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Abstract

We present a novel technique for zero-shot
paraphrase generation. The key contribu-
tion is an end-to-end multilingual paraphras-
ing model that is trained using translated paral-
lel corpora to generate paraphrases into “mean-
ing spaces” — replacing the final softmax layer
with word embeddings. This architectural
modification, plus a training procedure that
incorporates an autoencoding objective, en-
ables effective parameter sharing across lan-
guages for more fluent monolingual rewrit-
ing, and facilitates fluency and diversity in
generation. Our continuous-output paraphrase
generation models outperform zero-shot para-
phrasing baselines, when evaluated on two lan-
guages using a battery of computational met-
rics as well as in human assessment.'

1 Introduction

Paraphrasing aims to rewrite text while preserving
its meaning and achieving a different surface re-
alization. It is an eminently practical task, useful
in educational applications (Inui et al., 2003; Pe-
tersen and Ostendorf, 2007; Pavlick and Callison-
Burch, 2016; Xu et al., 2016), information retrieval
(Duboue and Chu-Carroll, 2006; Harabagiu and
Hickl, 2006; Fader et al., 2014), in dialogue sys-
tems (Yan et al., 2016), as well as for data aug-
mentation in a plethora of other tasks (Berant and
Liang, 2014; Romano et al., 2006; Fadaee et al.,
2017; Jin et al., 2018; Hou et al., 2018).
Generating diverse and coherent paraphrases
is a difficult task. Unlike in machine transla-
tion, where naturally occurring parallel data in
the form of translated news, books and talks are
available in abundance on the web, naturally occur-
ring paraphrase corpora are scarce. Most common
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approaches to paraphrasing are based on transla-
tion, in the form of bilingual pivoting (Mallinson
et al., 2017a,b) or back-translation (Wieting and
Gimpel, 2018; Hu et al., 2019a,b). This stems
from the hypothesis that if two sentences in a lan-
guage (e.g. English) have the same translation in
another, (e.g. French) they must be paraphrases
of each other. While these pipeline approaches
bypass the problem of missing data, they propa-
gate errors. Further, all neural paraphrasing models
(e.g., Prakash et al., 2016; Gupta et al., 2018; Wang
et al., 2019) predict discrete tokens through a final
softmax layer. We hypothesize that softmax-based
architectures restrict the diversity of outputs, bias-
ing the models to copy words and phrases from the
input, which has an effect opposite to the intended
one in paraphrasing.

In this work, we introduce PARAVMF — a sim-
ple and effective method of training paraphrasing
models by generating into embedding spaces (§2).
Since parallel paraphrasing data is not available
even in otherwise high-resource languages like
French, we focus on an unsupervised approach.
Using bilingual parallel corpora, we adapt multilin-
gual machine translation (Johnson et al., 2017) to
monolingual translation. We propose to train this
model with translation and autoencoding objectives.
The latter helps simplify the training setup by us-
ing only one language pair, whereas prior work
required multiple language pairs and more data to
stabilize training (Tiedemann and Scherrer, 2019;
Buck et al., 2018; Guo et al., 2019; Thompson and
Post, 2020). To encourage diversity, we propose to
replace the final softmax layer in the decoder with
a layer that learns to predict word vectors (Kumar
and Tsvetkov, 2019). We show that predicting into
word meaning representations increases diversity
in paraphrasing by generating semantically similar
words and phrases which are often neighbors in the
embedding space.

We evaluate our proposed model on paraphras-
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ing English and French sentences (§3). In sev-
eral setups, standard automatic metrics and human
judgment experiments show that our zero-shot para-
phrasing model with embedding outputs generates
more diverse and fluent paraphrases, compared to
state-of-the-art methods (§4).

