the ACSA-RW scheme also generalizes
efficiently to arbitrary numbers of servers.

10) On the Assumption L > K > 1 for FSL: Finally, let
us briefly explore the practical relevance of the asymptotic
limits K — oo,L/K — oo, with an example. Suppose
we have N = 6 distributed servers, we require security
and privacy levels of XA = T = 1,X = 3. Let us set
K. = 1, and we operate over Fg. Consider an e-commerce
recommendation application similar to what is studied in [3]],
where a global model with a total of 3,500,000 symbols
(from [Fg) is partitioned into &K' = 50 submodels. Each of
the submodels comprises L. = 70,000 symbols. Note that
L > K > 1. Let us assume that there are no dropout
servers for some ¢ € N. Now according to Lemma [2] the
normalized upload cost achieved by the ACSA-RW scheme
is Uy = WW ~ 3.00857. On the other hand, the
normalized download cost achieved is D, = 6/2 = 3. Evi-
dently, the asymptotic limits K — oo, L/K — oo are fairly
accurate for this non-asymptotic setting. For this particular
example, the upload cost is increased by only 0.29% compared
to the asymptotic limit. On the other hand, the download cost
is increased by only 1.4 x 10722% compared to the lower
bound (evaluated for K = 50) from [30].

IV. PROOF OF THEOREM[I]

A. Motivating Example: N = 9, K. = 2, X =

1L, XA=1

To make the presentation of the general scheme (in Section
IV-BJ|) more accessible, in this section let us consider a motivat-
ing example where N =9, K, =2, X =4,T =1, XA = 1.
In particular, following the observation in Section the
total server storage space of the NV = 9 servers is represented
as an N = 9 dimensional space, where K. = 2 dimensions
are occupied with model data, X = 4 dimensions are occupied
with noise that is independent of the model data, and accord-
ingly, the remaining N — K. — X = 3 dimensions represent the
storage-redundancy that will be exploited by the private-read
phase of the ACSA-RW scheme. Within these 3 dimensions,
T — 1 = 0 dimensions are required to enable 7' = 1
private-read, thus leaving us 3 dimensions for elastic read-
dropout resilience, i.e., the read-dropout threshold is 3. On the
other hand, private-write functionality leverages the X = 4
dimensions where XA and T-privacy constraints requires a
total of XA + 7 — 1 = 1 dimensions, and the remaining
X —1 = 3 dimensions determine the write-dropout threshold.
The conceptual partitioning of the total server storage space
is illustrated in Figure [

With these conceptual ideas in mind, let us construct the
ACSA-RW scheme for this setting step by step. Let us set
L = 12, i.e., each submodel consists of L = 12 symbols



Fig. 4: Conceptual partitioning of total server storage space for the motivating example.

from the finite field F,. The reason for choosing L = 12
is explained as follows. By the construction of our ACSA-
RW scheme, private-read and private-write cycles can be
viewed as consisting of several sub-operations where in each
sub-operation, 3 — |$7£t)| and 3 — |Sg)\ symbols of the de-
sired submodel are retrieved and updated, respectively. Since
3 —18"]) € {1,2,3},(3 = |SY)) € {1,2,3}, the size of
the submodels must be multiples of lem({1,2,3}) = 6 to
guarantee the functionality of the sub-operations under all
circumstances of read-dropouts and write-dropouts. Besides,
since we set K. = 2 in the motivating setting, by our ACSA-
RW scheme, the number of g-ary symbols in each submodel
is set to be L = 2 x 6 = 12. Note that we choose L = 12
mainly for simplicity. In our general scheme, the size of
the submodels can be any multiple of 12, thus it can be
arbitrarily large. Let (a1, e, -+, a9), (f1, f2, f3) be a total
of 12 distinct elements from the finite field F,,¢ > 12. For
all t € Z*,5 € [6],k € [K],t € [2], let us define

W (G.i) = W (i + 205 - 1)),

ie., the L = 12 symbols of each of the K messages are
reshaped into a 6 x 2 matrix. Similarly, for all t € N,j €
[6],7 € [2], we define

(32)

AL = Ay +2(j - 1)). (33)

For all ¢t € Z*,j € [6],¢ € [2], let us define the following
vectors.

, T

W = [W0G.0, W0 6.0, WG] . 6

In other words, for all t € Z*,j € [6],5 € [2], the vector

W§t2 consists of the (i +2(j — 1)) symbol of all submodels

at time ¢. Let (Zl(ox))l 2]l
’ S ,TE

vectors from Ff . Now we are ready to construct the initial
(i.e., t = 0) ACSA storage at the N = 9 servers. In particular,
the storage at Server n, n € [9], is as follows.

be uniformly i.i.d. column

AR W LWL Y e 2L
W)+ A W+ Yy an 2,
Bt ek
o Wit oy Wi + e o 'y,
AR WO+ LW+ 0 2,
_anl_fS W(()‘Oi +3 1—f2 WG(S?% + 216[4} oy 1Zé,l_

(35)

Note that in each row of , K. = 2 model data terms
as well as X = 4 iid. uniform random noise terms are
coded according to the Cauchy-Vandermonde structure [58]],
where the Cauchy terms carry data symbols and Vandermonde
terms carry noise terms. This guarantees X = 4 secure
storage because of the MDS coded noise terms. Note that
in each row, the constants f, in the denominator of Cauchy
terms are distinct so that these terms are linearly independent.
Now, consider the first term (and the second term) in each
row of @I) If viewed column-wise, the constants f, in
the denominator of Cauchy terms are distinct for at most
any 3 consecutive rows. This fact is important for elastic
dropout resilience in private-read and private-write mecha-
nisms because our ACSA-RW private-read and private-write
functionality consists of a series of sub-operations, and in each
sub-operation, several (at most 3 in this setting) symbols in
the column-wise direction (e.g., Wl(tl), WQ(tl) and W:,Etl)) of the
desired submodel are retrieved/updated. This fact guarantees
that the desired submodel symbols to be retrieved/updated are
linearly separable due to distinct f, constants.

