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Abstract— In this paper, we introduce an ambiguity-aware
robust active SLAM (ARAS) framework that makes use of
multi-hypothesis state and map estimations to achieve better
robustness. Ambiguous measurements can result in multiple
probable solutions in a multi-hypothesis SLAM (MH-SLAM)
system if they are temporarily unsolvable (due to insufficient
information), our ARAS aims at taking all these probable
estimations into account explicitly for decision making and
planning, which, to the best of our knowledge, has not yet
been covered by any previous active SLAM approach (which
mostly consider a single hypothesis at a time). This novel
ARAS framework 1) adopts local contours for efficient multi-
hypothesis exploration, 2) incorporates an active loop closing
module that revisits mapped areas to acquire information
for hypotheses pruning to maintain the overall computational
efficiency, and 3) demonstrates how to use the output target
pose for path planning under the multi-hypothesis estimations.
Through extensive simulations and a real-world experiment, we
demonstrate that the proposed ARAS algorithm can actively
map general indoor environments more robustly than a similar
single-hypothesis approach in the presence of ambiguities.

I. INTRODUCTION

Active SLAM is the problem of actively exploring an
environment with moving sensors while simultaneously esti-
mating the state of the sensors and reconstructing a map that
satisfies certain requirements (e.g. bounded uncertainty). In
general, an active SLAM system takes sensor measurements
as inputs just like a passive SLAM system, yet it outputs a
sequence of online decisions/actions to influence the future
measurements in addition to the state and map estimates from
passive SLAM only. The decisions/actions tend to fall into
one of two complementary groups: exploration and active
loop closing. The goal of exploration is to move the robot
in the environment so that new information can be observed.
A popular approach is to jointly optimize the information
gain and motion cost based on a global map [2][29]. On
the other hand, active loop closing is responsible for finding
mapped places to revisit for loop closures that correct the
accumulated drift and uncertainty [36][22][4][42].

Just as in other robotic solutions, robustness is a crucial
challenge for active SLAM, especially when encountering
the unavoidable problem of ambiguous measurements (or
ambiguities in this paper). Ambiguity is the situation where
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Fig. 1: This simulation example shows that the proposed ARAS framework
can make use of multi-hypothesis state and map estimations for exploration
(left), actively revisiting mapped areas when the number of hypotheses n
goes beyond a threshold ntrigger (middle), and pruning unlikely hypotheses
automatically when sufficient information is observed through loop closures
(right). The top row shows all highly likely hypotheses of the robot pose and
the global map reconstructed by local contours (see Sec. V-A). The middle
row shows the ground truth environment and robot trajectory. The bottom
row shows how n changes throughout the active SLAM process until the
environment is fully covered (see Fig. 9-b).

(a) Dynamic scene (opening a door) (b) Lack of texture (too dark)
Fig. 2: Examples of ambiguities for fast dense RGB-D odometry [11].

more than one interpretation is plausible for the same obser-
vations. It stems from various sources including insufficient
information, conflicts among different sensor measurements,
uncertain data association, loop closing based on appearance
only, and etc (see Fig. 2). Most existing active SLAM
algorithms [40][3][5] consider unimodal state and map es-
timates in exploration and active loop closing, as they are
built upon state estimation [14][6][39] and mapping methods
[24][9] that only consider one single hypothesis (and possibly
uncertainties). Therefore, when ambiguities occur, the single
estimate can be polluted by wrong information, which result
in poorly-informed actions or even full system failures.

Several nonparametric SLAM or multi-hypothesis SLAM
(MH-SLAM) solutions have been proposed to han-
dle ambiguities and output multimodal solutions accord-
ingly when the ambiguities are temporarily unsolvable
[23][8][25][13][10]. However, to the best of our knowledge,
no existing active SLAM algorithm makes use of both
multimodal state and map estimations explicitly in both



Fig. 3: Block diagram of the ARAS framework, which consists of four main modules: MH-SLAM, exploration, active loop closing, and path planning.
Notice that the poses Ti (blue arrows) are the only multi-hypothesis information passed between modules.

exploration and active loop closing. Therefore, in this paper,
we propose the ambiguity-aware robust active SLAM (ARAS)
framework that takes all the multi-hypothesis estimations
from a MH-SLAM system as inputs and outputs single
decisions/actions to take at a given time (see Fig. 1).

