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Abstract. Brain large-scale dynamics is constrained by the heterogene-
ity of intrinsic anatomical substrate. Little is known how the spatio-
temporal dynamics adapt for the heterogeneous structural connectiv-
ity (SC). Modern neuroimaging modalities make it possible to study
the intrinsic brain activity at the scale of seconds to minutes. Diffu-
sion magnetic resonance imaging (dMRI) and functional MRI reveals
the large-scale SC across different brain regions. Electrophysiological
methods (i.e. MEG/EEG) provide direct measures of neural activity and
exhibits complex neurobiological temporal dynamics which could not be
solved by fMRI. However, most of existing multimodal analytical meth-
ods collapse the brain measurements either in space or time domain and
fail to capture the spatio-temporal circuit dynamics. In this paper, we
propose a novel spatio-temporal graph Transformer model to integrate
the structural and functional connectivity in both spatial and temporal
domain. The proposed method learns the heterogeneous node and graph
representation via contrastive learning and multi-head attention based
graph Transformer using multimodal brain data (i.e. fMRI, MRI, MEG
and behavior performance). The proposed contrastive graph Transformer
representation model incorporates the heterogeneity map constrained by
T1-to-T2-weighted (T1w/T2w) to improve the model fit to structure-
function interactions. The experimental results with multimodal resting
state brain measurements demonstrate the proposed method could high-
light the local properties of large-scale brain spatio-temporal dynamics
and capture the dependence strength between functional connectivity
and behaviors. In summary, the proposed method enables the complex
brain dynamics explanation for different modal variants.
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1 Introduction

Understanding how our brain dynamically adapts for mind and behaviors helps
to extract fine-grained information for typical and atypical brain functioning.
But how the microcircuit heterogeneity shapes the structure-function interac-
tions remains an open question in systems neuroscience. Magnetic resonance
imaging (MRI) makes it possible to infer the large-scale structural and func-
tional connectivity and characterize the anatomical and functional patterns in
human cortex. Electrophysiological methods reveal the dynamical circuit mech-
anisms at the structural and functional level with higher temporal resolution.
Different neuroimaging modalities such as fMRI, dMRI and MEG enable us to
estimate both static and functional connectivity during resting state and task
experimental paradigms.

Existing studies of large-scale brain dynamics relate the structural and func-
tional connectivity with dynamical circuit mechanisms. The biophysically based
dynamical models explore the time-variant function connectivity with excitatory
and inhibitory interactions which is interconnected through structural connec-
tions [6,20,22]. Microcircuit specialization could be summarized using graph
model [3], showing insights into inter-individual brain architecture, development
and dysfunction in disease or disorder states. Recently, the graph harmonic anal-
ysis based on Laplacian embedding [4] and spectral clustering [19] is introduced
to inform the cortical architectural variation. Basically, the previous methods
define the nodes of the graph with the harmonic components to quantify the
density of anatomical fibers. However, the inter-areal heterogeneity of human
cortex has not been widely studied. The next challenging is to decompose the
spatio-temporal brain dynamics with multimodal data [21]. Rahim et al. [15]
improve the Alzheimer’s disease classification performance with fMRI and PET
modalities. The stacking method of multimodal neuroimaging data is explored
in age prediction task [10]. Representational similarity analysis (RSA) [9] based
methods use the common similarity space to associate multivariate modalities.
Subsequent research uses Gaussian process to allow complex linking functions
[2]. In order to associate the higher temporal resolution of Electrophysiological
measurements at millisecond with the higher spatial resolution of MRI and fMRI
at millimeter, we introduce the contrastive learning with the Graph Transformer
model to learn the heterogeneous graph representation.

Contrastive methods measure the distribution loss with the discrimina-
tive structure and achieve the state-of-the-art performance in graph classifi-
cation. Contrastive multiview coding (CMC) [18], augmented multi-scale DIM
(AMDIM) [1] and SimCLR [5] take advantages of multiview mutual informa-
tion maximization with data augmentation to learn better representations. The
graph-level representation is further explored with the extension of the mutual
information principle in [17]. Recently, the Graph Transformer based method
[16] is proposed to explore the nodes relationship in node embedding learning.
However, it is challenging to accurately represent the entire given graph.

