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Abstract— Tactile perception is central to robot manipulation
in unstructured environments. However, it requires contact, and
a mature implementation must infer object models while also
accounting for the motion induced by the interaction. In this
work, we present a method to estimate both object shape and
pose in real-time from a stream of tactile measurements. This
is applied towards tactile exploration of an unknown object by
planar pushing. We consider this as an online SLAM problem
with a nonparametric shape representation. Our formulation of
tactile inference alternates between Gaussian process implicit
surface regression and pose estimation on a factor graph.
Through a combination of local Gaussian processes and fixed-
lag smoothing, we infer object shape and pose in real-time. We
evaluate our system across different objects in both simulated
and real-world planar pushing tasks.

I. INTRODUCTION

For effective interaction, robot manipulators must build
and refine their understanding of the world through sensing.
This is especially relevant in unstructured settings, where
robots have little to no knowledge of object properties, but
can physically interact with their surroundings. Even when
blindfolded, humans can locate and infer properties of un-
known objects through touch [1]. Replicating some fraction
of these capabilities will enable contact-rich manipulation in
environments such as homes and warehouses. In particular,
knowledge of object shape and pose determines the success
of generated grasps or nonprehensile actions.

While there have been significant advances in tactile
sensing, from single-point sensors to high-resolution tactile
arrays, a general technique for the underlying inference still
remains an open question [2]. Visual and depth-based track-
ing have been widely studied [3], but suffer from occlusion
due to clutter or self-occlusions with the gripper or robot.
We provide a general formulation of pure tactile inference,
that could later accommodate additional sensing modalities.

Pure tactile inference is challenging because, unlike vision,
touch cannot directly provide global estimates of object
model or pose. Instead, it provides detailed, local information
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Fig. 1: The shape and pose estimation problem in a pusher-slider system. A
robot manipulator pushes along a planar object, while recording a stream of
tactile measurements. Our method builds a shape contour in real-time as a
Gaussian process implicit surface, and optimizes for pose via geometry and
physics-based constraints. Figure shows tactile measurements ( ), estimated
motion (↓), estimated shape/pose ( ), and ground-truth (- -).

that must be fused into a global model. Moreover, touch is
intrusive: the act of sensing itself constantly perturbs the
object. We consider tactile inference as an analog of the
well-studied simultaneous localization and mapping (SLAM)
problem in mobile robotics [4]. Errors in object tracking
accumulate to affect its predicted shape, and vice versa.

Central to this problem is choosing a shape representa-
tion that both faithfully approximates arbitrary geometries,
and is amenable to probabilistic updates. This excludes
most parametric models such as polygons/polyhedrons [5],
superquadrics [6], voxel maps [7], point-clouds [8], and
standard meshes [9]. Gaussian process implicit surfaces
(GPIS) [10] are one such nonparametric shape representation
that satisfies these requirements.

In this paper, we demonstrate online shape and pose esti-
mation for a planar pusher-slider system. We perform tactile
exploration of the object via contour following, that generates
a stream of contact and force measurements. Our novel
schema combines efficient GPIS regression with factor graph
optimization over geometric and physics-based constraints.
The problem is depicted in Fig. 1: the pusher moves along
the object while estimating its shape and pose.

We expand the scope of the batch-SLAM method by Yu
et al. [5] with a more meaningful shape representation, and
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real-time online inference. Our contributions are:
(1) A formulation of the tactile SLAM problem that al-

ternates between GPIS shape regression and sparse
nonlinear incremental pose optimization,

(2) Efficient implicit surface generation from touch using
overlapping local Gaussian processes (GPs),

(3) Fixed-lag smoothing over contact, geometry, and fric-
tional pushing mechanics to localize objects,

(4) Results from tactile exploration across different planar
object shapes in simulated and real settings.

II. RELATED WORK

A. SLAM and object manipulation

Our work is closely related to that of Yu et al. [5], that
recovers shape and pose from tactile exploration of a planar
object. The approach uses contact measurements and the
well-understood mechanics of planar pushing [11, 12] as
constraints in a batch optimization. Naturally, this is expen-
sive and unsuitable for online tactile inference. Moreover, the
object shape is represented as ordered control points, to form
a piecewise-linear polygonal approximation. Such a repre-
sentation poorly approximates arbitrary objects, and fails
when data-association is incorrect. Moll and Erdmann [13]
consider the illustrative case of reconstructing motion and
shape of smooth, convex objects between two planar palms.
Strub et al. [14] demonstrate the full SLAM problem with a
dexterous hand equipped with tactile arrays.

