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Abstract. Understanding the intrinsic patterns of human brain is
important to make inferences about the mind and brain-behavior asso-
ciation. Electrophysiological methods (i.e. MEG/EEG) provide direct
measures of neural activity without the effect of vascular confounds.
The blood oxygenated level-dependent (BOLD) signal of functional MRI
(fMRI) reveals the spatial and temporal brain activity across different
brain regions. However, it is unclear how to associate the high tempo-
ral resolution Electrophysiological measures with high spatial resolution
fMRI signals. Here, we present a novel interpretable model for coupling
the structure and function activity of brain based on heterogeneous con-
trastive graph representation. The proposed method is able to link man-
ifest variables of the brain (i.e. MEG, MRI, fMRI and behavior perfor-
mance) and quantify the intrinsic coupling strength of different modal
signals. The proposed method learns the heterogeneous node and graph
representations by contrasting the structural and temporal views through
the mind to multimodal brain data. The first experiment with 1200 sub-
jects from Human connectome Project (HCP) shows that the proposed
method outperforms the existing approaches in predicting individual gen-
der and enabling the location of the importance of brain regions with sex
difference. The second experiment associates the structure and temporal
views between the low-level sensory regions and high-level cognitive ones.
The experimental results demonstrate that the dependence of structural
and temporal views varied spatially through different modal variants.
The proposed method enables the heterogeneous biomarkers explanation
for different brain measurements.
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1 Introduction

The brain activity remains latent construct that could not be directly measured
with present technologies [18]. Non-invasive electrophysiology such as Magneto-
and electo- phencephalography (M/EEG) shows insights into many healthy and
diseased brain activity at millisecond but lacks spatial resolution. Additional
modalities with higher spatial resolution at millimeter such as Magnetic reso-
nance imaging (MRI), functional MRI(fMRI) and positron emission tomography
(PET) have paved the way to human connectomics in clinical practice. However,
this kind of technique is sluggish to reveal neuronal activity. The challenge of fus-
ing non-invasive brain measurements is that different technique provides either
high spatial or temporal resolution but not both [3,11,21]. The development of
fMRI, MEG and MRI made it possible to obtain the system level of structural
connectomics and functional connectomics. Many methods have been proposed
to associate the connectomics from different modalities. Simple and direct cor-
relational approaches have been commonly used to link SC and FC [9,10,22].
With the prior of SC, dynamic casual model could explain the functional signals
in terms of excitatory and inhibitory interactions [5,17]. Graph models allow the
extraction of system level connectivity properties associated with brain changes
in the life cycle, such as attention and control networks related to late adoles-
cence and aging process, the strength and organization of function connectivity
related to neurological diseases and intrinsic brain activity of behavior perfor-
mance during resting and task state [1,2,4]. Recently, graph harmonic analysis
with Laplacian embedding and spectral clustering have been utilized for reveal-
ing brain organization [16]. Basically, the graph harmonic model use harmonic
components to summarize the spatial patterns with the nodes of the graph. With
the structurally informed components, the relationship among structural connec-
tivity, functional connectivity and behavior performance could be decomposed.

Literature on previous graph based methods that utilizes graph theoretical
metrics to summarize the function connectivity ignores the high-order interac-
tions between ROIs [12,14,19]. The existing methods are not very suitable for
the integration of structural connectivity, functional connectivity and behavior
performance for the following reasons:

Lack of Individual and Group-Level Explanation: existing methods
especially for fMRI analysis assume that the nodes in the same brain graphs
are translation invariant. Ignoring the correspondence of nodes of different brain
ROIs limits the explanation in individual and group level.

Incomplete and Missing Data in Clinical Data Collection: due to
the scanner availability and patient demands, it is impossible to do multimodal
assessment for all patients. Incomplete or missing data hinders the potential of
multimodal usage. There are very few databases that provides public access to
MEG, MRI and fMRI of the same subjects.