Now let us assume that User 1 experiences |S£1)\ =
1, |Sq(1,1)| =1, i.e., there is 1 dropout server in the read phase
and 1 dropout server in the write phase. Note that the two sets
can be arbitrarily realized. Let us denote 351) = [N] \Sﬁl),
38 - [N] \Sq(ﬂl). Now, let us construct the private-read
scheme to retrieve the L symbols of the desired submodel 6;.
To this end, User 1 generates uniformly i.i.d. column vectors
(2511) ) - from FX and sends the ACSA-RW query to the

7

th (1)

n'" server, n € S, ', as follows.

Q(lael) —
i O T 7
ex(61) + (an = f1)Zy 1| |ex(6h) + (an — f3)Z3,
ex(01) + (an — f2)Zo} | [ex(81) + (an — f)Zi}
ex (1) + (an — f)Zy) | |ex(6r) + (an — fo)Zi)
ex(01) + (an = F)ZL | [ex(01) + (an — f5)Z51)
ex(01) + (an — f2)Z}} | |ex(81) + (an — f)Z1Y
ex(01) + (an — f)Z8)] Lex(0)) + (an — f2) 2]
Q(nl 61) Q'(n.l 61)
(36)
Note that by the cyclic structure of Q%l’al), it suffices



th

to upload (eK(Ql) + (an — fz)iﬁlf) 5 to the n
e

n € 37(01). This fact is important in terms of reducing the
upload cost. Since the standard basis vector containing the
information of the desired index e (6;) is protected by a
uniformly i.i.d. random noise vector, 7' = 1 privacy is guaran-
teed. Upon receiving the query sent by the user, the nt" server,

constructs the followmg 6 vectors according to the

n e 3 =
query, denoted as Q(l 01), Q (1,6,) S ,Q(1 1) respectively.

server,

S=f (ex(0) + (an — M)Z1)

Samd (ex (1) + (an — f2)Z5))
OK><1 ’
OK><1
Oxx1
Oxx1
OK><1
Oxx1

Stz (o (61) + (an — f3)Z4)
Se=ls (ex(01) + (om — A1)Z1Y

OK><1
| Oxx1 ]
i 0K><1 ]
Oxx1
Oxx1
Orx1 ;
_ 1
St (e (1) + (an — f2)25]
oy — 7(1
_?fj eK(al)"_(an_f?))Z:(},% i
S N
b (exc (1) + (an — f2)Z5)
oy — 1
=l (ex (1) + (an — f1)Z{]
Oxx1 ;
0K><1
OK><1
L Oxx1 ]
i 0K><1 ]
0K><1

Sals (ex (1) + (an — f2)Z5)
an— 7(1 ’
amh (erc(61) + (o — f3)Z5)
0K'><1
L OK><1 i
[ Oxx1 1
0K><1
0K><1
Ok x1 ; (37)
Sl (exe (1) + (on — f1)Z{)
| 5F (ex(00) + (an — )25

where Og w1 is K x 1 zero vector. As mentioned before, in our
ACSA-RW scheme, the private-read functionality consists of
a total of 6 sub-operations, in each sub-operation, 2 symbols
of the desired submodel are retrieved. Indeed, the 6 vectors

QY. QU -, QU™ will be used in each of the sub-
operations, and they can be viewed as scaled version of the
query sent by the user. Such scaling, in our formal presentation
of the general scheme, is made possible by the element named
ACSA-Packer, as defined in Definition @ Now the n!" server,
n € Srl), responds to the user with the answer defined as

((s17) as)
OL:01)

read scheme, for example, let us consider (SS{”) Qn’1

o)

. To see the correctness of the private-
1€[6]

—fs ( I (0 I (0
= wi ¢ W
fi—fs -1 11 an — f3 1.2
T
3 ar 'z | (ex(Br) + (an — )ZY)
ze[4]
a, — f1 1 < (0) 1 i7(0)
+ w4
f2 _fl <an f2 2,1 Qp _fl 2,2

T

+ Z at™ IZ(O) (eK(al)Jr(a

ze[4]
(38)
1 o T 1 o T
- (WH) ex (1) + — (ng) ex(61)
+ 3 gt (39)
me|[6]
= f1 ———W(1,1) + fQWé?)@ 1)
+ > ap- 1I§1,)n, (40)
me|[6]

where (Il(lfn) . are various interference symbols, whose
"/ mel6

exact forms are not relevant. Note that the terms in (38) are
viewed as rational functions with respect to a,,. Thus
follows from some manipulations on the rational functions and
the fact that the denominators of the terms %2=J% and 22—/

.. . —J: fa—f1
are used for normalization, which are the remainders of the

polynomial division (e, — f3)/(a, — f1) and (e, — f1) /(o —
((S(O))T@(l’el) can be

! mt negﬁ.”
viewed as a linear system with a Cauchy-Vandermonde struc-
ture, therefore, the desired symbols Wa(? (1,1) and W(O)( 1)

can be recovered by inverting the following decodmg matrix
C [63].

f2), respectively. Note that

1 1 a5
Fi= My f2= aS(l)(l) sV
1 .« .. a5< )
fi—a e f2—a ) SWM(o
C= | e e S an
1 1 a5
fi= YD (s fz_aéﬁl)(s) 3 (®)

where {§£ )(1),351)(2)7~-~ 735,1)(8)} = 3&1). Following a
similar argument, it can be readily checked that other symbols



of the desired submodel are recoverable by the user. This
completes the private-read cycle at ¢t = 1.

