
REGULAR POISSON MANIFOLDS OF COMPACT TYPES

MARIUS CRAINIC, RUI LOJA FERNANDES, AND DAVID MARTÍNEZ TORRES

Abstract. This is the second paper of a series dedicated to the study of
Poisson structures of compact types (PMCTs). In this paper, we focus on
regular PMCTs, exhibiting a rich transverse geometry. We show that their
leaf spaces are integral a�ne orbifolds. We prove that the cohomology class of
the leafwise symplectic form varies linearly and that there is a distinguished
polynomial function describing the leafwise sympletic volume. The leaf space
of a PMCT carries a natural Duistermaat-Heckman measure and a Weyl type
integration formula holds. We introduce the notion of a symplectic gerbe,
and we show that they obstruct realizing PMCTs as the base of a symplectic
complete isotropic fibration (a.k.a. a non-commutative integrable system).
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1. Introduction

This is the second manuscript of a series of works devoted to the study of Poisson
structures of compact types (PMCTs). These are the analogues in Poisson Geometry
of compact Lie groups in Lie theory. In the first paper of this series [14] we have
discussed general properties, described several examples, and outlined our general
plan. In this paper, which is self-contained, we focus on regular PMCTs and we
discover a very rich transverse geometry, where several structures, both classical
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and new, interact with each other in a non-trivial way. These include orbifold
structures, integral a�ne structures, symplectic gerbes, etc. Moreover, we find that
celebrated results, like the Duistermaat-Heckman Theorem on the linear variation of
the symplectic class in the cohomology of reduced spaces, the polynomial behavior
of the Duistermaat-Heckman measure, the Atiyah-Guillemin-Sternberg Convexity
Theorem, or the Weyl Integration Formula, fit perfectly into the world of PMCTs,
arising as particular statements of general results concerning PMCTs.

Given a Poisson manifold (M,⇡) we will look at s-connected integrations (G,⌦),
which are symplectic Lie groupoids of compact type. At the level of Lie groupoids,
there are several compact types C characterized by possible conditions on G:

C 2 {proper, s-proper, compact}, (1.1)

that is, Hausdor↵ Lie groupoids with proper anchor map, proper source map, and
compact manifold of arrows, respectively. For example, when G = G ⇥M comes
from a Lie group acting on a manifold M , the three conditions correspond to the
properness of the action, the compactness of G, and the compactness of both G

and M , respectively. Therefore, one says that the Poisson manifold (M,⇡) is of:

• C-type if it has an s-connected integration (G,⌦) with property C;
• strong C-type if its canonical integration ⌃(M,⇡) has property C.

A Poisson manifold (M,⇡) comes with a partition into symplectic leaves, gener-
alizing the partition by coadjoint orbits from Lie theory. In this paper, we consider
PMCTs where the dimension of the leaves is constant, leaving the non-regular case
to the next paper in the series [13]. This gives rise to a regular foliation F⇡ on M ,
so, in some sense, we are looking at symplectic foliations from the perspective of
Poisson Geometry.

For a general regular Poisson manifold, the leaf space

B = M/F⇡

is very pathological. However, for us, the first immediate consequence of any of
the compactness conditions is that B is Hausdor↵. Moreover, we will see that it
comes with a very rich geometry, illustrated in the following theorem, which collects
several results spread throughout the paper:

Theorem 1.0.1. Given a regular Poisson manifold (M,⇡) of proper type and an
s-connected, proper symplectic integration (G,⌦):
(a) The space B of symplectic leaves comes with an orbifold structure B = B(G);
(b) There is an induced integral a�ne structure ⇤ on B;
(c) The classical e↵ective orbifold underlying B is good;
(d) There is a symplectic T -gerbe over B, where T is the symplectic torus bundle

induced by ⇤. This gerbe is classified by the Lagrangian Dixmier-Douady class:

c2(G,⌦) 2 H
2(B, TLagr).

(e) The class c2(G,⌦) vanishes if and only if (M,⇡) admits a proper isotropic
realization q : (X,⌦X)! (M,⇡) for which G ⇠= BX(M,⇡), a natural symplectic
integration constructed from X and the orbifold structure B.

The presence of an orbifold structure on the leaf space which, in general, is non-
e↵ective, gives rise to several technical di�culties throughout the discussion. When
the symplectic leaves are 1-connected, then B is just a smooth manifold, and no
further complications arise from orbifolds. In this case, all the other main features
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of PMCTs are already present, and it includes interesting examples, such as the
regular coadjoint orbits or the principal conjugacy classes of a compact Lie group.
For that reason, in the general discussion we will often consider this case first.

The di↵erent geometric structures present on the leaf space of a PMCT, men-
tioned in the previous theorem, interact nicely with the leafwise symplectic geome-
try. One illustration of this interaction is the linear variation of symplectic forms
in cohomology, generalizing the classical Duistermaat-Heckman Theorem. For sim-
plicity, we concentrate on the smooth case, where the leaves are 1-connected. Then
to each b 2 B corresponds a symplectic leaf (Sb,!b), and the cohomologies H2(Sb)
yield a bundle H ! B. The cohomology class of the leafwise symplectic form
defines a section of this bundle:

B 3 b 7! [!b] 2 Hb = H
2(Sb).

In the s-proper case, the leaves are compact and H is a smooth flat vector bundle
over B. The flat connection is the so called Gauss-Manin connection and arises
from the underlying integral cohomology. Using parallel transport, one can compare
classes [!b] at distinct points b 2 B, once a path has been fixed. On the other hand,
the integral a�ne structure on B of the previous theorem determines a developing
map, defined on the universal cover of B:

dev : eB ! Rq (q = dimB).

Denoting the Chern classes of the principal torus bundle t : s�1(x0) ! Sb0 , where
s and t are the source/fiber of the s-proper integration, by

c1, . . . , cq 2 H
2(Sb0),

the linear variation theorem can be stated as follows:

Theorem 1.0.2. If (M,⇡) is a regular, s-proper Poisson manifold, with 1-connected
symplectic leaves, then for any path � in B starting at b0 one has

�
⇤([!�(1)]) = [!b0 ] + dev1(�)c1 + . . .+ devq(�)cq.

Similar formulas hold for a general Poisson manifold of s-proper type.

One can also look at volume forms instead. Assume as before that we have
an s-proper integration (G,⌦) of (M,⇡). Pushing forward the Liouville measure
associated to ⌦, one obtains the Duistermaat-Heckman measure on the leaf space:

µDH 2M(B).

On the other hand, the integral a�ne structure on B gives rise to another measure,
µA↵ 2M(B). The classical result on the polynomial behavior of the Duistermaat-
Heckman measure is a special case of the following general result for PMCTs:

Theorem 1.0.3. If (M,⇡) is a regular Poisson manifold, with s-connected, s-proper
integration (G,⌦), then:

µ
⌦
DH = (◆ · vol)2µA↵ ,

where vol : B ! R is the leafwise symplectic volume function and ◆ : B ! N counts
the number of connected components of the isotropy group Gx (x 2 Sb). Moreover,
(◆ · vol)2 is a polynomial relative to the orbifold integral a�ne structure on B.
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The previous theorem has an interesting version already on M , where we obtain
two measures, µM

DH and µ
A↵
M

= µM , both induced by densities ⇢MDH and ⇢M , which
are invariant under all Hamiltonian flows. Our study of such invariant densities
yields the following Fubini type theorem:

Theorem 1.0.4. If (M,⇡) is a regular Poisson manifold, with proper integration
(G,⌦), then for any f 2 C

1

c
(M):

Z

M

f(x) dµM (x) =

Z

B

✓
◆(b)

Z

Sb

f(y) dµSb(y)

◆
dµA↵(b),

where µSb is the Liouville measure of the symplectic leaf Sb, and ◆ : B ! N is the
function that for each b 2 B counts the number of connected components of the
isotropy group Gx (x 2 Sb).

We shall see in [13] that a similar theorem is valid for all, including non-regular,
PMCTs. This theorem includes, as a special instance, the classical Weyl Integration
Formula.

The rest of this paper is organized into 8 sections and 2 appendices.
Section 2 is devoted to foliations and orbifolds, recalling Haefliger’s approach

to transversal geometry, fixing the necessary framework, but also illustrating the
various compactness properties (1.1) in the simpler context of foliations. In this
section, the orbifold structure on the leaf space of a PMCT, stated in part (a) of
Theorem 1.0.1, is shown to exist.

Section 3 includes some basics on Integral A�ne Geometry and describes its
relationship with Poisson Geometry. Besides proving part (b) of Theorem 1.0.1, we
discover new Poisson invariants, the so-called extended monodromy groups which
give rise to obstructions to s-properness, but which are interesting also for general
Poisson manifolds.

Sections 4 and Section 5 concern Theorem 1.0.2, on the linear variation of the
cohomology class of the leafwise symplectic form. We first treat the case of smooth
leaf space and then the orbifold case. Both these sections start by revisiting the
developing map for integral a�ne structures from a novel groupoid perspective.
That allows for a global formulation, free of choices, which is more appropriate
for our purposes. We also obtain a decomposition result for Poisson manifolds of
s-proper type which, from the point of view of classification, indicates two types of
building blocks: (i) the strong proper ones with full variation, and (ii) the ones with
no variation, corresponding to symplectic fibrations over integral a�ne manifolds.

Section 6 discusses the Duistermaat-Heckman measures on PMCTs and on their
leaf spaces, its relationship with the measures determined by the integral a�ne
structures, and the interaction with the Liouville measure on the symplectic leaves,
leading to proofs of Theorem 1.0.3, on the polynomial nature of the Duistermaat-
Heckman measure, and the integration formula of Theorem 1.0.4.

Section 7 explains the relationship between PMCTs and proper isotropic real-
izations, which appears in part (e) of Theorem 1.0.1. For any proper isotropic
realization q : (X,⌦X) ! (M,⇡) we introduce a “holonomy groupoid relative to
X”, HolX(M,⇡), which is usually smaller than the canonical integration ⌃(M,⇡),
and hence has better chances to be proper. The groupoids HolX(M,⇡) not only
arise in many examples, but are an important concept. Indeed, recall that folia-
tions come with two standard s-connected integrations: the largest one which is
the monodromy groupoid Mon(M,F) and the smallest one which is the holonomy
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groupoid Hol(M,F). In Poisson geometry, the integration ⌃(M,⇡) is the analogue
of Mon(M,F) but, in general, there is no analogue of the holonomy groupoid. Our
results suggest that, in Poisson Geometry, instead of looking for the smallest in-
tegration, one should look for the smallest one that acts on a given symplectic
realization. This property characterizes HolX(M,⇡) uniquely.

Sections 8 and 9 describe our theory of symplectic gerbes, first in the smooth
case and then in the orbifold case, proving parts (d) and (e) of Theorem 1.0.1.
Our departure point is the usual theory of S1-gerbes, which we first extend to T -
gerbes, where T is an arbitrary torus bundle over a manifold B. For the symplectic
theory, we need to look at a symplectic torus bundles (T ,!T ) over an orbifold B or,
equivalently, integral a�ne structures on B. In the more standard theory ones looks
at central extensions of T by Lie groupoids, while in the symplectic theory we look
at central extensions of (T ,!T ) by symplectic groupoids. The main conclusion
is that, while T -gerbes are classified by their Dixmier-Douady classes, living in
H

2(B, T ), for symplectic gerbes one obtains a Lagrangian Dixmier-Douady class
which gives rise to a group isomorphism

c2 : GerbB(T ,!T )! H
2(B, T Lagr),

where T Lagr is the sheaf of Lagrangian sections of (T ,!T ).
Appendix A gives some background on actions of symplectic groupoids, Hamil-

tonian G-spaces, and symplectic Morita equivalence, which are relevant for the
paper. Appendix B is of a very di↵erent nature: we show there how one can adapt
(part of) Molino’s approach of Riemannian foliations to the context of integral
a�ne geometry, to prove that integral a�ne orbifolds are good, i.e. quotients of
a discrete integral a�ne group action. While this is relevant for PMCTs and we
make good use of it, we believe it may be of independent interest.

As we develop the theory of PMCTs, we will explain how to adapt it to Dirac
manifolds. The first motivation for this arises from the extension of the results
of this paper from regular to arbitrary PMCTs, since we will introduce in [13] a
desingularization procedure which will turn a PMCT into a regular, Dirac manifold
(without changing the leaf space or the compactness type!). The second motiva-
tion comes from Lie theory and the striking similarity between the geometry of
(co)adjoint orbits and the one of conjugacy classes (see e.g. [22]). While coadjoint
orbits fit into Poisson Geometry, conjugacy classes belong to the world of (twisted)
Dirac Geometry. Hence the Dirac framework allows us to (re)cover even more
fundamental examples.

However, in order to get a faster grasp of the results and new techniques intro-
duced here, the reader may choose to skip, in a first reading, all sections concerning
Dirac Geometry. The same applies to the sections on orbifolds, since the rich geo-
metry that comes with PMCTs is present already when the leaf space is smooth.

Acknowledgments. The work of N.-T. Zung [57] on proper symplectic grou-
poids should be considered as a precursor of the theory of PMCTs. However,
Zung focuses his attention on the symplectic groupoid, instead of the underlying
Poisson manifold. A. Weinstein’s work on measures on stacks [54] was a source
of inspiration for our study of measures. Our theory of symplectic gerbes can be
viewed as a symplectic version of I. Moerdijk’s work on regular proper groupoids
[41], but with a richer geometric flavor that includes the connection to the Delzant-
Dazord theory of isotropic fibrations [19]. We would also like to acknowledge the
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gracious support of IMPA, the University of Utrecht and the University of Illinois
at Urbana-Champagne, at various stages of these project.

2. PMCTs, foliations of compact types and orbifolds

Recall that given a foliation F on M the associated distribution can be thought
of as a Lie algebroid with anchor the inclusion and bracket the restriction of the
Lie bracket of vector fields. This Lie algebroid is well-known to be integrable
– for example by the holonomy groupoid (see Section 2.1). Therefore, for any
of the compactness types (1.1), the notion of C-type (respectively, strong C-type)
makes sense for any foliated manifold (M,F): one requires the existence of a source
connected (respectively, source 1-connected) Hausdor↵ Lie groupoid integrating F
having property C.

In this section we shall make a detailed study of these compactness types of folia-
tions. On the one hand, foliations of compact types are easier to handle than regular
Poisson manifolds of compact types, but they still exhibit phenomena/properties
that will persist in the Poisson case. Thus the analysis of the former will play a
guiding role in the analysis of the latter. On the other hand, if a regular Pois-
son manifolds is of (strong) C-type, then so is the underlying symplectic foliation.
Hence, the results in this section have immediate applications to the Poisson case.

As (rough) main goal of this section, we mention here:

Theorem 2.0.1. If (M,⇡) is a regular Poisson manifold of C-type, then the sym-
plectic foliation F⇡ is of C-type. As a consequence, the space of symplectic leaves

B = M/F⇡

is an orbifold. More precisely, any integration G of (M,⇡) of C-type gives rise to
an integration B(G) of F⇡ of C-type, which induces an orbifold structure on B.

We shall see in the next sections that symplectic integrations of (M,⇡) induce
several geometric structures on the orbifold B. For that reason this section pays
special attention to geometric structures on leaf spaces of foliations and on orbifolds.

Remark 2.0.2 (Classical compact foliations). In classical Foliation Theory the
notion of a compact foliation refers to a foliation all whose leaves are compact (see,
e.g., [23, 24]). This property does not refer to any of the integrations of F . We
will clarify later how this classical notion is related to our compactness types. In
this regard, since the pioneering work of A. Haefliger, Lie groupoids (in particular,
the holonomy groupoid) have been extensively used in the study of the transverse
geometry of foliations. Our approach follows the same spirit, defining compactness
type of foliations in terms of groupoids integrating them.

2.1. The monodromy and holonomy groupoids. The Lie groupoids that in-
tegrate foliations are called foliation groupoids. They are easy to characterize,
since, in general, the Lie algebra of the isotropy group of a Lie groupoid is precisely
the kernel of the anchor of its Lie algebroid:

Proposition 2.1.1 ([17]). A Lie groupoid G is a foliation groupoid i↵ all the iso-
tropy groups Gx are discrete.

Since any foliation F on M is integrable as a Lie algebroid, it has a unique
(smooth) source 1-connected integration, called the the monodromy groupoid
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of F and denoted by
Mon(M,F) ◆ M.

The arrows in this groupoid are the leafwise homotopy classes (relative to the end-
points) of leafwise curves in M (see [42]).

Every foliation has yet another s-connected canonical integration: the holo-
nomy groupoid of F , denoted by

Hol(M,F) ◆ M.

The arrows are now equivalence classes of leafwise paths where two paths are iden-
tified if they induce the same germ of holonomy transformation. From their defini-
tions, we have a morphism of Lie groupoids which is a local di↵eomorphism:

hol : Mon(M,F)! Hol(M,F). (2.1)

The relevance of the holonomy groupoid in studying the transverse geometry of
foliations stems from the fact that any other s-connected Lie groupoid integrating
F lies above it. More precisely:

Theorem 2.1.2 ([17, 46]). For any s-connected integration E of a foliation F on M ,
there is a natural factorization of (2.1) into a composition of surjective submersions
compatible with the groupoid structure:

Mon(M,F)
hE
// E holE

//// Hol(M,F) .

Recall that we are only interested in Hausdor↵ Lie groupoids, although even
very elementary foliations can have non-Hausdor↵ monodromy and/or holonomy
groupoids. Moreover, one can have one of them being Hausdor↵ while the other
one is not, and even both not being Hausdor↵ but there exists a Hausdor↵ one
in between them! The monodromy groupoid is Hausdor↵ i↵ the foliation does not
have vanishing cycles [2], but no geometric criteria characterizing the Hausdor↵ness
of other foliation groupoids (e.g., the holonomy groupoid) is known.

Example 2.1.3 (Simple foliations). If p : M ! B is a submersion with connected
fibers, then the fibers of p define a foliation F on M , called a simple foliation. The
holonomy groupoid of F is the submersion groupoid of p, consisting of pairs of
points in M that are in the same fiber of p:

Hol(M,F) = M ⇥B M ◆ M,

where (x, y) 2 M ⇥B M is thought of as an arrow from y to x. This groupoid is
Hausdor↵ but the monodromy groupoid of F may fail to be Hausdor↵: e.g., the
fiber above 0 of the first projection p : R3 \ {0}! R contains a vanishing cycle.

Example 2.1.4 (One sided holonomy). On the cylinder M = S1 ⇥R consider the
foliation F given by the orbits of the vector field X = @

@✓
+ f(t) @

@t
, where f(t) is a

smooth function with f(t) = 0 for t  0 and f(t) > 0 for t > 0. F has closed leaves
S1 ⇥ {t} for t  0 and open leaves for t > 0. It follows that there are no vanishing
cycles, so Mon(M,F) is Hausdor↵. The leaf S1 ⇥ {0} has one-sided holonomy, so
the leaves with t < 0 give cycles with trivial holonomy that converge to a cycle at
t = 0 with non-trivial holonomy. Hence, Hol(M,F) is non-Hausdor↵.

Recall that the linear holonomy of a foliation F on M along a leafwise path
� ⇢ S from x to y is, by definition, the linearization of the holonomy parallel
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transport along �. Identifying the tangent spaces of the transversals with the
normal spaces ⌫x(S) = TxM/TxS, the linear holonomy becomes a map:

hollin
�

:= dxhol� : ⌫x(S)! ⌫y(S). (2.2)

It can also be described directly as the parallel transport associated to the so-
called Bott connection. The linear holonomy groups are then defined similarly, by
identifying loops that induce the same linear holonomies:

Hollin
x
(M,F) := Monx(M,F)/linear holonomy equivalence.

Similarly, one can also define the linear holonomy groupoid Hollin(M,F). The
resulting quotient map

hollin : Mon(M,F)! Hollin(M,F)

will factor through the holonomy groupoid, giving rise to a morphism of groupoids
lin : Hol(M,F) ! Hollin(M,F). However, in general, Hollin(M,F) will only be a
topological groupoid: it follows from Theorem 2.1.2 that, for Hollin(M,F) to admit
a Lie groupoid structure such that lin is smooth, the holonomy must coincide with
the linear holonomy, i.e. lin must be 1-1. When this happens, we say that (M,F)
has linear holonomy. As a consequence of Bochner’s linearization theorem, this is
the case whenever the holonomy groups are finite. On the other hand, the foliation
in Example 2.1.4 does not have linear holonomy.

Example 2.1.5 (Linear foliations). A class of examples that is relevant for us,
since they provide the (linear) local models that appear in local Reeb stability and
are intimately related to our compactness types, is obtained as follows. One starts
with a connected manifold S and:

(i) Ŝ ! S a covering space with group �;
(ii) a representation �! GL(V ) on a vector space V of dimension q.

The associated linear local model (Ŝ ⇥� V,Flin) is the foliation of the quotient:

Ŝ ⇥� V := (Ŝ ⇥ V )/�

obtained from the trivial codimension q product foliation {Ŝ⇥ {v}}v2V . Note that
S sits canonically inside the linear local model as the leaf corresponding to 0 2 V .

This construction has a groupoid version which gives us an integrating foliation
groupoid for Flin. More precisely, Ŝ is replaced by the pair groupoid Ŝ ⇥ Ŝ ◆ Ŝ.
The product of this groupoid with V (viewed as a groupoid with units only) gives
rise to a groupoid Ŝ⇥ Ŝ⇥V ◆ Ŝ⇥V , where � acts freely and properly by groupoid
automorphisms (again by the diagonal action). Hence, we have a quotient groupoid:

(Ŝ ⇥ Ŝ)⇥� V ◆ Ŝ ⇥� V. (2.3)

One readily checks that this is a foliation groupoid, and that the induced foliation
on its base is precisely Flin. However, this groupoid may sit strictly between the
monodromy and holonomy groupoids. In fact, the monodromy groupoid is obtain
as a special case of this construction:

Mon(M,Flin) = (eS ⇥ eS)⇥⇡1(S) V ◆ eS ⇥⇡1(S) V, (2.4)

where ⇡1(S) acts on V via the homomorphism ⇡1(S)! �! GL(V ).
We summarize the previous discussion in the following result (for item (ii) see

Example 2.2.2):
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Proposition 2.1.6. The linear local model Flin is a foliation with linear holonomy
and s-connected integration the Lie groupoid (2.3). Moreover, this groupoid:

(i) coincides with Mon(M,Flin) i↵ Ŝ is simply connected.
(ii) coincides with Hol(M,Flin) i↵ the action of � on V is e↵ective.

2.2. Foliation versus étale groupoids. Recall that an étale groupoid is a Lie
groupoid whose source map is a local di↵eomorphism. Typical examples of étale
groupoids include:

• the identity groupoid M ◆ M of a manifold,
• the action groupoid associated to a discrete group action on a manifold.

The fundamental example coming from foliation theory is the restriction of the
holonomy groupoid of (M,F) to a complete transversal T (i.e., a transversal inter-
secting all the leaves):

Hol(M,F)|
T
◆ T.

Historically, étale groupoids associated with a foliation were introduced via pseu-
dogroups, as the objects that encode the transverse geometry of the foliation (see
Remark 2.3.3 below). The main point about étale groupoids is that they can be
handled very much as usual manifolds. The resulting theory should be viewed as
a study of “singular spaces”, namely, the orbit spaces of the étale groupoids. The
role of the étale groupoid is to provide a “desingularization” of the singular space.

A foliation groupoid E ◆ M and the étale groupoid

ET := (E|
T
◆ T ) (2.5)

obtained by restricting E to a complete transversal T for F have the same leaf
space. This passage to the étale groupoid depends on the choice of a transversal T
but, modulo the appropriate notion of equivalence, called Morita equivalence (see
Section 2.3), this choice is irrelevant. An entirely similar story holds for any Lie
groupoid G, with the exception that the restriction to a complete transversal is not
étale unless G is a foliation groupoid.

A fundamental property that will be used repeatedly is the following: in an étale
groupoid ET ◆ T , any arrow g : x! y induces a germ of di↵eomorphisms:

�g : (T, x)! (T, y). (2.6)

To define it choose a neighborhood U of g in ET where both s and t restrict to local
di↵eomorphisms and then take the germ at x of �g := (t|U ) � (s|U )�1.

Given a foliation groupoid E ◆ M , if the restriction ET to some complete
transversal T is e↵ective then the same holds for any other transversal. In such case
we say that E is an e↵ective foliation groupoid. One can characterize holonomy
groupoids as follows:

Proposition 2.2.1 ([17]). A foliation groupoid E ◆ M is the holonomy groupoid
of the induced foliation on the base i↵ E is s-connected and e↵ective.

Example 2.2.2. Consider the linear foliation Flin in Example 2.1.5 associated
with a �-cover Ŝ ! S and a linear action � y V . A complete transversal to
Flin is furnished by V sitting inside the linear local model Ŝ ⇥� V as v 7! [x, v],
where x 2 Ŝ is fixed. The restriction of the Lie groupoid (2.3) to this transversal
is isomorphic to the action groupoid � n V ◆ V . Therefore, Proposition 2.2.1
immediately implies part (ii) in Proposition 2.1.6.
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2.3. Morita equivalence. Morita equivalence is relevant to our story for it is the
equivalence that reflects the “transverse geometry” or the “geometry of the leaf
space”. Let us recall its precise definition using bibundles [29]. For more details we
refer to [1, 10, 31, 34, 44].

A Morita equivalence between two Lie groupoids Gi ◆ Mi, i 2 {1, 2}, also
called a Morita bibundle, denoted by P : G1 ' G2 and illustrated by the diagram

G1

✏✏✏✏

!!

P

q1

xx

q2

&&

~~ G2

✏✏✏✏

M1 M2

is given by a smooth manifold P , endowed with:

• surjective submersions q1 : P !M1 and q2 : P !M2;
• commuting groupoid actions on P of G1 from the left, making q2 : P !M2

into a principal G1-bundle, and of G2 from the right, making q1 : P ! M1

into a principal G2-bundle.