Violation of the Brain Dynamics Information: the existing joint model
uses the linearity assumption among latent variables from different modal mea-
surements. The effective usage includes subject specific integration (structural
connectivity), modal specific association (i.e. fMRI and MEG). However, the
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brain is highly dynamic and the linearity assumption is not applicable in many
cases.

In the paper, we build a novel heterogeneous contrast subgraphs representa-
tion learning based method to exploit the coupling of structural and functional
connectivity from different brain modality. The proposed method has the fol-
lowing advantages: 1) The proposed heterogeneous graph representation learn-
ing method utilizes the contrastive learning to explore the coupling informa-
tion of different modality. The proposed method with the semantic attention
model enables the complex and dynamics link between structural and functional
connectivity within each modal measures. The proposed method is capable of
modeling heterogeneous spatio-temporal dynamics and learn the contrast graph
structures simultaneously.

2) The proposed method uses a causal explanation model to improve the
individual and group-level interpretability. The explanation approach helps to
locate the significant brain region with sex difference and neurodevelopment. The
experimental results for gender classification with 1200 subjects from HCP have
shown the performance of the proposed method with incomplete multimodal
data (fMRI and MEG).

3) The proposed method utilizes graph convolution theory to link the brain
structure and function. The experimental results with meta-analysis reveal the
strength of structural-functional coupling patterns among functional connectiv-
ity, structural connectivity and behavior performance.

2 Problem Formulation

To associate heterogeneous multimodal brain measurements, a heterogeneous
graph representation learning with semantic attention is introduced based on
fMRI and filtered MEG data. Next we introduce dynamical neural graph encoder
framework to associate the spatial and temporal patterns from structural and
functional connectivity of multimodal brain measurements. Then, we give the
details of the multi-view contrastive graph representation learning. The con-
trastive graph learning method makes sure the maximization of mutual infor-
mation of the node representation from one view and the graph representation
from another view. Finally, we discuss the interpretable causal explanations for
the proposed method on graph. The overall framework is illustrated in Fig. 1.
Heterogeneous Graph Representation Learning. We use a graph
Gi = (V,&;) to represent the heterogeneous graph representation, with the node
type V = [vilt =1,...,T;i=1,...,N] with N brain ROIs and T time points.
The edge mapping £ represents the connection of different brain ROIs in spatial
and temporal domain. The aim of contrastive graph representation is to explore
the spatial and temporal pattern of the fMRI and MEG data. Given two multi-
modal graph G4 and Gg with different time points T4 and T and their corre-
spondence multivariate value X 4 = [z7}, 27}, .., 27\ ] and Xp = [2f 2P, .. 25 ].
To integrate manifest variables of the brain with different spatial and temporal
resolution, a dynamical neural graph encoder is proposed to explore the spatio-
temporal dynamics. The data augmentation mechanism introduces a &;7_; of P
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Fig. 1. Schematic illustration of the explainable contrastive graph representation with
heterogeneous brain measurements. Top: training process, bottom: explanation process.

set of multiview heterogeneous graph for each modality, where P represents the
total view of the brain measurement after data augmentation (i.e. the number of
filter bands for MEG). We could define its corresponding adjacency matrices as
[Ag,],. The node representation within each view is defined as Z;;‘i and Zgi.
Then we use the heterogeneous latent attention module to aggregate the graph
representation for each modal measurement HA = fy(Lon (23, Z3,, ... Z3)).

2.1 Dynamical Neural Graph Encoder

We define the brain dynamical state with N neurons as 2(t) = f(z,[,t), where
2(t) = [21(t), 22(t), ..., 25 (t)]T represents the internal states of N neuron nodes
at time t. f(-) denotes the nonlinear dynamical function of each node. And
1(t) = [11(t),12(t), ..., 15(t)]T represents the external stimuli for S neurons.