Contemporaneous research considers one of two simplify-
ing assumptions: modeling shape with fixed pose [8, 15, 16,
17, 18], or localizing with known shape [19, 20, 21, 22, 23].
The extended Kalman filter (EKF) has been used in visuo-
tactile methods [24, 25], but is prone to linearization errors.
At each timestep, it linearizes about a potentially incorrect
current estimate, leading to inaccurate results. Smoothing
methods [26] are more accurate as they preserve a temporal
history of costs, and solve a nonlinear least-squares problem.
These frameworks have been used to track known objects
with vision and touch [27, 28], and rich tactile sensors [23].

B. Gaussian process implicit surfaces

A continuous model which can generalize without dis-
cretization errors is of interest to global shape perception.
Implicit surfaces have long been used for their smooth-
ness and ability to express arbitrary topologies [29]. Using
Gaussian processes [30] as their surface potential enables
probabilistic fusion of noisy measurements, and reasoning
about shape uncertainty. GPIS were formalized by Williams
and Fitzgibbon [10], and were later used by Dragiev et
al. to learn shape from grasping [15]. It represents objects
as a signed distance field (SDF): the signed distance of
spatial grid points to the nearest object surface. The SDF and
surface uncertainty were subsequently used for active tactile
exploration [17, 31, 32]. To our knowledge, no methods use
GPIS alongside pose estimation for manipulation tasks.

Online GP regression scales poorly due to the growing
cost of matrix inversion [30]. Spatial mapping applications
address this by either sparse approximations to the full

Prior factor

x1 x2 x3
Finite motion factor

F11 F12

y1 y2 yt F*

c1 c2 ct C*
Contact points 

ci ∈ ℝ2

Surface 
observations 
yi = {di, ni}

Local Gaussian 
fields

Training inputs SDF grid

F4
N

F1
t F1*

Implicit surface 
contact factor

Quasi-static 
pushing factor

Non-penetration factor

Implicit surface as  
zero-level set of  F*≜ {s ∈ ℝ2 |F*(s)d = 0}

Object pose

Motion 
model scalar

Fig. 2: The combined formulation between the factor graph (Section V)
and GPIS (Section IV). [top] The graph illustrates the relationship between
the variables to be optimized for (circles) and the factors that act as
constraints (colored dots). [bottom] Our GPIS builds an implicit surface
shape representation that is the zero level-set of GP potential function.
Spatial partitioning with local GPs enables efficient regression.

GP [33], or training separate local GPs [34, 35]. Lee et
al. [36] propose efficient, incremental updates to the GPIS
map through spatial partitioning.

III. PROBLEM FORMULATION: TACTILE SLAM

We consider a rigid planar object on a frictional surface,
moved around by a pusher (see Fig. 1). The interaction is
governed by simple contour following for tactile exploration.
Given a stream of tactile measurements, we estimate the 2-D
shape and object’s planar pose in real-time.

Object pose: The object pose at the current timestep t is
defined by position and orientation xt = (x, y, θ) ∈ SE (2).

Object shape: The estimated object shape is represented as
an implicit surface S ∈ R2 in the reference frame of xt.

Tactile measurements: At every timestep we observe:

zt =
{

pt ∈ R2︸ ︷︷ ︸
pusher position

, ft ∈ R2︸ ︷︷ ︸
force vector

, Θt ∈ {0, 1}︸ ︷︷ ︸
contact/no-contact

}
(1)

Pusher position is obtained from the robot’s distal joint
state, and force is sensed directly from a force/torque sensor.
Contact is detected with a minimum force threshold, and
the estimated contact point ct is derived from knowledge



of pt, ft and probe radius rprobe. This is consistent with
the formulation in [5], with the addition of direct force
measurements ft. For simplicity we consider a single pusher,
but it can be expanded to multiple pushers or a tactile array.