Given a Morita equivalence P : G1 ' G2 one finds that:

(i) there is a homeomorphism of the orbit spaces M1/G1 and M2/G2, where two
orbits Oi ⇢Mi correspond to each other i↵ q�1

1 (O1) = q�1
2 (O2);

(ii) if x1 2 O1 and x2 2 O2 are points in orbits in this correspondence, then the
isotropy Lie groups G1,x1 and G2,x2 are isomorphic;

(iii) the groupoid G1 is proper/Hausdor↵ i↵ the groupoid G2 is.

Example 2.3.1 (Gauge groupoids). Given a Morita equivalence P as above, the
groupoid G1 can be recovered from G2 together with P and its structure of principal
G2-bundle over M1: G1 will be isomorphic to the gauge groupoid

P ?
G2
P := (P ⇥M2 P/G2 ◆ M1) ,

the quotient of the submersion groupoid associated to q2 : P !M2 (Example 2.1.3)
modulo the (diagonal) action of G2. The isomorphism is induced by the division
map P ⇥M2 P ! G1.

For a foliation groupoid E ◆ M and any complete transversal T , the groupoids
E and ET (see (2.5)) are Morita equivalent: P := t

�1(T ) defines a Morita bibundle,
where q1 and q2 are the restrictions of s and t, respectively, and the actions are
given by the multiplication of E . This leads to the following characterization of
foliation groupoids, which is a refinement of Proposition 2.1.1:

Proposition 2.3.2 ([17]). A Lie groupoid E is a (proper) foliation groupoid i↵ it
is Morita equivalent to a (proper) étale groupoid.

Remark 2.3.3 (Haefligers’s approach to transverse geometric structures). Let us
call a Haefliger sheaf on Rq any sheaf on Rq that comes together with an action
of local di↵eomorphisms � : U ! V between opens in Rq; that means that any such
� induces a bijection �⇤ : S(U) ! S(V ) and �⇤ is compatible with the restriction
maps. More formally, S is a �q-sheaf, where �q ◆ Rq is the Haefliger groupoid,
whose space of arrows consists of germs of local di↵eomorphisms, with the sheaf
topology. A good example to keep in mind is the sheaf of di↵erential forms.

Fix such a Haefliger sheaf S. Using local charts, S extends to all q-dimensional
manifolds, giving rise to a functor defined on the category Manq consisting of q-
dimensional manifolds and local di↵eomorphisms between them. This extension is
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unique if we require it to have the same properties as S, but now with respect to
di↵eomorphisms between manifolds; it will be denoted by the same letter S.

Given an étale groupoid E ◆ T over a q-dimensional manifold, the sheaf property
allows us to define S(E ) as the set of E -invariant structures on the base,

S(E ) := S(T )E .
More precisely, for any arrow g of E we have a germ �g of a local di↵eomorphism of T
from s(g) to t(g), see (2.6), and u 2 S(T )E i↵ �g takes germ

s(g)(u) to germ
t(g)(u),

for any g 2 E . In other words, S(T ) is a E -sheaf and S(E ) is the space of its
invariant sections. Moreover, any Morita equivalence E1 ' E2 of étale groupoids
induces a bijection S(E1) ⇠= S(E2), and this construction is natural with respect to
composition of Morita equivalences.

The last property allows us to further extend S to arbitrary foliation groupoids
E ◆ M by making use of the restrictions ET (see (2.5)). To make the definition
independent of the choice of T , we define S(E) as the set of collections

u = {uT }
of elements u

T 2 S(ET ), one for each complete transversal T , with the property
that for any two such transversals T1 and T2, uT1 to u

T2 correspond to each other
via the map S(ET1) ⇠= S(ET2) induced by the natural Morita equivalence between
ET1 and ET2 (i.e. the composition of the Morita equivalences ET1 ' E ' ET2 or,
more directly, the Morita equivalence defined by the Morita bibundle E (T1, T2) of
arrows starting in T1 and landing in T2). With this, it is clear that once a complete
transversal T is fixed, the obvious map S(E)! S(ET ) is 1-1.

Therefore, given a codimension q foliated manifold (M,F) one can define the set
S(M/F) of transverse S-structures on (M,F) as S(Hol(M,F)). For instance,
if one considers di↵erential forms on manifolds, the space of transverse forms for
(M,F) is the space ⌦•(T )Hol(M,F) of di↵erential forms on a complete transversal T ,
invariant under holonomy. Similarly for transverse Riemannian metrics, transverse
measures, transverse symplectic forms, etc.

One can often remove the ambiguity coming from the choice of a complete
transversal by representing a transverse S-structure directly at the level of M .
For instance, in the case of S = ⌦• one looks at the basic forms

⌦•(M)F�bas := {! 2 ⌦•(M) : iV ! = 0, £V ! = 0 for all V 2 �(F)}.
Restriction from M to any complete transversal T induces an isomorphism:

⌦•(M)F�bas
⇠= ⌦•(T )Hol(M,F)

,! 7! !|T .
Hence, ⌦•(M)F�bas yields a concrete realization of S(M/F) at the level of M .

2.4. Foliations of C-types. We turn now to the study of foliations of compact
types. Any such foliation has linear holonomy. In fact, we have:

Lemma 2.4.1. Let (M,F) be a foliation of proper (respectively, s-proper) type.
Then its leaves are closed embedded (respectively, compact) submanifolds, the holo-
nomy groups are finite, and the orbit space is Hausdor↵. If (M,F) is strong proper,
then the leaves have finite fundamental group.

Proof. A simple topological argument implies that for a proper (respectively, s-
proper) Lie groupoid all the orbits are closed embedded (respectively, compact)
submanifolds, the isotropy groups are compact, and the orbit space, furnished with
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the quotient topology, is Hausdor↵ (see e.g. [18, 53, 57]). For an s-connected
integration E of F , the isotropy groups of E surject onto the holonomy groups. ⇤

While strong C-types were defined using the monodromy groupoids, we claim
that the C-types can be checked using the holonomy groupoids:

Theorem 2.4.2. A foliation is of C-type i↵ its holonomy groupoid has property C.

The proof of Theorem 2.4.2 is deferred until the next section, where we discuss
normal forms for foliations. For now, we look at some examples. One should keep in
mind that a foliation (M,F) is of compact type i↵ it is s-proper and M is compact.

Example 2.4.3. A simple foliation (M,F) as in Example 2.1.3 is always of proper
type, it is of s-proper type i↵ p is proper and it is of compact type i↵ M is compact.

Example 2.4.4. For the linear foliation (Ŝ ⇥� V,Flin) the explicit integrations
(2.3) and (2.4) together with Proposition 2.1.6 imply that Flin is:

• proper (respectively, s-proper) i↵ � is finite (respectively, � is finite and S

is compact);
• strong proper (respectively, strong s-proper) i↵ ⇡1(S) is finite (respectively,
⇡1(S) is finite and S is compact);

• never of compact type.

Note that in the definition of C-type one requires the foliation groupoid to be
s-connected. One should be aware of the following phenomena:

(i) If a foliation groupoid E ◆ M is proper, then passing to its source connected
component E0 ⇢ E may destroy properness.

(ii) If a foliation (M,F) is of proper type and U ⇢M is open, then (U,F|U ) may
fail to be of proper type.

In fact, notice that for a foliation (M,F) and an open set U ⇢ M , the leaves
of F|U are the connected components of the intersections of the leaves of F with
U . Although the restriction Hol(M,F)|U still integrates F|U , it may fail to be
s-connected. Passing to the associated s-connected groupoid, one gets precisely the
holonomy groupoid of F|U :

Hol(U,F|U ) = (Hol(M,F)|U )0. (2.7)

Examples illustrating (i) and (ii) can then be constructed even starting from a
simple foliation. For instance, consider M = R2 with the foliation induced by the
second projection and restrict it to U = R2 \ {0}. Then (U,F|U ) is not proper
because its leaf space is not Hausdor↵. In particular, Hol(M,F)|U is proper while
its source connected component is not.

Lemma 2.4.1 gives necessary conditions for the properness of a foliation, but
they are not su�cient as illustrated by the next two examples:

Example 2.4.5. There are foliations where all leaves are embedded, the holonomy
groups are finite, and the leaf space is Hausdor↵, but are not of proper type:
consider the linear foliation of the Möbius band M by circles. The middle circle C

is the only leaf with non-trivial holonomy.
Restrict now this foliation to the open U obtained from M by removing one

point in C. In this way, the leaf space remains unchanged, is Hausdor↵, and the
leaves clearly have the desired properties. However, the holonomy groupoid is not
proper, as can be seen by considering the holonomy group of the initial foliation,
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given by (2.3), and then restricting as in (2.7). From Theorem 2.4.2 we conclude
that (U,F|U ) is not of proper type.

Example 2.4.6. There are foliations where all leaves are embedded, the homotopy
groups are finite, and the leaf space is Hausdor↵, but are not of strong proper type:
consider the first projection p : R5 ! R and on the fiber p = 0 remove the com-
plement of a tubular neighborhood of an embedding P2 ⇢ {0}⇥R4. The resulting
submersion p : M ! R defines a simple foliation whose leaves have the desired
properties. Since a curve in P2 which is non-trivial in homotopy is a vanishing
cycle, the monodromy groupoid cannot be Hausdor↵. However, being an instance
of a simple foliation, it is of proper type.

These examples indicate that properness is more di�cult to check directly. The
situation is quite di↵erent for s-properness and compactness when the local Reeb
stability implies a converse to Lemma 2.4.1. This brings us to normal forms.

2.5. Normal forms. We start with the the standard local Reeb stability:

Theorem 2.5.1 (Local Reeb stability). Let (M,F) be a codimension q foliation.
If S is a compact leaf with finite holonomy group, then there exists a saturated
neighborhood U of S and a foliated isomorphism

(U,F|U )
⇠=�! (Ŝ ⇥� ⌫x(S),Flin),

where the right hand side is the linear model associated to the linear holonomy action
of the holonomy group � = Holx(M,F) at some point x 2 S (Example 2.1.5).

As promised, an immediate consequence is:

Theorem 2.5.2. A foliation is s-proper (respectively, strong s-proper) i↵ all its
leaves are compact and have finite holonomy (respectively, fundamental group).

Proof. We are left to prove the converse implication. For that notice that it su�ces
to check s-properness on saturated neighborhoods, i.e., by the previous theorem,
on the linear models. But this was already remarked in Example 2.4.4. ⇤

Theorem 2.5.2 shows that foliations of s-proper type are the same thing as clas-
sical compact foliations (Remark 2.0.2) all of whose leaves have finite holonomy.
While the leaves of an arbitrary classical compact foliation need not have finite
holonomy, one of the main results in the subject states that for compact foliations
the following two conditions are equivalent ([23, 24]):

(a) All leaves have finite holonomy.
(b) The leaf space is Hausdor↵.

Hence, the part of Theorem 2.5.2 concerning s-properness can be restated as:

Corollary 2.5.3. A foliation is s-proper i↵ all its leaves are compact and its leaf
space is Hausdor↵.

What about the proper case? For that we need a version of local Reeb stability
which holds on saturated neighborhoods of non-compact leaves. To achieve such a
“normal form” one needs to enlarge the class of “local models” allowed.

Example 2.5.4 (Non-linear local models). The new local models start with the
following data (compare with the linear local models in Example 2.1.5):

(i) A finite group � acting linearly on a finite dimensional vector space V .
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(ii) A connected manifold P endowed with a free and proper action of �.
(iii) A �-equivariant submersion µ : P ! V with connected fibers.

The foliation F(µ) by the fibers of µ descends to the quotient modulo � and the
new local model is the resulting foliated manifold

(P/�,F(µ)/�). (2.8)

The foliations arising in this way are still of proper type. To see this, we exhibit
a proper integrating foliation groupoid. We start with the submersion groupoid
associated to µ (Example 2.1.3), denoted P ⇥V P , and we consider the diagonal
action of �. The action is free, proper and by groupoid automorphisms. Therefore

(P ⇥V P )/� ◆ P/�, (2.9)

is a Lie groupoid, which is easily seen to be a proper integration of F(µ)/�. Of
course, this is just an instance of the gauge construction from Example 2.3.1.

Notice that if one starts with a �-cover Ŝ ! S and a representation �! GL(V ),
letting P = Ŝ ⇥ V and µ : P ! V be the second projection, one recovers the local
linear models of Example 2.1.5, together with their integration.

Here is our version of Reeb stability for non-compact leaves of proper foliations:

Theorem 2.5.5. If (M,F) is a foliation of proper type and S is a leaf, then there
exists data (i)-(iii) as above, a saturated neighborhood U of S, and a di↵eomorphism
of foliated manifolds

(U,F|U ) ⇠= (P/�,F(µ)/�)

sending S to the leaf µ�1(0)/�.

This result is in fact the “improved local model” for proper groupoids of [18],
applied to foliation groupoids. For foliation groupoids however, both the local
model as well as the proof, are simpler. We will sketch here an argument which,
modulo some small adaptations, can be applied also in the Poisson context [13].

Proof. Fix an s-connected, proper integrating groupoid E ◆ M and let x 2 S. One
divides the proof into the following steps:

1) Choose a small transversal T to the foliation with T\S = {x}. The restriction
E = E|T is a proper étale groupoid which has x as a fixed point.

2) For any proper étale groupoid E ◆ T with a fixed point x, there exists a
saturated neighborhood V ⇢ T of x together with an action of the (finite) isotropy
group Ex on V such that

E |V ⇠= Ex n V ⇠= Ex n TxV.

The first isomorphism follows from the linearization of proper étale groupoids
around fixed points ([42, Proposition 5.30] or [53, Section 6]), while the second
one follows from Bochner’s Linearization Theorem ([22]).

3) In our case, we have Ex = Ex and TxV = ⌫x(S). Hence, if we consider the
saturation U ⇢M of V , then there is a Morita equivalence:

E|U ' Ex n ⌫x(S).
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4) For a bibundle P that implements this Morita equivalence,

E|U

✏✏✏✏

!!

P

q1

xx

q2

((

~~ Ex n ⌫x(S)

✏✏✏✏

U ⌫x(S)

the right action amounts to a free and proper action of Ex on P for which µ is an
equivariant surjective submersion.

5) Therefore, using the gauge construction (Example 2.3.1), E|U can be recovered
from the groupoid on the right and the bibundle P . In our case this translates
simply into the desired isomorphism:

E|U

✏✏✏✏

(P ⇥⌫x P )/�

✏✏✏✏

⇠=

U P/�

(2.10)

which sends the class of a pair (p, q) 2 P ⇥⌫x P to the unique arrow g 2 E|U with
the property that p = gp. ⇤

One can recover the s-proper case as follows. Letting � = Ex, note that Ŝ =
s
�1(x) is a �-covering of S and that � acts on ⌫x(S) via the linear holonomy. One
then checks that P = Ŝ⇥ ⌫x(S) is a bibundle implementing the Morita equivalence
between E|U and Ex n ⌫x(S), giving rise to the isomorphism:

E|U

✏✏✏✏

(Ŝ ⇥ Ŝ)⇥� ⌫x(S)

✏✏✏✏

⇠=

(U,F|U ) (Ŝ ⇥� ⌫x(S),Flin)

(2.11)

In this way, we recover the linear local model of Example 2.1.5. We conclude that
the Local Reeb Stability Theorem applies to any leaf S of an s-proper foliations and,
in fact, the di↵eomorphism (2.11) is nothing but a groupoid version of Theorem
2.5.1 for any s-proper foliation.

Proof of Theorem 2.4.2. We have to show that if an integration E of (M,F) is of
C-type, then the same holds for the holonomy groupoid Hol(M,F). It is clear that
such properties descend to quotients provided the latter are Hausdor↵. To check
that Hol(M,F) is indeed Hausdor↵ one proceeds, again, by restricting to small
enough saturated opens and checking it for the local model (2.8).

If the action of � on V is e↵ective, then so is the action of � on P ⇥V P .
Proposition 2.2.1 then implies that (2.9) must be the holonomy groupoid of (2.8)
and we are done. The general case can be reduced to the e↵ective one as follows:
the representation ⇢ : � ! GL(V ) has image and kernel denoted by �0 and K,
respectively. By construction, �0 acts e↵ectively on V . Consider P0 = P/K. Then
the action of � on P descends to an action of �0 on P0 (still free and proper) and
p descends to p0 : P0 ! V . It is clear that P/� = P0/�0. ⇤
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2.6. Orbifolds. Proper foliation groupoids serve as atlases for orbifold structures:

Definition 2.6.1. Let B be a topological space. An orbifold atlas on B is a pair
(B, p) consisting of:

• a proper foliation groupoid B ◆ M ;
• a homeomorphism p : M/B!B between the space of orbits of B and B.

An orbifold is a pair (B,B) consisting of a space B and an orbifold atlas B on B.

Two orbifold atlases (Bi, pi), i 2 {1, 2}, are said to be equivalent if there exists
a Morita equivalence B1 ' B2 with the property that the induced homeomorphism
on the orbit spaces is compatible with p1 and p2.

It follows from the previous discussion that, by passing to a transversal T , one
can always use orbifold atlases which are étale. While nowadays one uses general
foliation groupoids [40], the first approaches to orbifolds via groupoids used only
étale atlases (see e.g. [1]). Although étale atlases are often advantageous, restricting
to them is unnatural, not only conceptually, but also from the point of view of
concrete examples. For example, quotients M/G of proper, locally free, actions of
Lie groups come with an obvious choice of orbifold atlas (the action groupoid), but
not with a canonical étale one. PMCTs will provide similar examples.

Remark 2.6.2. In the existing literature, orbifolds are often defined as “a space
with an equivalence class of orbifold atlases”, while an atlas is interpreted as a
“presentation” of the orbifold [40, 1]. However, note that:

• two equivalent atlases can be equivalent in many, very distinct, ways, and
• two di↵erent equivalences give rise to di↵erent ways of passing from one
atlas to the other.

Hence, not fixing an atlas gives rise to subtleties. This shows up already when
defining, in an atlas-independent way, a morphism between orbifolds, or a vector
bundle over an orbifold. This kind of problems can be solved by developing a
rather heavy categorical language [34]. In practice, we do not have to deal with
such issues and all orbifolds arise with a canonical orbifold atlas, in the sense of
our definition. Given an orbifold (B,B), it is sometimes advantageous to pass to a
more convenient atlas E : however, such a passing will always be done via a specified
Morita equivalence QE : E ' B.

Example 2.6.3 (Manifolds and smooth orbifolds). Any manifold B can be seen
as an orbifold by using the trivial groupoid B ◆ B as an atlas. Such an orbifold
is called a smooth orbifold. Note that an orbifold is smooth precisely when
a/any defining atlas has no isotropy. Other equivalent étale atlases are provided by
choosing a manifold atlas {Ui,�i}i2I for B and considering the associated covering
groupoid, i.e. the étale groupoid with space of objects the disjoint union

`
i
Ui and

one arrow from (x, i) to (x, j) for each x 2 Ui \ Uj .
On the other hand, for any orbifold B one may also talk about the smoothness

of the underlying topological space: one requires the topological space B to
admit a smooth structure such that, for some orbifold atlas B ◆ M , the quotient
map p : M ! B is a submersion. This condition does not depend on the choice of
the atlas and determines a unique smooth structure on B, if it exists.

Obviously, for a smooth orbifold the underlying topological space is smooth.
However, it is important to keep in mind that the underlying topological space
maybe smooth while the orbifold itself may still fail to be a smooth orbifold, for
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the orbifold atlases may have non-trivial isotropy. A simple example is obtained by
taking the action groupoid � n B ◆ B associated with a trivial action of a finite
group. Our study of PMCTs will give rise to much more interesting examples-
where the isotropy information is important and cannot be disregarded.

Example 2.6.4 (Classical orbifolds). Originally, orbifold structures on a space B

were defined in complete analogy with smooth structures, but using charts that
identify the opens in B with quotients Rn

/� of finite groups � acting e↵ectively on
Rn [48, 51]. With the appropriate compatibility between such charts, one obtains
the notion of a classical orbifold atlas. Similarly to the covering groupoids above
for manifolds, such an atlas can be organized into a proper étale groupoid whose
space of orbits is B [1, 42]. Therefore, the classical notion of orbifold can be seen as
particular classes of orbifolds in the sense of Definition 2.6.1. Here, following [1, 40],
we will adopt the following equivalent working definition: a classical orbifold is
an orbifold for which the defining atlas is e↵ective.

Notice that the subtleties related to orbifolds atlases mentioned in Remark 2.6.2
are not present in the case of classical orbifolds:

Lemma 2.6.5. For a classical orbifold B, an equivalence Q : B1 ' B2 between two
orbifold atlases for B is unique up to isomorphism.

Since any (proper) étale groupoid has an associated e↵ective (proper) étale
groupoid, we see that any orbifold has an underlying classical orbifold struc-
ture. In this terminology, the smoothness of the underlying topological space of
an orbifold is equivalent to the condition that its underlying classical orbifold is
smooth. A general orbifold structure can be seen as a classical orbifold together
with extra data, which is codified in the isotropy groups of the orbifold atlases.

Example 2.6.6 (Good orbifolds). A large class of examples of orbifolds arise as
quotients M/� for proper e↵ective actions of discrete groups �: the action groupoid
� n M gives an orbifold atlas. Orbifolds of this type are called good orbifolds
[1, 51].

Example 2.6.7 (Foliations of C-type and orbifolds). For a foliation (M,F) of C-
type, any s-connected, proper integration E ◆ M makes the leaf space B = M/F
into an orbifold (B, E). Di↵erent integrations give di↵erent orbifold structures.
However, the holonomy groupoid Hol(M,F) ◆ M provides a smallest integration
(Theorem 2.1.2), which is proper (Theorem 2.4.2) and e↵ective (Proposition 2.2.1).
Hence, the underlying classical orbifold of any orbifold defined by a foliation (M,F)
of C-type has atlas Hol(M,F) ◆ M .

Remark 2.6.8 (Geometric structures on orbifolds). Haefliger’s approach to trans-
verse structures, discussed in Remark 2.3.3, when applied to the orbifold atlases
allows one to consider various geometric structures on orbifolds, such as vector
bundles, di↵erential forms, Riemannian structures, etc: if S is a Haefliger sheaf on
Rq then S(B) for a q-dimensional orbifold (B,B) is defined by applying S to the
orbifold atlas B ◆ M . Given some other atlas QE : E ' B we have an induced
isomorphism S(E) ⇠= S(B), which in general depends on the Morita equivalence QE .

We can now return to regular PMCTs, the conclusion being that their leaf spaces
are orbifolds. More precisely, each s-connected, proper integration gives rise to a
orbifold structure on the leaf space, so one has the following more precise version
of Theorem 2.0.1:
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Theorem 2.6.9. If (M,⇡) is a regular Poisson manifold of C-type and G is an
s-connected integration of (M,⇡) having property C, then G fits into a short exact
sequence of Lie groupoids

1 // T (G) // G // B(G) // 1 ,

where:

(i) T (G) is a smooth bundle of tori consisting of the identity connected compo-
nents of the isotropy Lie groups Gx.

(ii) B(G) is an s-connected foliation groupoid integrating F⇡ satisfying property C.
In particular, G induces an orbifold structure on the leaf space B = M/F⇡, with
B(G) as orbifold atlas. The underlying classical orbifold has atlas Hol(M,F⇡) ◆ M .

Proof. This is basically proven in [41] in the context of regular groupoids. The
main remark is that T (G) is a closed subgroupoid of G. This implies not only that
B(G) is a Lie groupoid, but also that it is of C-type, and in particular Hausdor↵,
whenever G is. In our case, since the isotropy Lie algebras are abelian and Gx are
compact, T (G) will be a bundle of tori. ⇤

The reader will notice that the integration in Theorem 2.6.9 does not need to be
symplectic. We now turn to the implications of considering symplectic integrations.

3. Integral affine structure

Integral a�ne structures form another type of geometric structure that plays a
crucial role in the study of compactness in Poisson Geometry. We initiate their
study in this section. First, we start by recalling some basic definitions and proper-
ties of integral a�ne structures on manifolds. Then we discuss transverse integral
a�ne structures on foliated manifolds and their relation to integral a�ne struc-
tures on orbifolds. This will set the stage to prove the main result of this section,
which improves on the orbifold structure on the leaf spaces of PMCTs constructed
in Theorem 2.6.9. A simplified version can be stated as follows:

Theorem 3.0.1. For any regular Poisson manifold (M,⇡) of C-type its leaf space
B = M/F⇡ is an integral a�ne orbifold: any s-connected symplectic integration
(G,⌦) of (M,⇡) having property C gives rise to an integral orbifold structure on B.
Moreover, the underlying classical orbifold is good.

For a foliated manifold (M,F), a transverse integral a�ne structure is described
by a collection of subgroups of its conormal bundle ⌫⇤(F), as will be recalled below.
On the other hand, the monodromy groups of a Poisson manifold [12], an invariant
which characterizes its integrability, is another collection of subgroups of ⌫⇤(F⇡).
Another goal of this section is to describe the role of the monodromy groups in
the integral a�ne geometry of PMCTs. In this study, a new invariant of Poisson
structures, called the extended monodromy groups, will emerge.

3.1. Integral a�ne structures on manifolds. We will denote by A↵Z(Rq) =
GLZ(Rq)n Rq, the group of integral a�ne transformations, consisting of transfor-
mations of the type:

Rq ! Rq
, x 7! A(x) + v, (3.1)

with v 2 Rq, A 2 GLZ(Rq). Integral a�ne structures on manifolds can be described
in several equivalent ways; we start with the most natural one, in terms of atlases.
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Definition 3.1.1. An integral a�ne structure on a q-dimensional manifold B is
a choice of a maximal atlas {(Ui,�i) : i 2 I} with the property that each transition
function

�j � ��1
i

: �i(Ui \ Uj)! �j(Ui \ Uj),

is (the restriction of) an integral a�ne transformation. Any chart (Ui,�i) is called
an integral a�ne coordinate system.

More e�cient descriptions are given in terms of latices. By a lattice ⇤ in a
vector space V we mean a discrete subgroup of (V,+) of maximal rank. We can
always choose a basis {v1, . . . , vq} for V such that:

⇤ = Zv1 + · · ·+ Zvq.
The dual lattice ⇤_ ⇢ V

⇤ of the lattice ⇤ is defined by

V
_ = {⇠ 2 V

⇤ : ⇠(�) 2 Z, 8 � 2 ⇤}.
By a lattice on a vector bundle E ! B we mean a sub-bundle

EZ =
[

b2B

⇤b ⇢ E,

consisting of lattices ⇤b ⇢ Eb. We say that it is smooth if, locally around each
point b0 2 B, one can write

⇤b = Z�1(b) + . . .+ Zq�q(b)

for some smooth local sections �i of E. An integral vector bundle is a pair
(E,EZ) where EZ is a smooth lattice in E. An integral vector bundle (E,EZ) comes
with a canonical flat linear connection r: the one defined by the condition that
all the local sections of EZ are flat.