Within each single modality, we define a continuous neural-graph differential
equation as follows,

2(t) = fo,, (t.20.6,) and Zf =L} (Z.X) (1)

where fq, Eé are graph encoder networks. Z;" is introduced to represent the
value after discrete operation. Z;" could represent the state ’jump’ for brain
measurements such as task fMRI.
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Heterogeneous Graph Output with Semantic Attention. Within each
brain modal measurement, we could obtain the a set of heterogeneous represen-
tation [Zg,]7.;. Then, we use a semantic level attention layer to associate the
cross view heterogeneous graph representation L,; with the learned weights
595176@2, ceey ﬂq}p = Latt(Zq51,Z¢2, ceey qup).

We define the importance of each view graph representation as,

Z tanh(q" - Wsem - Zn,@ + [}]) and g, = softmaz(eg,), (2)

where Wy, denotes the linear transformation and ¢ is learnable. The heteroge-
neous node representation could be denoted by H = f,,(>"4_, Be, Zs,).

Next, we apply the readout function to the aggregated heterogeneous rep-
resentation of each view with the shared projection head fy(.) € R . In the
experiment, we use an MLP with two hidden layers as the projection head. We
get the projected representations f_igt and Eg. For each view, the node represen-

- L -
tation are concatenated as hy = o( || [Yi, hL]W).
=1

2.2 Mutual Information Based Training Process

In the training process, we maximize the mutual information between the node
representation of one modal and the graph representation of another modal, i.e.
the node representation of fMRI and the graph representaion of MEG and vice
versa. The objective is defined with contrastive learning as follows,

lgl
maz |G‘ Z g1 2 Z [MI(h{,RB) + MI(R, hP)), (3)

where 6, ¢, 1 represent the parameters of heterogeneous dynamical neural graph
encoder and projection head. |G| denotes the total numbers of graph. |g| is the
number of nodes. MI is denoted as the dot production MI(h*, h5) = bt (h5)T

2.3 Explainable Causal Representation on Graphs

To highlight the importance of the brain ROIs, we introduce the explainable
causal representation to encourage the reasonable node selection process. We
train an explanation model to explain the multmodal graph representation app-
roach based on granger causality. The explanation process are divided into two
steps, the distillation process and explainer training process.

In distillation process, we use a subgraph G, to represent the main cause of
the target prediction y. The explainable causal representation does not require
the re-training of the dynamical graph encoder which could lower the computa-
tion complexity. We use d¢\; to represent the prediction error exclude the edge
e;. The model error is defined as Asc; = dg\e; — dG-
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With the ground truth label y, we define the model error as the loss difference

‘C(ya QG)
(SG = ﬁ(% QG) and 6G\€j = ‘C(yv gG’\eJ-)v (4)

Given the causal contributions of each edge, we could sort the top-K most
relevant edges for model explanation. After the model distillation process, we
will train a new explainer model based on graph convolutional layer.

Z=GCN(A,Z) and A=o(227), (5)

where each value in A represent the contribution of specific edge to prediction.
The explanation model generate A as an explanation mask. We show more details
of the explainable causal model in Supplementary material.

3 Experiments

In the experiments, we use the public available s1200 dataset from Human Con-
nectome Project (HCP), which contains 1096 young adults. Additionally, about
95 subjects have resting-state and/or task MEG (tMEG) data. The resting-state
fMRI is pre-processed following the minimal preprocessing pipeline [8]. Then the
pre-processed data is registered into a standard cortical surface using MSMAIl
[8]. The cortical surface was parcellated into N =22 major ROIs [7]. In addition,
the averaged time course of each ROI is normalized using z-score. The resting-
state MEG has been pre-processed using ICA to remove out artefacts related
to head and eye movement. Sensor-space data were down-sampled 300 Hz using
anti-aliasing filter. Next the MEG data were source-reconstructed with a scalar
beamformer and registered into the standard space of the Montreal Neuroimag-
ing Institute (MNTI). Data were then filtered into 1-30 Hz and beamformed onto
6 mm grid. The parcellation atlas and z-score normalization method of MEG are
similar to resting-state fMRI.