Literature on previous multimodal based methods could not be directly
applied to link structural connectivity, functional connectivity and behaviors
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for the following reasons. 1) Most of the existing methods use simple and direct
correlational approaches to relate SC and FC. However, the linearity assump-
tion violates the brain spatio-temporal dynamics in many cases. 2) The scanner
availability and patient demands may cause the incomplete data problem which
may affect the model’s performance. 3) As far as we know, little efforts has been
made to study how the heterogeneity across human cortex affects the dynamical
coupling strength of brain function with structure.

To address these issues, we develop a novel Graph Transformer based frame-
work for associating the heterogeneity of local circuit properties and revealing
the dependency of functional connectivity on anatomical structure. The pro-
posed method consists of three parts, the Dynamical Neural Graph Encoder,
the graph Transformer pooling with multi-head attention, and the contrastive
representation learning model. The proposed method has the following advan-
tages:
– The proposed method provides insights into the brain spatio-temporal

dynamical organization related to mind and behavior performance. Exist-
ing graph pooling methods may yield similar graph representation for two
different graphs. To obtain accurate graph representation, the novel Graph
Transformer use multi-head attention to acquire the global graph structure
given multimodal inputs. Moreover, we use the contrastive learning model to
associate structural and functional details of dMRI, fMRI and MEG.

– The proposed method makes it possible to incorporate the areal heterogeneity
map with functional signals using multimodal data from the human connec-
tome project (HCP).

– The proposed method is evaluated with the meta-analysis to explore the
behavioral relevance of different brain regions and characterize the brain
dynamical organization into low level functions region (i.e. sensory) and the
complex function regions (i.e. memory).

2 Methods

To explore the coupling strength of structural and functional connectivity, the
heterogeneous Graph Transformer with contrastive learning is trained based on
the multimodal brain measurements (i.e. MRI, fMRI and MEG). We use a graph
Gi = (V, Ei) to represent the heterogeneous graph representation, with the node
type V = [vt,i|t = 1, ..., T ; i = 1, ..., N ] with N brain ROIs and T time points. The
connection of different brain ROIs in spatial and temporal domain is denoted
by the edge mapping E . Given two types of multimodal graph representation
GA and GB with different time points TA and TB and their multivariate value
XA = [xA

t1 , x
A
t2 , ..., x

A
tA ] and XB = [xB

t1 , x
B
t2 , ..., x

B
tB ]. The dynamical neural graph

encoder is used to represent the spatio-temporal dynamics within each modality.
YA = [yA

t1 , y
A
t2 , ..., y

A
TP

] and YB = [yB
t1 , y

B
t2 , ..., y

B
TP

]. The adjacency matrices for
each view are represented as AA and AB. We use HA and HB to represent
the learned node representation within each modality. Then we use the Graph
Transformer pooling layer together with the multi-head attention model to stack
the entire node features. The overall framework is illustrated in Fig. 1.
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Fig. 1. Schematic illustration of the graph transformer representation learning

2.1 Dynamical Neural Graph Encoder for Single Modal Data

The dynamical brain network with N neurons could be modeled as

ż(t) = f(z, l, t), (1)

where z(t) = [z1(t), z2(t), ..., zN (t)]T represents the internal states of N neuron
nodes at time t. f(·) denotes the nonlinear dynamical function of each node.
And l(t) = [l1(t), l2(t), ..., lS(t)]T represents the external stimuli for S neurons.

To represent the dynamics of each single modality, we define a continuous
neural-graph differential equation as follows,

Ż(t) = fGtk
(t, Zt, θt); Z+

t = Lj
Gtk

(Zt,Xt); Yt = Ly
Gtk

(Zt), (2)

where fG, Lj
G and Ly

G are graph encoder networks. Z+
t is introduced to represent

the value after discrete operation.

2.2 Multimodal Graph Transformer Module

To explore the relationship among different modalities, we introduce the multi-
modal graph transformer layer. The previous pooling layer ignores the impor-
tance of nodes, we design a novel Graph Transformer pooling layer to keep the
permutation invariance and injectiveness. The Graph Transformer module con-
sists of a multi-head attention layer and a Graph Transformer pooling layer.

