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Abstract

As large-scale language model pretraining pushes the state-of-the-art in text gen-
eration, recent work has turned to controlling attributes of the text such models
generate. While modifying the pretrained models via fine-tuning remains the popu-
lar approach, it incurs a significant computational cost and can be infeasible due to
lack of appropriate data. As an alternative, we propose MUCOCO—a flexible and
modular algorithm for controllable inference from pretrained models. We formu-
late the decoding process as an optimization problem which allows for multiple
attributes we aim to control to be easily incorporated as differentiable constraints
to the optimization. By relaxing this discrete optimization to a continuous one,
we make use of Lagrangian multipliers and gradient-descent based techniques
to generate the desired text. We evaluate our approach on controllable machine
translation and style transfer with multiple sentence-level attributes and observe
significant improvements over baselines.

1 Introduction

Recent advances in language models [11, 8, 48] trained on large-scale web text corpora have led to
great improvements in state-of-the-art on many natural language processing (NLP) tasks including
the ability to generate increasingly coherent text [4]. However, once such models are trained, they
are prone to degeneration [63] and biased, non-factual outputs [15, 41] as it is difficult to control the
characteristics or attributes of the generated text without architectural modifications [25, 27, 33] and
fine-tuning the models on attribute-specific corpora [28, 7]. This can be even more challenging if
multiple attributes are involved as labeled data for each combination of attributes can be difficult to
obtain.

We focus on controlled text generation where the goal is to decode from a text generation model
such that the outputs satisfy certain constraints, which the model was not necessarily trained on. For
example, given a dialogue generation model, additionally constraining the generated responses to be
polite, although the model was not optimized for politeness during training. Recent works address
this problem with left-to-right autoregressive decoding, and modify the vocabulary distribution at
every step directly using attribute classifier probabilities [69, 37], or indirectly via backpropagating
gradients through model activations [9]. While exhibiting high level of attribute control, by design
these methods can only work with categorical attributes (typically only one attribute) and condition
only on the left context while decoding. Additionally, they often require several heuristics to work
and are prone to adversarial outputs [61].

To address these concerns, we propose the following decoding algorithm. Given a pretrained language
model, we posit decoding from it as an optimization problem. First, we relax this discrete optimization
problem to a continuous one by representing each token as a simplex on the target vocabulary [18].
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This allows to use continuous optimization techniques like gradient-descent considering each token
distribution as parameters, and keeping the language model’s parameters fixed (§2). Second, we
represent each target attribute to control as a differentiable function. We formulate controllable
decoding as a multi-objective optimization problem, with maximizing the log-probability of the
language model as well as target attributes as objectives. To make this optimization feasible via
gradient-descent, we repurpose it to a constraint optimization problem and solve the dual using the
modified differential method of multipliers [44]. We call the algorithm MUCOCO, for incorporating
multiple constraints through continuous optimization.

We validate MUCOCO on three conditional text generation tasks with different types of sentence
level constraints: (1) Adding formality and cross-lingual similarity in a machine translation model;
(2) Ensuring transfer and content-preservation in a style-transfer model, and finally (3) Incorporating
multiple styles and attributes (e.g., formality, sentiment magnitude, writer’s age group) in a para-
phrasing model. With automatic as well as human evaluations we find that our proposed method
outperforms strong baselines.

2 MuCoCO: Constrained Decoding as Multi-Objective Optimization

For a given language generation task, let G model the conditional probability p(y|x) of the output
sequencey = 1, . . ., Yn, given the input sequence x = x1, ..., x,. This model can be parameterized
using any differentiable architecture like Transformers [59] or LSTMs [19] and trained with any loss
function [12, 29], either autoregressively or non-autoregressively [16]. Traditionally, given an input
x, decoding from such a model requires finding the output sequence with the highest probability or
the lowest negative log-probability, y* = arg minycy — log P(y|x). Here ) is the set of all possible
output sequences. In practice, searching ) to find the highest probability generation is intractable as
the space of possible sequences grows exponentially with sequence length and has also been shown
to produce undesirable solutions [56]. In most prior work, simple heuristics like beam search, or
sampling have been adopted to find approximate solutions, where the text is generated one token at a
time (usually left to right) with the output of step ¢ being fed to the input at step ¢ + 1.

In this work, however, given G and an input sequence x, we are interested in finding an output
sequence y that not only maximizes the output probability but also optimizes multiple objectives
defined over x and y. More formally, we seek to find a y that minimizes all of the following objectives

y* = argi,neiﬁ)l(f logp(y|x), fl(y)v ) fu(y);gl(xv}I)v s 791)(XaY)) (1)

Here each f; is a function defined over the output sequence y, for example, the negative log-probability
of an attribute (e.g., formality) classifier we want the output sequence to satisfy. And each g; is a
function defined over both the input and output sequence, for example, semantic similarity between x
and y [51]. We assume all f; and g; are differentiable. This is a multi-objective optimization with
several possible solutions.

Since there are many objectives to minimize, a left-to-right decoding strategy like beam search or
sampling will simply not work due to several reasons. First, the objectives f; and g; are sentence-level
and hard to define accurately only on generated left-context [69, 37]. Even if we are able to define
them, as we add more objectives this process becomes very computationally expensive. Following
prior work [18, 46], we formulate this as a continuous optimization process instead of a standard
discrete one, and then use standard algorithms for continuous optimization (like gradient descent)
for decoding. We maintain a soft-representation of the sequence y, ¥ = (41, - - -, Un ), where each
Jr € Ay is a simplex over the target vocabulary of size V/, representing the probability of the k-th
token. To decode a sentence, we initialize each y; uniformly over V, and treat the entire output
sentence as the parameters for gradient descent keeping the parameters of G, f;, g; fixed. After
gradient descent has converged, we generate discrete text by selecting the token with the highest
probability in g;. We provide more details on the optimization procedure in §2.2.