2 The PARAVMF Model

Let the language to paraphrase in be L. Our goal
is to learn a mapping f(x; 6) parameterized by 6.
f takes a text x = (x1, 2, - - , Ty,) containing m
words as input, which can be a sentence or a seg-
ment in L;. It then generates y = (y1, 92, .., Yn)
of length n in the same language such that x and
y are paraphrases. That is, y represents the same
meaning as x using different phrasing. We assume
that no direct supervision data is available, but there
exists a bilingual parallel corpus between L; and
another language Lo. We are also given pre-trained
embeddings (Bojanowski et al., 2017) for words
in both L; and L. The dimension of both the
embedding spaces is d.

We use a standard transformer-based encoder-
decoder model (Vaswani et al., 2017) as the un-
derlying architecture for f. As visualized in the
system diagram presented in the Appendix, f is
jointly trained to perform three tasks with a shared
encoder and decoder: (1) translation from L to Lo,
(2) translation from Lo to L and (3) reconstructing
the input text in L; (autoencoding).”

Towards our primary goal of meaning preser-
vation, the translation objectives help the encoder
map the inputs in both the languages to a com-
mon semantic space, whereas the decoder learns to
generate language-specific outputs. On the other
hand, with the autoencoding objective, we expose
the model to examples where the input and out-
put are in the same language, biasing the model
to adhere to the start token supplied to it and de-
code monolingually. Using this training algorithm,
we find in our experiments (§4), that the resulting
paraphrases albeit meaning-preserving still lack in
diversity. We identify two reasons for this issue.
First, the model overfits to the autoencoding objec-
tive and just learns to copy the input sentences. We
address this issue by using only a small random
sample of the total training sentences for training

2To bias the model against always decoding in the other
language, unlike in Johnson et al. (2017); Tiedemann and
Scherrer (2019), we provide a language-specific start token in
the encoder input, in addition to the decoder input.

with this objective.’

Second, we find that cross-entropy loss used
to train the model results in peaky distributions
at each decoding step where the target words get
most of the probability mass. This distribution
being another signal of overfitting also reduces di-
versity (Meister et al., 2020). We find in our prelim-
inary experiments, that prior work to address this
issue by augmenting diversity inducing objectives
to the training loss (Vijayakumar et al., 2018) often
comes at a cost of reducing meaning preservation.
In this work, we propose using a different training
loss which naturally promotes output diversity. We
follow Kumar and Tsvetkov (2019), and instead
of treating each word w in the vocabulary as a dis-
crete unit, we represent it using a unit-normalized
pre-trained vector e learned using monolingual cor-
pora (Bojanowski et al., 2017). At each decoding
step, instead of predicting a probability distribution
over the vocabulary using a softmax layer, we pre-
dict a d-dimensional continuous-valued vector é.
We train our proposed model by minimizing von
Mises-Fisher (vMF) loss—a probabilitistic variant
of cosine distance—between the predicted vector
and the pre-trained vector. At each step of decod-
ing, the output word is generated by finding the
closest neighbor (using cosine similarity) of the
predicted output vector € in the pre-trained em-
bedding table. Since this loss does not directly
optimize for a specific token but for a vector sub-
space which contains many similar meaning words,
we observe that it has a higher tendency to generate
diverse outputs than softmax-based models, both
at the lexical and syntactic level as we show in our
experiments.

Overall, the contribution of this work is twofold:
(1) a translation and autoencoding based training
objective to enable paraphrasing while preserving
meaning without any parallel paraphrasing data,
and (2) optimizing for vector subspaces instead of
token probabilities to induce diversity of outputs.

3 Experiments

Datasets We evaluate paraphrasing in two lan-
guages: English and French. IWSLT’ 16 En<Fr
corpus (Cettolo et al., 2016) with ~220K sentence
pairs is used for training with translation objective,
and 4450 sentences, randomly sampled ~1% of
the training data in L; (either En or Fr), for au-

*We empirically determine this sample size to be ~1% of
the total number of training examples.