Similar to other active SLAM solutions, each action se-
lected by ARAS falls into one of two categories: exploration
and active loop closing. Since maintaining all the global
maps in each hypothesis for exploration is very inefficient
in both memory and computation, we develop a multi-
hypothesis exploration algorithm based on ambiguity-free
submaps to achieve better efficiency. As for active loop
closing, because the exponential growth of the number of
hypotheses can be intractable to track, we aim at bounding
the number of hypotheses based on the constraints of the
system while keeping track of the correct hypothesis within.
Therefore, the goal of our active loop closing algorithm is to
find some places to revisit so that the detected loop closures
can provide sufficient information to distinguish and prune
enough wrong hypotheses to reduce computational cost, or
even preserve the correct hypothesis only.

Finally, we implement a simple path planning method for
both exploration and active loop closing in each hypothesis,
which can be replaced by an advanced planner as needed.
Notice that we assume the environment we want to map lies
roughly on a horizontal plane (e.g.: one floor of a building),
and the sensors also move roughly on a horizontal plane.
These assumptions simplify the active SLAM problem into
2D (although the states and maps can still be 3D), which
helps us to focus on making use of the multi-hypothesis
estimations in ARAS efficiently.

The contributions of this work are:

1. Introducing the novel ambiguity-aware robust active
SLAM (ARAS) framework (see Fig. 3) that uses the multi-
hypothesis state and map estimates from MH-SLAM.

2. Developing an exploration algorithm based on
ambiguity-free submaps to make use of the multi-hypothesis
estimates efficiently.

3. Designing the active loop closing strategy to reduce the
number of hypotheses for tractability.

4. Demonstrating using the output decision/action for path
planning considering multiple hypotheses.

5. Evaluating the robust active SLAM algorithm through
extensive simulations and discussing its properties.

6. Applying the proposed algorithm in a real-world task.

Fig. 4: The system structure of the MH-SLAM algorithm. The factors with
more than one color are multi-mode factors (MMF). Please refer to Fig. 2
in [10] for the representations of various types of MMFs.

II. RELATED WORK

While partially-observable Markov decision processes
(POMDP) [35][16] offer a theoretical foundation to solve
active SLAM problems, considering all possible scenarios
resulting from ambiguous observations is computationally
intractable. Practical solutions based on belief space planning
(BSP) [15][1][31][30][32][34] have been developed to take
ambiguous information into account. However, none of them
considers the coexistence of multi-hypothesis states and map.

More recently, a robust exploration algorithm [41] based
on multiple hypothesis JCBB [26] handles multi-hypothesis
feature-based map and decides the future path based on
the weighted combination of all the hypotheses. Another
approach [33] focused on robust homing considers only two
hypotheses: whether the up-to-date 2D map is consistent or
not. The proposed ARAS takes both multi-hypothesis states
and maps into account in both exploration and active loop
closing, which increases the robustness of the entire system.

III. MULTI-HYPOTHESIS SLAM PRELIMINARIES

A. MH-iSAM2
The MH-SLAM in the ARAS framework adopts MH-

iSAM2 [10] as its back-end solver, which is a nonlinear
incremental optimizer that computes multi-hypothesis solu-
tions based on input single-/multi-mode factors (SMF/MMF).
Ambiguous measurements are modeled as MMFs fM

r with
corresponding types and modes (see Sec. III-C in [10]), and
the hypotheses of all multi-hypothesis variables (MHV) can
be optimized accordingly and associated with each other
through a Hypo-tree (see Sec. IV in [10]). In addition,
only the highly probable hypotheses are preserved after
hypotheses pruning (see Sec. VI in [10]) during each update.