To make optimization feasible, a multi-objective problem generally yields itself to the following
formulation:

arg min —arlog p(y[x) + 3 Aifi(y) + D #ig;(x.¥), )

i=1 j=1
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Figure 1: Loss curves for gradient descent for different configurations for an example of machine translation
with a cross-lingual semantic similarity constraint (XSIM < 0.15). For each experiment, we do 100 steps of
gradient descent (for clarity, we plot the loss values for every 10 steps). See §3.2 for detailed results. Left: In all
cases one of the objectives is favored while the other fails to decrease. Middle: We observe fluctuations in the
two losses. Right: The losses decrease much more smoothly leading to a better minimum.

for some statically or dynamically computed weights \; and p; for each ¢ and j, where v + >, A; +
> ; 1; = 1. Although this weighted summation formulation is intuitively appealing, it typically
requires an expensive grid-search over the various scalings or use of a heuristic [24, 6, 17]. Fur-
thermore, this formulation by definition assumes a trade-off between the different objectives by
essentially assigning an importance weight to each of them. This problem is further exacerbated when
different objectives have widely varying scales' with smaller scale objectives just getting ignored.
More concretely, a multi-objective formulation as we define in (1) admits several possible “optimal”
solutions also known as the Pareto set [10]. The image of the Pareto set is called the Pareto front.
Since we define all objectives using neural networks, the Pareto front in our case is non-convex, where
linear combinations of objectives are shown to be unsuccessful in finding good solutions [34, 35, 1]
(see figure 1 for an example).

Ideally, our goal is a tunable optimization algorithm that finds solution on the Pareto front, i.e., every
solution on the Pareto front should have a hyperparameter value for which the optimization algorithm
finds that solution. In order to achieve this, we reframe our optimization problem as a Lagrangian
optimization problem instead. We choose one of the losses as the primary objective and consider
other losses as constraints. The goal is to minimize the primary loss subject to the secondary losses,
each below a threshold value. More formally,

arg min — log P(y|x) subject to
y
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Here ¢; and &; are tunable hyperparameters whose values’ change can result in different solutions on
the Pareto front. This formulation leads to an intuitive interpretation of the decoding process that the
generated text from the model G should satisfy the constraints while being as faithful to the primary
objective as much as possible.” Consequently, the Lagrangian we end up with looks similar to our
original total loss linearly combined as in (2) given by

L AL - A i1, i) = —logp(ylx) = Y Nilei = i) = D (& — g5(z,m)) 3
i=1 J=1

where \;, p1; are Lagrange multipliers, and an optimal output y* can be obtained as y* =
arg miny maxy;>0,u; >0 L(y,\i, p;). However, the traditional method of solving the dual func-
tion to find A;, pt; that matches ¢;, ;, respectively, again leads to a linear trade-off between the
various objectives. When the Pareto front is non-convex as in our case, with gradient-descent, the
constraints can be ignored and we still cannot always find optimal solutions by tuning €;, &; [44].

"For example, classifier log-probabilities are in (0, inf) while sentence similarities usually lie in (0,1).

“For example, defining fi(y) = p(aly) as the probability of a desired attribute a in y leads to a natural
threshold of f;(y) > 0.5. For a well-calibrated f;, an even higher threshold could be used for inducing highly
indicative features of a in y.



2.1 Modified Differential Method of Multipliers

The fundamental issue in both linear combination of objectives and solving the dual is that fixed
scalings \; and u; (manually pre-determined or obtained by solving the dual) do not work well with
gradient descent to minimize for y. Following prior work on differential method of multipliers [44],
we propose to use a single gradient descent to optimize for both Lagrangian multipliers and y
simultaneously as follows:

y O =y o VLN = N Vo Lt = T eV L 4)

We follow the gradient of £ downwards for the y (descent) and upwards for the multipliers (ascent)
while making sure that the multipliers remain positive (by setting the multipliers to 0 whenever they
become negative). Intuitively, this algorithm works by increasing the value of the multiplier with
each gradient step as long as the constraint is violated. But when the constraint is suddenly satisfied
and the multiplier is still large, it might take a number of gradient steps before the gradient descent
pushes it to 0, thus causing the solution to be pushed further away from the constraint. As soon as
the multipliers become O (or negative), the constraint is ignored and the process continues. However
when the optimization hits the constraint again, this whole cycle repeats, resulting in “oscillations”.
We introduce a dampening parameter to each of the multipliers to reduce these oscillations (again
following Platt and Barr [44]) and update the Lagrangian as follows:

u v

Ly i py) = —log p(ylx) = > (N = C)(er = fi(y) = D (1 — v)(& — i (x,¥)), (5

i=1 j=1

where (; = d * stop-gradient(e; — fi(y)), v; = d * stop-gradient(u; — g;j(z,y)) and dis a
hyperparameter. d does not affect the final y, just how quickly the algorithm converges to it (We
use d = 1 in all experiments). stop-gradient(-) indicates that the argument is detached from the
computational graph and does not contribute to the gradient computation. When a constraint is not
satisfied (¢; — f;(y) < 0, hence (; < 0), the dampening parameter (; being negative incurs higher
penalty on the violation than when not using any dampening, without actually increasing the value of
A; too much. But when the constraint is satisfied, it helps quickly reduce the value of penalty being
incurred on the constraint while the multiplier converges to 0.

2.2 Optimization: Exponentiated Gradient Descent

Our goal is to generate a sequence of discrete symbols y = yi,...,yr, where y; is from the
target vocabulary. To make continuous optimization like gradient descent feasible, we adopt a
soft-relaxation [18] to represent each y;, as a probability simplex, g, € Ay (i.e. 0 < g < 1 and

Z}Z; Yt = 1). Intuitively, it gives the probability of each token in the vocabulary. To compute
the loss £ during forward pass, we first convert g to a one-hot vector g via a straight through
estimator [3]. This allows gradients to be applied to g, during the backward pass. More formally,
Jr = one-hot(argmax ;) — stop-gradient(gy) + yx. During the forward pass, the input
embedding tables corresponding to G and each of the constraints’ models receive a one-hot vector gy,
at each step, and the input embedding is computed as a weighted-sum of the embedding weights. But
in the backward pass, the gradients are applied to §,.>

This relaxation, however, adds another constraint to the objective £ that each parameter ¥ should
be a simplex. We use exponentiated gradient descent [26, 18] to solve this problem which modifies

the gradient-descent update shown in (4) as: g,ff) o 37,(:_1) exp(—m Vy, L). After every descent step,

gﬁj) is normalized to make it a simplex.