Assumptions: We make a minimal set of assumptions,
similar to prior work in planar pushing [5, 27, 28]:
• Quasi-static interactions and limit surface model [12, 37],
• Uniform friction and pressure distribution between bodies,
• Object’s rough scale and initial pose, and
• No out-of-plane effects.

The remainder of the paper is organized as such: Section
IV formulates building shape estimate S as the implicit
surface of a GP, given current pose estimate and measure-
ment stream. Section V describes factor graph inference to
obtain pose estimate x∗t with S and the measurement stream.
These two processes are carried out back-and-forth for online
shape and pose hypothesis at each timestep (Fig. 2). Finally,
we demonstrate its use in simulated and real experiments
(Section VI) and present concluding remarks (Section VII).

IV. SHAPE ESTIMATION WITH IMPLICIT SURFACES

A. Gaussian process implicit surface

A Gaussian process learns a continuous, nonlinear func-
tion from sparse, noisy datapoints [30]. Surface measure-
ments are in the form of contact points ci and normals ni,
transformed to an object-centric reference frame. Given N
datapoints, the GP learns a mapping X 7→ Y between them:

F : {cix , ciy}i=1···N︸ ︷︷ ︸
X∈R2

7→ {di, nix , niy}i=1···N︸ ︷︷ ︸
Y ∈R3

(2)

where d represents
signed-distance from

object surface

{
d = 0, on surface
d < 0, inside object
d > 0, outside object

(3)

The posterior distribution at a test point c∗ is shown to be
F∗ ∼ GP(F̄∗, σ

2
∗), with output mean and variance [30]:

F̄∗ = kT∗
(
K + σ2

noiseI
)−1

Y

σ2
∗ = k∗∗ − kT∗

(
K + σ2

noiseI
)−1

k∗
(4)

where K ∈ RN×N , k∗ ∈ RN×1 and k∗∗ ∈ R are the train-
train, train-test, and test-test kernels respectively. We use a
thin-plate kernel [10], with hyperparameter tuned for scene
dimensions. The noise in output space is defined by a zero-
mean Gaussian with variance σ2

noise. While contact points
condition the GP on zero SDF observations, contact normals
provide function gradient observations [15]. Thus, we can
jointly model both SDF and surface direction for objects.

We sample the posterior over an M element spatial grid
of test points C∗, to get SDF F∗d . The estimated implicit
surface S is then the zero-level set contour:

S , {s ∈ R2 | F∗(s)d = 0} (5)

The zero-level set S is obtained through a contouring subrou-
tine on F∗d . S is initialized with a circular prior and updated
with every new measurement {ci,ni, d = 0}. In Fig. 3 we

Fig. 3: [left] Gaussian process potential function and its implicit surface
(green) for noisy contact measurements on the butter shape [38]. The
colormap shows spatial grid uncertainty. [right] The overlapping local GPs
F 1 . . . FL. Each GP is responsible for training and test points within its
radius, and the overlapping regions ensure continuity in the shape contour.

reconstruct the butter shape [38] with a sequence of noisy
contact measurements.

B. Efficient online GPIS

In a naı̈ve GP implementation, the computational cost
restricts online shape perception. Equation 4 requires an
N×N matrix inversion that is O(N3), and spatial grid testing
that is O(MN2). We use local GPs and a subset of training
data approximation for efficient online regression:

Local GP regression: We adopt a spatial partitioning ap-
proach similar to [34, 35, 36]. The scene is divided into
L independent local GPs F 1 . . . FL, each with a radius r
and origin (Fig. 3). Each F i claims the training and test
points that fall within r of its origin. The GPs effectively
govern smaller domains (NF i � N and MF i � M ), and
not the entirety of the spatial grid. At every timestep: (i) a
subset of local GPs are updated, (ii) only the relevant test
points are resampled. Kim et al. [34] demonstrate the need
for overlapping domains to avoid contour discontinuity at the
boundaries. Thus, we increase r, and in overlapping regions,
the predicted estimates are averaged among GPs.

Subset of data: Before adding a training point ci to the
active set, we ensure that the output variance σ2

i is greater
than a pre-defined threshold σ2

thresh. This promotes sparsity in
our model by excluding potentially redundant information.

