
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 1905–1925

August 1–6, 2021. ©2021 Association for Computational Linguistics

1905

A Survey of Race, Racism, and Anti-Racism in NLP

Anjalie Field

Carnegie Mellon University

anjalief@cs.cmu.edu

Su Lin Blodgett

Microsoft Research

sulin.blodgett@microsoft.com

Zeerak Waseem

University of Sheffield

z.w.butt@sheffield.ac.uk

Yulia Tsvetkov

University of Washington

yuliats@cs.washington.edu

Abstract

Despite inextricable ties between race and lan-

guage, little work has considered race in NLP

research and development. In this work, we

survey 79 papers from the ACL anthology that

mention race. These papers reveal various

types of race-related bias in all stages of NLP

model development, highlighting the need for

proactive consideration of how NLP systems

can uphold racial hierarchies. However, per-

sistent gaps in research on race and NLP re-

main: race has been siloed as a niche topic

and remains ignored in many NLP tasks; most

work operationalizes race as a fixed single-

dimensional variable with a ground-truth label,

which risks reinforcing differences produced

by historical racism; and the voices of histor-

ically marginalized people are nearly absent in

NLP literature. By identifying where and how

NLP literature has and has not considered race,

especially in comparison to related fields, our

work calls for inclusion and racial justice in

NLP research practices.

1 Introduction

Race and language are tied in complicated ways.

Raciolinguistics scholars have studied how they are

mutually constructed: historically, colonial pow-

ers construct linguistic and racial hierarchies to

justify violence, and currently, beliefs about the

inferiority of racialized people’s language practices

continue to justify social and economic exclusion

(Rosa and Flores, 2017).1 Furthermore, language

is the primary means through which stereotypes

and prejudices are communicated and perpetuated

(Hamilton and Trolier, 1986; Bar-Tal et al., 2013).

However, questions of race and racial bias

have been minimally explored in NLP literature.

1We use racialization to refer the process of “ascribing and
prescribing a racial category or classification to an individual
or group of people . . . based on racial attributes including but
not limited to cultural and social history, physical features,
and skin color” (Hudley, 2017).

While researchers and activists have increasingly

drawn attention to racism in computer science and

academia, frequently-cited examples of racial bias

in AI are often drawn from disciplines other than

NLP, such as computer vision (facial recognition)

(Buolamwini and Gebru, 2018) or machine learn-

ing (recidivism risk prediction) (Angwin et al.,

2016). Even the presence of racial biases in search

engines like Google (Sweeney, 2013; Noble, 2018)

has prompted little investigation in the ACL com-

munity. Work on NLP and race remains sparse,

particularly in contrast to concerns about gender

bias, which have led to surveys, workshops, and

shared tasks (Sun et al., 2019; Webster et al., 2019).

In this work, we conduct a comprehensive sur-

vey of how NLP literature and research practices

engage with race. We first examine 79 papers from

the ACL Anthology that mention the words ‘race’,

‘racial’, or ‘racism’ and highlight examples of how

racial biases manifest at all stages of NLP model

pipelines (§3). We then describe some of the limi-

tations of current work (§4), specifically showing

that NLP research has only examined race in a nar-

row range of tasks with limited or no social context.

Finally, in §5, we revisit the NLP pipeline with a fo-

cus on how people generate data, build models, and

are affected by deployed systems, and we highlight

current failures to engage with people traditionally

underrepresented in STEM and academia.

While little work has examined the role of race

in NLP specifically, prior work has discussed race

in related fields, including human-computer in-

teraction (HCI) (Ogbonnaya-Ogburu et al., 2020;

Rankin and Thomas, 2019; Schlesinger et al.,

2017), fairness in machine learning (Hanna et al.,

2020), and linguistics (Hudley et al., 2020; Motha,

2020). We draw comparisons and guidance from

this work and show its relevance to NLP research.

Our work differs from NLP-focused related work

on gender bias (Sun et al., 2019), ‘bias’ generally
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(Blodgett et al., 2020), and the adverse impacts of

language models (Bender et al., 2021) in its explicit

focus on race and racism.

In surveying research in NLP and related fields,

we ultimately find that NLP systems and research

practices produce differences along racialized lines.

Our work calls for NLP researchers to consider

the social hierarchies upheld and exacerbated by

NLP research and to shift the field toward “greater

inclusion and racial justice” (Hudley et al., 2020).