2.3 Preventing adversarial solutions: Annealing the thresholds

Finally, it is well known that most neural network based models are not robust to noise and in fact
gradient-based methods have been used to generate adversarial examples for text classifiers [55].
We find in our early experiments that using these models to define constraints can also lead to such
cases where the constraints are rapidly satisfied but the generated sentences are disfluent. To prevent

3Unlike prior work [18, 46, 55], we do not feed g; directly to the model as in our early experiments we found
that it leads to slow convergence.



this issue, we introduce an annealing schedule [43] during the gradient descent where we start with
relaxed thresholds €;, £; such that they are all satisfied and only the primary loss — log p(y|x) is
active. As the optimization progresses, we gradually decrease the value of the thresholds causing the
constraints to get violated resulting in the optimization gradually shifting to updating y to satisfy
them. The exact schedule we use is described in the next section.

The final decoding algorithm we use in all our experiments is described in the Appendix algorithm 1.

3 Experimental Setup

We evaluate MUCOCO on the following controlled generation tasks: reinforcing target style in text
generated by a style transfer model §3.1 and adding formality to a machine translation model (§3.2).
Additionally, we conduct a qualitative analysis of rewriting a product review to adhere to multiple
expected attributes like formality, sentiment magnitude, and age group of the author (§4). These tasks
include constraints corresponding to both expected attributes in the target sentence (like formality) as
well as both source and target sentences (like semantic similarity) with up to 6 constraints per task.

Implementation Details For a given sentence length 7', we initialize each simplex g1, ..., 4y
uniformly over the vocabulary. We use exponentiated descent learning rate of 17; = 50 for y and
ascent learning rate of 772 = 2.0 for the multipliers, and run the optimization for 100 steps. Given all
intermediate solutions y(t) , we choose the one which satisfies the maximum number of constraints
(if not all) and has the minimum value of the primary objective. For each constraint, we use the
following annealing schedule: we start with an initial value and linearly decrease it at step 40 until
it reaches the desired value at step 80, after which we keep it constant. Additionally, since the
length of the target sequence is not known in advance, we first greedily decode from G till the
end-of-sentence token is generated resulting in a sequence of length L. We then use our approach for
eachT € {L —5,..., L+ 5} and choose the one which (a) satisfies all the constraints and (b) has
the minimum value of the primary objective. If none or partial constraints are satisfied, we choose
the output based on (b).

3.1 Style Transfer

We begin with a style-transfer task, a task aiming to faithfully and fluently rewrite a given sentence
such that a desired writing style is reflected in the generation. This task has been widely studied [21,
54, 28, among others] and differs from related tasks like sentiment transfer [58, 57, 32] where flipping
the sentiment usually comes at the cost of changing meaning.

Style transfer is usually evaluated across three dimensions: (1) does the output sentence conform to
the expected style; (2) does the output sentence preserve the input’s meaning; and (3) is the generated
sentence fluent. Most prior work in style transfer focused on devising training objectives serving as
proxy for the desired outcomes, for example, back-translation [45, 57] or paraphrasing [28] for content
preservation and language modeling for style and fluency. But depending on training algorithm and
available data, there is often an observed trade-off between transfer and content-preservation [45, 57].
To that end, we add the desired attributes via explicit constraints when decoding from an existing
style transfer model.

More specifically, we consider the task of informal to formal transfer [49] with the state-of-the-art
unsupervised model STRAP from Krishna et al. [28]. This model is trained in an unsupervised fashion
by (1) generating a pseudo-parallel corpus by paraphrasing each formal sentence in the training set
(which results in a demotion of stylistic attributes), and (2) training an inverse-paraphrase model
to translate paraphrases back to the original formal style. At test time, given an informal input
sentence x, the model first generates its paraphrase z, then using an inverse-paraphrase model to
generate the output y. We train this model by fine-tuning GPT2 (345M) [47] with the GYAFC Corpus
(Entertainment/Music domain; around 50K formal sentences) [49] and evaluate it on the provided test
set containing 1312 informal sentences. Krishna et al. [28] report best results with greedy decoding.
In MUuCoCO we modify the decoding algorithm by considering the negative log-probability of y
given z according to the model as the primary objective, and incorporate the following constraints:

Formality: We train a binary classifier prormar (y) by fine-tuning GPT2 on the same GYAFC training
corpus, following default hyperparameter choices provided in HuggingFace [67]. This classifier
outputs the formality probability of a sentence y. We add this output as a constraint to the decoder as



—log(prormaL (¥)) < —log(0.5). In other words, the constraint is satisfied if the classifier assigns at
least 0.5 probability of the output y being formal. We initialize the threshold to 10.0 which is later
annealed to — log(0.5).

Semantic Similarity: Since the baseline style-transfer model takes as input the paraphrase z and
not the original text x, it is susceptible to losing some of the original content in x while generating
y. To ensure content preservation we incorporate two kinds of objectives: (1) USIM(x,y) =
cosine(M (), M (y)) [51] where M outputs a continuous vector representation of a given sentence.
Similarity between x and y is measured by cosine similarity of their respective representations.
(2) WMD(x,y) takes as input bags of word embeddings of the two sentences and computes the
Word Mover’s Distance between them [31]. This distance is computed by solving a linear program.
We adapt the alternating optimization procedure described in [30] to make this loss differentiable
through the program. Intuitively, while USIM computes similarity between sentences taking context
into account, it can be less robust to certain missing or repeating tokens, whereas WMD measures
lexical overlap between input sentences acting as a proxy for coverage. We discuss the two losses in
more detail in Appendix C. To compute the thresholds for constrained optimization, we compute the
average value of the two functions on the development set in the same corpus. We use USIM < 0.15
and WMD < 0.4 as the final constraints (with initial threshold values of 2.0 for each).