B. Submap-based MH-SLAM
We adopt a keyframe-based framework similar to [11] in

our MH-SLAM, which selects a new keyframe Ki whenever
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Fig. 5: The extraction and update of a local contour Ci. In this example,
we visualize the algorithm steps in the local coordinates of the range/depth
sensor at the most recent keyframe with its submap reconstructed already. (a)
Boundary vertices vB

p are extracted from the submap Mi, and two frontier
vertices vF

p are added at the sensor origin and the maximum range on the
right edge. (b) More vF

p are interpolated with equal spacing, and some vB
p

are removed to smooth the edge. (c) The frontier vertices can be updated as
covered (vF

p→vF,c
p ) based on the neighboring submaps and their relative

pose estimations in all hypotheses.

the overlapping scene between the current frame and the
previous keyframe is less than a threshold in any hypothesis.
We further assume that all ambiguities between any two
keyframes can be summarized into an ambiguous odometry
factor (defined as type #1 MMF in [10]), which models
different measurements between the same two poses, or an
ambiguous loop closure factor (defined as type #3 MMF in
[10]), which models whether the measurement between two
poses is valid or not. As a result, only the multi-hypothesis
poses Ti (each modeled as a MHV as described in Sec. III-A)
of all Ki are optimized globally in MH-iSAM2 for simplicity
and efficiency. Moreover, we can generate an ambiguity-
free local dense submap Mi at each Ki, by fusing the raw
range or depth information from consecutive keyframes given
their estimated poses into a less noisy, outlier-free 3D map
representation (e.g.: local depth fusion in [11]). As each Ki

is anchored to Ti, the occupancy information at any global
location in any hypothesis h can be preserved efficiently in
all nearby Ti,[h] and their Mi without the need of generating
individual global maps for each h.

IV. ARAS FRAMEWORK

Based on the MH-SLAM preliminaries in Sec. III, the
ARAS framework is developed with three other main mod-
ules: exploration, active loop closing, and path planning (see
Fig. 3). In every iteration, the exploration module takes the
submaps Mi and multi-hypothesis poses Ti as inputs from
the MH-SLAM module, and generates a target view point P ∗

that aims at exploring unknown area (see Sec. V). And if the
active loop closing is triggered, a target submap M∗ will be
found based on the hypotheses branching and modes in each
MMF (see Sec. VI). Once a P ∗ or M∗ is determined, it will
be passed to the path planning module as a target pose, and
a motion command will be generated accordingly (see Sec.
VII). The motion command has to be verified as valid (no
conflict with the current measurements) by an online obstacle
detection module before being conducted.

Since both P ∗ are M∗ are single outputs anchored to
the multi-hypothesis pose of their corresponding keyframes,

(a) (b) (c)

Fig. 6: The extraction and update of view points P{i},k . (a) Frontier
segments (dark red lines) are defined based on each sequence of uncovered
frontier vertices. (b) To cover each frontier segment, candidate view points
can be sampled on the virtual circle (only on one side) since all the inscribed
angles that subtend the same arc have the same angle, which can be regarded
as the FoV of the sensor. (c) Each selected best view point P{i},k can be
updated or removed based on the updates of its vF

p .

their global poses can be updated inherently and efficiently
when the keyframe poses are updated in each hypothesis (see
Sec. III). Moreover, as the only two modules that deal with
the multi-hypothesis poses Ti directly, both exploration and
path planning are designed to operate on the ambiguity-free
Mi. As a result, expensive computations such as maintaining
multi-hypothesis global maps can be avoided.

V. MULTI-HYPOTHESIS EXPLORATION

To design an efficient exploration algorithm considering
multiple hypotheses, we take advantage of the ambiguity-
free submap assumption in Sec. III to compute all valid view
points in each submap based on its local contour, and design
an exploration tree algorithm to choose one target view point
at a time. We will go though these algorithms in this section.

A. Local Contours Extraction from Submaps

From each submap Mi (defined in Sec. III), we extract a
local contour Ci to represent the local free space and encode
the frontier [43] and obstacle boundary information. Each Ci

consists of a set of vertices vp, and each vp is labeled as on
a boundary (vB

p ) or on a frontier (vF
p ).