167



toencoding. We use the L side of the IWSLT 16
dev set for early stopping with the autoencoding
objective. We use IWSLT’16 test set for automatic
evaluation consisting of 2331 samples in En and Fr
each. For human evaluation we subsample 200
sentences from this set. We tokenize and true-
case all the data using Moses preprocessing scripts
(Koehn et al., 2007). We conduct additional ex-
periments with a larger En—Fr corpus constructed
using a 2M sentence-pair subset of the combination
of the WMT’ 10 Gigaword (Tiedemann, 2012) and
the OpenSubtitles corpora (Lison and Tiedemann,
2016).

Implementation We modify the standard seq2seq
transformer model in OpenNMT (Klein et al.,
2017) to generate word embeddings (Kumar and
Tsvetkov, 2019), and train it with the vMF loss
with respect to target vectors. We initialize and fix
the input embeddings of the encoder and decoder
with off-the-shelf (sub-word based) fasttext em-
beddings (Bojanowski et al., 2017) for both En and
Fr and align the embeddings to encourage cross-
lingual sharing (Artetxe et al., 2018). With a vocab-
ulary size of 50K for each language, the combined
vocabulary size of the encoder and the decoder is
100K. Both encoder and decoder consist of 6 layers
with 4 attention heads. The model is optimized us-
ing Adam (Kingma and Ba, 2015), with batch size
4K, and 0.3 dropout. The hidden dimension size is
1024, the dimension of the embedding layers is 512.
We add a linear layer to transform 300-dimensional
pre-trained embeddings to 512-dimensional input
vectors to the model. After decoding, we postpro-
cess the generated output to replace words from
Lo by a look-up in the dictionary induced from the
aligned embedding spaces.

Baselines Although unsupervised methods of
paraphrasing with only monolingual data have been
explored in recent works (Gupta et al., 2018; Yang
et al., 2019; Roy and Grangier, 2019; Patro et al.,
2018; Park et al., 2019) they have not been shown
to outperform translation based baselines (West
et al., 2020). Hence we compare our proposed
approach with translation-based baselines only.
First, we compare with bilingual pivoting baselines
(Mallinson et al., 2017a,b) which pipeline two sep-
arate translation models, ; — Lo, and Ly — L.
We use two bilingual pivoting baselines, one based
on continuous-output model (BP-VMF; the out-
put vectors of the first model are first converted to
discrete tokens before being fed to the next) and

another based on softmax-based model (BP-CE).
To evaluate the impact of embedding outputs,
we also compare our proposed model PARAVMF
to softmax-based baseline PARACE, leaving other
model components unchanged. PARACE is a mod-
ified bilingual version of the multilingual method
proposed in Guo et al. (2019), the current state-of-
the-art in zero-shot paraphrasing.
Evaluation setup There are many ways to para-
phrase a sentence, but no manually crafted multi-
reference paraphrase datasets exist, that could be
used as test sets (and there are no datasets in lan-
guages other than English). We thus evaluate the
generated paraphrases on semantic similarity and
lexical diversity compared to the input text. Fol-
lowing prior work, we use the n-gram based met-
ric METEOR (Banerjee and Lavie, 2005). De-
spite accounting for synonyms, it is not well-suited
to evaluate paraphrases, since it typically assigns
lower scores to novel phrasings, due to incom-
plete synonym dictionaries. We thus also include
BERTScore (Zhang et al., 2020), computing co-
sine similarity between the contextual embeddings
of two sentences. Naturally, just copying the in-
puts can also lead to high scores in these metrics.
To evaluate lexical diversity, we follow Hu et al.
(2019b) and include IoU - Intersection over Union
(also called Jaccard Index) and Word Error Rate
(WER). To measure structural diversity we use
(constituency) Parse Tree Edit distance (PTED).*
Note that model outputs that do not preserve mean-
ing in paraphrasing (and generate totally different
sentences) will also obtain high diversity scores,
but these are not indicative of quality paraphrasing
but will falsely contribute to high diversity scores
if averaged across the entire test set. We thus mea-
sure the diversity only on subsets of the test set for
which the strongest baseline (PARACE) and our
model generate meaning-preserving paraphrases
measured using BERTScore thresholds. We report
the diversity scores for three such thresholds: 0.95,
0.9, 0.85, selected empirically such that the sample
size is sufficiently large.