Implementation: Rather than direct matrix inversions
(Equation 4), it is more efficient to use the Cholesky factor
of the kernel matrix [30]. In our online setting, we directly
update the Cholesky factor LLT =

(
K + σ2

noiseI
)

with new
information. We multi-thread the update/test steps, and per-
form these at a lower frequency than the graph optimization.
We set L = 25, grid sampling resolution 5 mm, and circular
prior of radius 40 mm for our experiments.

V. POSE ESTIMATION WITH FACTOR GRAPHS

A. Factor graph formulation

The maximum a posteriori (MAP) estimation problem
gives variables that maximally agree with the sensor mea-
surements. This is commonly depicted as a factor graph:
a bipartite graph with variables to be optimized for and
factors that act as constraints (Fig. 2). The augmented state
comprises object poses and a motion model scalar C:

Xt = {x1, . . . ,xt ; C} (6)



Prior work in pushing empirically validates measurement
noise to be well-approximated by a Gaussian distribu-
tion [27]. With Gaussian noise models, MAP estimation
reduces to a nonlinear least-squares problem [39]. Our MAP
solution (given best-estimate shape S) is:

X ∗t = argmin
Xt

t∑
i=1

(
||Q(xi−1,xi, zi−1, C)||2ΣQ︸ ︷︷ ︸

QS pushing factor

+ ||I(xi, zi,S)||2ΣI︸ ︷︷ ︸
IS contact factor

+ ||P (xi, zi,S)||2ΣP︸ ︷︷ ︸
Non-penetration factor

+ ||F (xi−1,xi)||2ΣF︸ ︷︷ ︸
Finite motion factor

)
+ ||p0||2Σ0

+ ||c0||2Σc︸ ︷︷ ︸
Priors

(7)

This is graphically represented in Fig. 2, and the cost
functions are described in Section V-B. Given covariance
matrix Σ, ‖v‖2Σ = vT Σ−1v is the Mahalanobis distance
of v. The noise terms for covariances {ΣQ, . . . ,Σc} are
empirically selected. The online estimation is performed
using incremental smoothing and mapping (iSAM2) [26].
Rather than re-calculating the entire system every timestep,
iSAM2 updates the previous matrix factorization with new
measurements. In addition, we use a fixed-lag smoother to
bound optimization time over the exploration [39]. Fixed-
lag smoothing maintains a fixed temporal window of states
Xw, while efficiently marginalizing out preceding states (100
timesteps in our experiments). Note that this is different from
simply culling old states and discarding information.

B. Cost functions

QS pushing factor: The quasi-static model uses a limit
surface (LS) model to map between pusher force ft and
object motion [12]. Specifically, Lynch et al. [11] develop an
analytical model using an ellipsoid LS approximation [37].
The factor ensures object pose transitions obey the quasi-
static motion model, with an error term:

Q(xt−1,xt, zt−1, C) =

[
vx
ω
−C2 ft−1x

τ
,
vy
ω
−C2

ft−1y

τ

]
(8)

• (vx, vy, ω) is the object’s velocity between xt−1 and xt,
• τ is the applied moment w.r.t. pose center of xt−1,
• C = τmax/fmax is an object-specific scalar ratio depen-

dent on pressure distribution.
For a more rigorous treatment, we refer the reader to [5].
We weakly initialize C with our known circular shape prior,
and incorporate it into the optimization.

Implicit surface contact factor: Given Θt =1 (contact),
we encourage the measured contact point ct to lie on

rect1 hex ellip2

Fig. 4: Snippets of the tactile exploration data collected in the PyBullet
simulator. We use a two-finger pusher to perform contour following, and
collect the tactile measurements and ground-truth poses.

the manifold of the object. We define Φ = Φ(xt, zt,S)
that computes the closest point on S w.r.t. the pusher via
projection. The error term is defined as:

I(xt, zt,S) =
[
Φ− ct , ‖Φ− pt‖ − rprobe

]
(9)

This ensures that in the presence of noise, the contact points
lie on the surface and the normals are physically valid [5].

Non-penetration factor: While we assume persistent
contact, this cannot be assured when there is more than one
pusher. When Θt =0 (no contact) we enforce an intersection
penalty (as used in [28]) on the pusher-slider system. We
define Ψ = Ψ(xt, zt,S) to estimate the pusher point furthest
inside the implicit surface, if intersecting. The error is:

P (xt, zt,S) =

{
‖Ψ−Φ‖, when intersecting
0, when not intersecting

(10)

Finite motion factor: Given persistent contact, we weakly
bias the object towards constant motion in SE (2). The
magnitude is empirically chosen from the planar pushing
experiments. We observe this both smooths the trajectories,
and prevents an indeterminate optimization.