Baselines and Evaluation Metrics We compare MUCOCO with the following baselines:

NoO-CONSTRAINTS: We decode directly from the model greedily without any constraints. This
replicates the best result reported by Krishna et al. [28].

FUDGE: Introduced by Yang and Klein [69], this method decodes in an autoregressive manner.
It modifies the output vocabulary distribution at every step by interpolating the language model
probability with that of a formality classifier. This classifier is trained to predict the probability of
entire sentence being formal given only a prefix (we train it similarly to prormar(y) by fine-tuning
GPT?2). This method only works with categorical features like formality and is not extensible to
constraints like semantic similarity. We decode using the hyperparameters recommended in [69].

Following the baseline model Krishna et al. [28], we evaluate the generated sentences with the
following metrics: (a) fluency or grammatical wellformedness measured by the accuracy of a
RoBERTa-based classifier model [38] trained on CoLA [62], averaged over all outputs, (b) transfer:
measured by a RoBERTa-based classifier model [38] trained on the GYAFC training corpus, and
finally (c) WSIM [65], a subword embedding based similarity model trained on a large-scale para-
phrase corpus which performs well on STS benchmarks [5] as well. We measure this metric both
with respect to the input and the provided references.* In addition, we also report USIM.

Results The style transfer results are summarized in table 1. If we only incorporate a formality
constraint, we observe that compared to FUDGE our method significantly improves transfer accuracy
at the expense of content preservation. Adding semantic similarity constraints on the other hand
improves both transfer as well as content preservation with the largest gains achieved when all the
constraints are considered together. Qualitative analysis shows that MUCOCQO’s outputs are typically
more fluent and have stronger formality signals, but all of the models are prone to propagating errors
from the paraphrasing model (see examples in the Appendix table 3).

3.2 Style-controlled Machine Translation

We now evaluate MUCOCO in the task of formality transfer in machine translation. Given a trained
MT model, decoding is often done using beam search and the highest probability beam candidate is
chosen as the final output. Prior work has explored adding rule-based or heuristic constraints such
as length penalty or coverage [68] to rerank beam candidates, and adding lexical constraints like
penalizing n-gram repetitions [20]. In this experiment, we target sentence-level constraints which are
otherwise difficult to incorporate in a left-to-right decoding process. Given a trained MT model and
the source text z, we use negative log-probability of the translation y under the MT model as our
primary objective and incorporate the following constraints for decoding in different combinations:

Cross-lingual Similarity Similar to USIM, we define XSIM(x,y) = cosine(CM (x),CM (y)),
where C'M is a multilingual encoder trained by distilling a monolingual model like M described ear-

“Each input sentence has 4 references, we choose the highest textscwsim value to compute the average.



Content Content

Preservation Preservation

(w.r.t. input) (w.r.t. ref)
Method Constraint Fluency Transfer WSIM _ USIM _ WSIM__ USIM
STRAP None 91% 78% 0.69 0.77 0.72 0.80
FUDGE FORMALC(Y) 90% 85% 0.71 0.77 0.73 0.81
MUCOCO  FORMALC(Y) 89% 93% 0.67 0.75 0.72 0.78
MUCOCO  USIM(X, y) 92% 85% 0.71 0.78 0.74 0.81
MUCOCO  USIM(X, y), WMD(X, y) 92% 87% 0.73 0.79 0.77 0.86
MuCoCO  SIM(X, y), WMD(X, y), FORMAL(Y) 93% 92% 0.71 0.79 0.75 0.84

Table 1: Automatic evaluation of fluency, formality transfer, and content preservation for informal-to-
formal style transfer models.

lier [52]. More details of training are available in the Appendix C. Averaging across the development
set, we use 0.2 as the threshold for the constraint.

Formality Unlike style transfer, where the goal is to rewrite text in the desired style, here we seek to
generate translations in a desired style directly from an MT model which was not explicitly trained to
conform to a specific style. We train a classifier prormar (y) similarly to one described in previous
section by fine-tuning GPT2, but with a different input-embedding table to match the vocabulary of
the decoder of the MT model. Again, we use log prormar (¥) > log(0.5) as the constraint.

Baselines and Evaluation Metrics We compare MUCOCO with the following two baselines:
BEAMSEARCH: We decode directly from the translation model with a beam search of size 5.

FUDGE [69]: defined similarly as in the style transfer task but trained to match the decoder vocabulary.
As mentioned before, FUDGE only works with categorical attributes like formality and is not easily
extensible to constraints like cross-lingual similarity. We use the recommended hyperparameters by
Yang and Klein [69] for decoding.

In Yang and Klein [69], the authors also compare FUDGE with other baselines such as PPLM [9] and
BEAMSEARCH followed by style transfer. They show that FUDGE vastly outperforms these baselines.
Hence, we only show comparisons with FUDGE in this work. We evaluate along the following metrics:
(a) BLEU [42]: a standard metric for evaluating MT, (b) BERTScore [72]: an embedding-based
metric which is more robust to changes in surface forms of the words than BLEU. (b) transfer: the
same RoBERTa-based formality classifier as in our style transfer experiments. We also report XSIM,
the constraint we use for decoding.

We experiment with French to English translation with a subset of the OpenSubtitles test set [36]
containing 1360 sentence pairs.’ This test set contains informal spoken language for both source
and target. For the primary objective, we use the Marian Transformer based French (fr) to English
(en) model [23] through Huggingface. We summarize the results of this experiment in table 2 with
selected examples in the Appendix table 4.