We can now state some alternative descriptions of integral a�ne structures,
which will be useful later.

Proposition 3.1.2. If B is a q-dimensional manifold, then there is a 1-1 corre-
spondence between:

(i) An integral a�ne atlas {(Ui,�i) : i 2 I} on B;
(ii) A lattice ⇤_ ⇢ TB satisfying one of the following equivalent conditions:

(a) ⇤_ is smooth and any two local vector fields with values in ⇤_ commute.
(b) ⇤_ is smooth and the induced flat connection on TB is torsion free.

(iii) A lattice ⇤ ⇢ T
⇤
B satisfying one of the following equivalent conditions:

(d) ⇤ is smooth and all its local sections are closed 1-forms.
(e) ⇤ is a Lagrangian submanifold of (T ⇤

B,!can).

In this 1-1 correspondence, ⇤ and ⇤_ correspond to the lattices:

⇤_

b
:= Z @

@x1

����
b

+ · · ·+ Z @

@xq

����
b

, ⇤b := Z dx1|b + · · ·+ Z dxq|b ,

where (x1, . . . , xq) is any integral a�ne coordinate system around b 2 B.

Example 3.1.3. Consider an integral a�ne group, i.e. a subgroup � ⇢ A↵Z(Rq)
of the group of transformations of type (3.1). For explicit examples, it is useful to
write an element � 2 � in split form:

� = (u� , A�) 2 Rq ⇥GLZ(Rq).

The subgroup condition is equivalent to the following two conditions:
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(i) � 7! A� defines a linear representation ⇢
lin : �! GLZ(Rq);

(ii) � 7! u� defines a 1-cocycle for �, i.e. u��0 = u� +A�(u�0), 8 �, �
0 2 �.

We say that the subgroup � is of orbifold type if the a�ne action on Rq is proper
and of smooth type if the action is proper and free. In the smooth case,

B := Rq
/�

comes with an integral a�ne structure induced from the the standard integral a�ne
structure on Rq. Integral a�ne manifolds which are quotients of Rq by smooth
integral a�ne groups are called complete.

The space B can be obtained in stages. First, the split short exact sequence

0 // Rq
// A↵Z(Rq) // GLZ(Rq) // 0

restricts to �, yielding a short exact sequence:

0 // �tr
// � // �lin

// 0

where:
�lin = {A� : � 2 �}, �tr = {v� : � 2 �, A� = Id}.

The translational part �tr is a discrete subgroup of (Rq
,+). Its rank r is called the

translational rank of the integral a�ne group � and defines a �lin-covering of B:

B
lin := B/�tr ⇠= Tr ⇥ Rq�r

.

Here are two distinct examples of integral a�ne structures on the 2-torus. For
the first one, we consider the subgroup � ⇢ A↵Z(R2) generated by the translations
�1 : (x, y) 7! (x+ 1, y) and �2 : (x, y) 7! (x, y + 1) or, in the split notations,

�1 =

✓
(1, 0),


1 0
0 1

�◆
, �2 =

✓
(0, 1),


1 1
0 1

�◆
.

These two transformations commute and generate the abelian subgroup

� =

⇢
�
n

1 �
m

2 =

✓
(n,m),


1 0
0 1

�◆
: n,m 2 Z

�
.

Of course, this is just Z⇥Z with its standard action on R2, inducing the standard
integral a�ne structure on the 2-torus B = R2

/� = T2. Note that in this case �
has translational rank 2 since we have:

�lin =

⇢
1 0
0 1

��
, �tr = Z⇥ Z ⇢ R2

.

For the second example, we consider � ⇢ A↵Z(R2) generated by

�1 =

✓
(1, 0),


1 0
0 1

�◆
, �2 =

✓
(0, 1),


1 1
0 1

�◆
.

Again, these commute, so they generate a subgroup isomorphic to Z⇥ Z,

� =

⇢
�
n

1 �
m

2 =

✓
(n+

m(m� 1)

2
,m),


1 m

0 1

�◆
: n,m 2 Z

�
.

The quotient B = R2
/� is still di↵eomorphic to the 2-torus T2, but with a new

integral a�ne structure. In this case � has translational rank 1 since we have:

�lin =

⇢
1 m

0 1

�
: m 2 Z

�
, �tr = Z(1, 0).

.
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Integral a�ne structures look, at first, deceivingly simple. However, even some
of the simplest questions are surprisingly hard to answer. For instance, we mention
here an integral a�ne version of an old conjecture in a�ne geometry:

Conjecture 3.1.4 (Markus conjecture – integral a�ne version). Any compact in-
tegral a�ne manifold must be complete, i.e. of the form Rq

/� for some smooth
integral a�ne subgroup � ⇢ A↵Z(Rq).

Remark 3.1.5 (A�ne structures). A�ne structures on B are defined, via atlases,
as above, except that the changes of coordinates (3.1) are only a�ne (i.e., v 2 Rq

and A 2 GL(Rq)). The analogue of the 1-1 correspondence from the previous
proposition states that they correspond to flat torsion free connections on TB. In
this context one can talk about invariant (or parallel) densities and volume forms
by requiring invariance with respect to parallel transport of the connection. The
standard Markus conjecture states that a compact a�ne structure with an invariant
density has a complete connection.

Integral a�ne structures always admit invariant positive densities (or volume
forms, in the orientable case): one sets µ := |dx1 ^ . . . ^ dxq| for any choice of
integral a�ne local coordinates (x1, . . . , xn). An interesting question that seems to
be still open is whether, conversely, any a�ne structure that admits an invariant
density comes from an integral a�ne structure.

A integral structure EZ on a vector bundle E ! B gives rise to a bundle of tori
T := E/EZ. Conversely, given a bundle of tori T ! B, the Lie algebras of the
fibers give rise to a vector bundle E ! B, while the kernels of the exponential maps
give rise to an integral structure EZ on E such that T ⌘ E/EZ.

The very first indication of the close relationship between PMCTs and integral
a�ne structures arises from the symplectic version of this correspondence, i.e., by
considering proper integrations of the zero Poisson structure ⇡ ⌘ 0 on B. Such
an integration is the same thing as a symplectic torus bundle over B, i.e. a
(smooth) bundle of tori p : T ! B together with a symplectic form !T which is
multiplicative in the sense that

m
⇤(!T ) = pr⇤1(!T ) + pr⇤2(!T ) (3.2)

where m, pr1, pr2 : T ⇥M T ! T are the bundle multiplication and the two projec-
tions, respectively.

Proposition 3.1.6. If ⇤ ⇢ T
⇤
B defines an integral a�ne structure on B then

T⇤ := T
⇤
B/⇤

is a torus bundle and the standard symplectic form !can on T
⇤
B descends to a

symplectic form on T⇤, making it into a symplectic torus bundle. Moreover, this
gives rise to a bijection:

8
<

:
integral a�ne
structures on B

9
=

;
1�1 !

8
<

:
isomorphism classes of

symplectic torus bundles over B

9
=

;

Proof. Let us start by remarking that given an integral a�ne structure ⇤ ⇢ T
⇤
B

we have a smooth, free, and proper action of the bundle ⇤ on the bundle of abelian
groups T ⇤

B ! B by translations:

⇠b 7! ⇠b + ↵(b), ↵ 2 �(⇤).
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Hence, T⇤ := T
⇤
B/⇤ is a torus bundle. The canonical symplectic form !can on

T
⇤
B descends to T⇤ i↵ !can is invariant under this action. For a fixed ↵ 2 �(⇤),

one checks easily that the translation by ↵ is the time-1 flow of the vector field X↵

given by iX↵!can = p
⇤
↵, where p : T ⇤

B ! B is the projection. Denoting by �
t

↵
the

flow of X↵ and by mt : T ⇤
B ! T

⇤
B fiberwise multiplication by t, one finds that:

m
⇤

t
!can = t!can, �

t

↵
= mt � �1

↵
�m1/t.

So !can is invariant under �1 i↵ it is invariant under �t

a
, which will follow if:

0 = £X↵!can = diX↵!can = p
⇤d↵, 8↵ 2 �(⇤).

But this follows from the fact that all sections of ⇤ are closed (Proposition 3.1.2).
Since !can 2 ⌦2(T ⇤

B) is multiplicative, the same holds for the induced symplectic
form !T⇤ 2 ⌦2(T⇤). We conclude that (T⇤,!T⇤) is a symplectic torus bundle.

Conversely, let (T ,!T ) be a symplectic torus bundle over B. It is a s-connected
integration of the zero Poisson structure on B. Since the Weinstein groupoid of
(B, 0) is (T ⇤

B,!can), it follows that there is a morphism of symplectic groupoids:

q : (T ⇤
B,!can)! (T ,!T ),

which is a local di↵eomorphism. The restriction of q to a fiber gives a Lie group
covering q : T ⇤

b
B ! Tb, so its kernel is a lattice ⇤b 2 T

⇤

b
B. Since q is a local

di↵eomorphism, for each ↵0 2 ⇤b0 there exists a unique smooth local section ↵ 2
�(T ⇤

B) such that ↵(b0) = ↵0 and ↵(b) 2 ⇤b. It follows that ⇤ ⇢ T
⇤
B is smooth.

We conclude that the map q factors through an isomorphism:

(T ⇤
B,!can)

✏✏

q
// (T ,!T )

(T⇤,!T⇤)

⇠=

88

This shows that !can descends to T
⇤
B/⇤, i.e., that is invariant under the action of

⇤. As in the first part of the proof, then every section of ⇤ is closed, so ⇤ is an
integral a�ne structure on B, by Proposition 3.1.2.

To complete the proof it remains to show that if ⇤1,⇤2 ⇢ T
⇤
B are any integral

a�ne structures and there is an isomorphism of symplectic torus bundle covering
the identity, � : (T⇤1 ,!T⇤1

) ! (T⇤2 ,!T⇤2
), then ⇤1 = ⇤2. For that, observe that

any such (possibly, non-symplectic) isomorphism, being continuous and additive on
the fibers, must be induced by a bundle map �̂ : T ⇤

B ! T
⇤
B of the form:

�̂ : (b,↵) 7! (b, Ab(↵)), (b 2 B),

where Ab : T ⇤

b
B ! T

⇤

b
B are linear isomorphisms with Ab(⇤1) = ⇤2. To see that

Ab =Id, so that ⇤1 = ⇤2, one now uses that � preserves the symplectic forms. ⇤
Integral a�ne structures are very closely related to Lagrangian fibrations. In-

deed, any symplectic torus bundle fibers in a Lagrangian way over its base. Con-
versely, if q : (X,⌦X) ! B is a Lagrangian fibration with compact, connected
fibers, then B has an induced integral a�ne structure ⇤X given by:

⇤X,x := {↵ 2 T
⇤

x
B : �1

↵X
= id}, (3.3)

where �
t

↵X
denotes the flow of the vector field ↵X on the fiber q�1(x) defined by:

i↵X⌦X = q
⇤
↵.
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We now give a Poisson geometric interpretation of this construction, which will
serve as inspiration later on. First, the Lagrangian fibration condition is equivalent
to the fact that

q : (X,⌦X)! (B, 0).

is a Poisson map into B with the zero Poisson structure ⇡ ⌘ 0, i.e. that (X,⌦X) is
a symplectic realization of the Poisson manifold (B, 0). By the general properties
of symplectic realizations [12] (see also Section 7.1 below), it follows that the Lie
algebroid and the canonical integration act on the realization. In our case the Lie
algebroid is T ⇤

B with the zero bracket and anchor (hence just a bundle of abelian
Lie algebras) and the induced action on X is

� : ⌦1(B)! X(X), ↵ 7! ↵X .

The canonical integration is the symplectic groupoid (T ⇤
B,!can), where T

⇤
B is

viewed now as a bundle of abelian Lie groups, and the integration of the infinitesimal
action � is the groupoid action:

(T ⇤
B,!can)

✏✏

!! (X,⌦X),

q

uu

(B, 0)

↵ · u := �
1
↵X

(u).

This action is locally free. Moreover, it is symplectic in the sense that (compare
with (3.2) and with Appendix A.1):

m
⇤(⌦X) = pr⇤1(!can) + pr⇤2(⌦X),

where m : T ⇤
B ⇥B X ! X is the action and pr

i
are the projections.

Now the lattice (3.3) is precisely the isotropy of this action. Hence the corre-
sponding symplectic torus bundle T = T

⇤
B/⇤X , a symplectic groupoid integrating

(B, 0), arises as the quotient of T ⇤
B which acts freely on X:

(T ,!T )

✏✏

!! (X,⌦X)

q

vv

(B, 0)

The action is still symplectic, hence q : X ! B is a symplectic principal T -bundle,
or a free Hamiltonian T -space (see Appendix A). Conversely, any such symplectic
principal bundle is a Lagrangian fibration with compact, connected, fibers:

Proposition 3.1.7. Any Lagrangian fibration q : (X,⌦X) ! B with compact
and connected fibers induces an integral a�ne structure ⇤ on B, yielding a proper
integration of (B, 0), i.e. a symplectic torus bundle T⇤ over B, for which it becomes
a symplectic principal T⇤-bundle.

Conversely, for any symplectic torus bundle T⇤ over B, a symplectic principal
T⇤-bundle q : (X,⌦X) ! B is a Lagrangian fibration with compact, connected
fibers, inducing the integral a�ne structure ⇤.

A classical result due to Duistermaat [20] shows that Lagrangian fibrations with
compact, connected fibers, are classified by the integral a�ne structure ⇤ and the
Lagrangian Chern class. This will be recalled and generalized in Section 8.1.
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3.2. Integral a�ne structures on orbifolds and foliations. We define integral
a�ne structures on orbifolds following Haefliger’s approach (see Remark 2.6.8):

Definition 3.2.1. An integral a�ne structure on a orbifold (B,B) is an
integral a�ne structure on the base of some étale orbifold atlas E ◆ T which is
invariant under the action (2.6) by elements of E .

This definition only uses the linear part of the action (2.6), so an integral a�ne
structure on an orbifold is the same things as one on its underlying classical orbifold.
For this reason, the Morita equivalence QE : E ' B plays here no role (see Lemma
2.6.5): any Morita equivalence between two atlases allows us to move an invariant
integral a�ne structure from one base to the other (pull-back to the bibundle, then
push forward by the obvious quotient operation), and the result does not depend
on the choice of equivalence.

Example 3.2.2. If � ⇢ A↵Z(Rq) is an integral a�ne group of orbifold type (see
the previous example) then B = Rq

/� will inherit the structure of integral a�ne
orbifold. As a baby illustration, consider the subgroup � ⇢ A↵Z(R) generated by

�1(x) = �x+ 1, �2(x) = �x.

As an abstract group, � is the free group in two generators �1 and �2 subject to
the relations �2

1 = �
2
2 = 1, so that:

� ⇠= Z2 ? Z2,

�tr = {(0, 0)}, �lin = {Id,�Id}.

The action of � on R is proper and the only x 2 R with non-trivial isotropy group
are x = n

2 with n 2 Z, in which case we find:

�n
2
= {1, (�1�2)n�1

�1} ⇠= Z2.

The quotient B = R/� = S1/Z2 is, topologically, just [0, 1]. This gives the interval
[0, 1] the structure of an integral a�ne orbifold.

To represent the integral a�ne structure in arbitrary, possibly non-étale, orbifold
atlases, we need the notion of transverse integral a�ne structure. Recall that for
a foliation (M,F) of codimension q a foliation atlas {(Ui,�i) : i 2 I} is an open
cover {Ui : i 2 I} of M together with submersions � : Ui ! Rq whose fibers are
the plaques of F in Ui.

Definition 3.2.3. A transverse integral a�ne structure on a foliation (M,F)
of codimension q is a choice of a maximal foliation atlas {(Ui,�i) : i 2 I} with the
property that each transition function

�j � ��1
i

: �i(Ui \ Uj)! �j(Ui \ Uj),

is (the restriction of) an integral a�ne transformation in A↵Z(Rq) = GLq(Z)nRq.
A chart (Ui,�i) is called a transverse integral a�ne coordinate system.

More e�cient descriptions of transverse integral a�ne structure can be given in
terms of lattices: there is an analogue of Proposition 3.1.2 where the lattices now live
in the normal/conormal bundle to the foliation. The most useful characterization
for us will be the one in terms of the conormal bundle ⌫

⇤(F) = (TF)o ⇢ T
⇤
M ,

which we state as follows:
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Proposition 3.2.4. If (M,F) is a foliation of codimension q, there a 1-1 corre-
spondence between:

(i) A transverse integral a�ne atlas {(Ui,�i) : i 2 I} on (M,F);
(ii) A lattice ⇤ ⇢ ⌫

⇤(F) which is a Lagrangian submanifold of (T ⇤
M,!can);

(iii) A lattice ⇤ ⇢ ⌫
⇤(F) locally spanned by q closed, F-basic, 1-forms on M .

In this 1-1 correspondence, ⇤ is given by:

⇤x := Z dx1|x + · · ·+ Z dxq|x ,
where (x1, . . . , xq) is any transverse integral a�ne coordinate system around x 2M .

Since basic forms are determined by their restriction to complete transversals,
we deduce that a transverse integral a�ne structure on (M,F) is the same thing
as the choice of a holonomy invariant integral a�ne structure on a (any) complete
transversal. This relates Definition 3.2.3 to Haefliger’s approach (Remark 2.3.3).

Example 3.2.5 (Simple foliations). If (M,F) is simple, then transverse integral
a�ne structures on F are in 1-1 correspondence with integral a�ne structures on
the smooth manifold B = M/F . In terms of lattices, they are related via pullback
by p : M ! B.

Example 3.2.6 (Orbifolds). For foliations (M,F) of proper type we know that the
leaf space B = M/F is an orbifold (see Example 2.6.7). We now have a bijection

8
<

:
transverse integral a�ne structures

on the proper foliation (M,F)

9
=

;
1�1 !

8
<

:
integral a�ne structures
on the orbifold B = M/F

9
=

;

Strictly speaking, one has several orbifold structures on B, one for each proper
s-connected integration E of F . However, as we remarked before, the notion of
integral a�ne structure only depends on the underlying classical orbifold.

Starting with an arbitrary orbifold B, the previous example is relevant to the
way one can represent integral a�ne structures on B with respect to arbitrary
orbifold atlases E ◆ M (not necessarily étale ones). While in this case E may
have disconnected s-fibers, we have to consider transverse integral a�ne structures
⇤ for the foliation F induced by E on M which satisfy the extra-condition that
⇤ is invariant with respect to the induced action of E on ⌫

⇤(F) (of course, this
condition is superfluous if E is s-connected). Such ⇤s will be called E-invariant
(transverse) integral a�ne.

Example 3.2.7 (Linear foliations). Let Ŝ ! S be a �-cover of a manifold S and let
(V, VZ) be an integral vector space. If ⇢ : �! GLVZ(V ) is an linear representation
that preserves the lattice, then the linear foliation (Ŝ⇥�V,Flin) (see Example 2.1.5)
has a transverse integral a�ne structure.

The analogue of the relationship between integral a�ne structures and the zero-
Poisson structure (Proposition 3.1.6) holds for transverse integral a�ne structures,
provided one allows for Dirac structures into the picture. Let (M,F) be a foli-
ation with a transverse integral a�ne structure ⇤ ⇢ ⌫

⇤(F). Since ⇤ ⇢ T
⇤
M is

Lagrangian, the pullback to ⌫
⇤(F) of the canonical symplectic form !can gives rise

to a presymplectic torus bundle

(T⇤ = ⌫
⇤(F)/⇤,!T ).
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In general, by a presymplectic torus bundle over a manifold M we mean
a bundle of tori p : T ! M together with a closed 2-form !T 2 ⌦2(T ) which is
multiplicative and satisfies the non-degeneracy condition

Ker(!T ) \Ker(dp) = {0}.

For presymplectic torus bundles one has the following analogue of Proposition 3.1.6:

Proposition 3.2.8. The correspondence (F ,⇤) 7! (T⇤,!T ) defines a bijection:
⇢

transverse integral a�ne
foliations (F ,⇤) on M

�
1�1 !

⇢
isomorphism classes of presymplectic
torus bundles (T ,!T ) over M

�

Proof. We need to show that a presymplectic torus bundle defines a foliation F
with a transverse integral a�ne structure ⇤. Let us mention the main changes in
the arguments of the proof of Proposition 3.1.6

For a vector bundle E ! M , closed multiplicative 2-forms on E, where multi-
plicativity is with respect to fiberwise addition, are necessarily of type

!� = �
⇤(!can),

for some vector bundle map � : E ! T
⇤
M . This follows, e.g., from the integrability

result of [8] applied to E, viewed as a presymplectic groupoid. Hence, if (T ,!T )
is a presymplectic torus bundle, and we apply this result to the bundle t ! M

consisting of the Lie algebras of the fibers of T , we find that:

exp⇤(!T ) = !�,

for some � : t! T
⇤
M , where exp : t! T denotes the fiberwise exponential map.

The non degeneracy condition continues to hold for the pull-back !� and when
applied at elements 0x 2 tx implies that � must be injective. Hence, there is a
distribution F ⇢ TM such that

Im(�) = (TM/F)⇤ = ⌫
⇤(F).

The lattice ⇤t := ker(exp) ⇢ t will be moved by � into a lattice ⇤ ⇢ ⌫
⇤(F). We

have the extra-information that !� descends to T = t/⇤t; then, as in the proof of
Proposition 3.1.6, this will imply that all the (local) sections of ⇤ must be closed.
In turn, this implies also that F is integrable and then that ⇤ is indeed a transverse
integral a�ne structure for the foliation F . The rest of the arguments continue as
for Proposition 3.1.6. ⇤

Example 3.2.9. Assume that (M,F) is a simple foliation, as in Example 3.2.5,
and ⇤ is a transversely a�ne structure that comes from an integral a�ne structure
⇤B on the leaf space B = M/F . Then we have the presymplectic torus bundle
(T⇤,!T⇤) ! M and the symplectic torus bundle (T⇤B ,!T⇤B

) ! B. The foliation
defined by Ker(!T⇤) on T⇤ is simple as well, and its leaf space is precisely T⇤B . In
other words, we have T⇤ = p

⇤T⇤B and !T⇤ = p
⇤
!T⇤B

, where p : M ! B is the
projection onto the leaf space.

For the analogue of Proposition 3.1.7 one replaces the Lagrangian fibrations by
the symplectically complete isotropic fibrations of Dazord-Delzant [19]. This will
be discussed in detail in Section 7.

The presymplectic torus bundle (T⇤,!T ) is also relevant for the integration of
the Dirac structure LF associated with a foliation F and understanding its C-type.
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Recall that this Dirac structure is defined by

LF := F � ⌫
⇤(F) ⇢ TM � T

⇤
M,

and has presymplectic leaves consisting of the leaves of F equipped with the zero-
presymplectic form. We have an exact sequence of Lie algebroids

0 // ⌫
⇤(F) // LF

// F // 0 ,

which leads to explicit integrations of LF . One such integration is obtained by
observing that the linear holonomy action of Hol(M,F) on ⌫

⇤(F) descends to an
action on T⇤, so one obtains a groupoid

T⇤ on Hol(M,F) ◆ M,

where an arrow (�, �) consists of � 2 Hol(M,F) and � 2 T⇤,�(0), and

s(�, �) = s(�), t(�, �) = t(�), (�, �) · (�0
, �

0) = (� · hollin
�
(�0), � · �0). (3.4)

Together with the pull-back of !T , this becomes a presymplectic groupoid integrat-
ing LF . It is of C-type if F is of C-type.

3.3. From PMCTs to integral a�ne structures. We are now ready to describe
the transverse integral a�ne structure associated with a PMCT, a fundamental
geometric structure associated with such a of Poisson manifold.

If (G,⌦) is a proper integration of (M,⇡), then for any x 2M :

(i) the isotropy Lie group Gx is a compact Lie group with abelian isotropy Lie
algebra gx, hence the kernel of the exponential defines a lattice

⇤G,x := Ker(expgx
) ⇢ gx.

(ii) the symplectic form ⌦ induces an identification between the Lie algebroid
A(G) := Ker ds and T

⇤
M , which identifies gx with the conormal direction:

gx ⇠= ⌫
⇤

x
(F⇡), vx 7! (ivx⌦)|TxM

Putting (i) and (ii) together, we obtain lattices ⇤G,x ⇢ ⌫
⇤

x
(F⇡), and we set:

⇤G :=
[

x2M

⇤G,x ⇢ ⌫
⇤(F⇡).

An alternative description can be obtained by considering the torus bundle T (G)
made of the identity components of the isotropy groups (see Theorem 2.6.9), to-
gether with the restriction of ⌦. It is a presymplectic torus bundle so one can apply
Proposition 3.2.8 to obtain ⇤G .

The relationship between these two approaches will be clear in the proof of the
following basic result:

Theorem 3.3.1. For each proper integration (G,⌦) of a regular Poisson mani-
fold (M,⇡) of proper type, ⇤G defines a transverse integral a�ne structure on the
symplectic foliation F⇡.

Proof. To show that ⇤G is smooth we describe the lattices ⇤G,x ⇢ ⌫
⇤

x
(F⇡) as follows.

Each ↵ 2 ⌫
⇤

x
(F⇡) = (TxF⇡)0 = Ker(⇡]

x
) corresponds to a right-invariant vector

field X↵ tangent to the isotropy group Gx. By restricting X↵ to G0
x
, the connected

component of the identity of Gx, we obtain an action of the bundle of abelian Lie
algebras ⌫

⇤(F⇡) on the bundle of tori T (G) =
S

x2M
G0
x
. The compactness of G0

x
,
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implies that this action can be integrated to an action of the bundle of Lie groups
(⌫⇤(F⇡),+) on T (G):

↵ · g := �
1
X↵

(g), (↵ 2 (TxF⇡)
0
, g 2 G0

x
),

where �
⌧

X↵
denotes the flow of X↵. Note that expgx

(↵) = �
1
X↵

(1x), so we can
identify ⇤G with the kernel of this action:

⇤G,x = {↵ 2 ⌫
⇤

x
(F⇡) : �

1
X↵

= id}.
This action is locally free, since the map ↵ 7! X↵ is injective. This action is
transitive on the fibers, since ↵ 7! X↵|1x 2 T1xGx is onto. It follows that the kernel
of the action ⇤G is a smooth sub-bundle whose fibers ⇤G,x are lattices in ⌫

⇤

x
(F⇡).