4 Results

Automatic evaluation We observe in table 1 that
PARAVMEF outperforms all baselines in meaning-

*Before computing the PTED, we prune the tree to a max
height of 3, and discard all the terminal nodes. We employ
Stanford CoreNLP (Manning et al., 2014) for parsing and
APTED algorithm for edit distance (Pawlik and Augsten,
2015).
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Model ENGLISH FRENCH
BST MET.t | BST MET.{
BP-CE 750 75.0 | 694 67.5
BP-vMF | 72.1 72.2 65.5 64.2
PARACE 83.5 87.4 82.3 81.6
PARAVMF | 88.6 916 | 87.2 864
Table 1: Meaning-preservation in generated para-

phrases. BS: BertScore, MET: METEOR

preservation. Both pivoting based baselines per-
form poorly on average. This is a consequence of
error propagation exacerbated in BP-VMF. As a
result, a very small fraction of generated sentences
show meaning preservation (as measured by achiev-
ing a BERTScore greater than 0.85). Hence, we
only compare the diversity in the two best meaning-
preserving models, PARACE and PARAVMF. As
shown in table 2, across all thresholds the latter
model achieves higher lexical and syntactic diver-
sity in the outputs. Ablation results in the Appendix
show that both the autoencoding objective and the
final embedding layer contribute to the improved
quality of paraphrases. An additional benefit of our
proposed model is that by replacing the softmax
layer with word embeddings, PARAVMEF is trained
3x faster than the PARACE baseline.

We further conduct a manual evaluation which
quantifies the rate at which annotators find para-
phrases fluent, consistent with input meaning, and
novel in phrasing. In an A/B testing setup, we com-
pare our proposed approach with the strongest base-
line PARACE.® 200 sentences sampled from the
IWSLT English test were scored by two annotators
independently, which yielded the inter-annotator
agreement of 0.37 (fair agreement). Out of the sen-
tences on which both annotators agree (142 out of
200), we find that PARAVMF model outperforms
the PARACE model in 73% of votes. We show
more details and some examples of PARAVMF and
PARACE system outputs in the Appendix.

Finally, we also evaluate that our results hold on

5This is expected as VMF has been shown to slightly under-
perform CE for translation in prior work (Kumar and Tsvetkov,
2019). Our training procedure with an autoencoding objective
alleviates this issue in PARAVMF.

Each judge is presented with a set of questions, each
consisting of an input sentence and paraphrases generated by
the two models as options, and is asked to choose the sentence
that is fluent, meaning-preserving and offers a novel phrasing
of the input. They are asked to choose neither if both sentences
are dis-fluent and/or not able to preserve content. The options
are shuffled.

a larger dataset in different domain. We retrain
PARAVMF and PARACE on 2M En-Fr corpus de-
scribed in §3. 7 The results of automatic evaluation
are presented in the Appendix. We conduct human
evaluation on a sample of 200 sentences from this
test set following the same A/B testing procedure
as described above, with each sample rated by three
annotators, resulting in a pairwise-average kappa
agreement index of 0.21.%8 42.9% PARAVMF out-
puts were selected as better paraphrases, compared
to 24.5% outputs from PARACE, supporting our
main results on the IWSLT dataset.