To compute Ci, we first extract boundary vertices vB
p

from the fused range/depth measurements in Mi on a given
height (see Fig. 5-a) assuming known gravity gi in the local
coordinates (e.g.: the sensors are rigidly attached on a mobile
platform that guarantees fixed gi, or equipped with an inertial
sensor that can measure gi correctly at any given time). Then,
a frontier vertex vF

p is added at the sensor origin, while one
or two other vF

p could be added at the maximum sensor
range along the edges of the sensor’s field of view if no
vB
p is extracted near them. After sorting all these vertices in

the clockwise angular ordering, we interpolate more frontier
vertices vF

p between each pair of consecutive vertices that
are farther apart than a threshold for better coverage on long
straight frontiers (see Fig. 5-b). Finally, Ci is refined by
removing some overly detailed vB

p to smooth its edges.
Every Ci has a pseudo timestamp ti, which is initialized

as the timestamp of its corresponding Ki. Any two contours
Ci and Cj can be added as neighbors of each other if ti and
tj are close enough, and at least the distance dij,[h] between



(a) (b)
Fig. 7: The construction and update of the exploration tree. (a) A new node
N3 that represents the new sets of view points P3 is added. (b) Assuming
that C3 covers all the remaining vF

p in C0, P0 becomes empty and N0

will be removed.

their poses (Ti,[h] and Tj,[h]) in one of the hypotheses h is
within a threshold. Whenever a loop between Kj and Ki

(with j > i) is closed in all hypotheses, ti will be updated
as tj so that every newly created nearby contour and Ci can
become neighbors of each other. The same update is also
applied to all the neighbors of Ci.

Whenever the number of neighbors of a contour increases,
we check though each of its vF

p if it is inside at least one
other neighboring contour in each hypothesis. If so, that vF

p

will be updated as covered, which is denoted as vF
p →vF,c

p

(see Fig. 5-c). Since the covered frontier vertices vF,c
p no

longer represent the horizon of the explored region in any
hypothesis, we will only use the uncovered vF

p to decide
future view points for exploration (see Sec. V-B).

B. View Points Selection

In each contour Ci, a set of valid view points Pi =
{P{i},k, k∈N} in 2D is found to observe all the uncovered
vF
p and the unknown space beyond them. Since Ci have

summarized the local effects from all hypotheses (see Sec.
V-A), each view point P{i},k just has to be computed once as
a pose T{i}k in the local coordinates of Mi, and transformed
to different global or relative poses in each hypothesis using
Ti,[h] (see Sec. III).

Starting from vF
0 at the sensor origin and following the

clockwise order, we define one frontier segment for each
sequence of consecutive uncovered vF

p , which is a line
segment connecting the two frontier vertices at the two ends
of the sequence with certain margin extended on both sides
(see Fig. 6-a). Any frontier segment with its length exceeding
a threshold is divided into several shorter ones until all of the
frontier segments satisfy the length threshold. Then, we adopt
the inscribed angle theorem to sample view point candidates
on the virtual circle defined by each frontier segment given
known open angle of the adopted range/depth sensor(s) (see
Fig. 6-b). A view point candidate is valid only if it is inside
Ci and its view is not blocked by any edge of Ci. Finally, the
best view point P{i},k for each frontier segment is naively
selected as the valid candidate with its viewing angle most
perpendicular to the frontier segment. If all candidates are
invalid, the frontier segment will be divided into two shorter
segments, and the same algorithm will be repeated onto each
of them until every frontier segment finds a P{i},k.

When any vF
p is updated to vF,c

p (see Sec. V-A), the
frontier segment that contains it will be updated (shortened
if it is at one of the two ends). Then, a new view point P ′{i},k

(a) (b)
Fig. 8: Two examples of how a loop closure disambiguates the ambiguities
modeled in the MMFs. (a) Usually, multiple undisambiguated MMFs fM,u

r

can be disambiguated by a single loop closure. (b) In special cases, some
combinations of the modes of different fM,u

r in different hypotheses can
all seem to be correct even after the loop is closed.

will be computed according to the new frontier segment and
substituted for P{i},k (see Fig. 6-c). If all vF

p in a frontier
segment are removed, so are the corresponding P{i},k.