2 What is race?

It has been widely accepted by social scientists that

race is a social construct, meaning it “was brought

into existence or shaped by historical events, social

forces, political power, and/or colonial conquest”

rather than reflecting biological or ‘natural’ differ-

ences (Hanna et al., 2020). More recent work has

criticized the “social construction” theory as circu-

lar and rooted in academic discourse, and instead

referred to race as “colonial constituted practices”,

including “an inherited western, modern-colonial

practice of violence, assemblage, superordination,

exploitation and segregation” (Saucier et al., 2016).

The term race is also multi-dimensional and

can refer to a variety of different perspectives, in-

cluding racial identity (how you self-identify), ob-

served race (the race others perceive you to be),

and reflected race (the race you believe others per-

ceive you to be) (Roth, 2016; Hanna et al., 2020;

Ogbonnaya-Ogburu et al., 2020). Racial catego-

rizations often differ across dimensions and depend

on the defined categorization schema. For exam-

ple, the United States census considers Hispanic

an ethnicity, not a race, but surveys suggest that

2/3 of people who identify as Hispanic consider

it a part of their racial background.2 Similarly,

the census does not consider ‘Jewish’ a race, but

some NLP work considers anti-Semitism a form

of racism (Hasanuzzaman et al., 2017). Race de-

pends on historical and social context—there are

no ‘ground truth’ labels or categories (Roth, 2016).

As the work we survey primarily focuses on the

United States, our analysis similarly focuses on the

U.S. However, as race and racism are global con-

structs, some aspects of our analysis are applicable

to other contexts. We suggest that future studies

on racialization in NLP ground their analysis in the

appropriate geo-cultural context, which may result

2https://bit.ly/3r9J1fO, https://pewrsr.
ch/36vlUEl

in findings or analyses that differ from our work.

3 Survey of NLP literature on race

3.1 ACL Anthology papers about race

In this section, we introduce our primary survey

data—papers from the ACL Anthology3—and we

describe some of their major findings to empha-

size that NLP systems encode racial biases. We

searched the anthology for papers containing the

terms ‘racial’, ‘racism’, or ‘race’, discarding ones

that only mentioned race in the references section

or in data examples and adding related papers cited

by the initial set if they were also in the ACL An-

thology. In using keyword searches, we focus on

papers that explicitly mention race and consider

papers that use euphemistic terms to not have sub-

stantial engagement on this topic. As our focus

is on NLP and the ACL community, we do not in-

clude NLP-related papers published in other venues

in the reported metrics (e.g. Table 1), but we do

draw from them throughout our analysis.

Our initial search identified 165 papers. How-

ever, reviewing all of them revealed that many do

not deeply engage on the topic. For example, 37

papers mention ‘racism’ as a form of abusive lan-

guage or use ‘racist’ as an offensive/hate speech

label without further engagement. 30 papers only

mention race as future work, related work, or mo-

tivation, e.g. in a survey about gender bias, “Non-

binary genders as well as racial biases have largely

been ignored in NLP” (Sun et al., 2019). After

discarding these types of papers, our final analysis

set consists of 79 papers.4

Table 1 provides an overview of the 79 papers,

manually coded for each paper’s primary NLP task

and its focal goal or contribution. We determined

task/application labels through an iterative process:

listing the main focus of each paper and then col-

lapsing similar categories. In cases where papers

could rightfully be included in multiple categories,

we assign them to the best-matching one based on

stated contributions and the percentage of the paper

devoted to each possible category. In the Appendix

we provide additional categorizations of the papers

3The ACL Anthology includes papers from all official
ACL venues and some non-ACL events listed in Appendix A,
as of December 2020 it included 6, 200 papers

4We do not discard all papers about abusive language, only
ones that exclusively use racism/racist as a classification label.
We retain papers with further engagement, e.g. discussions
of how to define racism or identification of racial bias in hate
speech classifiers.
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Abusive Language 6 4 2 5 2 2 21

Social Science/Social Media 2 10 6 1 - 1 20

Text Representations (LMs, embeddings) - 2 - 9 2 - 13

Text Generation (dialogue, image captions, story gen. ) - - 1 5 1 1 8

Sector-specific NLP applications (edu., law, health) 1 2 - - 1 3 7

Ethics/Task-independent Bias 1 - 1 1 1 2 6

Core NLP Applications (parsing, NLI, IE) 1 - 1 1 1 - 4

Total 11 18 11 22 8 9 79

Table 1: 79 papers on race or racism from the ACL anthology, categorized by NLP application and focal task.

according to publication year, venue, and racial

categories used, as well as the full list of 79 papers.