5 Related Work

Bilingual pivoting is a common technique used
with bilingual data (Barzilay and McKeown, 2001;
Ganitkevitch et al., 2013; Pavlick et al., 2015;
Mallinson et al., 2017a). PARANMT (Wieting and
Gimpel, 2018) is a large psuedo-parallel paraphrase
corpus constructed through back-translation (Wi-
eting et al., 2017). Iyyer et al. (2018) augment
it with syntactic constraints for controlled para-
phrasing; PARABANK (Hu et al., 2019a) improves
upon PARANMT via lexical constraining of de-
coding; and PARABANK 2 (Hu et al., 2019b) im-
proves the diversity of paraphrases in PARABANK
through a clustering-based approach. Note that
these works are focused on English. Here, we pro-
pose a language-independent approach relying only
on abundant bilingual data. Our approach is most
similar to Guo et al. (2019) who use bilingual and
multilingual translation for zero-shot paraphrasing.
They, however, observe that bilingual models are
insufficient for paraphrasing and are often unable to
produce the output in the correct language. We in-
corporate an autoencoding objective which simpli-
fies and stabilizes training, and embedding-based
outputs improving the diversity in paraphrasing.

6 Conclusion

We present PARAVME, an end-to-end model for
generating paraphrases, trained solely with bilin-
gual data, without any paraphrase supervision.
We propose to generate paraphrases into meaning

"We use 4K English sentences subsampled (~0.1% of
the training data) from the same corpus for autoencoding.
To further discourage copying, we use denoised autoencod-
ing (Lample et al., 2018).

8We discarded around 53 samples with no clear majority
among the annotator ratings and report the results on the re-
maining samples, further ignoring cases where the paraphrases
from both the models were rated to be of similar quality.
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BERTScore Model # (out ENGLISH # (out FRENCH
threshold of 2K) IoU] WER?T PTED?T | of2K) IoU] WERT PTED?T
0.85 PARACE 710 94.3 4 0.5 710 94.3 39 0.55
PARAVMF 92.4 4.1 0.42 92.7 4.1 0.42
0.9 PARACE 539 96.2 2.6 0.34 580 96.1 2.6 0.34
PARAVMF 94.5 2.9 0.29 94.5 2.9 0.29
0.95 PARACE 300 98.8 0.8 0.15 380 98.7 0.8 0.15
PARAVMF 97.7 1.2 0.16 97.7 1.2 0.16

Table 2: Diversity of meaning-preserving paraphrases compared to the test set. PARAVMF outperforms a strong
baseline PARACE for both English and French, across all metrics for thresholds 0.85 and 0.9, and in IoU and WER

for threshold of 0.95.

spaces as opposed to discrete tokens. This leads to
significant improvements in quality and diversity
of paraphrasing over strong baselines.
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Semantic Similarity

Model BERTScore METEOR
PARANMT 61.6 62.1
BP (vMF) 44.6 574
BP (CE) 45.0 60.4
PARACE 65.9 81.7
PARAVMF 68.9 83.9

Table 3: Evaluation of paraphrase generation on the
PARANMT test set.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q.
Weinberger, and Yoav Artzi. 2020. BERTScore:
Evaluating text generation with bert. In Interna-
tional Conference on Learning Representations.

A System diagram

The PARAVMEF system is represented diagrammati-
cally in Figure 1.

B Example outputs

Sample outputs of the PARAVMF and PARACE
models are shown in table 5.

C Training on a Larger Translation
Dataset

To measure the impact of the size of parallel trans-
lation data used for training, we conduct an ex-
periment with a larger French-English corpus con-
structed using a 2M sentence-pair subset of the
combination of the WMT’10 Gigaword (Tiede-
mann, 2012) and the OpenSubtitles corpora (Lison
and Tiedemann, 2016). The semantic similarity
scores and the diversity results are presented in
table 4. The results of human evaluation are pre-
sented in the main paper.

D Evaluation on PARANMT-50M Test
Set

We evaluate the PARAVMF model (trained on
English-French two-way translation data and En-
glish autoencoding data from the IWSLT 16
dataset) on test data sampled from PARANMT-
50M (Wieting and Gimpel, 2018), to demonstrate
its paraphrasing ability on out-of-domain input, in
addition to enabling direct comparison with back-
translated data, as shown in table 3. However, it is
to be noted that the comparison is not a fair one,
since PARAVMF is trained on just 220K data sam-
ples, wherease PARANMT is back-translated using

a translation model that was trained on a bilingual
dataset with a size of around 70M.