Graph Multi-head Attention. Within each view, the inputs for the multi-
head attention consists the terminal state of dynamical neural graph encoder.
The inputs are transformed to query Q ∈ Rnq×dk , key K ∈ Rn×dk and value
V ∈ Rn×dv , where nq is the number of query vectors and n represents the number
of input nodes. dk and dv denotes the dimensionlity of corresponding key vector
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and value vector. The attention dot production is defined as Att(Q,K, V ) =
w(QKT )V . We define the output of the multi-head attention module (MH) as

MH(Q,K, V ) = [O1, ..., Oh]WO; Oi = Att(QWQ
i ,KWK

i , V WV
i ), (3)

where WQ
i ,WK

i and WV
i are parameter matrices. The output project matrices is

defined as WO. Using the heterogeneous graph representation learned by graph
encoder (GE), the graph multi-head attention block could be denoted by

GMH(Q,K, V ) = [O1, ..., Oh]WO; Oi = Att(QWQ
i , GEK

i (H,A), GEV
i (H,A)),

(4)
Graph Transformer Pooling Together with Graph Multi-head Atten-
tion. Inspired by traditional Transformer based method [12], we introduce a
novel Graph Transformer pooling layer to learn the global representation of the
entire graph, which is defined as follows:

GMPoolk(H,A) = LN(Z + rFF (Z)); Z = LN(S + GMH(S,H,A)), (5)

where rFF is any row-wise feed forward layer. S is the seed matrix which could
be directly optimized. LN is a layer normalization. In addition, we introduce
the self-attention layer to explore the relationship between different nodes.

SelfAtt(H) = LN(Z + rFF (Z)); Z = LN(H + MH(H,H,H)), (6)

Together with graph encoder module, the overall framework is defined with
the coarsened adjacency matrix A′

Pooling(H,A) = GMPool1(selfAtt(GMPoolk(H,A)), A′), (7)

2.3 Contrastive Graph Representation Learning

Finally, we apply the shared projection head fφ(.) ∈ Rdh to the aggregated
heterogeneous representation of each view. In the experiment, we use an MLP
with two hidden layers as the projection head. The projected representations is
defined as, �hA

g and �hB
g . For each view, the node representation are concatenated

as follows,

�hg = σ(
L

‖
l=1

[
n∑

i=1

�hl
i]W ), (8)

The graph and node representations of the overall Graph Transformer module
are defined as �h = �hA

g + �hB
g and Ĥ = HA + HB. In the training stage, the

cross modal mutual information between the node representation and graph
representation is defined as,

max
θ,ω,φ,ψ

1
|G|

∑

G
[
1
|g|

|g|∑

i=1

[MI(�hA
i ,�hB

g ) + MI(�hB
i ,�hA

g )]], (9)

where θ, ω, φ, ψ represent the parameters of heterogeneous graph convolution and
projection head. |G| is the total numbers of graph. |g| is the number of nodes.
MI is denoted as the dot production MI(�hA

i ,�hB
g ) = �hA

i · (�hB
g )

T .
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3 Experimental Results

We evaluated the proposed method with resting state fMRI of 1200 subjects from
Human Connectome Project (HCP). The resting state fMRI was preprocessed
using the HCP minimal preprocessing pipeline [8]. The artefacts of the BOLD
signal were further removed using ICA-FIX. The cortical surface was parcellated
into N = 360 major ROIs using MMP1.0 parcellation [7]. We excluded 5 subjects
with less than 1200 time points for resting-state fMRI data. Additionally, about
95 subjects have resting-state and/or task MEG (tMEG) data. We used 80%
of the whole dataset for training and evaluation. The remaining dataset is used
for testing. The corresponding resting-state MEG data were acquired in three
6min runs. The preprocessing of MEG data followed the pipeline provided by
HCP data [11]. The source reconstruction was performed using the FieldTrip
toolbox. Then sensor data was bandpass filtered into 1.3 55Hz and projected into
source space by synthetic aperture magnetometry. After source reconstruction
on the 8k-grid, the time courses were parcellated using MSMAll atlas [8]. The
parcellated time courses were z-score normalized for both fMRI and MEG data.
In addition, we used the ratio between T1 to T2 weighted maps from HCP
dataset as the heterogeneity map. The parcellated diffusion MRI (dMRI) was
analysed to generate the structural connectivity (SC) and compute the adjacency
matrix Ã for graph encoder module.