C. Exploration Tree

A simple heuristic for efficient exploration it to finish
an entire local area first (e.g.: one room) before exploring
previously observed frontiers (e.g. entrance to another room).
Therefore, we develop the exploration tree algorithm based
on the update of local contours and view points (see Sec. V-
A and Sec. V-B) to approximate this heuristic by first sorting
Pi implicitly and then choose P ∗{i} from the selected Pi.

In the exploration tree, every node Ni represents one Pi

except for the root NR. Whenever a new submap Mi and
its Ci and Pi are computed, a corresponding Ni will be
added as the first child of the latest node that has its contour
updated by Ci (see Fig. 7-a). And if any Pj={Ø} due to the
view point removal process, its corresponding node Nj will
be deleted (see Fig. 7-b). In each iteration after updating
the exploration tree, the first view point of the first child
node of NR is selected as the target view point P ∗{i} (see
the green arrows in Fig. 7), and its pose T∗{i} in the local
coordinates of the submap Mi is defined as the local target
pose and passed to the path planning module (see Sec. VII).
If all nodes are deleted except NR, which means that no view
point has to be visited, we can conclude the exploration and
terminate the entire active SLAM algorithm. The process
can be understood as always choosing P ∗{i} from the oldest
contour that is updated in the most recent step, which in
practice performs very similar to the desired heuristic.

VI. ACTIVE LOOP CLOSING FOR CORRECT PRUNING

Since the adopted MH-iSAM2 conducts pruning automat-
ically whenever the number of hypotheses exceeds a thresh-
old (see Sec. III-A), the key to avoid pruning the correct
hypothesis accidentally is to acquire sufficient information
for correct pruning at proper timings. A simple active loop
closing algorithm is introduced to cover it in this section.

A. Triggering

Assume that nlimit is the upper bound of the number of
hypotheses our entire system can handle (see Sec. I) and n is
the number of equally likely hypotheses (see Sec. III) in each
iteration. Whenever n>nlimit, the correct hypothesis might
be pruned accidentally due to the lack of information. So,
the active loop closing must be triggered at the right times so
that loop closures can be detected and registered to provide



(a) Tree/star-shaped (b) Multi-loops (c) Scattered (d) Apartment (e) Office (f) Restaurant (g) School
Fig. 9: Plotting all Ci in the global coordinates shows that our algorithm can achieve full coverage in various indoor environments in simulation with
default settings: ntrigger=16, nlimit=∞, pa=1% and pf =2%. The edges formed by vB

p and vF,c
p are shown in blue and cyan respectively.

sufficient information for correct pruning (keep tracking the
correct hypothesis) while always satisfying n≤nlimit.

Since new ambiguities might occur on the way to revisit
M∗ and further increase n before any true positive loop is
detected, the ideal approach is to predict future ambiguities
and loop closures, and trigger active loop closing accordingly
beforehand. Even though there are existing algorithms that
help predicting future loop closures [19], it is still an open
question on how to predict future ambiguities. As a result, we
simply choose a threshold ntrigger<nlimit and trigger active
loop closing when n>ntrigger as a baseline approach. And if
n really goes beyond nlimit, we choose to prune some of the
hypotheses before obtaining sufficient information, and test
various combinations of ntrigger and nlimit in the simulation
in Sec. VIII-B to offer a good reference for choosing ntrigger

based on nlimit for real-world applications. More discussion
of this issue can be found in Sec. VIII-D.

B. Target Submap Selection

When the active loop closing is triggered, a target submap
M∗ will be selected from the existing submaps for revisiting.
Then, at least one loop that can result in correct pruning is
expected to be detected and closed when the pose of M∗ is
successfully revisited, or even earlier on the way to M∗.

To select a proper M∗, we first check for each ambiguous
odometry factor fM

r (see Sec. III) if more than one of its
modes are selected in all existing hypotheses. If so, we can
tell that the ambiguity modeled in fM

r is not disambiguated
yet, and flag fM

r as undisambiguated (denoted as fM,u
r ).