E Ablation

We proposed three changes in a multilingual MT
setup to use bilingual data for paraphrasing, (1) pre-
dicting continuous outputs and training with vMF
loss, (2) language-specific start tokens in the en-
coder, and (3) an autoencoding objective. In the
results section of the main paper, by comparing
our method to PARACE, we already established
the importance of using vMF compared to cross-
entropy. As shown in table 7, ablating either of the
other remaining two components leads to consider-
able performance drop. This is because the ablated
models generate outputs in Ly since they are never
exposed to monolingual examples during training.
Additional, in our preliminary experiments, we also
observe that increasing the size of autoencoding
data too much beyond ~1% of the size of paral-
lel translation data leads to a performance drop
because the model just starts to learn to copy the
input as-is rather than rephrasing.
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ENGLISH

Model BERTScore} METEOR?
PARACE 62.2 73.6
PARAVMF 71.6 79.6

(a) Semantic similarity between the test set and generated paraphrases

BERTScore Model # (out ENGLISH
threshold 0 of 2K) IoU| WER?T PTED?T

0.85 PARACE 559 85.5 11.9 1.43
PARAVMF 82.5 12.4 1.42

0.9 PARACE 327 91.2 7.0 0.81
PARAVMF 87.9 8.3 0.64

0.95 PARACE 196 959 3.3 0.28
PARAVMF 93.9 3.9 0.29

(b) Diversity of meaning-preserving paraphrases compared to the test set

Table 4: Evaluation of paraphrase generation with PARAVMF trained on 2M English-French sentence pairs. It
outperforms a strong cross-entropy based baseline (PARACE) on semantic similarity and majority of diversity
metrics.

Input It ’s expensive , it takes a long time , and it ’s very complicated .

PARACE It ’s expensive takes a time , and it ’s very complicated .
PARAVMEF It ’s costly , It takes a long time , and it ’s very difficult .

Input These are things to talk about and think about now , with your family and your loved ones .

PARACE  These are things to talk about and think about now , with your family and your loved ones .
PARAVMEF  These are things to speak of and think of now , with your family and the ones you love.

Input So what opened my eyes ?

PARACE So what opened my eyes ?
PARAVMEF  So what is it that opened my eyes up ?

Input And this work has been wonderful . It ’s been great .

PARACE  And this work has been wonderful . It ’s been great .
PARAVMF  This work has been wonderful and great .

Input I wasn ’t doing anything that was out of the ordinary at all .

PARACE I wasn 't doing anything that was out of the regular regular at all .
PARAVMF I was doing nothing that was not ordinary .

Input It will make tons of people watch , because people want this experience .

PARACE It will make tons of people watch , because people want this .
PARAVMF  Tonnes of people will look because they want this experience .

Table 5: Comparison of selected sample outputs for the IWSLT Test Set between PARAVMF model and the base-
lines. PARAVMEF not only exhibits content preservation, but also demonstrates fluency as well as lexical and
syntactic diversity.
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Figure 1: The PARAVMF Model: The decoder generates continuous-valued vectors at each step. It is trained by
minimizing von Mises-Fisher loss between the output vectors and the pre-trained embeddings of the target words.
Start tokens signalling the target language are supplied to both the encoder and the decoder. The training data
consists of translation samples, L; <> Lo and autoencoding samples, L1 — L;. During testing, the word in the
target vocabulary whose embedding is closest to the generated output in terms of cosine similarity is output.

Model | Votes (%)

PARACE 39 (27.3%)
PARAVMF | 104 (72.7 %)

Table 6: PARAVMF outperforms the baseline in manual
A/B testing (English).

Model BLEU BS MET.
PARAVMF 64.0 88.6 91.6
- encoder start token 0.86 46.0 12.0
- autoencoding 0.85 46.0 12.1

Table 7: Performance of PARAVMF without the pro-
posed enhancements - removing either leads to a dras-
tic performance drop
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