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Abstract

We present a novel technique for zero-shot

paraphrase generation. The key contribu-

tion is an end-to-end multilingual paraphras-

ing model that is trained using translated paral-

lel corpora to generate paraphrases into “mean-

ing spaces” – replacing the final softmax layer

with word embeddings. This architectural

modification, plus a training procedure that

incorporates an autoencoding objective, en-

ables effective parameter sharing across lan-

guages for more fluent monolingual rewrit-

ing, and facilitates fluency and diversity in

generation. Our continuous-output paraphrase

generation models outperform zero-shot para-

phrasing baselines, when evaluated on two lan-

guages using a battery of computational met-

rics as well as in human assessment.1

1 Introduction

Paraphrasing aims to rewrite text while preserving

its meaning and achieving a different surface re-

alization. It is an eminently practical task, useful

in educational applications (Inui et al., 2003; Pe-

tersen and Ostendorf, 2007; Pavlick and Callison-

Burch, 2016; Xu et al., 2016), information retrieval

(Duboue and Chu-Carroll, 2006; Harabagiu and

Hickl, 2006; Fader et al., 2014), in dialogue sys-

tems (Yan et al., 2016), as well as for data aug-

mentation in a plethora of other tasks (Berant and

Liang, 2014; Romano et al., 2006; Fadaee et al.,

2017; Jin et al., 2018; Hou et al., 2018).

Generating diverse and coherent paraphrases

is a difficult task. Unlike in machine transla-

tion, where naturally occurring parallel data in

the form of translated news, books and talks are

available in abundance on the web, naturally occur-

ring paraphrase corpora are scarce. Most common

∗Currently at Google LLC
1The code is available at https://github.com/

monisha-jega/paraphrasing_embedding_

outputs

approaches to paraphrasing are based on transla-

tion, in the form of bilingual pivoting (Mallinson

et al., 2017a,b) or back-translation (Wieting and

Gimpel, 2018; Hu et al., 2019a,b). This stems

from the hypothesis that if two sentences in a lan-

guage (e.g. English) have the same translation in

another, (e.g. French) they must be paraphrases

of each other. While these pipeline approaches

bypass the problem of missing data, they propa-

gate errors. Further, all neural paraphrasing models

(e.g., Prakash et al., 2016; Gupta et al., 2018; Wang

et al., 2019) predict discrete tokens through a final

softmax layer. We hypothesize that softmax-based

architectures restrict the diversity of outputs, bias-

ing the models to copy words and phrases from the

input, which has an effect opposite to the intended

one in paraphrasing.

In this work, we introduce PARAvMF – a sim-

ple and effective method of training paraphrasing

models by generating into embedding spaces (§2).

Since parallel paraphrasing data is not available

even in otherwise high-resource languages like

French, we focus on an unsupervised approach.

Using bilingual parallel corpora, we adapt multilin-

gual machine translation (Johnson et al., 2017) to

monolingual translation. We propose to train this

model with translation and autoencoding objectives.

The latter helps simplify the training setup by us-

ing only one language pair, whereas prior work

required multiple language pairs and more data to

stabilize training (Tiedemann and Scherrer, 2019;

Buck et al., 2018; Guo et al., 2019; Thompson and

Post, 2020). To encourage diversity, we propose to

replace the final softmax layer in the decoder with

a layer that learns to predict word vectors (Kumar

and Tsvetkov, 2019). We show that predicting into

word meaning representations increases diversity

in paraphrasing by generating semantically similar

words and phrases which are often neighbors in the

embedding space.

We evaluate our proposed model on paraphras-
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ing English and French sentences (§3). In sev-

eral setups, standard automatic metrics and human

judgment experiments show that our zero-shot para-

phrasing model with embedding outputs generates

more diverse and fluent paraphrases, compared to

state-of-the-art methods (§4).

2 The PARAvMF Model

Let the language to paraphrase in be L1. Our goal

is to learn a mapping f(x; θ) parameterized by θ.

f takes a text x = (x1, x2, · · · , xm) containing m

words as input, which can be a sentence or a seg-

ment in L1. It then generates y = (y1, y2, . . . , yn)
of length n in the same language such that x and

y are paraphrases. That is, y represents the same

meaning as x using different phrasing. We assume

that no direct supervision data is available, but there

exists a bilingual parallel corpus between L1 and

another language L2. We are also given pre-trained

embeddings (Bojanowski et al., 2017) for words

in both L1 and L2. The dimension of both the

embedding spaces is d.