3.2 NLP systems encode racial bias

Next, we present examples that identify racial bias

in NLP models, focusing on 5 parts of a standard

NLP pipeline: data, data labels, models, model out-

puts, and social analyses of outputs. We include

papers described in Table 1 and also relevant liter-

ature beyond the ACL Anthology (e.g. NeurIPS,

PNAS, Science). These examples are not intended

to be exhaustive, and in §4 we describe some of the

ways that NLP literature has failed to engage with

race, but nevertheless, we present them as evidence

that NLP systems perpetuate harmful biases along

racialized lines.

Data A substantial amount of prior work has al-

ready shown how NLP systems, especially word

embeddings and language models, can absorb and

amplify social biases in data sets (Bolukbasi et al.,

2016; Zhao et al., 2017). While most work focuses

on gender bias, some work has made similar ob-

servations about racial bias (Rudinger et al., 2017;

Garg et al., 2018; Kurita et al., 2019). These studies

focus on how training data might describe racial

minorities in biased ways, for example, by exam-

ining words associated with terms like ‘black’ or

traditionally European/African American names

(Caliskan et al., 2017; Manzini et al., 2019). Some

studies additionally capture who is described, re-

vealing under-representation in training data, some-

times tangentially to primary research questions:

Rudinger et al. (2017) suggest that gender bias may

be easier to identify than racial or ethnic bias in

Natural Language Inference data sets because of

data sparsity, and Caliskan et al. (2017) alter the

Implicit Association Test stimuli that they use to

measure biases in word embeddings because some

African American names were not frequent enough

in their corpora.

An equally important consideration, in addition

to whom the data describes is who authored the

data. For example, Blodgett et al. (2018) show

that parsing systems trained on White Mainstream

American English perform poorly on African

American English (AAE).5 In a more general exam-

ple, Wikipedia has become a popular data source

for many NLP tasks. However, surveys suggest

that Wikipedia editors are primarily from white-

majority countries,6 and several initiatives have

pointed out systemic racial biases in Wikipedia

coverage (Adams et al., 2019; Field et al., 2021).7

Models trained on these data only learn to process

the type of text generated by these users, and fur-

ther, only learn information about the topics these

users are interested in. The representativeness of

data sets is a well-discussed issue in social-oriented

tasks, like inferring public opinion (Olteanu et al.,

2019), but this issue is also an important considera-

tion in ‘neutral’ tasks like parsing (Waseem et al.,

2021). The type of data that researchers choose

to train their models on does not just affect what

data the models perform well for, it affects what

people the models work for. NLP researchers can-

not assume models will be useful or function for

marginalized people unless they are trained on data

5We note that conceptualizations of AAE and the accom-
panying terminology for the variety have shifted considerably
in the last half century; see King (2020) for an overview.

6https://bit.ly/2Yv07IL
7https://bit.ly/3j2weZA
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generated by them.

Data Labels Although model biases are often

blamed on raw data, several of the papers we survey

identify biases in the way researchers categorize or

obtain data annotations. For example:

• Annotation schema Returning to Blodgett

et al. (2018), this work defines new parsing

standards for formalisms common in AAE,

demonstrating how parsing labels themselves

were not designed for racialized language va-

rieties.

• Annotation instructions Sap et al. (2019)

show that annotators are less likely to label

tweets using AAE as offensive if they are

told the likely language varieties of the tweets.

Thus, how annotation schemes are designed

(e.g. what contextual information is provided)

can impact annotators’ decisions, and fail-

ing to provide sufficient context can result

in racial biases.

• Annotator selection Waseem (2016) show

that feminist/anti-racist activists assign differ-

ent offensive language labels to tweets than

figure-eight workers, demonstrating that an-

notators’ lived experiences affect data annota-

tions.

Models Some papers have found evidence that

model instances or architectures can change the

racial biases of outputs produced by the model.

Sommerauer and Fokkens (2019) find that the word

embedding associations around words like ‘race’

and ‘racial’ change not only depending on the

model architecture used to train embeddings, but

also on the specific model instance used to extract

them, perhaps because of differing random seeds.