Priors: The prior p0 anchors the optimization to the initial
pose. C is initialized with c0 using the circular shape prior.

VI. EXPERIMENTAL EVALUATION

We demonstrate the framework in both simulated (Section
VI-A) and real-world planar pushing tasks (Section VI-B).

Evaluation metrics: For pose error, we evaluate the root
mean squared error (RMSE) in translation and rotation
w.r.t. the true object pose. For shape, we use the modified
Hausdorff distance (MHD) [40] w.r.t. the true object model.
The Hausdorff distance is a measure of similarity between
arbitrary shapes that has been used to benchmark GPIS
mapping [35], and the MHD is an improved metric more
robust to outliers.

Baseline: We compare against the work of Yu et al. [5],
which recovers shape and pose as a batch optimization
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for each of the 3 objects. Comparing ours [left] to Yu et al. incremental
[right], we see less variance across all shapes, and much lower error in
ellip2. This shows that while the piecewise-linear representation is suited
to polygonal objects, it understandably fails to generalize to more arbitrary
shapes. The GPIS faithfully approximates both classes. Moreover, the errors
in data association lead to large variance among trials in rect1 and hex.



Fig. 6: Estimated shape and pose of representative simulation trials, with timesteps t. We
compare these against the ground-truth, and overlay the stream of tactile measurements.
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complexity of full iSAM2 grows linearly with
time, fixed-lag smoothing maintains a bounded
optimization window. [bottom] As a result of
spatial partitioning, local GPIS regression has a
lower query time compared to the standard im-
plementation.

(Section II-A). For fairness, we implement an online version
as our baseline, that we refer to as Yu et al. incremental.
We use Ns = 25 shape nodes in the optimization to better
represent non-polygonal objects.

Compute: We use the GTSAM library with iSAM2 [26] for
incremental factor graph optimization. The experiments were
carried out on an Intel Core i7-7820HQ CPU, 32GB RAM
without GPU parallelization.

A. Simulation experiments

Setup: The simulation experiments are conducted in Py-
Bullet [41] (Fig. 4). We use a two-finger pusher (rprobe =
6.25 mm) to perform tactile exploration at 60 mm/s. Contour
following is based on previous position and sensed normal
reaction. The coefficients of friction of the object-pusher and
object-surface are both 0.25. Zero-mean Gaussian noise with
std. dev. [0.1 mm, 0.01 N] are added to [ct, ft].

We run 50 trials of 4000 timesteps each, on three shape
models [38]: (i) rect1 (90 mm side), (ii) hex (60.5 mm
circumradius), and (iii) ellip2 (130.9 mm maj. axis).
While our framework can infer arbitrary geometries, the
contour following schema is best suited for simpler planar
objects. The object’s initial pose x0 is randomly perturbed
over the range of ±(2 mm, 2 mm, 5◦).

Results: We highlight the qualitative results of a few repre-
sentative trials in Fig. 6. We observe the evolution of object
shape from the initial circular prior to the final shape, with
pose estimates that match well with ground-truth.

Fig. 8: [left] An example of data association failure in the baseline
parametric representation [5]. Without discriminating features, committing
to vertex associations affects the entire optimization. [right] The GP does
not require associations, and the kernel smooths out outlier measurements.

Fig. 5 shows the decreasing MHD shape error over the 50
trials. The uncertainty threshold of the GPIS σ2

thresh (Section
IV-B) prevents shape updates over repeated exploration,
and hence the curve flattens out. This trades-off accuracy
for speed, but we find little perceivable difference in the
final models. The baseline has larger error for ellip2,
a shape which their formulation cannot easily represent.
Moreover, the uncertainty of the shape estimates are high,
due to data association failures. Our representation has no
explicit correspondences, and the kernel smooths out outlier
measurements. An example of these effects are seen in Fig. 8.
A similar trend is seen in pose RMSE across all trials (Fig.
9). The baseline shows comparable performance only with
rect1, as the shape control points can easily represent it.