After User 1 completes the local training of the submodel
and generates the increment A;, (s)he updates the desired
submodel according to the private-write mechanism of our
ACSA-RW scheme. Specifically, the user generate i.i.d. uni-
form symbols (Z 1(11) ) . from the finite field IF,. For all

€
n € 38), the user encodes the L =
increment as follows.

12 symbols of the

1

A= Al el ) @
e T vy Tt
&”=%iﬁA$+%LfAQ+ZQ, (44
AV = Al Al 20 @)
zg”:aj_f»gf;un SAU L ao
AW L Amy AN+ 76 @

B Oy — fl ’ Ay — f

and P\ = (diag(AM g, Al Ty, Al Toi),

diag(ﬁf)ng,ﬁg)IgK, &él)IQK)) is sent to the n' server.

XA =1 security is guaranteed because of the uniformly i.i.d.

random noise terms. Note that it suffices to upload (ﬁgl)) o]
7

to the nt" server, n € SS ). The construction of P,(Ll’el) can
be done by server-side processing. Once the encoded ACSA-
RW increment is available at the servers n,n € 38 ),
construct the following two diagonal matrices.

they

f’iﬂ,’f“=diag< e LYNGS P LYNC Y

Ji— f2 fa—f1
an — f1%(1) - f3z)
AWT, AWT,,
fs—f 72 f1 fa o2 ok
an a’"
g A ALY ) @
(1,61) an — fixWy M — f3z)
P = dia, Ig, Ay g,
2 g(fs—fl SR R M
an = f3x)y % — fax)
AT, AT,
fomfs 0 Ny K
‘;1_};2 (1>IK,C;::£AQ)IK>. (49)

Recall that the private-write consists of a total of 6 sub-
operations, and in each sub-operation, 2 symbols of the desired
submodel are updated, which correspond to the 6 encoded
(851)). . To ensure that the structure
of the encoded increment szyerrf ols is in accordance with the
storage structure, (135117’161),1321”291)> are constructed, which

. . 1,0
can be viewed as scaled versions of P,g 1). In our formal

presentation of the general scheme, this scaling is done by
the element named ACSA Unpacker, as defined in Definition

increment symbols

l To understand this more clearly, let us consider the term

%A(l) as an example.
an -
oA
:?:ﬁ(%lﬁAQ+%LfAQ+Z“)6m
= o - flASi + 3l i (51)

me|[2]

(1) (1 o
where [ § i i § i o are various interference symbols, whose

exact forms are not important. (51)) follows by regarding (50)
as a rational function with respect to a,, and noting that the
denominator of = f 2 is used for normalization. The other
terms in (P(1 1) P(1 91)) can be similarly manipulated.

Recall that we assumed that User 1 experiences \Sful)| =1,
without loss of generality, let us denote the dropout server
{so}. Server n, n € st
) with the following two diagonal matrices

. 1)
as Server s, i.e., Sfu scales

=(1,01) (1,0
(P( ) P;’z )

w °

n,l
respectively.
-« a, —Q a, —Q
in)l _ dlag ( S0 s n S0 IK, n S0 IK,
’ fi— fo—as, fz— o,
a, —Q a, —Q Qa, —Q
n So IK’ n So IK7 n So IK> ;
fl — Qg f2 — Qg f3 — Qg
(52)
-« a, —Q a, —Q
9(1)2 = diag ( %o 1k, 1k,
f3 flfaso f2*aso
o — aSO Qp = Qsgp O = Qs p >
K> K
f37aso flfasg f27a90
(53)

As described in the observation section, this idea is referred
to as ACSA Null-shaper, and is formally defined as Defi-
nition [§] in the general scheme. To see why storage con-

sistency is preserved, for example, let us consider the term
Xn—Xsg o — f2

fi—asq fi—f2
QA — Qgq Oy — f2 3(1)
i—as, fi—fa
Qn — Qg 1 (1) i1 (1)
- AL+ o (54
fl — Qg (€77 b m;p] b
— 1
f Al + Z VI (55)
1 mel3]

(1 ) )
where for all m € [3], I iim are various interference

symbols. The other terms can be similarly manipulated so
that the storage structure is preserved. Now, the n'" server,
n € Sw ,
equation.

S(l)

updates its storage according to the following

S(O) + P(l 91)9(1) Q(l ,01) + P(1 91)9(1) Q(l ,01)

(56)
To see the correctness of the private-write mechanism of our
ACSA-RW scheme, recall that

P QY (57)



1 i1 (D)
g,% + ZmG[B] ay, ! 1 1,1,m

(ex(6r) + (0 — F)ZL)

N—

(an -

1 PRPREE ()
(a iszé,% +Zm€[3] ot T 2,1,m)
<eK(91) (an — fg)ZS})

)

Ry Al £ S Sl 72 (j)’” -t (58)