Kiritchenko and Mohammad (2018) examine gen-

der and race biases in 200 sentiment analysis sys-

tems submitted to a shared task and find different

levels of bias in different systems. As the train-

ing data for the shared task was standardized, all

models were trained on the same data. However,

participants could have used external training data

or pre-trained embeddings, so a more detailed in-

vestigation of results is needed to ascertain which

factors most contribute to disparate performance.

Model Outputs Several papers focus on model

outcomes, and how NLP systems could perpetuate

and amplify bias if they are deployed:

• Classifiers trained on common abusive lan-

guage data sets are more likely to label tweets

containing characteristics of AAE as offensive

(Davidson et al., 2019; Sap et al., 2019).

• Classifiers for abusive language are more

likely to label text containing identity terms

like ‘black’ as offensive (Dixon et al., 2018).

• GPT outputs text with more negative senti-

ment when prompted with AAE -like inputs

(Groenwold et al., 2020).

Social Analyses of Outputs While the examples

in this section primarily focus on racial biases in

trained NLP systems, other work (e.g. included

in ‘Social Science/Social Media’ in Table 1) uses

NLP tools to analyze race in society. Examples in-

clude examining how commentators describe foot-

ball players of different races (Merullo et al., 2019)

or how words like ‘prejudice’ have changed mean-

ing over time (Vylomova et al., 2019).

While differing in goals, this work is often sus-

ceptible to the same pitfalls as other NLP tasks.

One area requiring particular caution is in the in-

terpretation of results produced by analysis models.

For example, while word embeddings have become

a common way to measure semantic change or es-

timate word meanings (Garg et al., 2018), Joseph

and Morgan (2020) show that embedding associ-

ations do not always correlate with human opin-

ions; in particular, correlations are stronger for be-

liefs about gender than race. Relatedly, in HCI,

the recognition that authors’ own biases can affect

their interpretations of results has caused some au-

thors to provide self-disclosures (Schlesinger et al.,

2017), but this practice is uncommon in NLP.

We conclude this section by observing that when

researchers have looked for racial biases in NLP

systems, they have usually found them. This litera-

ture calls for proactive approaches in considering

how data is collected, annotated, used, and inter-

preted to prevent NLP systems from exacerbating

historical racial hierarchies.

4 Limitations in where and how NLP

operationalizes race

While §3 demonstrates ways that NLP systems en-

code racial biases, we next identify gaps and limi-

tations in how these works have examined racism,

focusing on how and in what tasks researchers have

considered race. We ultimately conclude that prior

NLP literature has marginalized research on race

and encourage deeper engagement with other fields,

critical views of simplified classification schema,
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and broader application scope in future work (Blod-

gett et al., 2020; Hanna et al., 2020).

4.1 Common data sets are narrow in scope

The papers we surveyed suggest that research on

race in NLP has used a very limited range of

data sets, which fails to account for the multi-

dimensionality of race and simplifications inher-

ent in classification. We identified 3 common data

sources:8

• 9 papers use a set of tweets with inferred prob-

abilistic topic labels based on alignment with

U.S. census race/ethnicity groups (or the pro-

vided inference model) (Blodgett et al., 2016).

• 11 papers use lists of names drawn from

Sweeney (2013), Caliskan et al. (2017), or

Garg et al. (2018). Most commonly, 6 pa-

pers use African/European American names

from the Word Embedding Association Test

(WEAT) (Caliskan et al., 2017), which in turn

draws data from Greenwald et al. (1998) and

Bertrand and Mullainathan (2004).

• 10 papers use explicit keywords like ‘Black

woman’, often placed in templates like “I am a

” to test if model performance remains

the same for different identity terms.

While these commonly-used data sets can iden-

tify performance disparities, they only capture a

narrow subset of the multiple dimensions of race

(§2). For example, none of them capture self-

identified race. While observed race is often appro-

priate for examining discrimination and some types

of disparities, it is impossible to assess potential

harms and benefits of NLP systems without assess-

ing their performance over text generated by and

directed to people of different races. The corpus

from Blodgett et al. (2016) does serve as a start-

ing point and forms the basis of most current work

assessing performance gaps in NLP models (Sap

et al., 2019; Blodgett et al., 2018; Xia et al., 2020;

Xu et al., 2019; Groenwold et al., 2020), but even

this corpus is explicitly not intended to infer race.