In this case, a loop closure measurement from the current
submap Mi to any submap Mj prior to fM,u

r is very likely
to provide the information that distinguishes the correct mode
from the wrong ones, and allows correct pruning right after.
If there are multiple fM,u

r between Mi and Mj , it is possible
to disambiguate all of them together with one single loop
closure connecting Mi and Mj (see Fig. 8-a). However, it
can fail in some special cases (see Fig. 8-b).

Based on the above discussions, we randomly select one
target submap M∗j from all the submaps prior to the earliest
fM,u
r . And if no loop is detected before M∗j is reached,

we will select another M∗j′ and repeat this process until
n≤ntrigger. This simple approach can be replaced by more
advanced methods as needed (see Sec. VIII-D).

VII. PATH PLANNING WITH MULTI-HYPOTHESIS POSES

This section describes how to conduct simple path plan-
ning with multi-hypothesis state and map estimates. In each
hypothesis h, we first compute the global target pose T∗[h]=
Ti,[h]T

∗
{i} in the case of exploration towards P ∗{i} (see Sec.

V-C) or T∗[h]=Tj,[h] in the case of active loop closing towards

M∗j (see Sec. VI-B). Then, we check if there exists a valid
path (collision-free against any mapped obstacles) from the
current pose TN,[h] to the target pose T∗[h] that consists of
one or multiple straight paths between existing poses. If
such path exists, the output motion command will be moving
directly along the straight line starting from TN,[h] with a
certain distance. If no path is found in h, we switch to the
next hypothesis h+1 and repeat the same process. Finally,
when T∗[h] is reached, a new P ∗ or M∗ will be passed into the
path planning module since either the current P ∗{i} is covered
and removed, or the switch between exploration and active
loop closing occurs. If the growing or pruning of hypotheses
happens on the way to the same target, the new hypothesis
h′ will be selected as the first child of h (if it exists), or the
first child of the next valid sibling of h (if h is pruned by
the backward pruning [10]). Finally, if no motion command
can be found in any hypothesis, or all the commands are
rejected by the obstacle detection module (see Sec. IV),
random small motions will be conducted repeatedly until a
valid path is found again to avoid the robot being stuck in
corner cases. Notice that we can easily replace this simple
method with more advanced trajectory planning algorithms
(e.g.: RRT [21] or PRMs [18]) as needed.

VIII. EXPERIMENTAL RESULTS

A. Implementations and Settings

Both the simulation and the system for real-world applica-
tion are implemented in C++ and executed on a laptop with
an Intel Core i7-8850H processor. Exploration and active
loop closing are computed in two parallel threads, and both
of them are one keyframe behind the MH-SLAM process to
wait for the latest submap being generated.

B. Simulation

In all simulations, Gaussian noise is added to all depth
data, odometry, loop closures, and robot motions. We adopt
two different ways to generate ambiguities in odometry. In
the first two parts of our simulations, they are set to occur
randomly with probabilities pa, which simulates the types
of ambiguities resulting from aggressive motion or dynamic
scenes. And in the last part, they are set to occur when the
robot is close to one of the several randomly selected places,
which simulates the other types of ambiguities resulting
from lack of texture or repeated patterns in the environment.
False positive loop closures are set to occur randomly with
probabilities pf in all these simulations. The values of all the
wrong modes in these simulated ambiguities are randomly
generated within reasonable ranges.

We first show that ARAS can achieve full coverage in
various simulated environments in Fig. , then evaluate it with
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(a) Box plot and means (dotted curves) of nmax

(b) Bar graph of the average number of wrong modes taken

(c) Bar graph of failure rate
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(d) Box plot and means (dotted curves) of the total path lengths

Fig. 10: Simulation results with nlimit =∞ and various ntrigger. Three
different pa (0%, 0.5% and 1%) are tested with pf =0% (left column) and
pf =2% (right column). Different levels of distortions in (c) are categorized
based on thresholds on the absolute trajectory error (ATE) [37].

various test cases in the same multi-loop environment (see
Fig. 9-b) and generate statistical results from 30 runs of each
case. The results are shown in Fig. 10, 11, and 12.