L AD) 1)
a7 R0t Zmewl a5 m

i 21
(a —fdAéi+Zme[3]a YT 60 m
_ (ex(®1) + (an - £2)Z8)) |

Aflex

an *fl (01) + X e on' M im
= AWer(01) + X ey 0 tm
_ (xnl_f?’ A:(SHGK 01) + Zme[4] a,’]f‘lig,Lm 59)
T ANex (00) + X e o an |
ocnl_f2 AS%EK(&) + Zmem St P
_(xnl—fg AfaffeK(fh) + Zme[4] ay 16,1 m
and that
PR (60)
_anl—f3 ANer(01) + 2 me) O’ M om
L ANer(01) + X epy o o m
_ an1—f2 Ag%eK(ﬁ) + Zme[4] a™ 1372,m 6
a o 1,f3 S%eK(Qﬁ + 2 e O Myom|’
A er (0) + X e b s om
| Aer (01) + X ey @ o2

where for all j € [6],i € [2],m € [4], I, are various
interference symbols. Therefore, by the update equation, we
have (62)-(64) (shown at the top of the next page), which
preserves the storage structure and updates the desired sub-
model correctly. Crucially, by the constructions of 9511)1 and

97(11)2 it is guaranteed that Qg?1 = Qgi)Q = 0, therefore the
update equation does not modify the storage at the dropout
server sg, which achieves the desired write-dropout resilience
functionality. This completes the write cycle at ¢ = 1. Since
the storage structure is preserved, User 2 may perform the
ACSA-RW scheme even though the user is oblivious of the
prior history of server dropouts. The general scheme, which
is presented in the next section, builds upon the motivating
example and can be constructed for general settings and server

dropouts.

B. The General Scheme

For all t € N, we require that the number of read and write
dropout servers is less than the corresponding threshold values,
0< \Sr(t)| < Stresh and 0 < |ng,t)| < Gthresh “Since the read

and write dropout thresholds cannot be less than 1, we require
that X > XA+ 7T, and N > K.+ X 4+ T for a positive
integer K. Let us define J = ¢ - lem ([SPresh] U [Sibresh)
and we set L = JK,., where £ is a positiv integer. In
other words, i | J for all i € [Sthresh] y [Sthresh] For ease of
reference, let us define R\ 2 Gthresh _ |8,€tsv\, U A g / RW
RY & gwesh 50 ang Ul 2 7/RY for all t € N.
Note that it is guaranteed by the choice of J that U,gt), Uff )
are positive integers for all £ € N. Indeed in the ACSA-RW
scheme, private read and write operations can be viewed as
operations that consist of KcUﬁt) and Kchs,t) sub-operations,
and in each sub-operation, Rg) and Rg) symbols of the
desired submodel are retrieved and updated, respectively. The
choice of J guarantees that the number of sub-operations
is always an integer, regardless of \Sﬁt)| and \Suf)|. The
parameter £ guarantees that L is still a free parameter so that
L/K — oo is well-defined. In other words, L can be any
multiple of K - lem ([SPresh] U [STresh]) | Let us define p =
max(Sthresh Gthresh) “We will need a total of N + max(u, K,)
distinct elements from the finite field Fy, ¢ > N +max(u, K.),

denoted as (a1, o, -, an), (fl,fg, e ,fmax (u,K.))- Letus

define the set 351 =[N ] \Sff , and the set S, ® = [N]\ 8.
Forall t € Z*,j € [J], k € [K ]zE[K]letusdeﬁne
WGy = W i+ Ke(G = 1)), (65)

ie., the L = JK, symbols of each of the K messages are

reshaped into a J x K. matrix. Similarly, for all ¢ € N, j €
[J],i € [K.], we define

()

AJ}'

i =8+ Ke(j — 1)) (66)

For all t € Z*,j € [J],i € [K.], let us define the following
vectors.

-
Wi = (WG w0 G WG] 6
Further, let us set Z, = {Z(O)} e , where Zg 32 are
1.i.d. uniform column vectors from ]F}[( vj e ,x € [X]. For

allt e N, je[J],z € [X], let ZE; be K x1 column vectors
from the finite field F,,. For all ¢ € N, 4 € [max(p, K.)], s €
[T], let thz be iid. uniform column vectors from

FX, and let us set zh i

{ (f)}ie[max(ch)]:Se[T] .

{ ?ZI} ® , where for all t € N, €
) el zE[K]ﬂcE[XA]

[Uéf)],i € K.,z € [Xal, ZﬁZI are ii.d. uniform scalars
from the finite field F,.

The ACSA-RW scheme (Definition [9) is built upon the ele-
ments introduced in Definitions [[H8] The ACSA-RW scheme
is given in the form of the construction of the answers returned
by the servers and storage update equations, with Definitions
[TH8] as building elements. Therefore, it is straightforward to
implement the ACSA-RW scheme if the elements as defined
in Definitions are properly constructed.

14The purpose of £ is primarily to allow the scheme to scale to larger values
of L, one could assume & = 1 for simplicity.
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mo AR (00) + Cneyy o Tom|  [amAisex®) + e on Tiom
A, Mew(01) + Dmer ' I2m a,L£f1 Aéf%eK(el) T 2me @ I22m
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' e Af; er(01) + 3, e o aim LA er(01) + X e o Ha2im
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L an 7f3A§S 1eK(91)+Zm€[4] Qp, IIGIm_ Lo 171‘2A§S,%el{(91)—"_23777,6[4] Qp, 1IG,2»m_
L (W) + alew(0) + —+ (WD + ANex(01)) + Sy 0z 2 ]
an—f1 1,1 1,19K\Y1 an—f3 1,2 1,2 1 z€[4]
~7(0 1 0) 1
L (W) + Alex(01)) + 1 (WED + AlDex (01)) + 3, 0 Zéi
< (0 1 0) ar-17,1
_ Wl_f3 Wg% +Ag,ieK(91) anl_fz W:(’,2+A3 ser(61) +Zm€[ n i(‘)a)c
- - (0 1 0 1) ar-17(1
i (WAL + Alllex(01)) + otg (WiD + Alger(01)) + Xpepy o 200
= W+ Al ex(61) 5 W+ Al ex(01) + 2 se zflz(l)
<7 (0 0 1
T W+ Al ex (1)) + -7 (WED + Alex (1)) + Xy of ég)g
r 1 r_1ry(1
1f1WE ;+ — _fgwii% + Y e O 1Z§1;
an *f2W%1 f1W%2+ZI€[4] o~ 1Z(1)
z—1
_|= —fswgl) o Waﬁzxema ) _ s,
on— W4(1 ) S 2 + Ew€[4] az 1Z( ;
1) s—1ry(1
o 7f2w?1 v el 12(1)
L —f3W6’1 z€[4] o IZ

AL

(62)

(63)

(64)

Definition 1. (Pole Assignment) If i > K., let us define the
wx K. matrix F to be the first K. columns of the following

WX [ matrix.