In order to show that ⇤G ⇢ T
⇤
M is a Lagrangian submanifold, note that

dim⇤G = dimM = 1/2 dim(T ⇤
M) so we only need to check that !can|⇤G = 0.

By the fundamental property of !can, for any 1-form ↵ : M ! T
⇤
M we have:

↵
⇤
!can = d↵.

Hence, it is enough to show that any 1-form ↵ 2 �(⇤G |U ), defined on some open set
U ⇢M , is closed. To see this, observe that the associated vector field X↵ satisfies:

iX↵⌦ = t
⇤
↵.

In fact, both sides are right invariant 1-forms and they coincide at the the identity
section. Hence, when ↵x 2 ⇤G,x we find that:

0 = (�1
X↵

)⇤⌦� ⌦ =

Z 1

0

d

d⌧
(�⌧

X↵
)⇤⌦ d⌧

=

Z 1

0
(�⌧

X↵
)⇤£X↵⌦ d⌧

=

Z 1

0
(�⌧

X↵
)⇤diX↵⌦ d⌧

=

Z 1

0
(�⌧

X↵
)⇤t⇤d↵ d⌧

=

Z 1

0
t
⇤d↵ d⌧ = t

⇤d↵,

where we use t��⌧

X↵
= t. Since t is a submersion we obtain, as claimed, d↵ = 0. ⇤

Using Theorem 2.6.9 and Example 3.2.6 we deduce:

Corollary 3.3.2. Any s-connected, proper integration (G,⌦) of a regular Poisson
manifold (M,⇡) induces an integral a�ne orbifold structure on the leaf space M/F⇡.

Remark 3.3.3 (Twisted Dirac structures). The previous discussion extends to the
Dirac case word by word. If (M,L,�) is a regular �-twisted Dirac manifold, then a
proper presymplectic integration (G,⌦,�) of (M,L,�) defines a transverse integral
a�ne structure ⇤G ⇢ ⌫

⇤(FL). The reason is that the constraints on the kernel of
⌦ imply that its restriction to T (G) still yields a presymplectic torus bundle.

For an s-proper, twisted presymplectic groupoid with smooth leaf space B, Zung
[57] described the integral a�ne structure on B by very di↵erent means. Our
approach, using transverse integral a�ne structures, allow us to deal with non-
smooth leaf spaces as discussed in Example 3.2.6 and, as we will see in [13], and
even with non-regular Dirac manifolds of compact types.



REGULAR PMCTS 29

3.4. The extended monodromy groups. We recall (see [12]) that for any reg-
ular Poisson manifold (M,⇡) there is a monodromy map at x 2M :

@mon,x : ⇡2(S, x)! ⌫
⇤

x
(S) (3.5)

where S = Sx is the symplectic leaf through x. The monodromy group at x is
defined as the image of the monodromy map:

Nmon|x := Im(@mon,x) ⇢ ⌫
⇤

x
(S),

and we set Nmon = [x2MNmon|x.
The origin of these Poisson invariants lies in the variation of symplectic areas,

but they admit several interpretations, all of which will be useful in the sequel:

• At the groupoid level, the Weinstein groupoid ⌃(M,⇡) yields a homotopy
long exact sequence associated to s : s�1(x)! S with first few terms:

⇡2(S, x)
@mon,x

// ⌫
⇤

x
(S)

exp
// ⌃x(M,⇡) // 1 .

This gives a description of Nmon|x as the kernel of the exponential map
exp : ⌫⇤

x
(S)! ⌃x(M,⇡).

• At the Lie algebroid level, any splitting ⌧ : TS ! T
⇤

S
M of the short exact

sequence of algebroids:

0 // ⌫
⇤(S) // T

⇤

S
M

⇡
]
// TS //

⌧

ff

0. (3.6)

yields a curvature 2-form ⌦⌧ 2 ⌦2(S, ⌫⇤(S)) given by

⌦⌧ (X,Y ) := ⌧([X,Y ])� [⌧(X), ⌧(Y )] (for X,Y 2 X(S)). (3.7)

Viewing ⌫
⇤(S) as a flat vector bundle for the Bott connection, the 2-form

⌦⌧ is closed as a form with coe�cients ⌫
⇤(S). Its cohomology class does

not depend on the choice of ⌧ and defines a class [⌦⌧ ] 2 H
2(S, ⌫⇤(S)), and:

@mon,x : ⇡2(S, x)! ⌫
⇤

x
(S), [�] 7!

Z

�

⌦⌧ .

• The most geometric description of the monodromy arises as the variation
of symplectic areas of leafwise spheres: for any sphere � : (S2, N)! (Sx, x)
based at x and a transverse direction v 2 ⌫x(S), one can find a foliated
family of spheres �t : (S2, N) ! (Sxt , xt), such that �0 = � and v = [ẋt];
one has:

h@mon,x[�], vi =
d

dt

����
t=0

Z

�t

!Sxt
. (3.8)

Hence, the quantity h@mon,x[�], vi is the variation of the symplectic area of
� in the normal direction v.

For integrable Poisson manifolds, each monodromy group Nmon|x is a discrete
subgroup of ⌫⇤

x
(S). As one could expect, they are closely related to the lattice ⇤G

of an s-proper integration. In the s-proper case the rank of Nmon does not depend
on x, but it may fail to be a lattice, unless we are in the strong proper case. More
precisely, we have:

Theorem 3.4.1. Let (M,⇡) be a regular Poisson manifold. Then:

(i) Nmon ⇢ ⇤G for any s-connected, proper integration (G,⌦) of (M,⇡);
(ii) Nmon = ⇤⌃(M,⇡) if and only if (M,⇡) is strong proper.
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Proof. We use the same notation of the proof of Theorem 3.3.1. Note that if
↵ 2 Nmon|x then the corresponding right invariant vector field eX↵ in ⌃(M,⇡)
satisfies

�
1
eX↵

= id.

Under the covering projection ⌃(M,⇡) ! G this vector field is projected to X↵,
which therefore also satisfies �1

X↵
= id. It follows that ↵ 2 ⇤G |x, so (i) holds. Now

(ii) follows from the definition of ⇤G and the previous discussion on Nmon. ⇤

In particular, we have the following characterization of regular Poisson manifolds
of strong C-type:

Corollary 3.4.2. A regular Poisson manifold (M,⇡) is of strong C-type if and
only if the foliation F⇡ is of strong C-type and Nmon is a transverse integral a�ne
structure for the symplectic foliation F⇡.

Proof. The previous theorem, combined with Theorem 2.0.1, proves the direct im-
plication. For the reverse implication, note first that the lattice condition, together
with the integrability criteria of [11, 12], implies that ⌃(M,⇡) is smooth. Moreover,
we have the short exact sequence of Lie groupoids:

1 // ⌫
⇤(F⇡)/Nmon

// ⌃(M,⇡) // Mon(M,F⇡) // 1

where the second map associates to a cotangent path its base path, while the first
map is induced from the exponential map exp : ⌫⇤

x
(F⇡) ! ⌃x(M,⇡) (see [12]).

This is a sequence of Lie groupoids in which the extreme groupoids are of C-type.
It follows immediately that the middle one is also of C-type, so the result follows. ⇤

Conversely, one can look at regular Poisson manifolds (M,⇡) for whichNmon = 0.
We have the following result, which includes as a particular case Proposition 3.1.6:

Corollary 3.4.3. Let (M,⇡) be a regular Poisson manifold such that:

(i) the monodromy groups are trivial: Nmon = 0;
(ii) the symplectic foliation F⇡ is of strong C-type.
Then each transversal integral a�ne structure ⇤ on (M,⇡) determines an s-connected,
proper integration (G⇤,⌦) such that ⇤G⇤ = ⇤. Moreover, if the symplectic leaves
are 1-connected, this establishes a bijection:

⇢
transversal integral a�ne
structures ⇤ on (M,F⇡)

�
1�1 !

⇢
s-connected, proper symplectic
integrations of (M,⇡)

�

Proof. When Nmon = 0, the exponential map exp : ⌫
⇤(F⇡) ! ⌃(M,⇡) has no

kernel. Therefore, a transverse integral a�ne structure ⇤ ⇢ ⌫
⇤(F⇡) yields a sub-

groupoid exp(⇤) ⇢ ⌃(M,⇡), which is normal, discrete and Lagrangian. Hence,

(G⇤,⌦) := (⌃(M,⇡),⌦⌃(M,⇡))/ exp(⇤)

is a symplectic groupoid integrating (M,⇡). As in the proof of Corollary 3.4.2, this
symplectic groupoid is of C-type i↵ F⇡ is of C-type. It is also clear that ⇤G⇤ = ⇤.

In general, the isotropy groups ⌃x(M,⇡) will not be connected, so there might be
di↵erent symplectic groupoids defining ⇤. If the symplectic leaves are 1-connected,
then (G⇤,⌦) is the only integration defining ⇤. ⇤
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Our next aim is a more refined version of Theorem 3.4.1, and this will require a
more refined version of the monodromy groups. These are new invariants, related to
obstructions to s-properness, and they arise when revisiting the above descriptions
of Nmon|x: the basic idea is to replace the spheres (2-homotopy classes) in the leaf
S by more general surfaces (2-homology classes) in S.

Consider an arbitrary regular Poisson manifold (M,⇡) and fix x 2M . We choose
a splitting ⌧ : TS ! T

⇤

S
M of the short exact sequence (3.6). In order to integrate

the resulting curvature 2-form ⌦⌧ 2 ⌦2(S, ⌫⇤(S)) over some surface we need first to
pullback the vector bundle ⌫⇤(S)! S along px : Shol

x
! S, the Hol(r)-covering for

the Bott connection based at x. This is the smallest cover over which the pullback
of ⌫⇤(S) becomes a trivial vector bundle ⌫

⇤

x
(S)⇥ S

hol
x
! S

hol
x

. We can then set:

Definition 3.4.4. The hol-monodromy map of the regular Poisson manifold
(M,⇡) at x is the map:

@hol,x : H2(S
hol
x

,Z)! ⌫
⇤

x
(S), [�] 7!

Z

�

p
⇤

x
⌦⌧ .

The hol-monodromy group Nhol|x ⇢ ⌫
⇤

x
(S) is the image of this map.

A version of the hol-monodromy map appears in the work of I. Mărcut [36] on
rigidity in Poisson geometry (see also [15]). For its geometric interpretation, we
will consider smooth marked surfaces in the leaf S through x, i.e. smooth maps

� : (⌃, p)! (S, x),

with ⌃ a connected, oriented, compact surface without boundary, and p 2 ⌃. By
a leafwise deformation of � we mean a family �t : (⌃, p) ! (M,xt) of smooth
maps parametrized by t 2 (�✏, ✏), starting at �0 = � and such that for each fixed
t the surface �t is inside the symplectic leaf through xt. The transversal variation
of �t at t = 0 is the class of the tangent vector

var⌫(�t) :=


d

dt

����
t=0

�t(p)

�
2 ⌫x(S).

Note that given a smooth marked surface � : (⌃, p)! (S, x) and a normal vector
v 2 ⌫x(S) there may not exist a leafwise deformation �t with transversal variation
var⌫(�t) = v. We will say that � is holonomy-trivial with respect to the foliation
F⇡ if the holonomy of F⇡ along loops of type � � �, with � a loop in ⌃, is trivial.

Lemma 3.4.5. For any holonomy-trivial marked surface � : (⌃, p) ! (S, x) and
v 2 ⌫x(F), one can find a leafwise deformation �t with var⌫(�t) = v. In this case,
� admits a lift e� : (⌃, p)! (Shol

x
, ex), where ex denotes the class of the trivial loop.

Remark 3.4.6. Note that the notion of a holonomy-trivial surface uses the (non-
linear) holonomy of the foliation F⇡, while the covering S

hol
x
! S is relative to the

Bott connection, i.e. the linear holonomy. Vanishing holonomy implies vanishing
linear holonomy, but not the converse. Hence, a holonomy-trivial surface admits a
lift to the cover Shol

x
, but the converse is not true in general.

Proof. Fix a complete Riemannian metric on M , split TM = F⇡�E and consider:

� : E� := �
⇤
E !M, �(x, v) := exp

�(x)(v).

Then T0xE� = Tx⌃ � E�(x) and (d�)0x : T0xE� ! T�(x)M becomes (i, (d�)x),
where i : E ,! TM is the inclusion. Hence � is transversal to F⇡ and we can take
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the pull-back foliation F� := �
⇤F⇡ as a foliation on E�. The codimension remains

the same, so the leaves of F� are two-dimensional. Since ⌃ is compact and tangent
to F�, it must be an entire leaf of F⇡. On the other hand, as a general property
of pull-back foliations, the holonomy of F� at p 2 ⌃ factors through the holonomy
of F⇡ at �(p) = x 2 S. Therefore, since � is a holonomy-trivial surface, we deduce
that the holonomy of F� along ⌃ is trivial. By Reeb stability, F� is isomorphic, in
a neighborhood of ⌃, to the trivial foliation ⌃⇥ Rq. Then � yields a smooth map
⌃⇥Rq !M which takes leaves to leaves and induces isomorphisms at the level of
the normal bundle. This allows one to construct for any normal vector v 2 ⌫x(S) a
leafwise deformation �t with transversal variation var⌫(�t) = v. ⇤

We then have the following geometric interpretation of the hol-monodromy in
terms of variations of symplectic areas whenever a class [e�] 2 H2(Shol

,Z) is a lift
of a holonomy-trivial �:

Proposition 3.4.7. Let (M,⇡) be a regular Poisson manifold. If � : (⌃, p)! (S, x)
is a holonomy-trivial marked surface then:

h@hol,x[e�], vi =
d

dt

����
t=0

Z

�t

!F⇡ ,

where �t is a leafwise deformation of � with transversal variation var⌫(�t) = v and
e� : (⌃, p)! (Shol

x
, ex) is a lift of �.

Proof. The proof is the same as for variation of spheres, given in [12] pp 97. ⇤

Recall that S
hol
x

is the smallest cover where the pullback of the flat bundle
⌫(S)! S becomes trivial. Of course, we can consider larger covers of S, i.e., covers
Q that factor through the holonomy cover:

(eSx, [x])

✏✏

  

(Q, q)

✏✏

((

(Shol
x

, ex) // (S, x)

where eSx is the universal covering space of S. Observing that H2(eSx,Z) ⇠= ⇡2(S, x),
we obtain a diagram of monodromy maps:

⇡2(S, x)

✏✏

@mon,x

""

H2(Q,Z)

✏✏

@Q,q

((

H2(Shol
x

,Z)
@hol,x

// ⌫
⇤

x
(S)

We set NQ,x := Im @Q,q, so we have:

Nmon ⇢ NQ ⇢ Nhol.
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Consider now a regular Poisson manifold (M,⇡) whose symplectic foliation F⇡

is proper. In this case the linear and non-linear holonomy of F⇡ coincide, hence:

• the geometric interpretation of the hol-monodromy is valid for every class
in H2(Shol

x
,Z);

• given any s-connected foliation groupoid E integrating the symplectic foli-
ation F⇡, the s-fiber yields a covering space t : E(x,�) ! Sx which lies in
between eSx and S

hol
x

. In particular, we have a corresponding monodromy
map:

@E,x : H2(E(x,�),Z)! ⌫
⇤

x
(S).

Definition 3.4.8. The E-monodromy group of (M,⇡) at x relative to the s-
connected integration E of the symplectic foliation F⇡, denoted NE |x, is the image
of @E,x.

We can finally discuss the more refined version of Theorem 3.4.1:

Theorem 3.4.9. Let (M,⇡) be a regular Poisson manifold whose symplectic foli-
ation F⇡ is proper. For any s-connected integration E of the symplectic foliation:

Nmon ⇢ NE ⇢ Nhol,

where the first (respectively, second) inclusion becomes equality for E = Mon(M,F⇡)
(respectively, for E = Hol(M,F⇡)). Moreover, if E = B(G) is induced by an s-
connected, proper integration G as in Theorem 2.6.9, then

NE ⇢ ⇤G .

Remark 3.4.10. When E = B(G) is induced by an s-proper integration G, it will
follow from Section 5.2 that NE will be not just a bundle of discrete subgroups of
⌫
⇤(F⇡), but also a smooth, closed sub-bundle (in particular, of constant rank). In

the maximal rank case, i.e. when NE is a lattice, one can show that E is induced
by an s-proper integration eG with ⇤eG = NE . Such integrations eG deserve the name
“normalized”.

Proof. The first part of the theorem follows from the remarks proceeding it. For the
second part we use the Atiyah sequence (3.6). Recall that similar sequences arise
from principal bundles: if q : P ! N is a principal G-bundle, then A(P ) := TP/G

is not only a vector bundle over N but also a Lie algebroid with anchor induced
by dq and with the bracket coming from the identification �(A(P )) = X(P )G�inv.
The short exact sequence associated to it is

0 // P ⇥G g // A(P )
dq
// TN // 0. (3.9)

Splittings ⌧ of this sequence are the same thing as connections on the principal
bundle, while the associated expression (3.7) is precisely the curvature of the con-
nection. When G = T is a torus, this closed form will represent the Chern class of
the bundle, c1(P ) 2 H

2(N, t), which is integral: the pairing of c1(P ) with elements
in H2(N,Z) always lands in ⇤T, the kernel of the exponential map of t.

Now, if G is an s-connected, proper integration of (M,⇡), then we obtain a
principal bundle q : G(x,�) ! E(x,�) with structure group the torus Tx = Tx(G)
(see Theorem 2.6.9). Moreover, the associated Atiyah sequence coincides with the
pull-back of (3.6) via the covering map pE : E(x,�)! S, which is just a translation
of the fact that G integrates the Lie algebroid T

⇤
M . We deduce that

p
⇤

E
[⌦⌧ ] 2 H

2(E(x,�), ⌫⇤
x
)
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coincides with the Chern class of the torus bundle q : G(x,�) ! E(x,�). The
integrality of this Chern class shows that evaluation on classes in H2(E(x,�)) lands
in ⇤G , so we conclude that NE ⇢ ⇤G . ⇤

Corollary 3.4.11. If (M,⇡) is of s-proper type then Nhol is a smooth closed sub-
bundle of discrete subgroups of ⌫⇤(F⇡). Moreover, if E is induced by an s-connected,
s-proper integration, then NE is of finite index in Nhol.

Proof. Let G be an s-connected, s-proper integration. Using the first part of Remark
3.4.10, it su�ces to show that NE |x is of finite index in Nhol|x. This follows from
a general remark about finite covers applied to E(x,�) ! S

hol: if q : eN ! N is a
finite cover between compact manifolds then

q⇤(H2( eN,Z)/torsion) ⇢ H2(N,Z)/torsion
is of finite index. This is equivalent to the fact that, when working over Q, q⇤ :
H2( eN) ! H2(N) is surjective. In turn, this follows from the standard spectral
sequence E

2
p,q

= Hp(�, Hq( eN)) =) Hp+q(N) (� the group of the cover): since the
homology over Q of finite groups is trivial, we deduce that Hk(N) is isomorphic to
the space of �-coinvariants of Hk( eN) and q⇤ becomes the quotient map. ⇤

Remark 3.4.12. The notions of extended monodromy discussed here extend to
non-regular Poisson manifolds and, in fact, to any Lie algebroid. We postpone this
discussion to [13].

3.5. Examples. Here are some examples to illustrate the behavior of the groups
Nmon and Nhol, their computation and their relevance to the compactness-types.

3.5.1. A non-proper example with Nhol discrete. The groups Nhol can be seen as
Poisson invariants whose discreteness is a necessary condition for properness- cf.
Corollary 3.4.11. Here is an example which shows that this condition is not su�cient
and that Nhol provides interesting invariants also in the non-proper case. Start with
the Reeb foliation F of S3 and make it into a symplectic foliation by choosing a
metric on S3 and considering the induced area forms on the leaves. The resulting
Poisson structure is not of proper type since the Reeb foliation is not proper: for
example, the linear and non-linear holonomy of the compact leaf are distinct.

These Reeb type Poisson structures are always integrable since for any symplectic
leaf S we have ⇡2(S, x) = {0}, so that Nmon = {0}. On the other hand, for points x
in the open leaves we obviously have Nhol|x = {0}, since the leaves are contractible.
However, we claim that for points in the compact leaf, Nhol is not trivial. In order
to see this, we consider as a model for a neighborhood of the compact leaf T2 the
space M = (R⇥ S1 ⇥ R)/Z, and we let R+ ⇥ S1 ⇥ R, with coordinates (r, ✓, z), be
foliated by the level sets of the submersion:

F (r, ✓, z) = (r2 � 1)ez,

and let Z act by translations in the z coordinate. The compact leaf T2 corresponds
to r = 1. On R+ ⇥ S1 ⇥ R we consider the regular Poisson structure:

⇡ =

✓
(r2 � 1)

@

@r
� 2r

@

@z

◆
^ @

@✓
.

The function F is a Casimir and ⇡ is invariant under the Z-action, so we obtain a
Poisson structure on M whose symplectic foliation is the Reeb foliation. Choosing
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the splitting ⌧ : TT2 ! T
⇤

T2M of ⇡] : T ⇤

T2M ! TT2 defined by:

@

@✓
7! �1

2
dz,

@

@z
7! �1

2
d✓,

we find that its curvature 2-form is constant:

⌦⌧

✓
@

@✓
,
@

@z

◆
=

1

4
[dz, d✓]⇡

����
r=1

= �1.

The leaf T2 has trivial linear holonomy, so we conclude that

Nhol|r=1 =

⇢Z

�

⌦⌧ : [�] 2 H2(T2
,Z)
�

= Z ⇢ R

is a discrete subgroup. Notice, by the way, that the (non-linear) holonomy of the
compact leaf is non-trivial and that there are no holonomy-trivial � : ⌃! T2 with
[�] 6= 0, so one cannot compute @hol by transverse variations of symplectic areas.
In any case, the groups Nhol are discrete, but they do not form a smooth closed
sub-bundle of ⌫⇤(F⇡) (compare with Corollary 3.4.11).

3.5.2. An s-proper but not strong proper example. Consider now

M = T2 ⇥ R+
, ⇡ = t

@

✓2
^ @

@✓1
.

As above, Nmon = {0} and Nhol is clearly a lattice. In particular (M,⇡) is not
of strong proper type but, since the symplectic foliation is of proper type (even
simple), one may expect that (M,⇡) is of proper type. Let us prove all these in an
explicit manner. It is useful to remark that the universal cover of (M,⇡),

fM = R2 ⇥ R+
, e⇡ = t

@

⇠2
^ @

@⇠1
,

sits as an open Poisson submanifold of the linear h(3)⇤, where h(3) is the Lie algebra
of the Heisenberg group H(3) of unipotent upper triangular 3⇥ 3 matrices:

H(3) = {

0

@
1 x z

0 1 y

0 0 1

1

A : x, y, z 2 R}

and where we use ⇠1, ⇠2, t for the coordinates with respect to the canonical basis of
h(3)⇤, corresponding to x, y and z, respectively. Hence the canonical integration of

(fM, e⇡) is the action groupoid arising from the coadjoint action,

H(3) y R2 ⇥ R+
, (x, y, z) · (⇠1, ⇠2, t) = (⇠1 + ty, ⇠2 � tx, t). (3.10)

The symplectic form on this groupoid comes from the Liouville form on T
⇤H(3).

After trivializing T
⇤H(3) using left translations, in our coordinates, it becomes

⌦ = d⇠1 ^ dx+ d⇠2 ^ dy + dt ^ dz � tdx ^ dy � xdt ^ dy, (3.11)

Of course, one can check directly that (H(3) n fM,⌦) is a symplectic groupoid

integrating (fM, e⇡). The action of ⇡1(M) = Z2 is Poisson hence it lifts to an
action on the groupoid by symplectic groupoid automorphisms. Hence the canonical
integration of (M,⇡) can be described exactly as above using (3.10) and (3.11) but
with R2 ⇥ R+ replaced by T2 ⇥ R+ and the coordinates (⇠1, ⇠2) replaced by the
coordinates (✓1, ✓2) of T2. It is clear that this groupoid is not proper.
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Any other s-connected symplectic integration is obtained as a quotient modulo
a discrete normal subgroupoid H of the isotropy bundle, which is Lagrangian as a
submanifold of (⌃(M,⇡),⌦). Now observe that the isotropy bundle is:

{(x, y, z, ✓1, ✓2, t) 2 H3 ⇥M : yt 2 Z, xt 2 Z, z 2 R} ⇠= (Z2 ⇥ R)⇥M,

so any local (bi)section of the isotropy bundle is of the form:

(✓1, ✓2, t) 7!
⇣
m

t
,
n

t
, r(✓1, ✓2, t), ✓1, ✓2, t

⌘
,

where m,n 2 Z and r(✓1, ✓2, t) is smooth on M . The section is Lagrangian i↵:

r(✓1, ✓2, t) =
1

t2
(m✓1 + n✓2) + r0(t).

In particular, it follows that the co-compact lattices

H(✓1,✓2,t) =

⇢✓
m

t
,
n

t
,
✓1n+ ✓2m+ p

t2

◆
, n,m, p 2 Z

�

fit into a subgroupoid so that G := ⌃(M,⇡)/H is s-proper and ⌦ descends to G.
This gives an explicit s-connected, s-proper integration of (M,⇡) with ⇤G = Nhol.