3.1 Heterogeneity Improves the Model Fit to FC

In the first experiment, we tested the similarity between empirical FC and hetero-
geneous FC patterns acquired by the proposed method compared with the homo-
geneous model. The empirical group averaged FC, particle-averaged homoge-
neous FC and heterogeneous FC are shown in Fig. 2. We used a simple non-neural
model to introduce self-coupling heterogeneity strength wi = wmin + wscalesi

based on the heterogeneity map si, where wmin and wscale are heterogeneity
parameters.
Synaptic Dynamical Equations. We introduced the biophysically-based com-
putational model to simulate the functional dynamics ẏi(t) for each node i with
the heterogeneity map si.

ẏi(t) = −yi(t) +
∑

j

Cijyj(t) + nνi
(t), (10)

where nνi
(t) is the independent Gaussian white noise. C represents the cou-

pling matrix. yi(t) is the learned representation using the proposed method. We
incorporated the SC matrix SC and global coupling parameter GC with ẏi(t),

ẏi(t) = −
∑

j

[(1 − wi)δij − GCSC
ij ]yj(t) + nνi

(t), (11)

We used the squared Pearson correlation coefficient to evaluate the similar-
ity between empirical FC and model fit FC for a single hemisphere. Figure 2
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Fig. 2. Heterogeneity map improves the model fit to functional connectivity (FC). (a)
Empirical FC. (b) Homogeneous FC. (c) Heterogeneous FC. And (d-f) correlations
between empirical FC and model FC, for the Homogeneous (d) Heterogeneous Graph
Transformer (e) and Deco’s model (f).

shows that the similarity of the proposed graph Transformer model is larger
with r = 0.68 than the homogeneous model (r = 0.49)(p < 10−4, dependent cor-
relation test). The proposed model also yields higher FC similarity than Deco’s
model [6] (r = 0.57). The experimental result linking multiple modalities demon-
strates the hypothesis that the T1w/T2w map shapes the microcircuit properties
and spatio-temporal brain dynamics. The introduction of T1w/T2w heterogene-
ity with the proposed method could capture the dominant neural axis for micro-
circuit specialization is shown in Fig. 3. In summary, the proposed method with
the prior of areal heterogeneity could inform the dynamical relationships among
structure, function, and physiology.

Fig. 3. T1w/T2w heterogeneity map (left) and the example surrogate heterogeneity
map (right)
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3.2 Functional Connectivity and Behaviors

In the second experiment, we used a NeuroSynth meta-analysis [13] to assess
the topic terms with the structural-functional coupling index in Fig. 4. The
experimental results demonstrate the existence of behavior related global gradi-
ent spanning from lower to higher level cognitive functions. The evidence of
global gradient reveals that higher coupling strength in sensory-motor areas
which requires fast reacting (i.e. “visual perception”, “multisensory processing”,
“motor/eye movement”). However, the coupling strength in high level cognitive
regions (i.e. “autobiographical memory”, “emotion” and “reward-based decision
making”) is low. Similar organization phenomenon could be found in the previous
research [13,14].

Fig. 4. Behaviorally relevant gradient shows brain organization

4 Conclusions

In the study, we propose a novel Graph Transformer based method for decoding
the brain spatio-temporal dynamics. Different from most of the existing graph
convolution method, the Graph Transformer model with multi-head attention
guarantees the learning of global graph structure of multimodal data (i.e. dMRI,
fMRI and MEG). The contrastive learning model makes it possible to asso-
ciate multimodal graph representation and reveal how the heterogeneity map
shapes the human cortical dynamics. The experimental results demonstrate the
importance of regional heterogeneity and the corresponding intrinsic structure-
function relationship within brain dynamical organization. Moreover, the pro-
posed method provides insights into brain inter- and intra-regional coupling
structure and the relationship between dynamical FC and human behaviors.
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