We use a standard transformer-based encoder-

decoder model (Vaswani et al., 2017) as the un-

derlying architecture for f . As visualized in the

system diagram presented in the Appendix, f is

jointly trained to perform three tasks with a shared

encoder and decoder: (1) translation from L1 to L2,

(2) translation from L2 to L1 and (3) reconstructing

the input text in L1 (autoencoding).2

Towards our primary goal of meaning preser-

vation, the translation objectives help the encoder

map the inputs in both the languages to a com-

mon semantic space, whereas the decoder learns to

generate language-specific outputs. On the other

hand, with the autoencoding objective, we expose

the model to examples where the input and out-

put are in the same language, biasing the model

to adhere to the start token supplied to it and de-

code monolingually. Using this training algorithm,

we find in our experiments (§4), that the resulting

paraphrases albeit meaning-preserving still lack in

diversity. We identify two reasons for this issue.

First, the model overfits to the autoencoding objec-

tive and just learns to copy the input sentences. We

address this issue by using only a small random

sample of the total training sentences for training

2To bias the model against always decoding in the other
language, unlike in Johnson et al. (2017); Tiedemann and
Scherrer (2019), we provide a language-specific start token in
the encoder input, in addition to the decoder input.

with this objective.3

Second, we find that cross-entropy loss used

to train the model results in peaky distributions

at each decoding step where the target words get

most of the probability mass. This distribution

being another signal of overfitting also reduces di-

versity (Meister et al., 2020). We find in our prelim-

inary experiments, that prior work to address this

issue by augmenting diversity inducing objectives

to the training loss (Vijayakumar et al., 2018) often

comes at a cost of reducing meaning preservation.

In this work, we propose using a different training

loss which naturally promotes output diversity. We

follow Kumar and Tsvetkov (2019), and instead

of treating each word w in the vocabulary as a dis-

crete unit, we represent it using a unit-normalized

pre-trained vector e learned using monolingual cor-

pora (Bojanowski et al., 2017). At each decoding

step, instead of predicting a probability distribution

over the vocabulary using a softmax layer, we pre-

dict a d-dimensional continuous-valued vector ê.

We train our proposed model by minimizing von

Mises-Fisher (vMF) loss—a probabilitistic variant

of cosine distance—between the predicted vector

and the pre-trained vector. At each step of decod-

ing, the output word is generated by finding the

closest neighbor (using cosine similarity) of the

predicted output vector ê in the pre-trained em-

bedding table. Since this loss does not directly

optimize for a specific token but for a vector sub-

space which contains many similar meaning words,

we observe that it has a higher tendency to generate

diverse outputs than softmax-based models, both

at the lexical and syntactic level as we show in our

experiments.

Overall, the contribution of this work is twofold:

(1) a translation and autoencoding based training

objective to enable paraphrasing while preserving

meaning without any parallel paraphrasing data,

and (2) optimizing for vector subspaces instead of

token probabilities to induce diversity of outputs.

3 Experiments

Datasets We evaluate paraphrasing in two lan-

guages: English and French. IWSLT’16 En↔Fr

corpus (Cettolo et al., 2016) with ∼220K sentence

pairs is used for training with translation objective,

and 4450 sentences, randomly sampled ∼1% of

the training data in L1 (either En or Fr), for au-

3We empirically determine this sample size to be ∼1% of
the total number of training examples.
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toencoding. We use the L1 side of the IWSLT’16

dev set for early stopping with the autoencoding

objective. We use IWSLT’16 test set for automatic

evaluation consisting of 2331 samples in En and Fr

each. For human evaluation we subsample 200

sentences from this set. We tokenize and true-

case all the data using Moses preprocessing scripts

(Koehn et al., 2007). We conduct additional ex-

periments with a larger En–Fr corpus constructed

using a 2M sentence-pair subset of the combination

of the WMT’10 Gigaword (Tiedemann, 2012) and

the OpenSubtitles corpora (Lison and Tiedemann,

2016).

Implementation We modify the standard seq2seq

transformer model in OpenNMT (Klein et al.,

2017) to generate word embeddings (Kumar and

Tsvetkov, 2019), and train it with the vMF loss

with respect to target vectors. We initialize and fix

the input embeddings of the encoder and decoder

with off-the-shelf (sub-word based) fasttext em-

beddings (Bojanowski et al., 2017) for both En and

Fr and align the embeddings to encourage cross-

lingual sharing (Artetxe et al., 2018). With a vocab-

ulary size of 50K for each language, the combined

vocabulary size of the encoder and the decoder is

100K. Both encoder and decoder consist of 6 layers

with 4 attention heads. The model is optimized us-

ing Adam (Kingma and Ba, 2015), with batch size

4K, and 0.3 dropout. The hidden dimension size is

1024, the dimension of the embedding layers is 512.