Furthermore, names and hand-selected iden-

tity terms are not sufficient for uncovering model

bias. De-Arteaga et al. (2019) show this in ex-

amining gender bias in occupation classification:

when overt indicators like names and pronouns are

scrubbed from the data, performance gaps and po-

tential allocational harms still remain. Names also

8We provide further counts of what racial categories papers
use and how they operationalize them in Appendix B.

generalize poorly. While identity terms can be ex-

amined across languages (van Miltenburg et al.,

2017), differences in naming conventions often do

not translate, leading some studies to omit examin-

ing racial bias in non-English languages (Lauscher

and Glavaš, 2019). Even within English, names of-

ten fail to generalize across domains, geographies,

and time. For example, names drawn from the

U.S. census generalize poorly to Twitter (Wood-

Doughty et al., 2018), and names common among

Black and white children were not distinctly differ-

ent prior to the 1970s (Fryer Jr and Levitt, 2004;

Sweeney, 2013).

We focus on these 3 data sets as they were

most common in the papers we surveyed, but

we note that others exist. Preoţiuc-Pietro and

Ungar (2018) provide a data set of tweets with

self-identified race of their authors, though it is

little used in subsequent work and focused on

demographic prediction, rather than evaluating

model performance gaps. Two recently-released

data sets (Nadeem et al., 2020; Nangia et al.,

2020) provide crowd-sourced pairs of more- and

less-stereotypical text. More work is needed to

understand any privacy concerns and the strengths

and limitations of these data (Blodgett et al., 2021).

Additionally, some papers collect domain-specific

data, such as self-reported race in an online com-

munity (Loveys et al., 2018), or crowd-sourced

annotations of perceived race of football players

(Merullo et al., 2019). While these works offer

clear contextualization, it is difficult to use these

data sets to address other research questions.

4.2 Classification schemes operationalize

race as a fixed, single-dimensional

U.S.-census label

Work that uses the same few data sets inevitably

also uses the same few classification schemes, often

without justification. The most common explicitly

stated source of racial categories is the U.S. census,

which reflects the general trend of U.S.-centrism

in NLP research (the vast majority of work we sur-

veyed also focused on English). While census cate-

gories are sometimes appropriate, repeated use of

classification schemes and accompanying data sets

without considering who defined these schemes

and whether or not they are appropriate for the cur-

rent context risks perpetuating the misconception

that race is ‘natural’ across geo-cultural contexts.

We refer to Hanna et al. (2020) for a more thorough
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overview of the harms of “widespread uncritical

adoption of racial categories,” which “can in turn

re-entrench systems of racial stratification which

give rise to real health and social inequalities.” At

best, the way race has been operationalized in NLP

research is only capable of examining a narrow sub-

set of potential harms. At worst, it risks reinforcing

racism by presenting racial divisions as natural,

rather than the product of social and historical con-

text (Bowker and Star, 2000).

As an example of questioning who devised racial

categories and for what purpose, we consider the

pattern of re-using names from Greenwald et al.

(1998), who describe their data as sets of names

“judged by introductory psychology students to be

more likely to belong to White Americans than to

Black Americans” or vice versa. When incorpo-

rating this data into WEAT, Caliskan et al. (2017)

discard some judged African American names as

too infrequent in their embedding data. Work sub-

sequently drawing from WEAT makes no mention

of the discarded names nor contains much discus-

sion of how the data was generated and whether or

not names judged to be white or Black by introduc-

tory psychology students in 1998 are an appropriate

benchmark for the studied task. While gathering

data to examine race in NLP is challenging, and in

this work we ourselves draw from examples that

use Greenwald et al. (1998), it is difficult to inter-

pret what implications arise when models exhibit

disparities over this data and to what extent models

without disparities can be considered ‘debiased’.