Results By just using a cross-lingual similarity metric without modifying the model at all, we observe
+0.6 improvement in BLEU score as well as BERTScore. Adding a formality constraint leads to
considerable gain in formality of the outputs with a drop in BLEU; using both XSIM and FORMAL
helps recover some of the drop. The drop in BLEU is unsurprising: since BLEU is a surface-level
metric it naturally penalizes the translations that are rephrased to conform to formality constraints.
Indeed, as shown in table 4, adding a formality constraint leads to changes in sentence structure and
vocabulary. On the other hand, we see improvements in BERTScore which is an embedding-based
metric, more robust to paraphrasing.

To further validate our results, we conduct a human evaluation of the generated translations. We
randomly sample 100 source sentences and their translations generated by beam search and MuCoCO
with both FORMAL and XSIM constraints. Two annotators (highly proficient in French and English) to
rank the translations on faithfulness (is the source meaning reflected in the translation?) and formality.

SWe create this subset by filtering the original test set to contain only sentence pairs for which beam search
translations are classified as informal.



Method Constraint BLEU BertScore Formality(%) XSIM

BEAMSEARCH None 42.1 0.932 0% 0.85
MuCoCO XSIM(X,y) 42.7 0.939 4% 0.88
FUDGE FORMAL(y) 39.2 0.922 6% 0.83
MuCoCO FORMAL(y) 375 0.913 30% 0.83
MuCoCO FORMAL(y), XSIM(x,y)  39.8 0.935 23% 0.86

Table 2: Results of style-controlled machine translation experiments.

The options are randomized. On the translation pairs where both annotators agree (79 out of 100),
the ones generated by our method were favored by annotators 37% percent of the time, while beam
search translations were favored only 18% of the time, and 21% translations were equally favored.

4 Discussion

Simultaneously controlling several attributes One of the main advantages of our proposed ap-
proach is its flexibility to introduce any number of constraints (as long as they are differentiable)
to the decoding objective. To illustrate this advantage we consider the following problem: given
a sentence annotated with following attributes: age group of the author, formality, and sentiment
magnitude, rewrite it such that any chosen combination of the attributes are modified while keeping
the others fixed and the content preserved [39, 57]. For our primary objective, we use a inverse-
paraphrasing model as defined in §3.1 which we train on a corpus of Yelp Reviews® [45]. First, we
paraphrase each sentence in the corpus as described in Krishna et al. [28] creating a pseudo-parallel
corpus (of reviews and their paraphrases) and train G as an inverse-paraphrase model to translate the
paraphrases back to the original reviews. We use USIM and WMD for semantic similarity constraints
and three classifiers for (a) age group of the author (binary; < 30 years or > 30 years); (b) formality
of the review (binary: informal or formal); (c) sentiment magnitude (five-class classifier ratings of 1 to
5). Here we focus on sentiment amplification rather than transfer. That is, changing the 4-star rating
of an input to 5 (or 2 to 1). Details of the classifiers and the data used are provided in Appendix C.2.”
Table 5 shows examples of generated sentences with different combinations of attribute values.

Finding other solutions on the Pareto front As described in §2, the thresholds ¢, £ are tunable
hyperparameters that allow us to find different solutions on the Pareto front. In our experiments so
far, based on expected outcomes and how the constraints are defined, we showed results with only
one threshold for each constraint. For example, ideally for a well-calibrated text classifier based
constraint, this technique should be able to find solutions for any probability as threshold, but most
neural-network based classifiers are not well-calibrated and predict the highest probability output as
the label, hence a natural threshold for binary-classifiers is a label probability > 0.5. In Appendix
table 6, we show how the outputs change if we modify this threshold to different values. We observe
that in most cases the optimization converges to generate words more commonly associated with
formality. On the other hand, semantic similarity between two sentences is even harder to define, is
less robust to noise, and varies with writing styles of the input sentences. As shown, increasing this
threshold for semantic similarity can lead to repetitions and disfluency.

Speed and memory requirements The presented decoding algorithm treats each token in the output
sequence y as a parameter for gradient-descent which involves multiple forward and backward passes
through the primary generative model G as well as attribute models. Given an expected sequence
length L, it optimizes L x V parameters which is both memory and time intensive compared to
left-to-right decoding. For example, on a single GeForce RTX 2080 Ti (12GB) on which we run
all presented experiments, with a batch size of 1, our approach takes approximately 90 minutes on
average to decode around 1200 sentences compared to around 20 minutes for FUDGE [69] with a
single constraint. For reference, unconstrained beam-search takes 2-5 minutes. Given enough GPU
capacity, however, this approach can easily be extended to larger-batches to improve decoding speed.
We do not conduct this experiment due to limited available resources. Using 16-bit floating point

®This corpus is sentence-tokenized and lowercased with 2.2M sentences not labeled for any attributes.
"Due to lack of an established benchmark for this task and due to many possible combinations of attributes,
we do not report quantitative results.



operations, this can further be improved. Another way of improving memory efficiency would be to
optimize not for tokens directly but instead optimize for token embeddings [29]. This formulation
also removes the requirement for all the models to share a vocabulary. We plan to investigate this in
future work. Finally, given the capability of this approach to incorporate multiple constraints, it can
also be used to generate pseudo-parallel data with different attribute combinations which then could
be used to train supervised models for attributes for interest resulting in faster models at inference.

Ethical considerations Controlled language generation is a growing research area, and state-of-the-
art techniques are still noisy and not powerful enough to enable fine-grained control over generated
content. In the current form, they have the potential to generate harmful and biased language. For
example, language generators are prone to generating non-factual content [41], especially when used
maliciously [60, 61, 71]. Moreover, when style transfer techniques are used in conjunction with users’
personal attributes such as gender, they are likely to generalize and amplify harmful social biases
[45]. We thus opted not to include gender transfer in our experiments. Our goal in this work is to
enable finer-grained control over generated texts that could potentially alleviate these issues. These
approaches can be used as a useful tool for mitigating many problematic biases already encoded in
large language models [15, 2, 37], for anonymizing personal attributes [50], and even as aids for
humans to avoid implicit biases in their writing [40, 14].