We add a linear layer to transform 300-dimensional

pre-trained embeddings to 512-dimensional input

vectors to the model. After decoding, we postpro-

cess the generated output to replace words from

L2 by a look-up in the dictionary induced from the

aligned embedding spaces.

Baselines Although unsupervised methods of

paraphrasing with only monolingual data have been

explored in recent works (Gupta et al., 2018; Yang

et al., 2019; Roy and Grangier, 2019; Patro et al.,

2018; Park et al., 2019) they have not been shown

to outperform translation based baselines (West

et al., 2020). Hence we compare our proposed

approach with translation-based baselines only.

First, we compare with bilingual pivoting baselines

(Mallinson et al., 2017a,b) which pipeline two sep-

arate translation models, L1 → L2, and L2 → L1.

We use two bilingual pivoting baselines, one based

on continuous-output model (BP-VMF; the out-

put vectors of the first model are first converted to

discrete tokens before being fed to the next) and

another based on softmax-based model (BP-CE).

To evaluate the impact of embedding outputs,

we also compare our proposed model PARAVMF

to softmax-based baseline PARACE, leaving other

model components unchanged. PARACE is a mod-

ified bilingual version of the multilingual method

proposed in Guo et al. (2019), the current state-of-

the-art in zero-shot paraphrasing.

Evaluation setup There are many ways to para-

phrase a sentence, but no manually crafted multi-

reference paraphrase datasets exist, that could be

used as test sets (and there are no datasets in lan-

guages other than English). We thus evaluate the

generated paraphrases on semantic similarity and

lexical diversity compared to the input text. Fol-

lowing prior work, we use the n-gram based met-

ric METEOR (Banerjee and Lavie, 2005). De-

spite accounting for synonyms, it is not well-suited

to evaluate paraphrases, since it typically assigns

lower scores to novel phrasings, due to incom-

plete synonym dictionaries. We thus also include

BERTScore (Zhang et al., 2020), computing co-

sine similarity between the contextual embeddings

of two sentences. Naturally, just copying the in-

puts can also lead to high scores in these metrics.

To evaluate lexical diversity, we follow Hu et al.

(2019b) and include IoU – Intersection over Union

(also called Jaccard Index) and Word Error Rate

(WER). To measure structural diversity we use

(constituency) Parse Tree Edit distance (PTED).4

Note that model outputs that do not preserve mean-

ing in paraphrasing (and generate totally different

sentences) will also obtain high diversity scores,

but these are not indicative of quality paraphrasing

but will falsely contribute to high diversity scores

if averaged across the entire test set. We thus mea-

sure the diversity only on subsets of the test set for

which the strongest baseline (PARACE) and our

model generate meaning-preserving paraphrases

measured using BERTScore thresholds. We report

the diversity scores for three such thresholds: 0.95,

0.9, 0.85, selected empirically such that the sample

size is sufficiently large.

4 Results

Automatic evaluation We observe in table 1 that

PARAvMF outperforms all baselines in meaning-

4Before computing the PTED, we prune the tree to a max
height of 3, and discard all the terminal nodes. We employ
Stanford CoreNLP (Manning et al., 2014) for parsing and
APTED algorithm for edit distance (Pawlik and Augsten,
2015).



169

Model
ENGLISH FRENCH

BS↑ MET.↑ BS↑ MET.↑

BP-CE 75.0 75.0 69.4 67.5

BP-VMF 72.1 72.2 65.5 64.2

PARACE 83.5 87.4 82.3 81.6

PARAvMF 88.6 91.6 87.2 86.4

Table 1: Meaning-preservation in generated para-

phrases. BS: BertScore, MET: METEOR

preservation. Both pivoting based baselines per-

form poorly on average. This is a consequence of

error propagation exacerbated in BP-VMF5. As a

result, a very small fraction of generated sentences

show meaning preservation (as measured by achiev-

ing a BERTScore greater than 0.85). Hence, we

only compare the diversity in the two best meaning-

preserving models, PARACE and PARAVMF. As

shown in table 2, across all thresholds the latter

model achieves higher lexical and syntactic diver-

sity in the outputs. Ablation results in the Appendix

show that both the autoencoding objective and the

final embedding layer contribute to the improved

quality of paraphrases. An additional benefit of our

proposed model is that by replacing the softmax

layer with word embeddings, PARAvMF is trained

3x faster than the PARACE baseline.