3.1 Sex Classification

We first test the performance of the proposed method with sex classification
task using HCP data. We adopt 5-fold cross validation on the 1091 subjects.
We compare the proposed method with several state-of-the-art methods such as
Long-Short-Term Memory (LSTM) [13], graph convolution LSTM (GC-LSTM)
[20] and spatio-temporal graph convolution network (ST-GCN) [6]. The hidden
state of LSTM was set to 256. A simple Multi-Layer Perception (MLP) with 2
hidden layers and ReLLU activation is also included as the baseline method. For
the proposed method, we report two kinds of sex classification accuracy. The
first single model uses only the fMRI to explore the dynamics within the brain
ROIs. The multimodal based method integrates both fMRI and MEG to exploit
the spatio-temporal dynamics and achieves better sex classification performance.

The accuracy of sex classification is shown in Table 1. Comparing with the
baseline method, the proposed method could learn the dynamic contrast graph
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representation between fMRI and MEG. The proposed method could take advan-
tage of the high spatial resolution of fMRI and high temporal resolution of MEG
to achieve the highest sex classification performance of 85.2%. The importance
of the brain regions that contributes to the sex classification is show in Fig. 2.
The causal explanation module provides us a new way to find individual-level
and group-level biomarkers for sex difference.

Table 1. Sex classification accuracy with different baseline models

Method Accuracy

LSTM 0.808(0.033)
GC-LSTM 0.811(0.075)
MLP 0.770(0.051)
ST-GCN 0.839(0.044)
Proposed method with only fMRI | 0.827(0.061)
Proposed method with multimodal | 0.852(0.046)

Fig. 2. Top K important brain regions for sex classification

3.2 Brain Activity Decomposed with Functional and Structural
Connectivity

In the second experiment, we use the structural-decoupling index which reveals
the function and structure relationship to measure the energies of high pass
decoupled activity versus low pass coupled activity per brain ROIs. The average
structural-decoupling index for surrogate (with or without SC) and function sig-
nals is shown in Fig. 3. Without the SC prior knowledge, the surrogate shows sig-
nificant decoupling patterns. While the knowledge of SC increases the coupling
pattern in functional signals. Compared with the functional time courses, the
high-level cognition network detaches from the SC. We also use the NeuroSynth
meta-analysis on the same topic in [15] to assess the structural-decoupling index.
As shown in Fig. 4, the structural-decoupling index associates the behaviorally
relevant gradient based on FC data. We could find a macroscale gradient of
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regions related to low to high level cognition with the learned graph representa-
tion. Due to the fact that the functional connectivity comes from MEG data in
the second experiment, we compare the gradient learned from the graph repre-
sentation with the original MEG data. For example, the terms related to acting
and perceiving such as “visual perception”, “multisensory processing”, “reading”
and “motor/eye movement” are grouped into the top end. The terms related to
complex cognition such as “autobiographical memory”, “emotion” and “reward-
based decision making” are characterized into the other end. Similar organization
phenomenon could be found in the previous research [15,16]. However, the gra-
dient learned by original MEG data lacks the pattern of system organization.

L —
Coupling 0 Decoupling

Fig. 3. Structural decoupling index shows brain activity between function and struc-
ture. Left: Surrogate brain activity without structural connectome. Middle: surrogate
brain activity with structural connectome. Right: brain activity with decoupling dif-
ference to the surrogate
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Fig. 4. Behaviorally relevant gradient shows brain organization with Structural decou-
pling index. Left: the learned graph representation. Right: original MEG data
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4 Conclusions

Brain activity is shaped by the anatomical structure. In the paper, we propose
an explainable contrastive graph representation learning based model to asso-
ciate heterogeneous brain measurements such as MRI, functional MRI, MEG
and behavior performance. The framework allows key advantages to concentrate
brain, mind and behavior in cognitive neuroscience. The proposed method out-
performs the state-of-the-art methods in gender classification using fMRI and
MEG data. Moreover, the framework could localize the important brain region
with sex difference through a causal explanation model. The second experiment
with meta analysis demonstrates that the structure-function coupling pattern
with the learned contrast graph representation. Future work that links the func-
tion connectivity with other modal data (i.e. gene expression and microstructure
properties) could be easily adapted to our framework.
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