[ h
f2 bil
S

Fi

L fu f,ufl

S
fu f3
h : (68)
e
f2 fi]

On the other hand, if © < K., let us define the u x K. matrix
F to be the first i rows of the following K. x K. matrix.

LB
fe. fi
S
‘}:é N .

WEEE

Fro—1 Nch ]
fr.—1
: (69)
eoh
Ik, ]

Let (f;; )]E[J] ic(x.) be atotal of JK elements from the finite
field F, which are defined as follows.

fir fiz
fo1  fo2
fr1 fie

J1.K. F
fa.k. F

. = (70)
frK. F

According to the definition, we have the following two

propositions immediately.

Proposition 1. For all i € [K.],m,n € [J] such that m <mn,

[[m : n]| < p, the constants (f;;)

Proposition 2. For all j € [J], the constants (f;;) i€l

distinct.

Definition 2. (Noise Assignment)
N, s € [T}, let us define the u x K. matrix z

jE[m:n]

K. columns of the following 1 X | matrix.

I R T )
Al 7 4l ]
B A
~(t . .. ~(t
ZE‘%%’S ®) ) Z%i
~(t ~(t ~(t ~(t
L Z#’S Zu—l, Z2,s Zl,s-

are distinct.

K] are

If u> K., forall t €
to be the first

(71)

On the other hand, if 1 < Kc, forall t € N;s € [T), let us

define the p x K. matrix Z

following K. x K. matrix.

Forall t € N,s € [T, let(

vectors from FX

AU/ O/

zy. 17y, Zi s
2. 7y :
| Zy)

zy) Zi. 1z

ZS)’ q)uE[J],iE[KC]

q’

which are defined as follows.

Y to be the first . rows of the

(72)

be column



- (¢ - (¢ - (¢ ~
2.,1“ 2.,2,( 2,.Kc,s _ . ) (73)
Loy e BN ~6)

ZE],):l,S ZS,)Q,S T ZS’)I{CVS ZS

Definition 3. (ACSA Storage) For any t € Z*, the storage
at the N servers is said to form an ACSA storage if for all
n € [N], S has the following form.

1 wt) z—17
EiE[Kc] an—f1,i % 4 + Ewe [X] ¥n z
1 x—1
S(t) — Zie[Kc] an—f2,'iW T Zme [X] On Z27 ) (74)
W e15()
Wi+ 2 eeix) n 1ZJ,;L»
Note that X i.i.d. uniform random noise terms are MDS coded
to guarantee the X-security.

Yielk) asTon

Definition 4. (ACSA Query) For any t € N, the read-queries
(t79t,)>

(Qn n€e[N]

an ACSA query if for all n € [N], we have

by User t for the N servers are said to form

QU = (@7, QUY, Q). a9
where for all i € [K]
erc(0r) + (= f1.) Zery o 24
T Lt
K (00) + (an — f10) Xsemy afl_lzfli)i,s
Note that for all t € N,n € |[N], H (Qﬁf")“)

K max(u, K.) in g-ary units, because according to Definition
and Definition 52*9” is uniquely determined by its
K max(u, K.) entries (the rest are replicas). Also note that T
i.i.d. uniform random noise terms are MDS coded to guarantee
the T-privacy.

Remark 2. Indeed, the fact that H (Q (#:60)

Kmax(u, K.) in q-ary units is jointly guaranteed by
the cyclic structures of pole assignment and noise assignment,
i.e., Definition |I| and Definition These cyclic structures
are important in terms of minimizing the entropy of ACSA

queries, so that it does not scale with the number of symbols
L.

Definition 5. (ACSA Increment) For any t € N, the write-

queries (Pr(lt’et)) ) by User t for the N servers are said
ne

to form an ACSA increment if for all n € [N], we have

e L R < ST ) I )
where for all i € [K_],
P(tﬂt)
X X
= diag ( 2)1 ZIKR<t)7A£1,)2,iIKRg;>’ o ’AEL,)U;%IKRSP) )

(78)

and for all { € [U. t)]
G

n,l,i

- T

je[(e—1)RY +1: m“)]

f S S artZy,

z€[XA]

(79)
Note that for all t € N,;n € [N], H (Pf(f’et) - UK,
in q-ary units. This is because for all i € [K.], P g

n,i

uniquely determined by (A(t) Also note that X

71,6,1)66[[](1)]'

w

MDS coded i.i.d. uniform noise terms are used to guarantee
the X a-security.

Definition 6. (ACSA Packer) For all t € Nyn € [N], the
ACSA Packer is defined as follows.