Finally, almost all of the work we examined con-

ducts single-dimensional analyses, e.g. focus on

race or gender but not both simultaneously. This

focus contrasts with the concept of intersection-

ality, which has shown that examining discrim-

ination along a single axis fails to capture the

experiences of people who face marginalization

along multiple axes. For example, consideration

of race often emphasizes the experience of gender-

privileged people (e.g. Black men), while consid-

eration of gender emphasizes the experience of

race-privileged people (e.g. white women). Nei-

ther reflect the experience of people who face dis-

crimination along both axes (e.g. Black women)

(Crenshaw, 1989). A small selection of papers have

examined intersectional biases in embeddings or

word co-occurrences (Herbelot et al., 2012; May

et al., 2019; Tan and Celis, 2019; Lepori, 2020), but

we did not identify mentions of intersectionality in

any other NLP research areas. Further, several of

these papers use NLP technology to examine or val-

idate theories on intersectionality; they do not draw

from theory on intersectionality to critically exam-

ine NLP models. These omissions can mask harms:

Jiang and Fellbaum (2020) provide an example us-

ing word embeddings of how failing to consider in-

tersectionality can render invisible people marginal-

ized in multiple ways. Numerous directions remain

for exploration, such as how ‘debiasing’ models

along one social dimension affects other dimen-

sions. Surveys in HCI offer further frameworks

on how to incorporate identity and intersectional-

ity into computational research (Schlesinger et al.,

2017; Rankin and Thomas, 2019).

4.3 NLP research on race is restricted to

specific tasks and applications

Finally, Table 1 reveals many common NLP appli-

cations where race has not been examined, such as

machine translation, summarization, or question an-

swering.9 While some tasks seem inherently more

relevant to social context than others (a claim we

dispute in this work, particularly in §5), research on

race is compartmentalized to limited areas of NLP

even in comparison with work on ‘bias’. For exam-

ple, Blodgett et al. (2020) identify 20 papers that

examine bias in co-reference resolution systems

and 8 in machine translation, whereas we identify

0 papers in either that consider race. Instead, race

is most often mentioned in NLP papers in the con-

text of abusive language, and work on detecting or

removing bias in NLP models has focused on word

embeddings.

Overall, our survey identifies a need for the ex-

amination of race in a broader range of NLP tasks,

the development of multi-dimensional data sets,

and careful consideration of context and appropri-

ateness of racial categories. In general, race is

difficult to operationalize, but NLP researchers do

not need to start from scratch, and can instead draw

from relevant work in other fields.

5 NLP propagates marginalization of

racialized people

While in §4 we primarily discuss race as a topic or

a construct, in this section, we consider the role, or

more pointedly, the absence, of traditionally under-

represented people in NLP research.

9We identified only 8 relevant papers on Text Generation,
which focus on other areas including chat bots, GPT-2/3, hu-
mor generation, and story generation.



1911

5.1 People create data

As discussed in §3.2, data and annotations are gen-

erated by people, and failure to consider who cre-

ated data can lead to harms. In §3.2 we identify

a need for diverse training data in order to ensure

models work for a diverse set of people, and in §4

we describe a similar need for diversity in data that

is used to assess algorithmic fairness. However,

gathering this type of data without consideration of

the people who generated it can introduce privacy

violations and risks of demographic profiling.

As an example, in 2019, partially in response

to research showing that facial recognition al-

gorithms perform worse on darker-skinned than

lighter-skinned people (Buolamwini and Gebru,

2018; Raji and Buolamwini, 2019), researchers

at IBM created the “Diversity in Faces” data set,

which consists of 1 million photos sampled from

the the publicly available YFCC-100M data set and

annotated with “craniofacial distances, areas and

ratios, facial symmetry and contrast, skin color,

age and gender predictions” (Merler et al., 2019).

While this data set aimed to improve the fairness

of facial recognition technology, it included pho-

tos collected from a Flickr, a photo-sharing web-

site whose users did not explicitly consent for this

use of their photos. Some of these users filed a

lawsuit against IBM, in part for “subjecting them

to increased surveillance, stalking, identity theft,

and other invasions of privacy and fraud.”10 NLP

researchers could easily repeat this incident, for

example, by using demographic profiling of social

media users to create more diverse data sets. While

obtaining diverse, representative, real-world data

sets is important for building models, data must

be collected with consideration for the people who

generated it, such as obtaining informed consent,

setting limits of uses, and preserving privacy, as

well as recognizing that some communities may

not want their data used for NLP at all (Paullada,

2020).