3.5.3. The free Hamiltonian T -spaces perspective. A fundamental tool to construct
Poisson structures is by Hamiltonian reduction of symplectic manifolds. This is
recalled in Appendix A, in the general context of symplectic groupoids. Integral
a�ne manifolds (B,⇤) provide the simplest examples of symplectic groupoids: the
symplectic torus bundle T⇤. These give rise to the simpler theory of Hamiltonian
T⇤-spaces (see A.4) where one can take Corollary A.4.1 as definition. For a free
Hamiltonian T⇤-space q : (X,⌦X)! B with connected fibers, the reduced Poisson
manifold Xred = X/T⇤ is of proper type, it will have B as (smooth) leaf space and
the induced integral structure is precisely ⇤ (cf. Corollary A.4.2). Looking at the
explicit s-connected integrating groupoid X ?

T⇤
X given by (A.4), we see that:

(a) it is s-proper i↵ q : X ! B is proper;
(b) it is compact i↵ X is compact;
(c) it is the canonical integration i↵ the q-fibers are 1-connected.

Already when B is 1-dimensional, with the standard integral a�ne structure, pro-
duces interesting examples. For instance, the strong compact type example from
[37] arises via this procedure with B = S1. For B = R, using maps q with fibers
which are not 1-connected may produce examples which are not strong proper but
are proper (or s-proper if q is proper). The previous example fits into this scheme,
but here is a slightly more general class of examples.

Start with a symplectic manifold (S0,!0) and consider the regular Poisson mani-
fold M = S0⇥R+, whose symplectic leaves are (S0⇥{t}, t!0), Using the geometric
interpretation of the monodromy, we find that

Nmon = PerS2(!0) :=

⇢
[�] 2 ⇡2(S0, x0) :

Z

�

!0

�
⇢ R,

the group of spherical periods of !0. Since the holonomy of the foliation is trivial
Nhol is computed similarly and gives the full group of periods Per(!0). Hence, while
the discreteness of PerS2(!0) is the obstruction to integrability, the discreteness of
Per(!0) arises as an obstruction to properness. This time, this is the only obstruc-
tion. This can be seen by producing explicit proper integrations and that is done
by realizing M via reduction. Let us assume Per(!0) = Z, so that one can find a
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principal S1-bundle p : P ! S0 whose Chern class is [!0]. That means that we find
a connection 1-form ✓ 2 ⌦1(P ) with d✓ = p

⇤
!0. The symplectization of (P, ✓):

X = P ⇥ R+
, ⌦X = d(t✓),

with S1-acting on the first coordinate and q : (X,⌦X) ! R the projection, is a
Hamiltonian TZ-space. Its Poisson reduced space is Xred = M so, by the general
discussion, M is of proper type (and of s-proper type i↵ S0 is compact).

Here are some concrete examples, with various behavior of Nmon and Nhol:

(a) if (S0,!0) = (S2, a!S2), then Nmon = Nhol = a · Z;
(b) if (S0,!0) = (⌃g, b!⌃g ), then Nmon = 0 and Nhol = b · Z;
(c) if (S0,!0) = (S2⇥⌃g, a!S2 � b!⌃g ), then Nmon = a ·Z and Nhol = a ·Z+ b ·Z;
where a, b 2 R \ {0}, and !S2 , !⌃g , are normalized area forms on the sphere and on
the closed surface of genus g > 0. Cases (b) and (c) come with infinite fundamental
groups, hence they produce examples which are not strong proper. By the previous
discussion, they are s-proper except when a/b /2 Q. In all the cases one can proceed
as in the previous example (g = 1), and construct explicit s-connected, s-proper
integrations, this time using the Lie theory of SO(3) (if g = 0) or of SL(2) (if g > 1).

4. The linear variation theorem I: 1-connected leaves

4.1. The classical Duistermaat-Heckman Theorem. The linear variation in
the titles of this section and the next one refers to a fundamental result concerning
PMCTs, which is a generalization of the classical Duistermaat-Heckman Theorem
[21] on the variation of the cohomology class of the symplectic form of symplectic
reduced spaces. Let us recall this result in its simplest form.

Let a torus T act freely on a symplectic manifold (S,!) in a Hamiltonian fashion
with moment map µ : S ! t⇤. Then the symplectic reduced spaces S⇠ = µ

�1(⇠)/T
are all smooth symplectic manifolds with reduced symplectic form !⇠. They are
also di↵eomorphic because one has a local model for S around µ

�1(⇠0) for any
value ⇠0 2 t⇤ obtained as follows. Choose a connection 1-form ↵ on the principal
T- bundle q : µ�1(⇠0) ! S⇠0 , then a local model for S around µ

�1(⇠0) is given by
the product µ�1(⇠0)⇥ t⇤ furnished with the symplectic form:

pr⇤1 q
⇤
!⇠0 + dhpr2,↵i,

where !⇠0 is the reduced symplectic form in S⇠0 . The group Tn acts on µ
�1(⇠0)⇥ t⇤

by acting on the first factor, and the action is Hamiltonian with moment map the
second projection: µ = pr2 : µ�1(⇠0)⇥ t⇤ ! t⇤.

This local normal form leads to an identification of the symplectic reduced spaces
S⇠ ' S⇠0 , for ⇠ close to ⇠0. Under this identification, the symplectic forms are
linearly related:

!⇠ = !⇠0 + hF, ⇠ � ⇠0i,
where F 2 ⌦2(S⇠0 , t) is the curvature 2-form of the connection ↵:

q
⇤
F = d↵.

This identification of the symplectic reduced spaces depends on choices. How-
ever, any two identifications are related by an isotopy of S⇠0 , so one can compare
the cohomology classes of the symplectic forms, and this leads to:
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Theorem 4.1.1 (Duistermaat-Heckman [21]). If a torus T acts freely on a symplec-
tic manifold (S,!) in a Hamiltonian fashion with proper moment map µ : S ! t⇤

then the cohomology class of the reduced symplectic form varies linearly:

[!⇠] = [!⇠0 ] + hc, ⇠ � ⇠0i,
where c 2 H

2(S⇠0)⌦t is the Chern class of the principal T-bundle q : µ�1(⇠0)! S⇠0 .

From this result it follows also an important property of the measures or volume
forms associated with the symplectic forms. In order to state it, consider the
following volume forms:

• µ! := !
n

n! , the Liouville form on S (2n = dimS);
• µ

!

DH := µ⇤(µ!), the push-forward measure on t⇤;
• µA↵ , the Lebesgue measure on t⇤.

Then, we have the following corollary of the theorem above:

Corollary 4.1.2 ([21]). For a free Hamiltonian T-space (S,!, µ) with proper mo-
ment map, the Duistermaat-Heckman measure µ

!

DH and the Lebesgue measure µA↵

are related by:
µ
!

DH = vol ·µA↵ ,

where vol : t⇤ ! R is the function which associates to ⇠ 2 t⇤ the symplectic volume
vol(S⇠) of the reduced symplectic space. Moreover, this function is a polynomial of
degree at most 1

2 dimS⇠ = 1
2 dimS � dimT.

Notice that these results are really about the symplectic (or Poisson) geometry
of the Poisson manifold M = S/T, which has symplectic leaves the reduced spaces
S⇠ and leaf space the open subset µ(S) ⇢ t⇤. In the next sections we will provide
remarkable generalizations of these results, valid for any PMCT. Our formulation
of these results is made in terms of the developing map associated with the integral
a�ne structure on the leaf space, to be studied in this section. Our approach
does not rely on a local normal form and hence gives the classical results above an
entirely new perspective.

Throughout this section we fix a Poisson manifold (M,⇡) of s-proper type and
an s-connected, s-proper integration (G,⌦) ◆ (M,⇡). Moreover:

• Standing assumption in this section: The symplectic leaves of (M,⇡)
are 1-connected.

This assumption will be dropped in the next section, where we will consider the
general case. The advantage of dealing first with 1-connected symplectic leaves is
that there are no subtleties arising from the geometry of the leaf space: in this case
B = M/F⇡ is smooth and there is only one groupoid integrating F⇡, namely the
equivalence relation M⇥BM ⇢M⇥M associated with the submersion p : M ! B.
Therefore we do not have to worry about the foliation groupoid B(G) (cf. Theorem
2.6.9) or, equivalently, with the orbifold structure on B, which may be present even
when B is smooth but the leaves are not 1-connected.

4.2. The developing map for integral a�ne structures. The linear variation
theorem, in one form or another, involves a basic concept of integral a�ne geometry
which we have not discussed so far. This is done in this section, where we fix an
integral a�ne manifold (B,⇤) and we discuss its developing map [27, 51]. This
is a local di↵eomorphism of integral a�ne manifolds

dev : ( eB, e⇤)! (Rq
,Zq)
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defined on the universal cover eB endowed with the pull-back e⇤ of ⇤. Let us first
recall the standard definition:

Fix a point b0 2 B and an integral a�ne chart (U0,�0) centered
at b0. For any path � starting at b0, cover it by a finite number of
integral a�ne charts �i : Ui ! �i(Ui) ⇢ Rq, 0  i  r. Arrange
the coordinates charts inductively so that each two consecutive ones
match on the intersection (this can be done since the changes or co-
ordinates, being a�ne, are defined on the entire Rq). Then dev([�])
is the image of �(1) by the last coordinate chart.

If one restricts to loops � and considers the entire change of coordinates between
the first and the last chart, one obtains the integral a�ne holonomy represen-
tation h

A↵ : ⇡1(B)! A↵Z(Rq), where ⇡1(B) = ⇡1(B, b0). Of course,

h
A↵ = (dev(�), hlin(�))

where hlin : ⇡1(B)! GLZ(Rq) is the linear holonomy representation of (B,⇤),
i.e. the linear holonomy of the flat connection on B induced by ⇤. These represen-
tations give rise to the a�ne holonomy group �A↵ := h

A↵(⇡1(B)) ⇢ A↵Z(Rq)
and similarly the linear holonomy group �lin. Note that �A↵ is an integral a�ne
group as in Example 3.1.3, whose linear part is �lin. The factorization of the linear
holonomy representation:

⇡1(B)
h
Aff
// �A↵

pr2
// �lin

gives rise to a sequence of covering spaces by integral a�ne manifolds:

eB // B
A↵

// B
lin

// B

where the middle and the last spaces are called the a�ne and linear holonomy
covers, respectively. They are the smallest covers with trivial a�ne and linear
holonomy, respectively. For instance, in the situation of Example 3.1.3, eB = B

A↵ =
Rq and B

lin = Rq
/�tr.

The standard definitions given above for the developing map and the a�ne ho-
lonomy have a drawback: they both depend on a choice of a base point b0 2 B and
an integral a�ne chart around b0. However, it is possible to give a more intrinsic
definition, in the spirit of the present work, using the language of groupoids, as
we now explain. This approach will turn out to be very useful in the sequel. We
denote by GL⇤_(TB) ◆ B (respectively, A↵⇤_(TB) ◆ B) the Lie groupoid whose
arrows are the integral linear (respectively, integral a�ne) isomorphisms between
the fibers of TB. Our convention is that an arrow � : TxB ! TyB has source y

and target x. Notice that:

(i) Parallel transport for the canonical flat connection r of (B,⇤) defines the
linear holonomy, which can be seen as morphism of Lie groupoids:

h
lin : ⇧1(B)! GL⇤_(TB), h

lin([�]) : T�(1)B ! T�(0)B. (4.1)

(ii) The connection r is torsion free and this can be interpreted as saying that
the identity map

Id : TB ! TB
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is a 1-cocycle on the Lie algebroid TB with coe�cients in the representation
TB. Hence, it integrates to a groupoid 1-cocycle in ⇧1(B) with values in TB:

dev : ⇧1(B)! TB, [�] 7! dev([�]) 2 T�(0)B.

The general formula for integrating algebroid 1-cocycles gives the expression:

dev([�]) =

Z 1

0
h
lin(�✏)(�̇(✏))d✏,

and the cocycle condition means that for any two composable arrows in ⇧1(B):

dev([�] � [⌧ ]) = dev([⌧ ]) + h
lin([⌧ ])(dev([�])).

These two pieces of structure can be organized together into an integral a�ne
action of ⇧1(B) on (TB,⇤_): any [�] 2 ⇧1(B) induces an a�ne transformation

T�(1)B ! T�(0)B, v 7! v · [�] = dev([�]) + h
lin([�])(v).

Hence, one obtains a morphism of Lie groupoids

h
A↵ : ⇧1(B)! A↵⇤_(TB). (4.2)

In order to recover the classical/based a�ne holonomy representation and devel-
oping map, one restricts to the isotropy group of ⇧1(B) at b0, which is ⇡1(B, b0),
and to the s-fiber above b0, which is the model for the universal cover using paths
starting at b0: eB = s

�1(b0). One obtains the linear and a�ne representations at b0,

h
lin|b0 : ⇡1(B, b0)! GL⇤_

b
(Tb0B), h

A↵ |b0 : ⇡1(B, b0)! A↵⇤_
b0
(Tb0B),

and the developing map at b0,

dev |b0 : eB ! Tb0B.

Finally, a choice of a basis b⇤ for ⇤b0 (which is equivalent to a choice of an inte-
gral a�ne chart centered at b0) leads to an identification (Tb0B,⇤_

b0
) ⇠= (Rq

,Zq),
and we recover the original notions. Note also that, since ⇧1(B) is transitive, no
information is lost by restricting at b0.

The description of dev : eB ! Rq as a 1-cocycle for ⇡1(B, b0) with values in Rq

appears in the work of Matsusima [38], who attributes the idea to Koszul.

Remark 4.2.1. The image ⌦ ⇢ Rq of dev : eB ! Rq is an open subset which is
invariant under the a�ne action of �A↵ . When the action is free and proper, the
induced map B ! ⌦/�A↵ will be a local di↵eomorphism between integral a�ne
manifolds. The conclusion of the Markus conjecture (Conjecture 3.1.4) is equivalent
to saying that ⌦ = Rq and that the last map is a di↵eomorphism. In turn, this is
also equivalent to the condition that the linear connection is geodesically complete.

4.3. The linear variation. We now return to Poisson geometry and define the
linear variation of the leafwise symplectic cohomology class.

Under our standing assumption, the transverse integral a�ne structure ⇤G ⇢
⌫
⇤(F⇡) defined by G (see Theorem 3.3.1) is the pull-back of an integral a�ne struc-

ture on the manifold B = M/F⇡. In this section we will only use the structure on
B, for which we use the same notation ⇤G .

On the other hand, we can define a vector bundle H ! B whose fibers are the
degree 2 cohomology of the symplectic leaves:

Hb := H
2(Sb)
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There are two things to notice about the vector bundle H! B:

(i) the integral cohomology yields a structure of an integral vector bundle (H,HZ);
(ii) the leafwise symplectic form yields a canonical section $ 2 �(B,H):

b 7! $b := [!p�1(b)] 2 H
2(Sb). (4.3)

There is a rich interplay between the integral a�ne structure ⇤G on B and the
integral vector bundle (H,HZ). To make this precise note that, by (i) above, the
bundle H ! B has a canonical flat connection r, the so-called Gauss-Manin
connection. Our first formulation of the variation of the symplectic form is:

Definition 4.3.1. The linear variation of $ is the bundle map:

varlin
$

: TB ! H, v 7! varlin
$
(v) := rv$.

Its image is called the linear variation bundle of $, denoted:

V lin
$

:= varlin
$
(TB) ⇢ H,

and it has an integral part, denoted:

V lin
$,Z := varlin

$
(⇤_

G
),

where ⇤_

G
⇢ TB is the lattice induced by (G,⌦).

Note that the linear variation $, as well as its image V lin
$
, does not depend on

the specific integration (G,⌦), while the integral part V lin
$,Z does.

We will see that we have always V lin
$,Z ⇢ HZ. A key ingredient in the proof is the

following: since F⇡ is regular, we can choose a splitting for all leaves at the same
time, i.e., a bundle map ⌧ : F⇡ ! T

⇤
M which is a splitting of ⇡] : T ⇤

M ! F⇡.
The curvature ⌦⌧ of this splitting gives a 1-form [⌦⌧ ] 2 ⌦1(B;H) by setting:

[⌦⌧ ] : TB ! H, vb 7! [h⌦⌧ , vbi] 2 H
2(Sb).

Here we use the identification TbB
⇠= ⌫x(F⇡), so vb can be thought of as a constant

section of ⌫(Sb). Note that [⌦⌧ ] is independent of the choice of splitting ⌧ and:

Proposition 4.3.2. If (M,⇡) is regular with compact, 1-connected, leaves, then:

r$ = [⌦⌧ ]. (4.4)

In particular, if v 2 TbB and � : (S2, pN )! (Sb, x), then:Z

�

varlin
$
(v) = h@mon([�]), vi. (4.5)

Proof. Clearly, the integral formula (4.5) follows from (4.4) and the definition of
the monodromy in terms of the curvature.

To prove (4.4), let us a chose a distribution D ⇢ TM complementary to F⇡, so
that D ⇠= ⌫(F⇡). This gives rise to a unique extension e! 2 ⌦2(M) of the leafwise
symplectic form satisfying iV e! = 0, for any V 2 D. This extension, in turn, gives
rise to a splitting ⌧ : F⇡ ! T

⇤
M , X 7! iXe!, with a curvature 2-form ⌦⌧ . We

claim that if V 2 X(D) is any vector field defined in a neighborhood of Sb whose
restriction to Sb projects to vb 2 TB, then:

(a) for any section ⌘̄ 2 �(H) represented by ⌘ 2 ⌦2(M) with iV ⌘ = 0 one has:

rv ⌘̄ = [(£V ⌘)|Sb ];

(b) £V e! = ⌦⌧ (V ).
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These will imply (4.4).
Item (a) follows from the fact that the Gauss-Manin connection can be defined

by lifting a vector field X on B to M via a distribution D, since the flow of the
horizontal lift gives a 1-parameter group of di↵eomorphisms of the fibers, that
preserves the integral cohomology.

In order to prove item (b), we see that, for any X,Y 2 F⇡, the definition of the
curvature 2-form gives:

⌦⌧ (X,Y )(V ) = h[⌧(X), ⌧(Y )]⇡ � ⌧([X,Y ]), V i
= h[iXe!, iY e!]⇡, V i
= �(£V ⇡)(iXe!, iY e!) = (£V e!)(X,Y ),

which shows that (b) holds. Here, we have used first that

iV [↵,�]⇡ = i⇡](↵)diV � � i⇡](�)diV ↵� (£V ⇡)(↵,�), (↵,� 2 ⌦2(M))

together with iV e! = 0 and ⇡(iXe!, iY e!) = �e!(X,Y ), which yields:

(£V ⇡)(iXe!, iY e!) = �(£V e!)(X,Y ).

⇤

In what follows we make use of the following terminology related to integral
vector bundles (E,EZ): a weak integral sub-bundle of E is an integral vector
bundle (F, FZ) for which F is a vector sub-bundle and FZ ⇢ EZ; it is called an
integral vector sub-bundle if FZ = F \ EZ.

Proposition 4.3.3. For any Poisson manifold (M,⇡) with 1-connected leaves and
an s-connected, s-proper integration G, varlin

$
is a ⇧1(B)-equivariant morphism of

integral vector bundles,

varlin
$

: (TB,⇤_

G
)! (H,HZ).

Moreover, (V lin
$
,V lin

$,Z) is a weak integral a�ne vector sub-bundle of (H,HZ). In
the strong s-proper case it is an integral a�ne sub-bundle.

Proof. We first show that varlin
$
(⇤_

G
) ⇢ HZ. For this, fix b 2 B, let v 2 TbB and

choose x 2 p
�1(b). Using that Nmon ⇢ ⇤G and Proposition 4.3.2, we see that:

v 2 ⇤_

G
⇢ Tp(x)B () �(v) 2 Z, 8 � 2 ⇤G

=) @x(�)(v) 2 Z, 8 � 2 ⇡2(S, x)

()
Z

�

varlin
$
(v) 2 Z, 8 � 2 ⇡2(S, x)

() varlin
$
(v) 2 H

2(S,Z)
where, for the last implication, we used that S is simply connected. This proves
that varlin

$
(⇤_

G
) ⇢ HZ. Since the actions of ⇧1(B) on TB and H are by parallel

transport relative to the flat connections determined by ⇤G and HZ, we also obtain
that varlin

$
is ⇧1(B)-equivariant.

Next we prove that V lin
$,Z is a lattice in V lin

$
. It is discrete since it sits inside

HZ, hence it su�ces to remark that V lin
$
/V lin

$,Z is compact. But this follows from
the fact that ⇤_

G
is a lattice in TB and we have a surjective map:

varlin
$

: TB/⇤_

G
! V lin

$
/V lin

$,Z.
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Finally, in the strong s-proper case, the only implication above becomes an
equivalence, and we obtain that V lin

$,Z = HZ \ V lin
$
. ⇤

The previous proposition allows one to identify certain “building blocks” sitting
inside (M,⇡). The extreme cases follow easily from the previous two propositions:

Corollary 4.3.4. For any s-proper Poisson manifold (M,⇡) with simply connected
leaves one has:

(i) Zero-variation: varlin
$

= 0 i↵ p : (M,⇡)! B is a symplectic fibration;
(ii) Full-variation: varlin

$
is injective i↵ (M,⇡) is strong s-proper.

Proof. By Proposition 4.3.2, varlin
$

= 0 is equivalent to the fact that all the classes
[⌦⌧ |Sb ] vanish. These classes are the restrictions to the leaves of a global class
[⌦⌧ ] 2 H

2(F⇡, ⌫
⇤), which can also be described more directly (see [12]) by choosing

an extension e! 2 ⌦2(M) of the symplectic forms on the leaves, and then taking:

⌦⌧ (X,Y )(V ) = d⌫e!(X,Y )(V ) = de!(X,Y, V ).

A spectral sequence argument and the fact that the leaves are 1-connected, implies
that the vanishing of all the classes [⌦⌧ |Sb ] is equivalent to the existence of an
extension e! such that d⌫e! = 0. This last condition is a well-known characteriza-
tion of symplectic fibrations (see [28]).

By Proposition 4.3.2, Ker(varlin
$
) is the annihilator of Nmon and, by Proposition

4.3.3, Im(varlin
$
) is a discrete group. Hence the injectivity of varlin

$
is equivalent to

Nmon being a lattice. By Theorem 3.4.1, this is equivalent to (M,⇡) being of strong
s-proper type. ⇤

When an s-proper Poisson manifold (M,⇡) has full-variation, Proposition 4.3.3
above shows that varlin

$
realizes (TB,⇤_) as an integral vector sub-bundle of (H,HZ)

if and only if G is the Weinstein groupoid of (M,⇡).
For the general case, we look at

K := Ker(varlin
$
) ⇢ TB

and this leads to a decomposition of (M,⇡) into a foliation by Poisson submanifolds
of zero-variation:

Theorem 4.3.5. For any s-proper Poisson manifold (M,⇡) with simply connected
leaves, K defines an involutive distribution of constant rank. If (G,⌦) is an s-
connected, s-proper integration, then one has:

(i) The subgroup

{⇠ 2 T
⇤
B : ⇠(v) 2 Z for all v 2 (varlin

$
)�1(HZ)} ⇢ T

⇤
B

sits inside ⌫
⇤(K) and defines a transverse integral a�ne structure for K;

(ii) Each leaf K of K is an integral a�ne submanifold of B and the resulting
Poisson submanifold

MK := p
�1(K) ⇢M

has zero-variation. In particular, p : MK ! K is a symplectic fibration over
the integral a�ne manifold K;

(iii) For any transversal T to K of complementary dimension, the resulting Poisson
submanifold

MT := p
�1(T ) ⇢M

is a Poisson manifold of strong s-proper type.
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Proof. First of all, the fact that varlin
$

is ⇧1(B)-equivariant implies that K has cons-
tant rank. The Gauss-Manin connection being flat, its curvature tensor vanishes,
which obviously implies involutivity of K.

Next, we turn to the proof of (i). We work at the level of B: under the isomor-
phism ⌫

⇤

x
(F) ⇠= T

⇤

p(x)B, the monodromy group of (M,⇡) at any x 2 p
�1(b) becomes

a subgroup Nmon|b ⇢ T
⇤

b
B. Moreover, by Theorem 3.4.1 (i), we have

Nmon ⇢ ⇤G ⇢ T
⇤
B.

Since ⇤G is a lattice, the fibers Nmon|b will be discrete, hence also closed in T
⇤

b
B.

For a closed subgroup C ⇢ V in a vector space, we set

C_ := {⇠ 2 V
⇤ : ⇠(C) ⇢ Z}.

Notice that (C_)_ = C. Also, to any such closed subgroup C we associate two
subspaces: Span(C) ⇢ V the span over R, and Cospan(C) ⇢ V the cospan over
R, defined as the largest vector subspace of V contained in C. Note that the
span/cospan of C_ coincides with the annihilator of the cospan/span of C. Moreover:

(a) if C is discrete, then C is a lattice in Span(C);
(b) if C spans V , then C/Cospan(C) is a lattice in V/Cospan(C).

Back to our situation, Proposition 4.3.2 shows that K is the annihilator of Nmon.
Equivalently, Span(Nmon) = K0 so Nmon is a lattice in ⌫

⇤(K) = (K)0. Since
Nmon ⇢ ⇤G , sections of Nmon are necessarily closed forms, hence Nmon defines a
transverse integral a�ne structure for K. In order to obtain the description of Nmon

directly in terms of varlin
$
, one notes that the sequence of implications in the proof

of Proposition 4.3.3 all become equivalences if we replace ⇤_

G
by N_

mon, so that:

N_

mon = (varlin
$
)�1(HZ). (4.6)

Since Nmon = (N_

mon)
_ this proves the description in (i).

While (i) is a statement about Nmon, part (ii) of the proposition is about ⇤G

and its subtle interaction Nmon. We need to prove that K \ ⇤_

G
is a lattice in K.

Since it is clearly discrete, it su�ces to prove that the resulting quotient

K/K \ ⇤_

G
⇠= (K + ⇤_

G
)/⇤_

G

is compact. Under the previous identification, this quotient is the kernel of the map

N_

mon/⇤
_

G
! N_

mon/(K + ⇤_

G
).

Notice that the image of the last map is discrete, since it is a quotient of N_

mon/K,
which is itself discrete by part (i). This implies that the kernel is closed inN_

mon/⇤
_

G
,

hence it su�ces to remark that this last space is compact. Indeed, (4.6) implies
that N_

mon/⇤
_

G
is the kernel of the map induced by varlin

$
:

varlin
$

: TB/⇤_

G
// V lin

$
/V lin

$,Z,

and since TB/⇤_

G
is compact, the result follows. To conclude the proof of (ii),

notice that MK with the induced Poisson structure will have zero variation, since
the associated normal bundles are precisely the kernel of varlin

$
.