=0 = (=9,) 80
" bt ) eelu® il 80)
where for all { € | (t)}, i€ [K.]
=(t)
“=n,l,i
A (an — f
_ diag [ Wretxann 1)1 .
overan }(flt frir)
H K\ {i }(an f]z ) I
I eirap iy (foi = foir)
x diag(0Lx, -+, 0Lk, g, - 7111(, Olg,---,0Ik ).
RM(£—1)0Ig’s  RM 1Ig’s  (J —£RM) Olg’s
(81)

Note that the ACSA packer is a constant since |87(.t)
globally known.

Definition 7. (ACSA Unpacker) For all t € N,n € [N], the
ACSA Unpacker is defined as follows.

T — (Tu) x®

| is

(82)

n,l> +n,2"

t
9 T5L7)KC) )
where for all i € [K.],

ILcro(an — fj:4)
T'EL)'L _dlag je]:l ’ IK? )
— fia)

[Lero(fri
~ f3) I (83)
— f]ﬂ) K )

( ILere (an

ereo (fri

where for all j € [J], we define F; =
[([j/R&,ﬂ —1) RY 41 [j/R,Ej)}RSj)} \ {j}. Note
that the ACSA unpacker is a constant since |Sg5 )\ is globally
known.

Remark 3. As noted at the beginning of this section, as
well as in the motivating example, private read and write
operations consists of KcUﬁt) and KCUS) sub-operations,
and for each sub-operation, Rgf and Rg) symbols of the
desired submodel are retrieved and updated respectively. This
is respectively made possible by the constructions of ACSA
Packer and Unpacker. For private read, by ACSA Packer



in each sub-operation Rg-t) symbols of the desired submodel
are “packed” into a Cauchy-Vandermonde structured answer
string for best download efficiency, where Cauchy terms carry
desired symbols and interference symbols are aligned along
Vandermonde terms. Recoverability of the desired symbols
is guaranteed by the invertibility of Cauchy-Vandermonde
matrices (see, e.g., [|63]]). On the other hand, ACSA Incre-
ment (Definition 3)) can be viewed as a bunch of Cauchy-
Vandermonde structured codewords, and in each codeword, a
total of Rg) symbols are “packed” together for best upload
efficiency. To correctly perform private write, each of the
codewords is “unpacked” by the ACSA Unpacker to produce
Rg) codewords that individually carry different increment
symbols to preserve the ACSA Storage structure (Definition

B
Definition 8. (ACSA Null-shaper) For all t € N,n € [N],
the ACSA null-shaper is defined as follows.

t t t
o = (2, e, .00 ).

where for all i € [K],
— am)
In.---
— Oém)> K> )

I esih (an — )
- Ig|. @85
(Hmesff) (fJ,i - am) K (85)

Note that for all n € S,(,f), we have 2, = 0. Besides, the
ACSA null-shaper is a constant since Sl(ut ) is globally known.

Definition 9. (ACSA-RW Scheme) The initial storage at the

N servers is the ACSA storage at time 0, i.e., (85?)) v At
ne[N

time t,t € N, in the read phase, the user uploads the ACSA

query for the N servers and retrieves the desired submodel

(84)

—1 —(t
Wéi ) from the answers returned by the servers n,n € an ,
which are constructed as follows.

Aszfﬁt) _ ((Sgl)) —'Ezt)é ZQS:iQt))
(86)

In the update phase, the user uploads the ACSA increment for

N ES(t)

Le[UWP] ig[Ke)

—(t .
the servers n,n € S,,", and each of the servers updates its

storage according to the following equation.

Z Q(f)'r(t)P(t‘g )Q(f ,0¢) nE S(t)

S(t _St 2 n,i
i1€[K.]

87)

Now let us prove the correctness, privacy and security of
the ACSA-RW scheme. To proceed, we need the following
lemmas.

Lemma 1. At any time t,t € N, User t retrieves the
desired submodel W(t D from the answers returned by the

servers n,n € S, ® according to the ACSA-RW scheme while
guaranteeing T-privacy.

Proof. Let us consider the answers returned by the servers
n,n € gff) in (86). Note that for all ¢ € [Ur(t)],

i € [K., we have (@8)—(2), shown at the top of
the next page. For all j € [J]m € [X + T +
K. — 1], I () " are various linear combinations of in-

J,t,m

ner products of (Wﬁ_ 1)>

(22.)
363 ) ek, 5T

jlgtl)m = Z e[[ 1)R(t)+l ER(t)] ]zm7v£ 6 [U(f)] 'L 6 [KC]
Note that for all j & [J], i € [Kcl. [ Loepse iy (o — Jrr) i

the remainder of the polynomial division (with respect to av,)

(Hi’E[KcJ\{i}(O‘n - fj,i/)) /(

o). (2.") d
ie[K.] e (0h), 1T ) zelX] an

whose exact forms are irrelevant. Besides,

o, — f;:), which is for nor-

malization. The existence of multiplicative inverse of
ey (i — f“) is guaranteed by Proposition
e, [Liepng — fj7) # 0. Therefore, due to t

fact that the desued symbols are carried by the Cauchy
terms (i.e., the first term in (92))) and the interference sym-
bols (i.e., the undesired symbols, second term in (©92)) are
aligned along the Vandermonde terms, the desired symbols

(We(t_l) (4, )) of the submodel W(t_l)
¢ je[(t=1) R +1:4RMP]
are resolvable by inverting the Cauchy-Vandermonde matrix in

(©3), shown at the top of the next page. It is remarkable that the
non-singularity of the matrix C follows from the determinant
of Cauchy-Vandermonde matrix (see, e.g., [63]) and the fact
that according to Proposition [T} the constants

are distinct for all £ €

[U,Et)], regardless of the realizations of git) and Ef,f). Recall
that 39(1), 35”(2), etc., refer to distinct elements of git)
(arranged in ascending order). Therefore, the user is able to re-
construct the desired submodel due to the fact that Wéi_l) =