5.2 People build models

Research is additionally carried out by people who

determine what projects to pursue and how to

approach them. While statistics on ACL confer-

ences and publications have focused on geographic

10https://bit.ly/3r3LuIk

https://nbcnews.to/3j5hI39 IBM has since re-
moved the “Diversity in Faces” data set as well as their “Detect
Faces” public API and stopped their use of and research on
facial recognition. https://bit.ly/3j2Jv4i

representation rather than race, they do highlight

under-representation. Out of 2, 695 author affili-

ations associated with papers in the ACL Anthol-

ogy for 5 major conferences held in 2018, only 5

(0.2%) were from Africa, compared with 1, 114

from North America (41.3%).11 Statistics pub-

lished for 2017 conference attendees and ACL fel-

lows similarly reveal a much higher percentage

of people from “North, Central and South Amer-

ica” (55% attendees / 74% fellows) than from “Eu-

rope, Middle East and Africa” (19%/13%) or “Asia-

Pacific” (23%/13%).12 These broad regional cate-

gories likely mask further under-representation, e.g.

percentage of attendees and fellows from Africa

as compared to Europe. According to an NSF re-

port that includes racial statistics rather than na-

tionality, 14% of doctorate degrees in Computer

Science awarded by U.S. institutions to U.S. cit-

izens and permanent residents were awarded to

Asian students, < 4% to Black or African Ameri-

can students, and 0% to American Indian or Alaska

Native students (National Center for Science and

Engineering Statistics, 2019).13

It is difficult to envision reducing or eliminating

racial differences in NLP systems without changes

in the researchers building these systems. One

theory that exemplifies this challenge is interest

convergence, which suggests that people in posi-

tions of power only take action against systematic

problems like racism when it also advances their

own interests (Bell Jr, 1980). Ogbonnaya-Ogburu

et al. (2020) identify instances of interest conver-

gence in the HCI community, primarily in diversity

initiatives that benefit institutions’ images rather

than underrepresented people. In a research setting,

interest convergence can encourage studies of incre-

mental and surface-level biases while discouraging

research that might be perceived as controversial

and force fundamental changes in the field.

Demographic statistics are not sufficient for

avoiding pitfalls like interest convergence, as they

fail to capture the lived experiences of researchers.

Ogbonnaya-Ogburu et al. (2020) provide several

examples of challenges that non-white HCI re-

searchers have faced, including the invisible labor

of representing ‘diversity’, everyday microaggres-

11http://www.marekrei.com/blog/

geographic-diversity-of-nlp-conferences/
12https://www.aclweb.org/portal/

content/acl-diversity-statistics
13Results exclude respondents who did not report race or

ethnicity or were Native Hawaiian or Other Pacific Islander.
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sions, and altering their research directions in ac-

cordance with their advisors’ interests. Rankin and

Thomas (2019) further discuss how research con-

ducted by people of different races is perceived dif-

ferently: “Black women in academia who conduct

research about the intersections of race, gender,

class, and so on are perceived as ‘doing service,’

whereas white colleagues who conduct the same re-

search are perceived as doing cutting-edge research

that demands attention and recognition.” While we

draw examples about race from HCI in the absence

of published work on these topics in NLP, the lack

of linguistic diversity in NLP research similarly

demonstrates how representation does not neces-

sarily imply inclusion. Although researchers from

various parts of the world (Asia, in particular) do

have some numerical representation among ACL

authors, attendees, and fellows, NLP research over-

whelmingly favors a small set of languages, with

a heavy skew towards European languages (Joshi

et al., 2020) and ‘standard’ language varieties (Ku-

mar et al., 2021).

5.3 People use models

Finally, NLP research produces technology that is

used by people, and even work without direct ap-

plications is typically intended for incorporation

into application-based systems. With the recogni-

tion that technology ultimately affects people, re-

searchers on ethics in NLP have increasingly called

for considerations of whom technology might harm

and suggested that there are some NLP technolo-

gies that should not be built at all. In the context of

perpetuating racism, examples include criticism of

tools for predicting demographic information (Tat-

man, 2020) and automatic prison term prediction

(Leins et al., 2020), motivated by the history of

using technology to police racial minorities and re-

lated criticism in other fields (Browne, 2015; Buo-

lamwini and Gebru, 2018; McIlwain, 2019). In

cases where potential harms are less direct, they

are often unaddressed entirely. For example, while

low-resource NLP is a large area of research, a

paper on machine translation of white American

and European languages is unlikely to discuss how

continual model improvements in these settings in-

crease technological inequality. Little work on low-

resource NLP has focused on the realities of struc-

tural racism or differences in lived experience and

how they might affect the way technology should

be designed.