5 Related Work

Recent work on controllable text generation can be divided into two categories. The first focuses
on directly training attribute-conditional models either through fine-tuning pretrained models with
attribute-specific corpora [13, 28] or via training conditional generative networks [57, 73, 45, 70].
More broadly, this includes methods for text style transfer. Unlike MUCOCO, these methods are
not easily extensible and require training or fine-tuning a new model to incorporate new attributes.
For example, CTRL [25] train a large scale language model (1.6B parameters) from scratch with
55 control codes capable of generating high-quality text but is very expensive to train. The second
line of work, in line with MUCOCO, aims to incorporate control in pre-trained models without
retraining them. For example, GEDI [27] trains smaller class-conditional LMs and uses them as
discriminators for guided generation. More recently, FUDGE [69] and DEXPERT [37] propose changes
to left-to-right decoding in language models by modifying the vocabulary distribution at every step
using attribute classifiers and ensemble of language models trained on attribute-specific corpora.
Although lightweight, these approaches are, by design, prone to a trade-off between preserving
content and enforcing the attributes in the generated text. Our work is most closely related to Plug
and Play Language Models [9] which use gradients from the attribute models to update the prediction.
They work by updating the model activations rather than token probabilities which limits their
applicability to only unconditional language models. Furthermore, due to their autoregressive nature,
these approaches do not guarantee sequence-level control as they only look at the prefix generated
up to a certain step. These are also limited to categorical attributes and can not enforce real-valued
controls like semantic similarity.

Gradient-descent based optimization to generate text has been explored in prior work for improving
machine translation [18], paraphrasing [46] and generating adversarial examples [55]. These methods
however rely on linear combinations of various objectives which as we discuss in §2 are not optimal
for non-convex neural-network based models. This phenomenon has also been studied in multi-task
learning [34, 35, 53] where linear combination of multiple task losses is the most common approach
and approaches for multi-objective gradient descent have been proposed. These approaches can also
be explored for text generation in the future.

6 Conclusion

We present MUCOCO, a decoding algorithm for controlled generation from (conditional) language
models that flexibly combines pretrained LMs with any differentiable constraints. With experiments
on style transfer and controlled machine translation, and multiple combination of constraints, we
show the effectiveness of this approach. In addition to its potential applications in factual rewriting
and debiasing text, this work holds promise in making language generation models personalizable
and adaptive to different dialects or even individual speakers, since MUCOCO re-uses pre-trained
LMs without adaptation and can incorporate constraints (e.g., dialect or user properties) trained on



very little data. Future work will explore more sophisticated optimization techniques to improve the
computational efficiency of our approach, and gradient-descent based methods for sampling [64]
which will allow to sample from the language models with constraints.
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A Overview of the Method

Figure 2 shows an overview of our proposed approach.

miny —u(§—g(x,y)) —logp(ylx)) —Ale — f(y))

Input Output Prediction

Figure 2: MUCOCO architecture. At each step, only the output sequence y is updated by receiving
gradients from the primary objective of the base text generation model G as well as the constraints
f and g, corresponding to arbitrary text attributes to control for at decoding time. Any number of
differentiable constraints can be incorporated. Black arrows indicate forward pass while the red
dashed arrows indicate the backward pass. The parameters of all the objectives remain frozen (shown
in gray).

B MuCoCO Decoding Algorithm

Algorithm 1: MUCOCO: detailed decoding algorithm

Input: input sequence x, output length L, base model G, attribute functions f; and g; and their
respective initial and final thresholds, threshold update schedule, step sizes 71, 72;

Result: output sequence y

Forall k € {1,..., L}, initialize y) uniformly over Ay;

Forallie {1,...u}andj € {1...0}, initialize X}, 11 as 0 and the thresholds €, £9 with the
given values ;

fort =1,..., MAXSTEPS do

// forward pass

for all k, compute §j;, = one-hot(arg max ) and compute the loss £ (using (5));

// backward pass

for all k, 7 and j, compute V%;l

TR T Ry
// Update the parameters
update g(t“) x gj(t) exp(l1 —mVy.L);
k k gx k)
update A} = max (0, \:™! + 72V, £), and pf = max(0, !~ + 172V, L);

update €}, & following the threshold update schedule

end
return arg min, {— log p(y " |x) : Vi, f;(7*)) < eiﬁj,gj(x,y(t)) <&k

C Details of Attribute Models

C.1 Semantic similarity models

We explain the semantic similarity models we use in our experiments in more detail here:

USIM USIM named after UKPLab-Sentence-Transformers is defined as USIM(x,y) =
cosine(M (z), M (y)). In other words, it is the cosine similarity between the representations of
a model M. This model is parameterized by GPT2(345M) [8]. M () is obtained by first feeding x
to the model and then mean pooling all the output representations. This model originally presented
in Reimers and Gurevych [51] is trained in a Siamese fashion on BERT [38] but is easily extensible
to any LM architecture. We adapt it to GPT?2 as follows:
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* First, we fine-tune M =GPT?2 on the combination of SNLI and MNLI [66] corpora which
are both designed for training natural language inference model and intended to capture
semantics. Each corpus contains pairs of sentencse with one of the three annotations:
inference, contradiction or neutral. For each input sentence (s1, s3), the model is trained as
with classification objective with the final logits computed as W[M (s1), M (sz2), |[M(s1) —
M (s2)]], where W is a trainable parameter. In other words the three vectors as shown are
concatenated and multiplied with a weight matrix. We train this for 1 epoch on the combined
corpora.

» Second, we continue fine-tuning the M trained so far on the STS corpus which consists of
pairs of sentences annotated with real numbers in [—1, 1] indicating their semantic similarity.
We train on this corpus with a mean-square-error loss between cosine(M (s1), M (s2)) and
the given score.