(t=1)
((Wef (j’ >)j€[(6_1)Rg)+1:eRg)])ee[Uﬁt>]7i€[KC]' To see
why the T-privacy holds, we note that by the construction of
EQE,?’M) o the vector e (), which carries
the information of ndee[si]red index 6, is protected by the
MDS(N,T) coded uniform i.i.d. random noise vectors. Thus
the queries for the IV servers form a secret sharing of threshold
T, and are independent of the queries and the increments of
all prior users 7,7 € [t — 1]. Thus T-privacy is guaranteed.
To calculate the download cost, we note that a total of
L = JK,. symbols of the desired submodel are retrieved out

of the K.U" |§£t)\ downloaded symbols. Therefore we have
Dy = (KOS jK) = (U8 (N =18P1)) 1) =

N = 1880) /RO = (N =187]) / (st — |S17]). This
completes the proof of Lemma [

(fjvi)je[(e—nRﬁ?’+1;1ZR5.*)]’ (a")negﬁ)

the query

Lemma 2. At any time t,t € N, User t correctly updates
the desired submodel W( V' and achieves ACSA storage by
uploading the ACSA increments to the servers n,n € S,, s and

exploiting the update equation (8'7)) according to the ACSA RW
scheme while guaranteeing T-privacy and X a-security.

Proof. Let us first inspect the second term on the RHS of (87).
Note that for any ¢t € N, for all n € [N],i € [K.], we can
write

Q(t),T(t),P(t’fgt)Q(t’,et)



.
_ —_ 04
(Sg 1)> ‘:‘Ezt,)z,iQS,i)
.
— 1 (t-1) ez
S SR () pe e
jEl(E—1)RY +1:4RM] \7E[K] o z€[X]
[ eprey gy (@ — fiir) .
(H €K J\{ }(f_f) ex ( ) f], Z o 1Z (88)
ie[K\{i} Vit T g s€[T]
.
1 wit-D st
= Z Z o — Fiv 37/ + Z o, Z (89)
jEl(—1)RW +1:4rM] \7'E[K] I ze[X]
[iveixgngiy (an — fiir) [Lieir(an — fiir) 15
11 Gri—For) eK(et)+H T 3 ay V2 (90)
i’e[Ke]\{i} g~ Jia i €[K:I\{i} g — Jiar se[T]
1 s (i
-2 o Wi exto+ Y apTifl, ap
jeltt-1RO 41007 \ " mE[X+T+K.—1]
1 “1),. . I
= > p— —— w6+ Y el 92)
jel(e-1) R +1: m“)] o [X+T+K.—1]
1 1 1 §+T+KE71
f<171)R(Tt)+1,i_a§(rt)(1) 'feRSt),i_ag(Tt)(l) S (1)
1 1 X+T+K.—1
C— ‘f(l—l)Rg)+1,iia§g)(2) fZRs,‘>,i7a§§,‘)(z) 3(2) (93)
1 1 XAT4Ko—1
f(e—1)R$t)+1‘7t_a§<ﬁ)(\E&t)\) feRﬁf’,q,_aé(rt)(\E(ﬁ\) 38

T .
_ [(F(t)l )T’ (F(t)z A>T L ( r® . )T} 94 to av,) (Hmesfj) (an, — am)> /(o — fp,+v,:)- And finally in
e et n,Us i , we multiply the two terms in each row of@ Therefore,
for all n € [N],i € [K,|, the term Q(t)T(t) ngl ”ngy’ft) can
where for all £ € [Ug)], we define ¢y = (¢ — 1)R1(,f), be written as follows.
and I‘i)“ is written as (@3)-(©8) (shown in the next
¢
[()ggff), whe)re for all v € | 5)], (I¢@+u m)me[XA+Rw D QSETS)Z-PS}MQS}M
I Petv,m ), (t) (t))_ and - 7 ' ' B
A L ACen (@)
¢£+v1m> L are various interference am-1 (t)
me[Xa+RY +|SW |+T—-1] + ) 1 al® I im
symbols, whose exact forms are not important. Note that ,””i”,,,%@QLX&&,,ﬂcs,,J{r,T,”l] ffffffff s
in (96), we multiply the first two terms in each row of on—f2,i A2 iex(0r) )
(@3). It can be justified frp{n the fact .that the constants = + Z:,m,E,LX,AiR,(f):H‘SEf,)J T 117?1,171;’)”71
(fj’i)je[m-&-l:qbz-i-RS)] are distinct according to Proposition
Besides, for all v € [R( )], accordlng to the definition T T AW gy T
of }—éi-&-v’ we can equivalently write .7:¢ o = e+ 1 an—fs, 7.0k (04) Lo(0)
¢ + RO\ {o0 + v}, thus |FIV, | = RS}? ~ 1 and : T el atm 410 -y O L
$etv (99)
(¢¢ + v) & Fgp,4v. Note that the denominator in the first

term in each row of (Q3) is for normalization, which is the
remainder of the polynomial division (with respect to )

Iert, (@0 = £:)) /0= Forin). In @, we multiply
oo
the first two terms in each row of (96)), and it can be justified

by noting that the denominator in the first term in each row of
(96) is the remainder of the polynomial division (with respect