Detection of abusive language offers an infor-

mative case study on the danger of failing to con-

sider people affected by technology. Work on abu-

sive language often aims to detect racism for con-

tent moderation (Waseem and Hovy, 2016). How-

ever, more recent work has show that existing hate

speech classifiers are likely to falsely label text con-

taining identity terms like ‘black’ or text containing

linguistic markers of AAE as toxic (Dixon et al.,

2018; Sap et al., 2019; Davidson et al., 2019; Xia

et al., 2020). Deploying these models could censor

the posts of the very people they purport to help.

In other areas of statistics and machine learning,

focus on participatory design has sought to am-

plify the voices of people affected by technology

and its development. An ICML 2020 workshop

titled “Participatory Approaches to Machine Learn-

ing” highlights a number of papers in this area

(Kulynych et al., 2020; Brown et al., 2019). A

few related examples exist in NLP, e.g. Gupta et al.

(2020) gather data for an interactive dialogue agent

intended to provide more accessible information

about heart failure to Hispanic/Latinx and African

American patients. The authors engage with health-

care providers and doctors, though they leave focal

groups with patients for future work. While NLP

researchers may not be best situated to examine

how people interact with deployed technology, they

could instead draw motivation from fields that have

stronger histories of participatory design, such as

HCI. However, we did not identify citing participa-

tory design studies conducted by others as common

practice in the work we surveyed. As in the case

of researcher demographics, participatory design is

not an end-all solution. Sloane et al. (2020) provide

a discussion of how participatory design can col-

lapse to ‘participation-washing’ and how such work

must be context-specific, long-term, and genuine.

6 Discussion

We conclude by synthesizing some of the obser-

vations made in the preceding sections into more

actionable items. First, NLP research needs to

explicitly incorporate race. We quote Benjamin

(2019): “[technical systems and social codes] op-

erate within powerful systems of meaning that ren-

der some things visible, others invisible, and create

a vast array of distortions and dangers.”

In the context of NLP research, this philosophy

implies that all technology we build works in ser-

vice of some ideas or relations, either by upholding



1913

them or dismantling them. Any research that is

not actively combating prevalent social systems

like racism risks perpetuating or exacerbating them.

Our work identifies several ways in which NLP

research upholds racism:

• Systems contain representational harms and

performance gaps throughout NLP pipelines

• Research on race is restricted to a narrow sub-

set of tasks and definitions of race, which can

mask harms and falsely reify race as ‘natural’

• Traditionally underrepresented people are ex-

cluded from the research process, both as con-

sumers and producers of technology

Furthermore, while we focus on race, which

we note has received substantially less attention

than gender, many of the observations in this work

hold for social characteristics that have received

even less attention in NLP research, such as so-

cioeconomic class, disability, or sexual orientation

(Mendelsohn et al., 2020; Hutchinson et al., 2020).

Nevertheless, none of these challenges can be ad-

dressed without direct engagement with marginal-

ized communities of color. NLP researchers can

draw on precedents for this type of engagement

from other fields, such as participatory design and

value sensitive design models (Friedman et al.,

2013). Additionally, numerous organizations al-

ready exist that serve as starting points for partner-

ships, such as Black in AI, Masakhane, Data for

Black Lives, and the Algorithmic Justice League.

Finally, race and language are complicated, and

while readers may look for clearer recommenda-

tions, no one data set, model, or set of guidelines

can ‘solve’ racism in NLP. For instance, while

we draw from linguistics, Hudley et al. (2020) in

turn call on linguists to draw models of racial jus-

tice from anthropology, sociology, and psychol-

ogy. Relatedly, there are numerous racialized ef-

fects that NLP research can have that we do not

address in this work; for example, Bender et al.

(2021) and Strubell et al. (2019) discuss the envi-

ronmental costs of training large language models,

and how global warming disproportionately affects

marginalized communities. We suggest that read-

ers use our work as one starting point for bringing

inclusion and racial justice into NLP.
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Black/white racial categories. While many papers

draw definitions from the U.S. census, very few pa-

pers consider less-commonly-selected census cat-

egories like Native American or Pacific Islander.

The most common method for identifying people’s

race uses first or last names (10 papers) or explicit

keywords like “black” and “white” (10 papers).
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