Finally, to prove (iii), the linear variation map for MT will be just the injective
descent of varlin

$
, defined on TB/K, modulo the obvious identifications:

TbB/Kb
⇠= Tb(T ) ⇠= T

⇤

x
MT /Fx, with b = p(x).

⇤
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Example 4.3.6. For a Lie algebra g of compact type, the dual M = g⇤ is a Poisson
manifold of proper type. In this case, we have the decomposition g = z � gss into
center and semisimple part, and z = {0} if and only if g⇤ is of strong-proper
type. The passing from M to MT in Proposition 4.3.5 should be seen as a Poisson
generalization of the passing from a compact Lie algebra to its semi-simple part.
This example will be further discussed in Section 4.6.1.

4.4. The linear variation theorem. We now move to the study of the actual
variation of $:

Definition 4.4.1. The variation of $ is the bundle map:

var$ : ⇧1(B)! H, [�] 7! �
⇤
$�(1),

where �
⇤ stands for the parallel transport associated to the Gauss-Manin connec-

tion. The variation bundle of $ is the image of var$:

V $ := Im(var$) ⇢ H

Our aim now is to show that the variation is linear. For this, as it will become
apparent in the sequel, it is more natural to consider an a�ne point of view. We
define the a�ne variation of $ to be:

varA↵
$

:= $ + varlin
$

: TB ! H,

and the a�ne variation bundle to be its image:

V A↵
$

:= varA↵
$

(TB) = $ + V lin
$
.

From this point of view, the relevant action of ⇧1(B) on TB is the one by a�ne
transformations, as given by (4.2). We will refer to it as the integral a�ne action
of ⇧1(B) on TB. On H, we will continue to use the linear action of ⇧1(B).

Our first version of the statement that the variation is linear or, more precisely,
a�ne, is the following:

Theorem 4.4.2. For any s-proper Poisson manifold (M,⇡) with 1-connected leaves
and an s-connected, s-proper integration (G,⌦), the developing map dev of the
integral a�ne structure on B = M/F⇡ identifies the variation of $ with its a�ne
variation, i.e. one has a commutative diagram:

⇧1(B)
var$

//

dev
##

H

TB

varAff
$

>>

In particular, V $ is open in V A↵
$

and they are both ⇧1(B)-invariant. Moreover,
the variation V $,b ⇢ H

2(Sb) at each b 2 B sits inside the symplectic cone of the
symplectic leaf Sb.

Remark 4.4.3. The commutativity of the diagram in Theorem 4.4.2 is equivalent
to saying that varA↵

$
is equivariant. In this way,

varA↵
$

: (TB,⇤_

G
)! (H,HZ)

becomes a morphism of integral a�ne representations of ⇧1(B).
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Proof. The commutativity of the diagram in the statement is equivalent to the
commutativity of

⇧1(B)
�($)

//

dev
##

H

TB

varlin$

>>

where �($) : ⇧1(B)! H is defined by:

�($)([�]) := �
⇤
$�(1) �$�(0).

Note that in this diagram:

(a) �($) : ⇧1(B) ! H is the 1-cocycle on ⇧1(B) coboundary of the 0-cycle $ 2
�(H); it di↵erentiates to the algebroid 1-cocycle v 7! rv$, i.e., varlin

$
;

(b) dev : ⇧1(B) ! TB is the 1-cocycle on ⇧1(B) with values in TB which inte-
grates the algebroid 1-cocycle Id : TB ! TB.

(c) varlin
$

: TB ! H is a morphism of representations.

It follows that the corresponding infinitesimal diagram is:

TB
varlin$

//

Id
""

H

TB

varlin$

==

which is trivially commutative (in this diagram varlin
$

appears in two distinct roles:
as a Lie algebroid cocycle on the horizontal arrow and as a morphism of represen-
tations on the diagonal arrow). ⇤

In order to obtain a more concrete picture, let us fix

• a base point b0 2 B, and
• a Z-basis b⇤ = {�1, . . . ,�q} for ⇤b0 .

The a�ne holonomy representation becomes (for notations, see Example 3.1.3):

h
A↵
0 : ⇡1(B, b0)! A↵Z(Rq), � 7! (v� , A�).

Hence the main data consists of the v� = (v1
�
, . . . , v

q

�
) and A� = (Aj

i
(�)), where our

convention is such that A(�)ei =
P

j
A

j

i
(�)ej .

If (S,!0) is the symplectic leaf corresponding to b0, then the maps/actions in
the previous discussion become:

(i) a variation map with respect to paths that start at b0:

var0 : eB ! H
2(S), var0(�) = �

⇤[!�(1)]

(ii) a linear action of ⇡1(B, b0) on H
2(S), that makes var0 equivariant.

(iii) a ⇡1(B, b0)-invariant weak integral a�ne subspace V A↵
0 = [!0]+V

lin
0 ⇢ H

2(S).

For any x 2 S, let P := s
�1(x) be the s-fiber above x of the s-proper integration

(G,⌦) ◆ (M,⇡). The submersion t : P ! S is a principal Gx-bundle and the choice
of basis b⇤ gives an identification of the isotropy group with the standard q-torus
Tq. Hence P ! S becomes a principal Tq-bundle and we consider its Chern classes:

c1, . . . , cq 2 H
2(S) (integral classes)

Since S is simply connected these classes do not depend on the base point x 2 S.
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Corollary 4.4.4. The Chern classes c1, . . . , cq 2 H
2(S) generate the space of linear

variations of ! at b0:

V
lin
0 = SpanR(c1, . . . , cq), V

lin
0,Z = SpanZ(c1, . . . , cq).

The action of ⇡1(B, b) on V
A↵
0 ⇢ H

2(S) is given by

�
⇤([!0]) = [!0] +

X

k

v
k

�
ck, �

⇤(ci) =
X

k

A
k

i
(�)ck, (4.7)

and for any path � in B starting at b0 one has

�
⇤([!�(1)]) = [!0] + dev10(�)c1 + . . .+ devq0(�)cq,

where devi0 are the components of dev0 = dev|
b0,b⇤

: eB ! Rq. Hence, we have a
commutative diagram:

eB var0
//

dev0
��

V
A↵
0 ⇢ H

2(S)

Rq

(vi) 7![!0]+
P

i v
i
ci

==

where the image of var0 is an open, ⇡1(B)-invariant subset of V A↵
0 , sitting inside

the symplectic cone of H2(S).

Note that in the strong s-proper case the Chern classes c1, . . . , cq are linearly
independent, so var0 is a local di↵eomorphism, and if G is the canonical integration
then they form a primitive family, in the sense that:

SpanZ(c1, . . . , cq) = SpanR(c1, . . . , cq) \H
2(S,Z).

Hence, V A↵
0 is an integral a�ne subspace of H2(S), not only a weak one.

Proof. The corollary follows from Proposition 4.3.3 and Theorem 4.4.2 once we
realize that varlin0 (�i) = ci. This follows immediately from (4.4). ⇤

Remark 4.4.5. The corollary shows that, for any v 2 Im(dev0) ⇢ Rq, one can
find a symplectic form !v on S such that, in cohomology, we have:

[!v] = [!0] + v
1
c1 + · · ·+ v

q
cq.

This gives an explicit description for the image of the variation map inside the
symplectic cone as:

Im(var0) = {[!v] : v 2 Im(dev0)} ⇢ H
2(S).

Note however that the symplectic forms !v are not unique. Also, while they can
locally be chosen to depend smoothly on v, it is not clear whether v 7! !v can be
chosen smooth on the entire open Im(dev0).

Theorem 4.4.2 and Corollary 4.4.4 should already remind the reader of the classic
Duistermaat-Heckman Theorem (see Theorem 4.1.1). We defer to the next section
the detailed explanation of this connection.

For now we observe that the previous results suggests the following strategy to
construct examples of PMCTs. For simplicity we restrict to integral a�ne manifolds
which are complete (see Conjecture 3.1.4).
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Proposition 4.4.6. Consider an integral a�ne manifold of type B = Rq
/�, with

� ⇢ A↵Z(Rq), and S a compact 1-connected manifold. Assume that the following
conditions hold:

(i) � acts on S and there is a smooth �-equivariant map

Rq 3 v 7! !v 2 ⌦2
sympl(S).

(ii) There exist linearly independent integral cohomology classes c1, . . . , cq in H
2(S)

such that:

[!v] = [!0] + v
1
c1 + . . .+ v

q
cq, 8 v 2 Rq

. (4.8)

Then M := S ⇥� Rq is a regular Poisson manifold of strong s-proper type (hence,
if B is compact, then M is of strong compact type).

More generally, condition (i) can be replaced by a smooth family of symplectic
forms wv on S and a lifting of the integral a�ne action of � on Rq to an action on
(S ⇥ Rq

,!v) by Poisson di↵eomorphisms (not necessarily a product action).

Note that the equivariance condition and (4.8) imply that the action of � on
[!0] and the cis is given by (4.7). Therefore, in practice, one starts from some
smooth integral a�ne group � ⇢ A↵Z(Rq) writing its elements in the split form
� = (v� , A(�)) (cf. Example 3.1.3) and as a first step one tries to realize the
identities (4.7) inside the cohomology of a compact manifold S. Observe that this
already produces the cohomology bundle H = H

2(S) ⇥� Rq, together with the
section $. The second and much harder step is to represent the right hand side of
(4.8) by symplectic forms and to lift the action of � on cohomology to an action by
Poisson di↵eomorphisms.

Example 4.4.7. The simplest case to consider is B = S1 with its usual integral
a�ne structure. The resulting problem turns out to be very closely related to
McDu↵ and Salamon’s question on the existence of symplectic free circle actions
with contractible orbits. Actually, the example given by Kotschick in that context
[32] turns out to be precisely the answer to our problem for B = S1 (see also [37]).
That produces a very interesting example of Poisson manifold of strong compact
type with leaf space S1 and K3 surfaces as symplectic leaves. As we shall explain in
future work, one can use the structure of the moduli space of marked K3 surfaces
to apply Proposition 4.4.6 (the key feature is the strong Torelli theorem, which
requires the most general version of condition (i)) and obtain similar PMCTs of
strong compact type with base the standard T2 and symplectic leaf the K3 surface
(more generally, the Hilbert scheme of n points on the K3 surface).

4.5. The twisted Dirac case. We now briefly discuss the changes one needs to
make so that the previous section applies also to twisted Dirac structures (for the
motivation, please see the Introduction). Therefore we fix a closed 3-form � 2
⌦3(M) and a �-twisted Dirac structure L on M which, as before, we assume to be
regular, of s-proper type, with 1-connected leaves, and with leaf space B = M/FL.

To make sense of the linear variation, we interpret the class of fiberwise presym-
plectic forms as a section of a bundle over B, generalizing the section $ 2 �(H)
used above. This forces us to consider the �-twisted version of H:

Definition 4.5.1. The �-twisted (second) cohomology at b 2 B is

H�

b
= H

2(Sb,�b) :=
{� 2 ⌦2(Sb) | d� + �b = 0}

{d⌦1(Sb)}
.
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Notice that this definition applies to any proper fibration p : M ! B together
with a closed 3-form � 2 ⌦3(M) whose restriction �b to each fiber is exact (so that
each H�

b
is non-empty).

The cohomology H�

b
is not a vector space, but it is an integral a�ne space with

underlying integral a�ne vector space (Hb,HZ,b). As �b is exact, Hodge theory
implies that these a�ne spaces fit into an integral a�ne bundle (H�

,HZ) with
underlying integral vector bundle (H,HZ).

Remark 4.5.2 (Integral a�ne bundles). Given an a�ne bundle E ! B we denote
by E

lin its underlying vector bundle. An integral a�ne bundle (E,E
lin
Z ) is an

a�ne bundle E together with a lattice E
lin
Z ⇢ E

lin. As before, one can talk about
(weak) integral a�ne sub-bundle and of morphisms between integral a�ne bundles.

The notion of a�ne connection makes sense on any a�ne bundle E ! B: the
space of sections �(E) is an a�ne space with underlying vector space �(Elin) and
an a�ne connection is an a�ne map

r : �(E)! ⌦1(B,E
lin)

whose linear part is a linear connection on E
lin. A (local) flat section s is a section

satisfying rs = 0 and a flat a�ne connection is one for which there exist local
flat sections through every point in E. If the a�ne connection is flat, then so is it
underlying linear connection on E

lin. A flat integral a�ne bundle is an integral
a�ne bundle (E,E

lin
Z ) endowed with a flat a�ne connection r whose underlying

linear connection rlin coincides with the one induced by the lattice E
lin
Z .

The notion of parallel transport and its basic properties extend to the setting of
a�ne connections. In particular, a flat integral a�ne bundle is the same thing as an
integral a�ne bundle (E,E

lin
Z ) together with an action of ⇧1(B) on E by integral

a�ne transformations of the fibers. Also, a morphism of flat integral a�ne
bundles is an integral a�ne morphism f : E ! F which is ⇧1(B)-equivariant.

While any vector space/bundle is canonically a�ne, any integral vector bundle
is canonically a flat integral a�ne bundle, with the connection associated with the
integral structure. An a�ne space/bundle is non-canonically isomorphic as a�ne
spaces/bundles to its underlying vector space/bundle, and similarly if we add the
adjective “integral”, because an a�ne bundle always has a global section. However,
a flat integral a�ne bundle E is not isomorphic as flat integral a�ne vector bundles
to its underlying integral a�ne vector bundle, unless E has a global flat section.
This is equivalent to the vanishing of the so-called radiance obstruction of the
flat a�ne bundle [26].

Example 4.5.3. Consider the tangent bundle TB of an integral a�ne manifold
(B,⇤). Obviously, (TB,⇤_) is an integral vector bundle, hence also a flat integral
a�ne one: the corresponding action of ⇧1(B) on TB is precisely the one induced
by the linear holonomy representation (4.1). However, TB admits yet another flat
integral a�ne structure, namely the one defined by the a�ne holonomy action of
⇧1(B) on TB given by (4.2). For TB together with this flat integral a�ne structure
we will reserve the notation T

A↵
B, and this is our realization of the a�ne tangent

bundle from [26]. Of course, the only di↵erence between T
A↵

B and TB lies on the
⇧1(B)-action that one considers.
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In this framework, the identification of the variation with the a�ne variation
from Theorem 4.4.2 is equivalent to saying that

varA↵
$

: (TA↵
B,⇤_)! (H,HZ)

is a morphism of flat integral a�ne bundles (see Remark 4.4.3). Moreover, the a�ne
variation bundle V A↵

$
is a flat integral a�ne bundle, with underlying integral a�ne

vector space (V lin
$
,V lin

$,Z) and the previous statement about varA↵
$

can be split into

two: (i) varA↵
$

: TA↵
B ! V A↵

$
is a morphism of flat integral a�ne bundles and (ii)

V A↵
$

is a weak sub-bundle of (H,HZ).

Definition 4.5.4. For any a proper fibration p : M ! B with a closed 3-form
� 2 ⌦3(M) whose restriction to each fiber is exact, the twisted Gauss-Manin
connection r� : �(H�)! ⌦1(B,H) is given by:

hr�

v
(s), [�0]i =

d

dt

����
t=0

 Z

@([0,t]⇥⌃)
�
⇤
s+

Z

[0,t]⇥⌃
�
⇤
�

!
(4.9)

where v 2 TbB, s 2 �(B,H�), [�0] 2 H2(Sb) is a homology class represented by a
map �0 : ⌃! Sb, and � : [0, 1]⇥ ⌃!M is a map of fibrations extending �0 with
base map a curve in B representing v.

The independence of this definition on choices is a consequence of Stokes’ theorem
and the exactness of � on fibers. One checks directly that r� is a morphism of
a�ne spaces, and that its linear part is the Gauss-Manin connection on H.

A local flat section through any c 2 H�

b
can be constructed as follows: over a

contractible neighborhood of b the twisting form is exact: � = d�. Therefore [��]�
defines a local flat section. It can be translated to attain the value c at b by adding
the appropriate local flat section of H. Therefore H� is a flat integral a�ne bundle
with underlying integral vector bundle (H,HZ).

Now, given a �-twisted Dirac manifold (M,L) we have the section $ 2 �(H�)
and the twisted Gauss-Manin connection, and this allows one to proceed as before.
We can define the linear and a�ne variations by the same formulas:

varlin
$

:= r�
$ : TB ! H, varA↵

$
:= $ + varlin

$
: TB ! H�

and similarly for the linear/a�ne variation bundles V lin
$

and V A↵
$

. Also, using the
induced action of ⇧1(B) by parallel transport on H� one obtains the variation map

var$ : ⇧1(B)! H�
, [�] 7! �

⇤
$.

and its image the variation bundle V $.
The main results from the previous section carry over to this context, with more

or less obvious modifications. For example:

Theorem 4.5.5. For any s-proper �-twisted Dirac manifold (M,L) with 1-connec-
ted leaves and an s-connected, s-proper integration (G,⌦,�), the developing map
dev of the integral a�ne structure on B = M/F⇡ identifies the variation of $ with
its a�ne variation, i.e. one has a commutative diagram:

⇧1(B)
var$

//

dev &&

H�

TB

varAff
$

::

In particular, V $ is open in V A↵
$

and they are both ⇧1(B)-invariant.
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Proof. The proof of Theorem 4.4.2 applies word by word, with one exception: one
needs to be careful with the inclusion varlin

$
(⇤_

G
) ⇢ HZ of Proposition 4.3.3. For

that, we need to make sure that Proposition 4.3.2 still holds, and that sends us back
to a description of the monodromy map in terms of variations of presymplectic areas.
That was based on the choice of a splitting ⌧ of (3.6) and the use of its curvature
(3.7). Such a splitting is provided by any extension of the foliated form ! to a
2-form on M and the curvature ⌦⌧ is computed using the �-twisted Dirac bracket.
The resulting formula is precisely (4.9), where ⌃ is a sphere and the variation is
determined by the corresponding vector at the image of its north pole. ⇤

4.6. Two examples from Lie theory.

4.6.1. Regular coadjoint orbits. Let G be a compact, connected Lie group with g
its Lie algebra. The symplectic groupoid (T ⇤

G,!can) is an s-proper integration
of the linear Poisson structure on g⇤. The regular set M := g⇤reg, consisting of
those coadjoint orbits with stabilizer a maximal torus, is a regular Poisson mani-
fold of s-proper type and G := (T ⇤

G)|g⇤
reg

◆ g⇤reg is a proper symplectic integration,
inducing a transversal integral a�ne structure ⇤G . Compact coadjoint orbits are
1-connected, so our standing assumption holds and the leaf space of g⇤reg is a smooth
integral a�ne manifold (B,⇤B). In this example, we can relate our previous discus-
sion with some standard facts and constructions from Lie theory (see, e.g., [7, 22]).
We will describe here this relationship, leaving the verifications to the reader.

Fix a maximal torus T ⇢ G and let c ⇢ t⇤ be the interior of a Weyl Chamber.
We recall that t is a full slice to the adjoint action of G on g: any regular orbit
intersects t transversely with tangent space [t, g]. Dually, the splitting

g = t� [t, g]

embeds t⇤ into g⇤ as a full slice to the coadjoint action. Each regular orbit intersects
c exactly once, so we get a canonical di↵eomorphism:

G/T⇥ c! g⇤reg (gT, ⇠) 7! Ad⇤
g
⇠ (4.10)

Under this di↵eomorphism, the symplectic form of the orbit through ⇠ 2 c is the
unique left G-invariant form !⇠ 2 ⌦2(G/T) satisfying at ⇠ ⇠= eT:

!⇠(u, v) = ⇠([u, v]), u, v 2 g/t = T⇠(G/T). (4.11)

Let us fix a coadjoint orbit S0 ⇢ g⇤reg through some point ⇠0 2 c, so that S0
⇠=

G/T. If ⇤G = Ker(exp : t! T) and ⇤w is the weight lattice, we have isomorphisms:

• The leaf space: (B,⇤B) ⇠= (c,⇤_

G
);

• The normal space: (⌫⇠0(S0),⇤G |⇠0) ⇠= (t⇤,⇤_

G
);

• The cohomology: (H2(S0), H2(S0,Z)) ⇠= (t⇤ss,⇤w), where g = z� gss is the
decomposition into center and semisimple part, and t = z� tss.

Explicitly, the last isomorphism associates to an element ⇠ 2 t⇤ss the cohomology
class of the form !⇠ given by (4.11), hence we find that:

(i) The developing map dev0 : B ! ⌫⇠0(S0) is the inclusion:

dev0 : (c,⇤_

G
) ,! (t⇤,⇤_

G
);

(ii) The linear variation varlin
$

: ⌫⇠0(S0)! H
2(S0) is the projection:

varlin
$

: (t⇤,⇤_

G
)! (t⇤ss,⇤w);
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(iii) The linear and a�ne variations match, so that var$ : B ! H
2(S0) is:

var$ : (c,⇤_

G
)! (t⇤ss,⇤w);

Notice that that the linear variation is injective i↵ (greg,!) is of strong s-proper
type (cf. Corollary 4.3.4), and this happens i↵ g is semisimple. Moreover, in this
case, the linear variation is an isomorphism of integral vector spaces i↵ G is the
simply connected integration (cf. Proposition 4.3.3).

In general, the linear variation is not injective and its kernel is precisely z⇤. If we
consider the leaves through K = ⇠+z⇤ we obtain a Poisson submanifold MK ⇢ g⇤reg
of zero-variation (cf. Theorem 4.3.5 (ii)). On the other hand, the leaves through
T = ⇠ + t⇤ss yield a Poisson submanifold MT ⇢ g⇤reg of full-variation (cf. Theorem
4.3.5 (iii)), Poisson di↵eomorphic to (g⇤ss)reg.

4.6.2. Principal conjugacy classes. Let G be a compact, connected Lie group with
Lie algebra g, let h·, ·i be an Ad-invariant inner product, and let LG the correspond-
ing Cartan-Dirac structure on G with twisting � the Cartan 3-form [4, 8, 49]. Recall
that its leaves are the conjugacy classes and an s-proper integration is provided by
the conjugacy action groupoid GnG endowed with the multiplicative 2-form:

⌦G(g, h) =
1

2

�
hAdh pr

⇤

1 ✓
L
, pr⇤1 ✓

Li+ hpr⇤1 ✓L, pr⇤2(✓L + ✓
R)i
�
, (4.12)

where ✓
L and ✓

R are the left and right-invariant Maurer-Cartan forms. We have
the following basic result, relating (G,LG) and (g⇤,⇡lin) (see [3, Theorem 3.13]):

Proposition 4.6.1. Let exp : g⇤ ! G be the composition of exp : g ! G with
the isomorphism g⇤ ⇠= g given be the inner product. The pullback Dirac structure
exp⇤(LG) is smooth and there is a 2-form � 2 ⌦2(g⇤) giving a gauge transformation:

exp⇤(LG) = e
�
L⇡lin .

The 2-form � in the proposition is an Ad⇤-invariant, canonical primitive of the
pullback of the Cartan 3-form: exp⇤� = d�.

Let us now restrict to the regular set Greg ⇢ G, formed by the conjugacy classes
of maximal dimension. We obtain an s-proper presymplectic �-twisted integration
(G,⌦) = (GnG

reg
,⌦G) ◆ G

reg, inducing a transverse integral a�ne structure ⇤G

to the foliation consisting of conjugacy classes in G
reg.

We recall that a regular orbit is called principal if its isotropy is connected. A
good example to keep in mind is G = SO(3), whose non-trivial conjugacy classes
are all regular and among these there is only one which is non-principal, namely the
conjugacy class of a non-trivial diagonal matrix. Principal orbits are 1-connected,
and therefore (Gprinc

, LG) is a connected regular twisted Dirac manifold of s-proper
type, satisfying our standing assumption. Hence, the leaf leaf space B = G

princ
/G

is a smooth manifold carrying an integral a�ne structure ⇤B such that ⇤G = p
⇤⇤B .

Again, we can relate our previous discussion with some standard facts from the Lie
theory of conjugacy classes of compact Lie groups (see.e.g., [22, 7]).

A maximal torus T ⇢ G is a full slice for the conjugation action, so Treg = T\Greg

and Tprinc = T\Gprinc are also slices for the restricted action on G
reg and G

princ. If
K is a connected component of Treg and B is a connected component of Tprinc\K,
then we obtain a di↵eomorphism:

G/T⇥B ! G
princ

, (gT, k) 7! gkg
�1

,

so B is identified with the leaf space G
princ

/G.
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In general, B is not 1-connected and one can identify its universal cover using
exp : t ! T. A choice of positive roots determines a Weyl alcove of g, which is a
connected component a ⇢ t of exp�1(Treg). A Weyl alcove of G is a connected com-
ponent aG ⇢ a of exp�1(Tprinc) and the exponential exp : aG ! B gives a covering
map, so that eB = aG. It follows that we have a surjective local di↵eomorphism:

G/T⇥ aG ! G
princ

, (gT, ⇠) 7! g exp(⇠)g�1 = exp(Adg ⇠),

identifying the 2-form on the conjugacy class determined by ⇠ 2 aG with:

e�⇠ + !⇠ 2 ⌦2(G/T). (4.13)

Here, !⇠ is the symplectic form (4.11) and e�⇠ is the restriction to G/T⇥ {⇠} of the
form e� 2 ⌦2(G/T ⇥ aG) obtained by pulling back the form � in Proposition 4.6.1
along the map (4.10).

Now fix a conjugacy class S0 ⇢ G
princ through some point g0 2 exp(aG), so that

S0
⇠= G/T. If ⇤G = Ker(exp : t! T), ⇤w is the weight lattice, and

⇤⇤

G
:= {v 2 t : hv,�i 2 Z : 8� 2 ⇤G},

we find isomorphisms:

• (⌫g0(S),⇤G |g0) ⇠= (t,⇤⇤

G
);

• (H2(S0), H2(S0,Z)) ⇠= (t⇤ss,⇤w).