Note that X = XA—}—Rg) + |S1(Ut)
(&7) is thus correct because

ey el

1€[K,]

|+T — 1, the update equation

) ~ (t) (t9t)Q(t9)

n, 7 mn,t
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where for all t € N, j € [J],z € [X], Z\") = 27" + 11"

gy
j.i.o- Note that for all n e ng), i€ [K.,
we have Q(t) = 0. Therefore, for all n € S(t), it holds

that ng ) = S(t 1) In other words, the update equation
(87) correctly updates the desired submodel and achieves the
ACSA storage at time ¢ + 1 by updating the storage of server
n,n € Sf,f). The proof of T-privacy follows from that in
Lemma |1} so we do not repeat it here. The proof of XAa-

security follows from the fact that by the definition of ACSA
piton)

i _ ®)
and 1,5 =3, }I

increment ( , the symbols of the increment A,

ne[N]
are protected by the MDS(N, Xa) coded uniform i.i.d. ran-

dom noise symbols. Thus the ACSA increment for the N
servers form a secret sharing of threshold XA, and it is
independent of the write-queries by the users 7, 7 € [t—1] and
the read-queries by the users 7,7 € [t]. Finally let us calculate
the upload cost. The upload cost consists of two parts, i.e.,
the upload cost of the ACSA query and the upload cost of
the ACSA increment. Note that to upload the ACSA query,
a total of ‘[ 1\ (S nsy )‘Kmax(ﬂ,Kc) g-ary symbols
must be uploaded. On the other hand, to upload the ACSA
| S(t) U t) K,
g-ary symbols. Therefore, in the limit as L/K — oo, the
normalized upload cost is

increment, we need to upload a total of (N

K (N-|SO)U +|[N]

HASO | K max(p, K.
U, = VSIS K max( o) )
o N — |80
Lo N = 15w | (103)
R\
_ S(t)
= [Su”l (104)
Sthresh _ | Sg)|
This completes the proof of Lemma O

The ACSA-RW scheme satisfies the correctness, T-privacy,
and X a-security constraints for each update ¢, € N because
of Lemma [T] and Lemma [2] which hold for all ¢,¢ € N. Now
let us see why the X-security constraint is satisfied. By the
definition of the ACSA storage (i.e., Definition [3) at any time
t,t € N, the symbols of the K submodels are protected by
the MDS(V, X)) coded i.i.d. uniform random noise symbols.
In other words, it forms a secret sharing of threshold X, thus
X-security is guaranteed.
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Remark 4. (Byzantine Tolerance) It is remarkable that the
answers returned by the servers in the private read phase can
be viewed as codewords of an MDS code (generated by the
Cauchy-Vandermonde matrix, see, e.g., [|27)]). Therefore, with
additional 2B redundant answers from the servers, we can
correct up to B erroneous answers.

Remark 5. (Symmetric Security) If common randomness is
allowed among the servers, so-called symmetric security can
be achieved [64]], i.e., the user will learn nothing about the
global model beyond the desired submodel. Note that this does
not affect the communication cost of the ACSA-RW scheme.

Remark 6. (External Adversaries versus Internal Adver-
saries) Recall that the X-security constraint only requires
protection against an external adversary who can access the
current storage but not the past history at any X -servers. How-
ever, a closer look at the ACSA-RW scheme reveals that if the
number of compromised servers is no more than min(Xa,T),
then even an internal adversary, i.e., an adversary who has
access to the entire history of all previous stored values
and queries seen by the compromised servers, can still learn
nothing about the stored submodels.

Remark 7. (Access Complexity) We define the access com-
plexity as the number of elements over the finite field F, that
must be accessed/updated during the private read and private
write phases. We note that at any time t,t € N, the access
complexity of each of the responsive servers in the private
read and write phases is at most KL /K .. Hence with greater
K., it is possible to reduce the access complexity.

Remark 8. (Encoding and Decoding Complexity) Let us
consider the complexity of the encoding and decoding al-
gorithms of our construction. It is worth noting that the
computations for producing the ACSA storage, ACSA query
and ACSA increment can be regarded as multiplications of
(scaled) Cauchy-Vandermonde matrices with various vectors.
The computation for recovering the desired submodel by the
user from the answers of the N servers can be viewed
as solving linear systems defined by Cauchy-Vandermonde
matrices. Cauchy-Vandermonde matrices are an important
class of structured matrices, for which “superfast” algo-
rithms have been studied extensively [65)], [66]. Therefore,
by these superfast algorithms, the complexity of produc-
ing the ACSA storage, ACSA query and ACSA increment
is at most O((LKNlog? N)/K.), O(uKNK_.log? N) and
(’)(UtLlog N), respectively. On the other hand, the com-
plexity of decoding the desired submodel from the answers
of the servers is at most O(D;Llog® N). It is obvious that
the encoding/decoding algorithms have a complexity that is
almost linear in their output/input sizes.

V. CONCLUSION

Inspired by the recent interest in X -secure T'-private feder-
ated submodel learning, we explored the fundamental problem
of privately reading from and writing to a distributed and
secure database. By interpreting the private read and write
operations as secure matrix multiplications (between query



vectors and stored data), and recognizing that CSA codes are
natural solutions to such problems, we constructed a novel
Adaptive CSA-RW scheme. ACSA-RW achieves synergistic
gains from the joint design of private read and write operations
because the same one hot vector representation of the desired
message index needs to be secret shared for both the private
read and write operations. In addition to allowing private read
and write, ACSA-RW also provides elastic resilience against
server dropouts, up to thresholds that are determined by the
number of redundant storage dimensions. Surprisingly, ACSA-
RW is able to fully update the distributed database even though
the database is only partially accessible due to write-dropout
servers. This is accomplished by exploiting the redundancy
that is already required for secure storage. The scheme allows
a memoryless operation of the database in the sense that the
storage structure is preserved and users may remain oblivious
of the prior history of server dropouts. A promising direction
for future work is to explore applications of this idea to multi-
version coding [|67]].
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