Fig. 10 shows the fundamental properties of ARAS with
nlimit =∞ and various ntrigger. Even though nlimit =∞,
the maximum number of hypothesis ever tracked (denoted
as nmax) does not grow unbounded (see Fig. 10-a) since
true positive loop closures are very likely to be detected
shortly after the active loop closing is triggered. The correct
hypothesis can still be pruned occasionally (see Fig. 10-
b) since some wrong hypotheses that take wrong modes
(especially in the ambiguous odometry factor) might seem
more likely than the correct one temporarily due to the
accumulated drift. Therefore, some reconstructed maps are
polluted (see Fig. 10-c). However, ARAS can still explore
the entire environment with these slightly distorted maps.
Finally, Fig. 10-d shows that larger pa results in longer path
length, but neither ntrigger nor pf has a strong effect on it.

Fig. 11 shows the advance evaluation on robustness based
on various combinations of ntrigger and nlimit. Comparing
to the results in Fig. 10-b and Fig. 10-c, bounding nlimit

increases the number of wrong modes taken and the failure
rate as expected. In some cases when the map is extremely
distorted, ARAS even fails to complete the task (shown in
orange in Fig. 11-b). Since larger nlimit and smaller ntrigger

results in less failure, setting a smaller ntrigger under the
same nlimit is better for the overall robustness in general.

Lastly, in Fig. 12 we change the way of generating

(a) Bar graph of the average number of wrong modes taken

(b) Bar graph of failure rate
Fig. 11: Simulation results with various ntrigger and nlimit given pa=1%.
The legends are the same as in Fig. 10. pf = 0% and pf = 2% are again
shown in the left and right columns respectively. The leftmost bars in each
graph represent the results of active SLAM with single-hypothesis estimates,
where many wrong modes are taken and all the runs fail drastically. The
bars are colored in the same way as defined in Fig. 10.

(a) Bar graph of the average number of wrong modes taken

(b) Bar graph of failure rate
Fig. 12: Simulation results with ambiguous odometry measurements
generated based on locations in the simulated environment. The bars are
colored in the same way as defined in Fig. 10.

ambiguities in odometry estimation to simulate ambiguities
that result from the environments instead. In this simulation,
whenever an ambiguity occurs, the robot is very likely to
observe similar types of ambiguities when it is still moving
around the same area, and has to travel a longer distance
(leave the area where the ambiguity occurs) before being able
to detect a valid loop closure to disambiguate the ambiguities.
As a result, more wrong modes are taken as shown in
Fig. 12-a, which results in higher failure rates in general
as shown in Fig. 12-b. Moreover, we can see that for the
cases with ntrigger and nlimit are close to each other, their
failure rates increase more than other cases comparing to
the results in Fig. 11-b, which implies that to deal with
environment-oriented ambiguities, a larger buffer for the
number of growing hypotheses from ntrigger to nlimit is
desired to maintain correct pruning.

C. Real-world Experiment

We develop an assistive mapping system based on ARAS
that guides a human user to explore and map indoor environ-
ments with hand-held sensors though instructions (locations



of P ∗ and M∗) on an augmented reality (AR) view and a top-
down view (see Fig. 13-a). The adopted MH-SLAM system
is modified from DPI-SLAM [12], where the same sensor
setup is used to capture RGB-D and inertial data. However,
the front-end is modified to detect and model ambiguities,
and the back-end is replaced by MH-iSAM2 [10]. Any joint
estimate of the fast dense RGB-D odometry [11] and IMU
preintegration [7] is regarded as ambiguous if the estimated
IMU bias is larger than a threshold. In this case, we assume
that either of them (RGB-D or IMU only) still estimates the
states correctly, and model their individual estimates as two
modes in a type #1 MMF [10]. For generality, every loop
closure is set as a type #3 MMF [10].

Unlike in the simulation, additional planar constraints [17]
that satisfy all hypotheses are jointly optimized with the
keyframe poses globally, which reduces rotational drift and
helps correct pruning. Moreover, since a human user can plan
a path and avoid obstacles, these two functions are disabled
for this application. Finally, since we cannot or might not
want to map certain areas beyond the frontiers, e.g.: areas
behind a glass window, private spaces (offices or labs), or the
bridge to another building, we add a function that allows the
user to manually delete the current P ∗, which will update
the exploration tree accordingly and select a new P ∗.