We conclude that:

(i) The developing map dev0 : eB ! ⌫g0(S0) is the inclusion:

dev0 : (aG,⇤
⇤

G
) ,! (t,⇤⇤

G
);

(ii) The linear variation map varlin
$

: ⌫g0(S0)! H
2(S0) is the composition of the

isomorphism t ⇠= t⇤ given by the inner product, with the projection onto t⇤ss:

varlin
$

: (t,⇤⇤

G
)! (t⇤ss,⇤w);

(iii) The pullback to eB = aG of the bundle H� of twisted 2-cohomology groups
trivializes and has the flat section ⇠ 7! [e�⇠], which allows to identify the linear
and a�ne variation.

(iv) The variation map var$ : eB ! H
2(S0) becomes the inclusion:

var$ : (aG,⇤
⇤

G
)! (t⇤,⇤_

w
).

Again, we note that the linear variation is injective i↵ (Gprinc
, LG) is of strong

s-proper type and this happens i↵ g is semisimple. In this case the linear variation
is an isomorphism of integral vector spaces i↵ G is the simply connected integration.

5. The linear variation theorem II: the general case

We now extend the results from the previous section to general PMCTs of s-
proper type, removing the assumption that symplectic leaves are 1-connected. The
main di↵erence is that now the leaf space is an orbifold. We will see how to state
an appropriate version of the linear variation theorem, which will be a statement
that holds on an orbifold bundle made of cohomologies of the symplectic leaves.
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5.1. The developing map for transverse integral a�ne foliations. Since we
do not have a smooth leaf space anymore, we are now forced to work with transverse
integral a�ne structures. Let us point out how the discussion in Section 4.2, on
the developing map of integral a�ne manifolds, can be extended to the setting of
transversally integral a�ne foliations [27, 43, 51].

Given a foliation (M,F) with a transverse integral a�ne structure ⇤, in the
intrinsic approach to the developing map one now has:

(i) An induced flat connection r on ⌫(F) for which the local sections of ⇤
are flat. The connection gives rise to a linear holonomy action (by parallel
transport) of ⇧1(M) on ⌫(F):

h
lin : ⇧1(M)! GL⇤(⌫(F)).

Its image will be denoted by ⇧lin
1 (M) ⇢ GL⇤(⌫(F)).

(ii) The projection map TM ! ⌫(F) is an algebroid 1-cocycle and it integrates
to the developing map:

dev : ⇧1(M)! ⌫(F).

This, together with the linear holonomy action, gives rise to the a�ne holo-
nomy action

h
A↵ : ⇧1(M)! A↵⇤(⌫(F)).

Its image will be denoted by ⇧A↵
1 (M) ⇢ A↵⇤(⌫(F)).

As in Section 4.2, to be more concrete one fixes

• a base point x 2M , and
• a Z-basis b⇤ = {�1, . . . ,�q} for ⇤x.

Upon restriction, we obtain the based/classical linear and a�ne holonomy repre-
sentations (see [27]):

h
lin
0 : ⇡1(M,x)! GLZ(Rq), h

A↵
0 : ⇡1(M,x)! A↵Z(Rq), (5.1)

and the based developing map:

dev0 : (fM, e⇤)! (Rq
,Zq),

which is a ⇡1(M,x)-equivariant integral a�ne submersion. The images of these rep-
resentations are the linear holonomy group �lin ⇢ GLZ(Rq) and the a�ne holonomy
group �A↵ ⇢ A↵Z(Rq).

5.2. The linear variation theorem. We assume now that (M,⇡) is a regular
Poisson structure and (G,⌦) ◆ M is an s-connected, s-proper integration. We
denote by ⇤ = ⇤G the induced integral transverse integral a�ne structure and by
B = B(G) the induced integration of F⇡, so we have a short exact sequence of Lie
groupoids:

1 // ⌫
⇤(F⇡)/⇤ // G // B // 1 .

We endow B = M/F⇡ with the orbifold structure with atlas B (Theorem 2.0.1).
In order to study the variation of the leafwise symplectic forms, we need a better

understanding of the “vector bundle” H ! B with fiber Hb = H
2(Sb), where the

leafwise symplectic forms live. The problem is that H is now only a set-theoretical
vector bundle and even the ranks of the fibers may vary from point to point! To
solve this problem we should proceed as follows:
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• replace H! B by the representation HB !M of B ◆ M defined by:

HB

x
= H

2(B(x,�)),

where the action is the one induced from the right action of B on itself;
• replace �(H) by the space �(HB)inv consisting of B-invariant sections of
the representation. Note that, while a priori �(H) does not make sense,
�(HB)inv sits inside the space of set-theoretical sections of H:

�(HB)inv ⇢ �set(H). (5.2)

The image of this inclusion could be taken as definition of �(H).

The inclusion (5.2) comes from the canonical isomorphisms

(HB

x
)Bx�inv ⇠= Hb, (5.3)

valid for all x 2 M , where b = p(x) and p : M ! B is the projection. This holds
because t : B(x,�) ! Sb is a Bx-covering projection and the isotropy Bx is finite.
In this way, for any invariant section � of HB, �(x) makes sense as an element of
Hb. Moreover, for any other y with p(y) = b, there exists an arrow g : x ! y in
B and right action by g becomes, after the identifications (5.3), the identity map
on Hb. The invariance of � implies that �(x) 2 Bb only depends on b, therefore
making sense of � as a section of H.

Therefore, while (4.3) defines $ only as a set-theoretical section of H, the pre-
vious discussion shows that the same information is obtained by considering the
smooth section

$ 2 �(HB)inv

which, as a section of HB, is defined by pulling back along the target map of B the
cohomology classes of the leafwise symplectic forms.

Remark 5.2.1 (Orbivector bundles). The previous discussion belongs to the world
of orbivector bundles (see [1, 40] and Remark 2.6.8): an orbivector bundle over the
orbifold (B,B) is given by a linear representation E

B ! B of the groupoid B. The
bundle HB is, of course, an example. Another example is provided by the tangent
bundle to the orbifold: it is represented by the normal bundle ⌫(F) ! M of the
foliation on the base, endowed with the linear holonomy action of B.

For any orbivector bundle E
B ! M over (B,B) its space of (smooth) sections

is defined as �(EB)inv. A morphism of orbivector bundles E
B

1 ! E
B

2 (over the
identity) is just a morphism of the representations and it induces a map between
the space of sections �(EB

1 )
inv ! �(EB

2 )
inv.

The previous remark suggests that the linear variation map TB ! H of Section
4.4, should now be replaced by a morphism of orbivector bundles TB ! H, i.e.,
a morphism of representations ⌫

⇤(F⇡) ! HB. Indeed, using the Gauss-Manin
connection on HB induced by HB

Z , we define:

Definition 5.2.2. The linear variation is the morphism of orbivector bundles:

varlin
$

: ⌫(F⇡)! HB
, v 7! rv$.



56 MARIUS CRAINIC, RUI LOJA FERNANDES, AND DAVID MARTÍNEZ TORRES

This map should now be seen as a morphism of integral representations of B or,
equivalently, of integral orbivector bundles over B. We also consider the resulting
linear variation space:

(V lin
$
,V lin

$,Z) = varlin
$
(⌫(F⇡),⇤

_

G
).

We will see that this is an integral vector bundle sitting weakly inside (HB
,HB

Z ).
The integral structures make HB and ⌫(F⇡) also into representations of the

fundamental groupoid ⇧1(M) using the holonomy

hr : ⇧1(M)! GLZ(HB)

induced by r (and similarly for ⌫(F⇡)). It is not di�cult to see that the actions of
B and ⇧1(M) on (HB

,HB

Z ) are compatible, since we have the commutative diagram:

⇧1(M)
hr

// GLZ(HB)

Mon(M,F⇡)

i⇤

OO

hB
// B

⇢B

OO

where hB is the submersion associated to the foliation groupoid B and ⇢B is the
action of B on HB (and similarly for ⌫(F⇡)).

We can now extend Proposition 4.3.3, Corollary 4.3.4 and then Theorem 4.3.5
to general s-proper Poisson manifolds. We first formulate the analogues of Propo-
sition 4.3.3 and Theorem 4.3.5 together. Similar to the null-variation foliation K
introduced there, we now define KM ⇢ TM by

Ker(varlin
$
) = KM/F⇡ ⇢ ⌫(F⇡).

One should also recall the B-monodromy groups NB associated with any foliation
groupoid B integrating (M,F⇡), introduced in Section 3.4.

Theorem 5.2.3. If G is an s-connected, s-proper integration of (M,⇡) then:

(i) varlin
$

is a ⇧1(M)-equivariant morphism of integral vector bundles,

varlin
$

: (⌫(F⇡),⇤
_

G
)! (HB

,HB

Z )

with kernel N 0
B
and image (V lin

$
,V lin

$,Z).
(ii) KM is an integrable distribution and NB ⇢ ⌫

⇤(KM ) defines a transverse inte-
gral a�ne structure for KM .

(iii) every leaf eK of KM is a Poisson submanifold of (M,⇡) saturated by symplectic
leaves and ( eK,⇡| eK) is of s-proper type with zero-variation.

(iv) for any transversal T to KM of complementary dimension its saturation MT

with respect to the symplectic foliation is a Poisson submanifold of s-proper
type with full-variation. It is of strong s-proper type if Nmon|T is a lattice.

Proof. The ⇧1(M)-invariance is a consequence of the integrality varlin
$
(⇤_

G
) ⇢ HB

Z
which we now prove. We use the B-variation map @B whose image is precisely NB

(see Section 3.4). By exactly the same arguments as in Proposition 4.3.2, one has

hvarlin
$
(v),↵i = @B(↵)(v), 8 v 2 ⌫x(F⇡), ↵ 2 H2(B(x,�),Z). (5.4)

Starting now with v 2 ⌫x(F⇡), we have:

varlin
$
(v) 2 H

2(B(x,�),Z) () hvarlin
$
(v),↵i 2 Z, 8 ↵ 2 H2(B(x,�),Z)

() @B,x(↵)(v) 2 Z, 8 ↵ 2 H2(B(x,�),Z)
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() �(v) 2 Z, 8 � 2 NB,x

() v 2 N_

B
.

In other words one has the analogue of (4.6):

(varlin
$
)�1(HB

Z ) = N_

B
.

The inclusion varlin
$
(⇤_

G
) ⇢ HB

Z follows now from the the last inclusion of Theorem

3.4.9. The fact that V lin
$,Z is actually a lattice in V lin

$
follows by the same argument

as in the proof of Proposition 4.3.3: we now know that V lin
$,Z is discrete in V lin

$
and

varlin
$

induces a map from the compact space ⌫(F⇡)/⇤_

G
onto V lin

$
/V lin

$,Z.
Note that (5.4) also implies that the annihilator of NB is

N 0
B
= Ker(varlin

$
).

The remaining statements are proven by exactly the same arguments as for Theorem
4.3.5, but with TB replaced by ⌫(F⇡) and Nmon replaced by NB. ⇤

The analogue of Corollary 4.3.4 (i), concerning zero-variation, holds without any
further complications, once one makes precise sense of the notion of symplectic
fibration over an orbifold- which we leave as an exercise for the reader.

The analogue of Corollary 4.3.4 (ii) states that the full-variation condition (i.e.
the injectivity of varlin

$
) is equivalent to the fact that NB is a lattice in ⌫

⇤(F⇡). This
holds, by Theorem 5.2.3 (i). One finds this situation, for example, in the strong
s-proper case when NB = Nmon (but not only then!). Whenever the full-variation
condition holds one obtains that

V lin
$,Z = V lin

$
\HB

Z .

This shows that the full-variation condition does not depend on the integrating
groupoid. It can also be seen as an immediate consequence of the fact that for any
finite covering the pull-back map in (real) cohomology is injective.

Finally, we can look at the variation of $ and again prove its linear nature.
First of all, in a similar fashion as in the previous section, we now have a variation

map:

var$ : ⇧1(M)! HB
, [�] 7! �

⇤
$�(1).

On the other hand, we also have the a�ne version of varlin
$
:

varA↵
$

: ⌫(F⇡)! HB
, v 7! varA↵

$
(v) := $ + varlin

$
(v),

and its image:

V A↵
$

:= $ + V lin
$
⇢ HB

.

Second. the statement of the linear variation will use ⌫(F⇡) and its structure of
integral a�ne representation of ⇧1(M) (see Section 5.1), or in the terminology of
Remark 4.5.2, the structure of flat integral a�ne bundle. In order to emphasize this
structure, we will use the notation ⌫

A↵(F⇡). Moreover, we also use the developing
dev : ⇧1(M) ! ⌫(F⇡) associated to the transverse integral a�ne structure (see
Section 5.1):

The statement of the linear variation theorem is now as follows:
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Theorem 5.2.4. The image of the variation map var$ is contained in V A↵
$

and
varA↵

$
: ⌫A↵(F⇡)! V A↵

$
is a ⇧1(M)-equivariant morphism. Equivalently, there is

a commutative diagram:

⇧1(M)
var$

//

dev
%%

HB

⌫
A↵(F⇡)

varAff
$

;;

In particular, V A↵
$

is a ⇧1(M)-invariant weak integral a�ne sub-bundle of HB.

The proof follows exactly the same arguments as in Theorem 4.4.2, and so it will
be omitted.

More explicit descriptions, as in Corollary 4.4.4, can be obtained by fixing a
base point x 2 M and a Z-basis b⇤ = {�1, . . . ,�q} for ⇤x. Then b⇤ induces an
identification of G0

x
with the standard torus Tq, so the projection G(x,�)! B(x,�)

becomes a principal Tq-bundle. We can then consider its Chern classes

c1, . . . , cq 2 H
2(S̄,Z) = HB

Z,x.

where we set S̄ := B(x,�). As in Corollary 4.4.4, we denote by

V
A↵
0 = !0 + V

lin
0 ⇢ H

2(S̄) = HB

x
,

the fiber of V lin
$

at x and by dev0 : fM ! Rq the resulting developing map. One
then obtains the following extension of Corollary 4.4.4:

Corollary 5.2.5. The Chern classes c1, . . . , cq 2 H
2(S̄) generate the space of linear

variations of $:

V
lin
0 = SpanR(c1, . . . , cq), V

lin
0,Z = SpanZ(c1, . . . , cq).

In the strong s-proper case, the classes c1, . . . , cq are linearly independent and they
form a primitive family, i.e., we have

SpanZ(c1, . . . , cq) = SpanR(c1, . . . , cq) \H
2(S̄,Z).

Moreover, for any path � in M starting at x one has

�
⇤([!�(1)]) = [!x] + dev10(�)c1 + . . .+ devq0(�)cq,

where devi0 are the components of dev0, so we have a commutative diagram:

fM var0
//

dev0
  

V
A↵
0 ⇢ H

2(S̄)

Rq

(vi) 7![!0]+
P

i v
i
ci

==

Remark 5.2.6. One also has analogous results for twisted DMCTs with the appro-
priate modifications. The interested reader should be able to find the appropriate
statements and its proofs.
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5.3. Examples.

5.3.1. The classical Duistermaat-Heckman theorem revisited. The linear variation
of cohomology, given by Theorems 4.4.2 and 5.2.4, or their more explicit versions
Corollaries 4.4.4 and 5.2.5, are the global versions of the classical Duistermaat-
Heckman Theorem (cf. Theorem 4.1.1). More precisely, we can recover the classical
theorem as follows. Given a free Hamiltonian T-action on a connected symplectic
manifold (S,!) with moment map µ : S ! t⇤ we consider the Poisson manifoldM =
S/T, whose symplectic leaves are the symplectic reduced spaces S⇠ = µ

�1(⇠)/T.
This kind of Poisson manifolds furnish examples of PMCTs, and were discussed
in detail in [14, Section 5.4]: there it is shown that if µ is proper an s-connected,
s-proper, symplectic integration is given by:

G = (S ⇥µ S)/T ◆ S/T,

with symplectic form ⌦ induced from pr⇤1 ! � pr⇤2 !.
Now observe that for this symplectic integration (G,⌦) ◆ S/T:

• the induced orbifold structure on the leaf space B = µ(S) ⇢ t⇤ is the
submersion groupoid B(G) = S/T⇥µ S/T, so it is smooth;

• the induced integral a�ne structure on t⇤ is the canonical integral a�ne
structure ⇤ for which T = t⇤/⇤;

• the s-fiber of G through a point in S⇠ is (isomorphic to) the principal T-
bundle µ

�1(⇠)! S⇠.

Since the orbifold B(G) is actually smooth, Theorem 5.2.4 (respectively, Corollary
5.2.5), reduces to its smooth version, Theorem 4.4.2 (respectively, Corollary 4.4.4).
The conclusion is that the cohomology class [!⇠] of the symplectic form of the
symplectic reduced space S⇠ = µ

�1(⇠)/T satisfies:

[!⇠] = [!⇠0 ] + hc, ⇠ � ⇠0i,

where c 2 H
2(S⇠0 ,⇤) is the Chern class of the principal T-bundle µ

�1(⇠0) ! S⇠0 .
This is precisely the classical result as stated in Theorem 4.1.1.

Actually, in their paper [21], Duistermaat and Heckman allow for non-free ac-
tions, which leads to symplectic reduced spaces µ

�1(⇠)/T which are orbifolds. It
is not hard to see that our work on PMCTs can be extended to Poisson orbifolds,
which allow to treat the non-free case. Moreover, our approach extends to the non-
regular case [13], showing that s-proper Poisson manifolds provide the right setting
for the globalization of the Duistermaat-Heckman theorem.

5.3.2. Regular conjugacy classes. Let us return to the Cartan-Dirac structure on
a compact, connected Lie group G discussed in Section 4.6.2, and look now at
all the regular conjugacy classes. While the principal orbits are 1-connected, the
regular non-principal orbits are not. As before, (Greg

, LG) is a regular �-twisted
Dirac structure, with an s-connected, s-proper integration provided by the �-twisted
presymplectic groupoid GnG

reg. It induces a transverse a�ne structure ⇤G to the
foliation FLG made of the regular conjugacy classes and its leaf space B = G

reg
/G

is now an integral a�ne orbifold.
The orbifold structure on B is determined by the foliation groupoid B in the

sequence (see Theorem 2.0.1):

1 // ⌫
⇤(FLG)/⇤ // GnG

reg
// B // 1
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We claim that B is the holonomy groupoid of FLG or, equivalently, that the action
of B on G

reg is e↵ective. In fact, if (g, x) 2 GnG
reg maps to h 2 B, then the (local)

action of h is the one of the bisection {g} ⇥ G
reg of G n G

reg. This (local) action
is trivial i↵ g 2 Z(G). Since the center is the intersection of all maximal tori, the
arrow h 2 B must be a unit.

The universal cover of Greg is given by

G/T⇥ a! G
reg

, (gT, ⇠) 7! g exp(⇠)g�1 = exp(Adg ⇠), (5.5)

where a is a Weyl alcove for g, with covering group the quotient of the a�ne Weyl
groups (see [7]):

� = ⇡1(G
reg) = W

A↵
G

/W
A↵

.

One has ⇡1(Greg) = ⇡1(G), so there is a covering group G
lin ! G whose regular

part is the holonomy cover of (Greg
,FLG). Hence, the linear holonomy group is:

�lin = ⇡1(G
reg)/⇡1(G

lin) = W
A↵
G

/W
A↵
Glin .

The covering map (5.5) allows us to identify the twisted symplectic 2-forms on
the leaves (conjugacy classes) by the same formula (4.13). In fact, the analysis of
the regular part of G is essentially the analysis of the principal part of Glin discussed
in Section 4.6.2. If we fix a non-principal conjugacy class S0 ⇢ G

reg\Gprinc through
some point g0 2 exp(a), we have S̄0 = B(g0,�) ⇠= G/T and, again, we find:

• (⌫g0(S0),⇤G |g0) ⇠= (t,⇤⇤

G
);

• (H2(S̄0), H2(S̄0,Z)) ⇠= (t⇤ss,⇤w).

We conclude:

(i) B is an orbifold quotient of the integral a�ne manifold B
lin = a/�lin (endowed

with integral a�ne structure ⇤⇤

G
);

(ii) The developing map dev0 : eGreg ! ⌫g0(S0) is now given by:

dev0 : (G/T⇥ a,⇤⇤

G
)! (t,⇤⇤

G
),

where one first projects onto a and then takes the inclusion.
(iii) The linear variation varlin

$
: ⌫g0(S0)! H

2(S̄0) is the identification t ⇠= t⇤ given
by the inner product followed by the projection onto the semisimple factor

varlin
$

: (t,⇤⇤

G
)! (t⇤ss,⇤w);

(iv) The pullback to eGreg = G/T ⇥ a of the bundle HB of twisted 2-cohomology
groups trivializes and has the flat section ⇠ 7! [e�⇠], which allows to identify
the linear and a�ne variation.

(v) After the previous identification, the variation map var$ : eGreg ! H
2(S̄0)

becomes the projection to a, followed by the inclusion in t, the identification
t ⇠= t⇤, and then the projection onto the semisimple factor:

var$ : (G/T⇥ a,⇤⇤

G
)! (t⇤ss,⇤

_

w
).

6. Measures and the Duistermaat-Heckman formula

Another fundamental property of PMCTs is the existence of natural invariant
volume forms/measures. Given a regular Poisson manifold of proper type (M,⇡)
and an s-connected, proper integration (G,⌦) ◆ M we will see that the leaf space
B = M/F⇡ carries a natural measure. The basic idea is simple: an integral a�ne
structure gives rise to a density, hence to a measure. However, since B is an
orbifold we need a bit of care with the role of the groupoid in this construction.
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The outcome will be that any s-connected, proper integration (G,⌦) induces a
measure on B, called the integral a�ne measure induced by (G,⌦) and denoted
µ
G

A↵ (we omit the dependence in ⌦ in the notation, but the reader should keep in
mind that this construction depends on having a proper symplectic integration).

In the s-proper case there is yet another natural measure on B: the one obtained
by pushing down the Liouville measure associated to the symplectic form ⌦. One
obtains a measure on B, called the Duistermaat-Heckman measure induced
by (G,⌦) and denoted by µ

G

DH. As we shall see, the relationship between µ
G

A↵ and
µ
G

DH can be described via a Duistermaat-Heckman formula, involving the volumes
of the symplectic leaves.

6.1. Measures on leaf spaces. We start by fixing some notations and terminol-
ogy. First of all, by a measure on a locally compact Hausdor↵ space X we mean
here a Radon measure in the sense of a positive linear functional

µ : Cc(X)! R

defined on the space Cc(X) of compactly supported continuous function on X.
Although we will not use set-measures, it is still handy to use the notation

µ(f) =

Z

X

f(x) dµ(x).

When M is a smooth manifold one can use C1

c
(M) instead of Cc(M). Moreover,

in this case one can talk about geometric measures: if Dc(M) denotes the space
of compactly supported sections of the density bundle DM = | ^top T

⇤
M |, then

each density ⇢ 2 D(M) = �(M,DM ) induces a linear functional

µ⇢ : C1

c
(M)! R, µ⇢(f) :=

Z

M

f⇢,

which is a measure whenever ⇢ is positive. When M is an oriented manifold, we
can use the orientation to identify DM with ^topT ⇤

M , hence to integrate top forms
instead of densities.

An integral a�ne structure ⇤ on a manifold M induces a density ⇢⇤: locally, if
�1, . . . ,�n is a coframe that spans ⇤ ⇢ T

⇤
M , then

⇢⇤ = |�1 ^ . . .�n|.

Of course, if M is oriented, then one case use oriented coframes to obtain a volume
form ⌘⇤ and ⇢⇤ = |⌘⇤|.

Notice that forms, densities or measures on manifolds give sheaves

X 7! ⌦•(X), D(X), or M(X)

to which one can apply Haefliger’s transverse geometry approach (see Remarks
2.3.3 and 2.6.8). This leads to well-defined notions of di↵erential forms ⌦•(B,B),
densities D(B,B) and measures Morbi(B,B) on any orbifold (B,B): if E ◆ T is an
étale orbifold atlas then one considers invariant forms ⌦•(T )E , invariant densities
D(T )E and invariant measures M(T )E . It is easy to see that, in these cases, the
resulting objects depend only on the underlying classical orbifold.

The following shows that Morbi(B,B) can be identified with M(B)- the space
ordinary of measures on the locally compact Hausdor↵ space B.
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Lemma 6.1.1. Given a étale orbifold atlas E ◆ T with quotient map p : T ! B,
there is a 1-1 correspondence:

{measures µ on B} 1�1 ! {E � invariant measures eµ on T}.
Explicitly, it is uniquely determined by eµ = µ � p!, where

p! : C
1

c
(T )! C

1

c
(B), p!(f)(p(x)) =

X

g2s�1(x)

f(t(g)).

Remark 6.1.2. It is instructive to realize that, in the resulting bijection

M(B) ⇠= Morbi(B,B),
the left hand side depends only on the topological space B, the right hand side
depends only on the classical orbifold underlying (B,B), but the isomorphism de-
pends on the full orbifold structure (p! above depends on E !). A simple but already
illustrative example is obtained when B is a smooth manifold but we endow it with
a non-smooth orbifold structure with orbifold atlas B := � n B ◆ B, where �
is a finite group acting trivially on B; while Morbi(B,B) = M(B), the previous
isomorphism introduces a factor |�|, the cardinality of �.

More generally, this discussion extends to any foliation groupoid E ◆ M , so one
can talk about E-transverse forms, E-transverse densities and E-transverse mea-
sures: one considers invariant forms ⌦•(T )ET , invariant densities D(T )ET and in-
variant measures M(T )ET , where T ⇢M is any complete transversal to the E-orbit
foliation. Of course, for a proper foliation (M,F) the structures on the orbifold
B = M/F coincide with the transverse structures on (M,F).

For any foliation groupoid E ◆ M there is a 1:1 correspondence:
⇢

E-transverse forms
⇢T 2 ⌦•(T )ET

�
1�1 !

⇢
invariant sections
⇢
⌫ 2 �(^•⌫⇤(F)

�

where by “invariant” we mean invariant under linear holonomy, i.e., satisfying:

rX⇢
⌫ = 0, 8X 2 X(F),

where r is the Bott connection. Similarly, for densities we have:
⇢

E-transverse densities
⇢T 2 D(T )ET

�
1�1 !