For details of training M can be found in [51] where this model is shown to perform competitively
on STS benchmarks [66]. We use this model for adding constraints in style-transfer (§3.1) and
multi-attribute transfer (§4).

XSIM Similar to USIM, we define XSIM(x,y) = cosine(CM (z), CM (y)), where CM is a cross-
lingual model. This method was introduced by Reimers and Gurevych [52] where they distill a
monolingual model such as M, to train a cross-lingual model with a small parallel corpus in the
languages of interest. Given a parallel sentence pair (x,y), C'M is trained by minimizing the
following loss:

Lysin = [M(x) = CM(x)[3 + |CM (x) = CM(y)ll3

That is, representations of the model M and C'M for the source sentence are trained to be close
together as are the cross-lingual representations of source and target. We parameterize C' M also with
pretrained GPT2 (345M) [8] model. But GPT2 and the Marian Transformer based MT model [23] we
use do not have matching vocabularies. Since the vocabulary of the primary objective and constraints
should match for the decoding to work, we replace input word embedding layer of GPT2 with that
of the decoder of the translation model before we train the distilled model. We use the TED2020 []
French-English parallel corpus containing around 400K sentence-pairs to train XSIM and obtain
comparable performance as Reimers and Gurevych [52] on the cross-lingual STS benchmark [66].

WMD Given two bags of words, x = {z1,...,2,} andy = {y1, ..., Ym}, and an embedding table
e, we define word mover’s distance between x and y as
m,n
WMD(X, y) = min Z Tijdijsubject to
i=1,j=1
n
1
ZTia‘ =
1
m

INg
iz
|

3|

where we define d;; = 1 — cos(e(x;), e(y;)). Given fixed inputs e(x;) and e(y;), WMD can easily
be computed using linear program solver 8. To backpropagate through this objective. We use the
following steps following Kumar et al. [30]:

1. During the forward pass, we obtain § as indicated in algorithm 1 and compute word
embeddings for both the input x and the prediction §. Using the linear program solver, we
compute WMD(x, ¥) as well the proportions T;;

2. During the backward pass, we keep the T;; fixed which removes the constraints from the
WMD computation as described making it differentiable allowing gradients to flow to update
the optimization parameters y.

We use the embedding table from USIM model as e for this constraint.

8We solve it using the python library POT: https: //pythonot . github.io/
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C.2 Models used in multi-attribute transfer

In §4, we present a paraphrasing model with 4 different constraints: USIM as described previously
and three classifier constraints. All the classifiers are trained by finetuning GPT2° on the following
corpora:

Age We use the NUFA corpus [22] consisting Yelp Restaurant Reviews with 300K sentences per
age group (greater than 30 years, and less than 30 years) in the training set. The age was self-declared
by the reviewers in their Yelp profiles. Our classifier achieves an accuracy of 80% on a balanced test
set of 10K sentences.

Formality We use GYAFC corpus as described in §3.1 for this constraint (with an accuracy of
around 92%) on the provided test set.

Sentiment We collect Yelp restaurant reviews using scripts provided by Subramanian et al. [57]'°
with a rating from 1 to 5 star. We subsample from this corpus to train our 5-class classifier on 100K
reviews per rating obtaining a classification accuracy of around 75% on a held-out test set also
sampled from the same corpus.

D More Details of Human Evaluation

We conduct A/B testing to rank translations generated by our method and beam search. We show the
annotators the source sentence and two randomized translations (one from beam search and one from
our method). We ask them to choose one of the four options: 1: the first translation is both faithful
and formal while the second is not, 2: the second translation is both faithful and formal while the
second is not, 3: both are faithful and formal, and 4: both are either unfaithful or informal or both.
Results are summarized in §3.2.

E Examples

E.1 Style Transfer

We show selected examples from our style-transfer models in Table 3. Since the final output y is
generated from the paraphrase z, not the input sentence x, some of the content is at times modified in
the final output in decoding without constraints. MUCOCO with content based constraints is able to
recover content in some examples and also improve formality of the outputs. But it can still be prone
to errors since the content-similarity metrics are not perfect. See §3.1 for more details.

E.2 Style-controlled Machine Translation

Table 4 lists few selected examples for inducing cross-lingual similarity and formality constraints
in a French to English MT model. We find that inducing formality modifies some of the constructs
(like removing contractions: “gonna” to “going to”) in the output sentences which are not measured
accurately by a surface-level metric like BLEU. See §3.2 for more details.

E.3 Multiple Solutions on the Pareto Front

Table 6 shows a few examples of changing constraint thresholds for semantic similarity as well as
formality constraints. Since the classifiers are not well calibrated, we find that with tighter constraints,
the outputs tend to overly represent formality indicating words while losing some of the content
which the semantic similarity models are not always robust enough to detect. See §4 for more details.

‘we use Huggingface [67] with recommended hyperparameters for training all classifiers: https://

huggingface.co/transformers/v2.0.0/examples.html
Yhttps://github.com/facebookresearch/MultipleAttributeTextRewriting/tree/master/
data/Yelp
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Input
Paraphrase

all are good movies u cant rate them
all good films you can’t rate

NO-CONSTRAINTS
FUDGE(FORMAL)
MuCoCO (FORMAL,USIM,WMD)

All good movies that you can’t rate
All good movies you can not rate
All are good movies you can not rate them adequately

Input
Paraphrase

One guy says to me ’So, where’s the fox from Mystic Pizza?
"so, where’s the Mystic Pizza guy?" Said one of the men.

NO-CONSTRAINTS
FUDGE(FORMAL)
MuCoCO (FORMAL,USIM,WMD)

One of the men replied , "So , where is the Mystic Pizza guy?
One of the men replied, "Where is the Mystic burger?"
One of the men enquired, "Where is the Mystic Pizza man?"

Input
Paraphrase

chill out sweetie everything will be fine eventually.
calm down, sweetheart, everything will be fine.