Since we cannot tell if the correct hypothesis is preserved
in the real-world task, we calculate the point-to-plane mean
absolute error (MAE) and root-mean-square error (RMSE) of
the output 3D model with respect to a ground truth survey
LiDAR model instead for evaluation. The result in Fig.
13-b shows that our assistive mapping system successfully
helps the user to explore a large indoor environment and
reconstruct its dense 3D model even with multiple ambigu-
ous odometry estimations and false positive loop closures.
Notice that the active SLAM process is conducted in real-
time with the human user walking and rotating at normal
pace and speed, and the ambiguities in this experiment are
resulting from lack of features (close up to a blank wall that
can be seem in the right half of the bottom AR viewer in
Fig. 13-a) during fast motion and the appearance-based loop
closure detector (similar scenes at different locations). We
also modify the assistive mapping system to work with only
one single hypothesis, and it fails quickly because it includes
outlier measurements in the optimization.

D. Discussion

Based on the simulation results, we can tell that when the
number of ambiguities is large but the computation is limited,
we have to sacrifice speed for robustness. Else, ARAS would
still fail to complete the active SLAM task. As a result,
when designing a real world robotic system, we should
try to solve the ambiguity problems during the state and
map estimation process or even earlier, e.g. adopting proper
sensor combination based on the motions, environments, and
tasks to reduce ambiguities, and only passing the unsolvable
ambiguities to the other modules in ARAS.

In our real-world application, we find that active loop
closing is triggered more often with a small ntrigger, which

(a) AR and top-down viewers (b) Dense 3D model and evaluation
Fig. 13: The application of ARAS for assistive mapping. (a) Examples of
the AR (left) and top-down (right) views showing P ∗ or M∗ during the
active SLAM process. (b) The output colored 3D models of all hypotheses
(top) and the evaluation of the most likely model (bottom). The MAE and
RMSE are 0.187m and 0.269m respectively. Given that the entire model is
about 58m×15m×3m, the average error ratio is less than 2%.

results in bad user experience if the user follows the revisiting
instructions to walk back and forth frequently. So, we set
ntrigger = 2 instead of 1 in this task to make the process
more comfortable. However, more studies on how to trigger
active loop closing considering all aspects is still of interest.
In addition, we also want to try if taking visual or structural
saliency [27] into account during target submap selection
helps detect more true positive loop closures. Finally, ARAS
is only robust to ambiguities but not to some other problems.
Therefore, integrating more functions to handle various real
world challenges (e.g.: relocalization [20] for tracking fail-
ures in all sensors) is still desired for better robustness of
the entire system.

Lastly, extending current ARAS implementation to con-
duct active SLAM in full 3D is possible. However, it might
require the usage of polyhedrons, which might not be as
efficient as the current contour-based approach in 2D. We
are looking forward to studying more on this direction for
other applications such as underwater exploration [28][38].

IX. CONCLUSION

We proposed the first ambiguity-aware robust active
SLAM (ARAS) framework that makes use of multi-
hypothesis state and map estimations from a MH-SLAM
system to handle ambiguities and achieve better robustness.
Its exploration module selects possible view points based
on local submaps, which avoids the complexity of comput-
ing the view points in each of the hypotheses explicitly.
And under reasonable conditions, the active loop closing
algorithm helps reduce the growing number of hypotheses
by providing loop closure information when needed, which
makes maintaining the multi-hypothesis solutions computa-
tionally efficient. In addition, a simple path planning method
is adopted to compute motion commands that move towards
the target locations. The experimental results show that
explicitly considering multiple highly possible hypotheses
significantly improves the robustness of active SLAM, and
that it is possible to achieve robustness and efficiency at
the same time with a carefully designed system and fine-
tuned parameters under certain scenarios. In the future, we



will address the remaining issues discussed in Sec. VIII-D,
and try different combinations of sensors and algorithms in
ARAS. The ultimate goal is to integrate ARAS into a fully
autonomous robotic system that conducts tasks robustly.
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