We further conduct a manual evaluation which

quantifies the rate at which annotators find para-

phrases fluent, consistent with input meaning, and

novel in phrasing. In an A/B testing setup, we com-

pare our proposed approach with the strongest base-

line PARACE.6 200 sentences sampled from the

IWSLT English test were scored by two annotators

independently, which yielded the inter-annotator

agreement of 0.37 (fair agreement). Out of the sen-

tences on which both annotators agree (142 out of

200), we find that PARAvMF model outperforms

the PARACE model in 73% of votes. We show

more details and some examples of PARAvMF and

PARACE system outputs in the Appendix.

Finally, we also evaluate that our results hold on

5This is expected as VMF has been shown to slightly under-
perform CE for translation in prior work (Kumar and Tsvetkov,
2019). Our training procedure with an autoencoding objective
alleviates this issue in PARAvMF.

6Each judge is presented with a set of questions, each
consisting of an input sentence and paraphrases generated by
the two models as options, and is asked to choose the sentence
that is fluent, meaning-preserving and offers a novel phrasing
of the input. They are asked to choose neither if both sentences
are dis-fluent and/or not able to preserve content. The options
are shuffled.

a larger dataset in different domain. We retrain

PARAvMF and PARACE on 2M En–Fr corpus de-

scribed in §3. 7 The results of automatic evaluation

are presented in the Appendix. We conduct human

evaluation on a sample of 200 sentences from this

test set following the same A/B testing procedure

as described above, with each sample rated by three

annotators, resulting in a pairwise-average kappa

agreement index of 0.21.8 42.9% PARAvMF out-

puts were selected as better paraphrases, compared

to 24.5% outputs from PARACE, supporting our

main results on the IWSLT dataset.

5 Related Work

Bilingual pivoting is a common technique used

with bilingual data (Barzilay and McKeown, 2001;

Ganitkevitch et al., 2013; Pavlick et al., 2015;

Mallinson et al., 2017a). PARANMT (Wieting and

Gimpel, 2018) is a large psuedo-parallel paraphrase

corpus constructed through back-translation (Wi-

eting et al., 2017). Iyyer et al. (2018) augment

it with syntactic constraints for controlled para-

phrasing; PARABANK (Hu et al., 2019a) improves

upon PARANMT via lexical constraining of de-

coding; and PARABANK 2 (Hu et al., 2019b) im-

proves the diversity of paraphrases in PARABANK

through a clustering-based approach. Note that

these works are focused on English. Here, we pro-

pose a language-independent approach relying only

on abundant bilingual data. Our approach is most

similar to Guo et al. (2019) who use bilingual and

multilingual translation for zero-shot paraphrasing.

They, however, observe that bilingual models are

insufficient for paraphrasing and are often unable to

produce the output in the correct language. We in-

corporate an autoencoding objective which simpli-

fies and stabilizes training, and embedding-based

outputs improving the diversity in paraphrasing.

6 Conclusion

We present PARAvMF, an end-to-end model for

generating paraphrases, trained solely with bilin-

gual data, without any paraphrase supervision.

We propose to generate paraphrases into meaning

7We use 4K English sentences subsampled (∼0.1% of
the training data) from the same corpus for autoencoding.
To further discourage copying, we use denoised autoencod-
ing (Lample et al., 2018).

8We discarded around 53 samples with no clear majority
among the annotator ratings and report the results on the re-
maining samples, further ignoring cases where the paraphrases
from both the models were rated to be of similar quality.
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BERTScore
Model

# (out ENGLISH # (out FRENCH

threshold of 2K) IoU↓ WER↑ PTED↑ of 2K) IoU↓ WER↑ PTED↑

0.85 PARACE 710 94.3 4 0.5 710 94.3 3.9 0.55
PARAvMF 92.4 4.1 0.42 92.7 4.1 0.42

0.9 PARACE 539 96.2 2.6 0.34 580 96.1 2.6 0.34
PARAvMF 94.5 2.9 0.29 94.5 2.9 0.29

0.95 PARACE 300 98.8 0.8 0.15 380 98.7 0.8 0.15
PARAvMF 97.7 1.2 0.16 97.7 1.2 0.16

Table 2: Diversity of meaning-preserving paraphrases compared to the test set. PARAvMF outperforms a strong

baseline PARACE for both English and French, across all metrics for thresholds 0.85 and 0.9, and in IoU and WER

for threshold of 0.95.

spaces as opposed to discrete tokens. This leads to

significant improvements in quality and diversity

of paraphrasing over strong baselines.
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Semantic Similarity

Model BERTScore METEOR

PARANMT 61.6 62.1

BP (vMF) 44.6 57.4

BP (CE) 45.0 60.4

PARACE 65.9 81.7

PARAvMF 68.9 83.9

Table 3: Evaluation of paraphrase generation on the

PARANMT test set.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating text generation with bert. In Interna-
tional Conference on Learning Representations.