NO-CONSTRAINTS
FUDGE(FORMAL)
MuCoCO (FORMAL,USIM,WMD)

Calm down, sweetheart, everything is going to be alright.
Calm down sweetheart, everything will be alright.
Calm down sweetheart, everything will eventually proceed to be good.

Input

Paraphrase

what kinda person are you to even ask that ridiculous
(er...spell check that...) question?
what kind of fool would ask such a silly question?

NO-CONSTRAINTS
FUDGE(FORMAL)
MUCoOCO (FORMAL,USIM,WMD)

‘What kind of idiot would ask such a dumb question?
What kind of fool would ask such a dull question?
What kind of foolish person would ask such a dull question?

Input

Paraphrase

I spent my money, enjoyed myself and didn’t loose more than I could
afford - I won....
I’'ve spent my money, I've enjoyed it, and I didn’t lose anything.

NO-CONSTRAINTS
FUDGE(FORMAL)
MuCoCO (FORMAL,USIM,WMD)

I spent my money, I enjoyed it, and I did not lose anything.
I have spent my money, I have enjoyed it, and I did not lose anything.

I spent my money, did not lose anything more, and it was simply enjoyable.

Table 3: Style transfer examples with different decoding methods and constraints.

E.4 Multi-attribute Transfer

Table 5 shows a few examples of transfering multiple combinations of attributes in a given input
sentence. We focus on sentiment amplification rather than transfer as it is by definition prone to
losing content. See more details in §4.
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Source

Mais il s’agit... il s’agit d’une femme que vous ne connaissez pas.

Reference But this is— This is a woman you don’t know.
BEAMSEARCH But this is... this is a woman you don’t know.
MUCo0CO (XSIM) But this is... this is a woman you don’t know.
FUDGE(FORMAL) But this is... this is a woman you do not know.
MUCoCO (FORMAL) But this is... is a woman you do not know.

MUuCoCO (FORMAL,XSIM)

But this is a woman you do not know.

Source Toi ? Le mec a bananes, exact.
Reference - Who’s the banana man, alright.
BEAMSEARCH You, the banana guy, right.
MUCoCO (XSIM) You? the banana guy, right.
FUDGE(FORMAL) You, the banana guy, right?

MUuCoCO (FORMAL)
MUCO0CO (FORMAL,XSIM)

Are you the banana guy?
Are you the banana guy?

Source
Reference

Nous allons les sortir de la d’ici quelques minutes.
We’ll have them out in a couple minutes.

BEAMSEARCH

MuCoCO (XSIM)
FUDGE(FORMAL)
MuCoCO (FORMAL)
MUCOCO (FORMAL,XSIM)

We’re gonna get them out of here in a few minutes.
We’re gonna get them out of here in a few minutes.
We’ll get them out of here in a few minutes.

We will get them out of here.

We will get them out of here in a few minutes.

Source On va prendre la voie aérienne.
Reference We’ll take the aerial up.
BEAMSEARCH We’re gonna take the airway.
MUuCoCO (XSIM) We’re gonna take the air route.
FUDGE(FORMAL) We are gonna take the airway.

MuCoCO (FORMAL)
MUCoOCO (FORMAL,XSIM)

We are going to take the air.
We are going take the air route.

Source Mais mon sang ne correspondait pas.
Reference But my blood didn’t match.
BEAMSEARCH But my blood wasn’t matching.
MUuCoCO (XSIM) But my blood didn’t match.
FUDGE(FORMAL) But my blood wasn’t matched.

MuCoCO (FORMAL)
MUCOCO (FORMAL,XSIM)

But my blood was not correct.
But my blood did not match.

Table 4: Translation examples with different decoding methods and constraints.
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< 30 years, informal, 4-star |

one big plus : the coffee is always fantastic .

< 30 years, informal, 5-star
< 30 years, formal, 4-star
< 30 years, formal, 5-star
> 30 years, informal, 4-star
> 30 years, informal, 5-star
> 30 years, formal, 4-star
> 30 years, formal, 5-star

the coffee is always great !

this coffee is incredibly good.

the coffee is consistently outstanding!

the espresso is usually enjoyed .

the coffee is usually delicious also!

the espresso is pleasantly delicious, nonetheless.
the coffee is brewed to excellence.

< 30 years, informal, 2-star

i left our meal feeling a little disappointed .

< 30 years, informal, 1-star
< 30 years, formal, 2-star
< 30 years, formal, 1-star
> 30 years, informal, 2-star
> 30 years, informal, 1-star
> 30 years, formal, 2-star
> 30 years, formal, 1-star

worst feeling with this little meal .

i felt failed and disappointed by this meal .

i left our meal feeling anguished, betrayed .

i was a little disappointed !

this meal bummed me out !

i felt unsatisfied by this meal.

i felt complete disappointment after this meal .

Table 5: MUCo0CO with multiple constraints and rewriting reviews with different combination of

attributes.

Input Sentence

My dad looks like Paul Newman, and my ex looked
like king kong

Paraphrase my dad’s like Paul Newman, and my ex looks
like a king.
Constraints | Outputs

FORMAL(y) > 0.5, USIM(x,y) < 0.15 | My dad looks like Paul Newman, and my ex looks

similar to King Kong

FORMAL(y) > 0.7, USIM(x,y) < 0.15 | My father looks like Paul Newman, and my ex

resembles a King Kong

FORMAL(y) > 0.9, USIM(x,y) < 0.15 | My father looks like Paul Newman, and my ex

(
(

FORMAL(y) > 0.7, USIM(x,y) < 0.1
(

possesses the qualities of King Kong approximately
My dad possesses looks similar to Paul Newman,
my ex appears like King King Kong

FORMAL(y) > 0.9, USIM(x,y) < 0.05 | My dad possesses the Paul Newman looks similar

my ex possesses similar King Kong resemblance

Table 6: Varying thresholds for the constraints to find other solutions on the Pareto front.
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