Finally, we quantify the computational impact of both the
local GPIS regression and incremental fixed-lag optimizer
(Fig. 7). Fixed-lag smoothing keeps the optimization time
bounded, and prevents linear complexity rise. Spatial par-
titioning keeps online query time low, and σ2

thresh results
in less frequent updates over time for both methods. The
combination of these two give us an average compute time
of about 10 ms or 100 Hz. For reference, at 60 mm/s, that
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trials, for each of the objects. Yu et al. incremental performs comparably
for rect1, but has higher variance and error for the more complex shapes.



Fig. 10: Representative results from the real-world estimation task. We compare our tactile only (T) result to
one aided by periodic relocalization (T + R). We add 10 such events in the trial, and the reduced pose drift
improves shape prediction.

Fig. 11: Our data collection setup:
The ABB IRB 120, with F/T sensing,
pushes the block on a plywood surface.
The Vicon system tracks the object as
ground-truth in our evaluation.

equates to an end-effector travel distance of 0.6 mm per
computation. The maximum time taken by a re-linearization
step is 55 ms (3.3 mm travel).

B. Real-world tactile exploration

Setup: We carry out an identical tactile exploration task
with the pusher-slider setup in Fig. 11. An ABB IRB
120 industrial robotic arm circumnavigates a square object
(98 mm side) at the rate of 20 mm/s. We perform the
experiments on a plywood surface, with object-pusher and
object-surface coefficient of friction both ≈ 0.25. We use
a single cylindrical rod with a rigidly attached ATI F/T
sensor that measures reaction force. Contact is detected with
a force threshold, set conservatively to reduce the effect of
measurement noise. Ground-truth is collected with Vicon,
tracking reflective markers on the object.

We collect three trials of 4000 timesteps each, with tactile
measurements and ground-truth. In this case, we do not
record force magnitude, but only contact normals. We instead
map the pusher velocity to forces via the motion cone, and
reasoning about sticking and slipping [42].

Results: The top row (T) of Fig. 10 shows the evolution
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Fig. 12: Average MHD w.r.t. the ground-truth model for the real-world
experiments, compared against the baseline. With just a few relocalization
events, we can achieve far lower shape error.

TABLE I: RMSE for real-world tactile exploration. Apart from Yu et al. in-
cremental, we also compare to a method aided by periodic relocalization.

Method Trans. RMSE (mm) Rot. RMSE (rad)

Ours (T) 10.60 ± 2.74 0.09 ± 0.02
Ours (T + R) 4.60 ± 1.00 0.09 ± 0.01

Yu et al. incremental 12.75 ± 4.01 0.17 ± 0.03

of shape and pose over the runtime. When compared to the
simulation results (Fig. 6), we notice aberrations in the global
shape. We can attribute these to: (i) lack of a second pusher,
which enables better localization and stable pushes, and (ii)
motion model uncertainty in real-world pushing.

The bottom row (T + R) of Fig. 10 describes an additional
scenario, where we demonstrate better results when we
can periodically relocalize the object. This is a proxy for
combining noisy global estimates from vision in a difficult
perception task with large occlusions. To illustrate this, we
crudely simulate 10 such events over each trial using global
Vicon measurements with Gaussian noise.

Fig. 12 plots the evolution of shape error over the three
trials. Decrease in shape error is correlated to relocalization
events, highlighting the importance of reducing pose drift.
Finally, Table I shows the RMSE of our experiments.

VII. CONCLUSION

We formulate a method for estimating shape and pose
of a planar object from a stream of tactile measurements.
The GPIS reconstructs the object shape, while geometry and
physics-based constraints optimize for pose. By alternating
between these steps, we show real-time tactile SLAM in
both simulated and real-world settings. This method can
potentially accommodate tactile arrays and vision, and be
extended beyond planar pushing.

In the future, we wish to build on this framework for
online SLAM with dense sensors, like the GelSight [43] or
GelSlim [44], to reconstruct complex 3-D objects. Multi-
hypothesis inference methods [45] can relax our assumption
of known initial pose, and learned shape priors [46] can
better initialize unknown objects. Knowledge about posterior
uncertainty can guide active exploration [31], and perform
uncertainty-reducing actions [47].
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