A System diagram

The PARAvMF system is represented diagrammati-

cally in Figure 1.

B Example outputs

Sample outputs of the PARAvMF and PARACE

models are shown in table 5.

C Training on a Larger Translation

Dataset

To measure the impact of the size of parallel trans-

lation data used for training, we conduct an ex-

periment with a larger French-English corpus con-

structed using a 2M sentence-pair subset of the

combination of the WMT’10 Gigaword (Tiede-

mann, 2012) and the OpenSubtitles corpora (Lison

and Tiedemann, 2016). The semantic similarity

scores and the diversity results are presented in

table 4. The results of human evaluation are pre-

sented in the main paper.

D Evaluation on PARANMT-50M Test

Set

We evaluate the PARAvMF model (trained on

English-French two-way translation data and En-

glish autoencoding data from the IWSLT’16

dataset) on test data sampled from PARANMT-

50M (Wieting and Gimpel, 2018), to demonstrate

its paraphrasing ability on out-of-domain input, in

addition to enabling direct comparison with back-

translated data, as shown in table 3. However, it is

to be noted that the comparison is not a fair one,

since PARAvMF is trained on just 220K data sam-

ples, wherease PARANMT is back-translated using

a translation model that was trained on a bilingual

dataset with a size of around 70M .

E Ablation

We proposed three changes in a multilingual MT

setup to use bilingual data for paraphrasing, (1) pre-

dicting continuous outputs and training with vMF

loss, (2) language-specific start tokens in the en-

coder, and (3) an autoencoding objective. In the

results section of the main paper, by comparing

our method to PARACE, we already established

the importance of using vMF compared to cross-

entropy. As shown in table 7, ablating either of the

other remaining two components leads to consider-

able performance drop. This is because the ablated

models generate outputs in L2 since they are never

exposed to monolingual examples during training.

Additional, in our preliminary experiments, we also

observe that increasing the size of autoencoding

data too much beyond ∼1% of the size of paral-

lel translation data leads to a performance drop

because the model just starts to learn to copy the

input as-is rather than rephrasing.
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Model
ENGLISH

BERTScore↑ METEOR↑

PARACE 62.2 73.6

PARAvMF 71.6 79.6

(a) Semantic similarity between the test set and generated paraphrases

BERTScore
Model

# (out ENGLISH

threshold of 2K) IoU↓ WER↑ PTED↑

0.85 PARACE 559 85.5 11.9 1.43

PARAvMF 82.5 12.4 1.42

0.9 PARACE 327 91.2 7.0 0.81

PARAvMF 87.9 8.3 0.64

0.95 PARACE 196 95.9 3.3 0.28

PARAvMF 93.9 3.9 0.29

(b) Diversity of meaning-preserving paraphrases compared to the test set

Table 4: Evaluation of paraphrase generation with PARAvMF trained on 2M English-French sentence pairs. It

outperforms a strong cross-entropy based baseline (PARACE) on semantic similarity and majority of diversity

metrics.

Input It ’s expensive , it takes a long time , and it ’s very complicated .

PARACE It ’s expensive takes a time , and it ’s very complicated .

PARAvMF It ’s costly , It takes a long time , and it ’s very difficult .

Input These are things to talk about and think about now , with your family and your loved ones .

PARACE These are things to talk about and think about now , with your family and your loved ones .

PARAvMF These are things to speak of and think of now , with your family and the ones you love.

Input So what opened my eyes ?

PARACE So what opened my eyes ?

PARAvMF So what is it that opened my eyes up ?

Input And this work has been wonderful . It ’s been great .

PARACE And this work has been wonderful . It ’s been great .

PARAvMF This work has been wonderful and great .

Input I wasn ’t doing anything that was out of the ordinary at all .

PARACE I wasn ’t doing anything that was out of the regular regular at all .

PARAvMF I was doing nothing that was not ordinary .

Input It will make tons of people watch , because people want this experience .

PARACE It will make tons of people watch , because people want this .

PARAvMF Tonnes of people will look because they want this experience .

Table 5: Comparison of selected sample outputs for the IWSLT Test Set between PARAvMF model and the base-

lines. PARAvMF not only exhibits content preservation, but also demonstrates fluency as well as lexical and

syntactic diversity.