⇢
invariant sections
⇢
⌫ 2 �(D⌫)

�

where D⌫ = | ^top ⌫
⇤(F)|. These correspondences are obtained by considering the

Morita equivalence:

G

✏✏✏✏

!!

s
�1(T )

t

ww

s

''

~~ GT

✏✏✏✏

M T

(6.1)

For each g 2 s
�1(T ), we obtain an isomorphism:

⌫t(g)(F) ⌫g(s�1(s(g)))
dgt

oo

dgs
// Ts(g)T .

The isomorphisms determined by two arrows with the same source and target di↵er
by the action of an element of E on the normal space to the orbit, i.e., the linear
holonomy action. This gives the desired 1-1 correspondence between elements ⇢T 2
⌦•(T )ET and invariant sections ⇢⌫ 2 �(^top⌫⇤(F)).
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Using this correspondence, we conclude:

Proposition 6.1.3. Let E ◆ M be a proper foliation groupoid integrating F . Each
transverse integral a�ne structure ⇤ ⇢ ⌫

⇤(F) determines a measure µA↵ on the
orbifold M/F which is represented by the invariant density ⇢

⌫

A↵ 2 �(D⌫) given by:

⇢
⌫

A↵ |x = |�1 ^ . . .�n|,
where �1, . . . ,�n is any basis of ⇤x.

Lemma 6.1.1 tells us how to compute the resulting integrals by working on a
transversal, but it is desirable to work directly at the level of M . For that, observe
that the short exact sequence:

0 // TF // TM // ⌫(F) // 0

induces an isomorphism between the associated density bundles:

D⌫ ' DT⇤F ⌦DM .

So we can decompose any invariant density ⇢
⌫ 2 �(D⌫) as:

⇢
⌫ = ⇢

⇤

F
⌦ ⇢M ,

where ⇢F is a density along the leaves of F and ⇢M is a density on M .

Proposition 6.1.4. Let E ◆ M be a proper foliation groupoid integrating F . If
µB is a geometric measure on the orbifold B = M/F represented by an invariant
density ⇢

⌫ 2 �(D⌫), then for any f 2 C
1

c
(M) one has:

Z

M

f(x) dµM (x) =

Z

B

✓
◆(b)

Z

Sb

f(y) dµSb(y)

◆
dµB(b),

where µSb is the measure on the leaf Sb and µM the measure on M associated with
any decomposition ⇢

⌫ = ⇢
⇤

F
⌦ ⇢M , while ◆ : B ! N is the function that for each

b 2 B counts the number of elements of the isotropy group Ex (x 2 Sb).

Proof. First we claim that it is enough to prove the theorem in the case where
(M,F) admits a complete transversal T which intersects each orbit a finite number
of times. In fact, recall that proper groupoids admit invariant partitions of unit,
so it is enough to proof the theorem in the case where M is the saturation of a
small enough transversal T to some orbit. Since the leaves of a proper groupoid
are embedded and the leaf space is Hausdor↵, we can choose the small transverse
T so that it intersects each orbit on a finite set. This proves the claim.

Now assume that we have fixed a µB is a geometric measure on the orbifold
B = M/F represented by an invariant density ⇢

⌫ 2 �(D⌫), and that we have
chosen some decomposition ⇢

⌫ = ⇢
⇤

F
⌦ ⇢M . We consider the Morita equivalence

(6.1). Since t : s�1(T ) ! M is a local di↵eomorphism, on the space s
�1(T ) we

have the pullback density t
⇤
⇢M . We pick some f 2 C

1

c
(M) and we compute the

integral: Z

s�1(T )

1

|E(t(g), T )|f(t(g)) dt
⇤
µM (g),

in two di↵erent ways:

(i) If we apply fiber integration along the proper submersion t : s�1(T )!M , we
obtain: Z

s�1(T )

1

|E(t(g), T )|f(t(g)) dt
⇤
µM (g) =

Z

M

f(x) dµM (x).
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(ii) If we apply fiber integration along the proper submersion s : s�1(T )! T , we
obtain:Z

s�1(T )

1

|E(t(g), T )|f(t(g)) dt
⇤
µM (g) =

Z

s�1(T )

1

|E(t(g), T )|f(t(g)) (t
⇤
⇢F ⌦ t

⇤
⇢
⌫)(g)

=

Z

T

 
1

|E(x, T )|

Z

s�1(x)
f(t(g)) dµs�1(x)(g)

!
dµT (x)

=

Z

T

✓
|Ex|

|E(x, T )|

Z

Sx

f(y) dµSx(y)

◆
dµT (x),

where we first used that ⇢M = ⇢
⌫ ⌦ ⇢F and then that t restricts to a cover on

each fiber s
�1(x) with covering group Ex. Using Lemma 6.1.1, we conclude

that:
Z

s�1(T )

1

|E(t(g), T )|f(t(g)) dt
⇤
µM (g) =

Z

B

✓
◆(b)

Z

Sb

f(y) dµSx(y)

◆
dµB(b),

where ◆(b) = |Ex| for any x with p(x) = b.

Putting (i) and (ii) together the proposition follows. ⇤

6.2. A Weyl type integration formula. Let (M,⇡) be a regular Poisson mani-
fold. The leafwise symplectic form gives the leafwise Liouville volume form:

!
top
F⇡

top!
2 ⌦top(F⇡).

This induces a 1:1 correspondence between top degree forms ⌘ 2 ⌦top(M) and
sections ⌘⌫ 2 �(^top⌫⇤(F⇡)) by setting:

⌘ =
!
top
F⇡

top!
⌦ ⌘

⌫
.

It turns out that under this correspondence the transverse invariant densities/volu-
me forms correspond to the Hamiltonian invariant densities/volume forms in (M,⇡),
in the sense of the following definition:

Definition 6.2.1. A Hamiltonian invariant volume form/density/measure
µ on a Poisson manifold (M,⇡) is any volume form/density/measure ⌘ on M which
is invariant under the flow of any Hamiltonian vector field Xh, i.e.:

£Xh⌘ = 0, 8h 2 C
1(M).

In fact, we have:

Proposition 6.2.2. For a regular Poisson manifold (M,⇡) the assignment ⌘ 7! ⌘
⌫

gives a 1-1 correspondence between:

(i) Hamiltonian invariant volume forms ⌘ 2 ⌦top(M),
(ii) transverse volume forms ⌘

⌫ 2 �(^top⌫⇤(F⇡)).

Proof. It is immediate to check that if ⌘ =
!

top
F⇡

top! ⌦ ⌘
⌫ , then:

£Xh⌘ =
!
top
F⇡

top!
⌦rXh⌘

⌫
,

so the result follows. ⇤



REGULAR PMCTS 65

A similar discussion holds for densities where one replaces the foliated volume
form !

top
F⇡

by the foliated density |!top
F⇡

|.
Let now (G,⌦) be an s-connected, proper integration of a Poisson manifold

(M,⇡). It gives rise to a transverse integral a�ne structure ⇤ ⇢ ⌫
⇤(F⇡) and

an orbifold structure B(G) on B = M/F⇡. Hence, we obtain (see Propositions 6.1.3
and 6.2.2):

• a integral a�ne measure µA↵ on the orbifold (B,B(G));
• a integral a�ne transverse density ⇢

⌫

A↵ on (M,F⇡) representing µA↵ ;
• a Hamiltonian invariant density ⇢M on (M,⇡) corresponding to ⇢

⌫

A↵ .

The integral a�ne transverse density and the Hamiltonian invariant density are
related by:

⇢M :=
|!top

F⇡
|

top!
⌦ ⇢

⌫

A↵ . (6.2)

The resulting measure µM on M is an incarnation of the integral a�ne measure
µA↵ on B at the level of M .

As a consequence of Proposition 6.1.4, we obtain:

Theorem 6.2.3. Given an s-connected, proper integration (G,⌦) of a regular Pois-
son manifold (M,⇡), one has for any f 2 C

1

c
(M),

Z

M

f(x) dµM (x) =

Z

B

✓
◆(b)

Z

Sb

f(y) dµSb(y)

◆
dµA↵(b),

where µSb is the Liouville measure of the symplectic leaf Sb, and ◆ : B ! N is the
function that for each b 2 B counts the number of connected components of the
isotropy group Gx (x 2 Sb).

Proof. The result follows immediately by applying Proposition 6.1.4 to the foliation
groupoid B(G) associated with G in the short exact sequence (see Theorem 2.6.9):

1 // T (G) // G // B(G) // 1 ,

where T (G) is the bundle of Lie groups consisting of the identity connected com-
ponents of the isotropy Lie groups Gx. Notice that |B(G)x| is exactly the number
of connected components of Gx. ⇤

In the s-proper case the leaves are compact, hence they have finite symplectic
volume, and we obtain:

Corollary 6.2.4. If (G,⌦) is an s-connected, s-proper integration of a regular
Poisson manifold (M,⇡), then for any h 2 C

1

c
(B):

Z

M

h(p(x)) dµM (x) =

Z

B

◆(b) vol(Sb)h(b) dµA↵(b),

where vol(Sb) is the symplectic volume of Sb, and ◆ : B ! N is the function that
for each b 2 B counts the number of connected components of the isotropy group
Gx (x 2 Sb).

If G is a compact, connected Lie group with Lie algebra g and T is a maximal
torus, Weyl’s integration formula asserts that there is an isomorphism:

C
1(g) ⇠= C

1

c
(G/T⇥ t)W f(x) 7! F (gT, u) := f(Ad(g)(u))|det(Adu)g/t|,
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and for fixed Ad-invariant measures µg and µt:

Z
f(x)µg(x) =

1

|W |

Z

t

 Z

G/T
f(Ad(g)(u))µg/t(gT)

!
|det(Adu)g/t|µt(u).

Here W = N(T)/T denotes the the Weyl group. In [13] we shall prove that Weyl’s
formula is the result of specializing to (g⇤,⇡lin) (with integration (T ⇤

G,!can)) an
integration formula generalizing Corollary 6.2.4 for arbitrary Poisson manifolds of
s-proper type.

6.3. The Duistermaat-Heckman measure. The discussion above was valid for
general PMCTs. When the Poisson manifold is s-proper there is another natural
measure associated with the PMCT: if (G,⌦) is an s-proper integration of (M,⇡),
then it is natural to consider the measure on B = M/G obtained as the push-forward
of the Liouville measure µ⌦:

µDH := (pB)⇤(µ⌦)

along the proper map pB := p � s = p � t : G ! B. We will show that:

Theorem 6.3.1. If (G,⌦) is an s-connected, s-proper integration of (M,⇡) then

µ
⌦
DH = (◆ · vol)2µA↵ , (6.3)

where vol : B ! R is the leafwise symplectic volume function and ◆ : B ! N
counts the number of connected components of the isotropy group of a symplectic
leaf. Moreover, (◆ · vol)2 is a polynomial for the orbifold integral a�ne structure.

The rest of this section is devoted to the proof of the theorem. First, assuming
(6.3) to hold, we show that (◆·vol)2 is a polynomial in (B,⇤). Note that its pullback
to M is a Casimir. Another Casimir, which we know to be a polynomial on (B,⇤)
by Theorem 5.2.4, is the function p

⇤ vol2
B
, associating to a leaf Sx the square of the

symplectic volume of B(x,�). We now have two non-zero Casimirs which on each
leaf di↵er by an integer multiple; therefore their ratio is a constant.

Now we turn to the proof of (6.3). First of all, recall that the push-forward of
measures is defined whenever we have a proper map p : P ! B between locally
compact Hausdor↵ spaces: it is the map given by

p⇤ : M(P )! D(B), (p⇤µ)(f) = µP (f � p).

or in the integral formula notation:
Z

B

f(b) d(p⇤µ)(b) =

Z

P

f(p(x)) dµ(x).

When p : P ! B is a proper submersion this operation transforms geometric
measures into geometric measures, and amounts to fiber integration of densities:

p! =

Z

p�fibers
: Dc(P )! Dc(B).

More precisely, the short exact sequence induced by the dp : TP ! TB yields, for
each x 2 P , a canonical decomposition:

DP,x
⇠= Dp

x
⌦DB,p(x)
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where Dp is the bundle of densities along the fibers of p. Hence, given ⇢ 2 D(P ),
for any b 2 B we can view the restriction ⇢|p�1(b) as an element of D(p�1(b))⌦DB,b

and one can integrate along the fiber to obtain:

p!(⇢)(b) :=

Z

p�1(b)
⇢|p�1(b) 2 DB,b.

By Fubini’s theorem we conclude that p⇤(µ⇢) = µp!(⇢).
We apply this to an s-connected, s-proper integration (G,⌦) of (M,⇡). The

Duistermaat-Heckman density µ
⌦
DH = p⇤s⇤(µ⌦) can be understood in two steps.

The first one is integration along the s-fibers giving rise to a density on M :

⇢
M

DH :=

Z

s�fibers

|⌦n|
n!
2 D(M).

Lemma 6.3.2. µ
M

DH is an invariant measure.

Proof. The source map s : (G,⌦) ! (M,⇡) is Poisson. Hence, if f 2 C
1(M) the

Hamiltonian vector fields Xf and Xs⇤f are s-related and we have:

£Xfµ
M

DH =

Z

s

£Xs⇤f

|⌦n|
n!

= 0.

⇤
The second step is to push-forward the measure µM

DH along the map p : M ! B,
resulting in µ

⌦
DH = p⇤µ

M

DH. Since Theorem 6.2.3 shows that p⇤(µM ) = ◆ · vol ·µA↵ ,
the proof of Theorem 6.3.1 is completed by proving the following:

Lemma 6.3.3. One has ⇢MDH = ◆ ·vol ·⇢M . In other words, at each x 2M , one has

µ
M

DH(x) = ◆(x) · vol(Sx) ·
!
m

Sx

m!
^ �1 ^ · · · ^ �q,

where {�1, . . . ,�q} ⇢ ⌫x(F⇡) is any basis of the transverse integral a�ne structure
determined by G.

Proof. We fix a point x 2M , we denote by S the leaf through x and let

p = dim(S), q = dim(⌫x(F⇡)), n = p+ q.

For any g 2 G the short exact sequence:

0 // Tg(s�1(x)) // TgG
dgs
// TxM

// 0

gives a canonical isomorphism

DTgG
⇠= DTg(s�1(x)) ⌦DTxM .

This leads to a decomposition of the Liouville density

|⌦n

g
|

n!
= ⇠g ⌦ ⇢M,x, with ⇠g 2 DTgs

�1(x). (6.4)

We conclude that:

⇢
M

DH(x) =

Z

s�fibers

|⌦n|
n!

=

 Z

s�1(x)
⇠

!
⇢M (x).

Next, there is a similar short exact sequence

0 // TgG(x, y) // Tgs
�1(x)

dgt
// TyS

// 0
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which induces a decomposition

DTgs
�1(x)

⇠= DTgG(x,y) ⌦DTyS .

Hence, we can write

⇠g = ⌘g ⌦
|!top

S
|

top!
, with ⌘g 2 DTgs

�1(x) (6.5)

Using this decomposition, we see that:
Z

s�1(x)
⇠ =

Z

S

 
|!top

S
|

top!
(y)

Z

G(x,y)
⌘(g)

!
.

Therefore, to prove the lemma, it su�ces to show that
Z

G(x,y)
⌘(g) = ◆(x),

the number of connected components of Gx = G(x, x). The compact Lie group Gx

comes with its bi-invariant Haar density

Haar(Gx) 2 D(Gx).

Left translation La : Gx ! G(x, y) by any a : x ! y gives a similar density
Haar(G(x, y)) on G(x, y). Because the total volume with respect to the Haar density
is 1, it su�ces to show that ⌘ = ◆(x)Haar(G(x, y)).

Notice that Haar(Gx) = 1
◆(x) Haar(G0

x
), where the Haar density on the identity

component (a torus) is induced by lattice given by the kernel of its exponential
map. Denote by {�1

, . . . ,�
q} a basis of the integral lattice ⇤G,x ⇢ ⌫

⇤

x
(F⇡) and let

{e�1
, . . . , e�q} ⇢ gx the corresponding basis of the kernel of the exponential map.

Using left translations, the last vectors define vector fields on s
�1(x) which we

denote by {
 �
�
1
, . . . ,

 �
�
q}. Then:

Haar(G(x, y)) = 1

◆(x)
|
 �
�
1 ^ · · · ^

 �
�
q|.

Therefore we are left with proving that:

⌘g(
 �
�
1 ^ . . . ^

 �
�
q) = 1, 8g 2 G(x, y). (6.6)

For that we have to unravel the construction of ⌘g, which goes via the decomposi-
tions (6.4) and (6.5). First note that we can choose a basis {X1

, . . . , X
n
, Y

1
, . . . , Y

n}
for TgG with the following properties:

(a) X
1
, . . . , X

n is a basis of Ker(dgs);

(b) X
p+1 =

 �
�
1|g, . . . , Xn =

 �
�
q|g is a basis of Ker(dgs) \Ker(dgt);

(c) Y
1
, . . . , Y

p
, X

p+1
, . . . , X

n is a basis of Ker(dgt);
(d) {dgs(Y p+1), . . . , dgs(Y p+1)} is the basis of the dual lattice ⇤_

G,x
⇢ ⌫x(F⇡), dual

to the basis {�1
, . . . ,�

q}.
Then we see that:

(i) Decomposition (6.4) gives:

|⌦n

g
(X1

, . . . , X
n
, Y

1
, . . . , Y

n)|
n!

= ⇠g(X
1
, . . . , X

n) · ⇢M,x(ds(Y
1), . . . , ds(Y n))
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(ii) Decomposition (6.5) gives:

⇠g(X
1
, . . . , X

n) =
|!top

S
(dt(X1), . . . , dt(Xp))|

top!
· ⌘g(Xp+1

, . . . , X
n)

(iii) Relation (6.2) and Proposition 6.1.3 together with (d) gives:

⇢M (ds(Y 1), . . . , ds(Y n)) =
|!top

S
(ds(Y 1), . . . , ds(Y p))|

top!
· ⇢A↵

⌫
(ds(Y p+1), . . . , ds(Y n))

=
|!top

S
(ds(Y 1), . . . , ds(Y p))|

top!
.

Putting (i), (ii) and (iii) together, we find that

|⌦n

g
(X1

, . . . , X
n
, Y

1
, . . . , Y

n)|
n!

=⌘g(X
p+1

, . . . , X
n)·

· |!
top
S

(dt(X1), . . . , dt(Xp))|
top!

· |!
top
S

(ds(Y 1), . . . , ds(Y p))|
top!

(6.7)

We now compute the left hand side of (6.7). For that we use that the s and
t-fibers are ⌦-orthogonal, so by (b) it follows that:

iXp+1 . . . iXn(⌦n) =
n!

q!p!
iXp+1 . . . iXn(⌦q) · ⌦p

.

By (a) and (c) we have that for 1  j  p, the covector ⌦(Xj
,�) vanishes on all

the X
i and on all Y 1

, . . . , Y
p, so this last relation gives:

|⌦n

g
(X1

, . . . , X
n
, Y

1
, . . . , Y

n)|
n!

=

=
|⌦q(Xp+1

, . . . , X
n
, Y

p+1
, . . . , Y

n)|
q!

· |⌦
p(X1

, . . . , X
p
, Y

1
, . . . , Y

p)|
p!

,

=
|⌦q(Xp+1

, . . . , X
n
, Y

p+1
, . . . , Y

n)|
q!

· |⌦
k(X1

, . . . , X
p)|

k!
· |⌦

k(Y 1
, . . . , Y

p)|
k!

,

where we have written 2k = p. Moreover, since the restriction of ⌦ to the s-fibers
coincides with the pull-back of !S via t, and similarly for the t-fibers, we find that

⌦p(X1
, . . . , X

p
, Y

1
, . . . , Y

q)

p!
=

!
k

S
(dt(X1), . . . , dt(Xp))

k!
· !

k

S
(ds(Y 1), . . . , ds(Y p))

k!
.

It follows that (6.7) can be reduced to:

⌘g(X
p+1

, . . . , X
n) =

⌦q(Xp+1
, . . . , X

n
, Y

p+1
, . . . , Y

n)

q!
.

Now we observe that by the multiplicativity of ⌦ we have:

⌦(Xp+j
, Y

p+j) = ⌦g(
 �
�
i

g
, Y

p+j

g
) = ⌦x(�

j
, ds(Y p+j

g
)) = �i,j ,

where we used (d). Since ⌦(Xp+i
, X

p+j) = 0 for all i, j = 1, . . . , q, we find that

⌘g(X
p+1

, . . . , X
n) =

⌦q(Xp+1
, . . . , X

n
, Y

p+1
, . . . , Y

n)

q!
= 1,

which shows that (6.6) holds and completes the proof. ⇤
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As we shall show in [13] Theorem 6.3.1 holds for arbitrary Poisson manifolds of
s-proper type. In fact, the polynomial (◆ · vol)2 will play a fundamental role in the
study of global properties of non-regular Poisson manifolds of s-proper type [13].

Example 6.3.4 (The classical case). Consider a free Hamiltonian T-action on a
connected symplectic manifold (S,!) with a proper moment map µ : S ! t⇤, so
that M = S/T is a Poisson manifold with leaf space µ(S) ⇢ t⇤. As we observed
in Section 5.3.1, the s-connected, s-proper symplectic integration G = (S ⇥µ S)/T
induces on t⇤ the integral a�ne structure ⇤ for which T = t⇤/⇤. Hence, the integral
a�ne measure µA↵ on the leaf space is the usual Lebesgue measure on t⇤.

On the other hand, µ⌦
DH does not quite coincide with the classical Duistermaat-

Heckman measure µ!

DH: the latter is defined as the push-forward under the moment
map µ : S ! t⇤ of the Liouville measure µ! (see the discussion preceding Corollary
4.1.2). However, as in that discussion, one can show using the local model that the
two measures are related by:

µ
⌦
DH = vol ·µ!

DH.

Of course this also follows from the classical result of Duistermaat-Heckman and
our Theorem 6.3.1.

The isotropy groups of G all coincide with T, hence, are connected. Therefore,
the function ◆ : B ! N assumes the constant value 1, and Theorem 6.3.1 gives:

µ
⌦
DH = (vol)2 · µA↵ .

We conclude that Theorem 6.3.1 recovers Corollary 4.1.2 and the polynomial
nature of the classical Duistermaat-Heckman measure on t⇤. Note that, for a general
PMCT, while the function ◆·(vol)2 : B ! R is polynomial, the functions vol : B ! R
and ◆ · vol : B ! R are not even smooth. This justifies our definition of the
Duistermaat-Heckman measure.

Remark 6.3.5. This section is related to Weinstein’s work on measures on stacks
[54]. According to his philosophy, the measures to consider in Poisson Geometry
should arise by interpreting the symplectic groupoid as a stack. Our approach here
is more direct approach, using the foliation groupoid instead of the full symplectic
one. The precise relationship between the two is explained in [16].

7. Proper isotropic realizations

Many algebraic or geometric objects can be studied via their representations.
This philosophy also applies to Poisson Geometry, where the representations of a
Poisson manifold take the concrete form of symplectic realizations (see below). For
instance, the integrability of a Poisson manifold is equivalent to the existence of a
complete symplectic realization [12]. In this section we show that the properness of
a Poisson manifold is closely related to the existence of proper isotropic realizations.

More precisely, to any proper isotropic realization q : (X,⌦X) ! (M,⇡) we
will associate a symplectic integration of (M,⇡)- the holonomy symplectic groupoid
relative to X, denoted by HolX(M,⇡). It is the smallest integration that acts on
X symplectically and it will play an import role in the last two sections of the
paper. There we will introduce the Lagrangian Dixmier-Douady class of a proper
integration and the ones with vanishing class are precisely the holonomy symplectic
groupoids relative to some proper isotropic realization.
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Proper isotropic realizations appeared first in the work of Dazord and Delzant
[19], under the name of symplectically complete isotropic fibrations, as special fi-
brations of symplectic manifolds that generalize Lagrangian fibrations. From that
point of view, this section generalizes the fact that the base of a proper Lagrangian
fibration inherits an integral a�ne structure: we will show that the base of a proper
symplectically complete isotropic fibration with connected fibers is a Poisson ma-
nifold of proper type.

7.1. Symplectic realizations and Hamiltonian G-spaces. Recall that a sym-
plectic realization of a Poisson manifold (M,⇡) is a symplectic manifold (X,⌦X)
together with a Poisson submersion

q : (X,⌦X)! (M,⇡).

The symplectic realization is called complete if for any complete Hamiltonian
vector field Xh 2 X(M) the pullback Xh�q 2 X(X) is complete. Of course, if q
is proper then it is complete. While every Poisson manifold admits a symplectic
realization, for complete symplectic realizations one has:

Theorem 7.1.1 ([12]). A Poisson manifold is integrable if and only if it admits a
complete symplectic realization.

Note however that, as the canonical integration ⌃(M,⇡) may already fail to be
Hausdor↵, in the previous theorem one has to allow for non-Hausdor↵ symplectic
realizations (cf. [12, Remark 1]). However, we will soon impose conditions that
ensure that all the manifolds involved are Hausdor↵.

We recall in Appendix A that for a symplectic integration (G,⌦) ◆ (M,⇡)
the moment map of an infinitesimally free Hamiltonian G-space (X,⌦X) yields a
symplectic realization of (M,⇡). This motivates:

Definition 7.1.2. Given a symplectic realization q : (X,⌦X) ! (M,⇡), a sym-
plectic integration (G,⌦) ◆ (M,⇡) is called X-compatible if there is a symplectic
G-action with moment map q : X !M :

(G,⌦)

✏✏✏✏

!! (X,⌦X)

q
uu

(M,⇡)

Every complete symplectic realization admits compatible integrations: the proof
of Theorem 7.1.1 given in [12] shows that the Weinstein groupoid acts on every
complete symplectic realization. In fact, we have (see also Appendix A):

Proposition 7.1.3. For a Poisson manifold (M,⇡), the complete symplectic real-
izations of (M,⇡) are the same thing as the moment maps of infinitesimally free
⌃(M,⇡)-Hamiltonian spaces.

It will be useful to recall the construction from [12], that shows how the infini-
tesimal action determined by the realization q : (X,⌦X)! (M,⇡):

� : q⇤T ⇤
M ! X(X), i�(↵)(!) = q

⇤
↵,
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integrates to a symplectic action:

(⌃(M,⇡),⌦)

✏✏✏✏

!! (X,⌦X)

q

uu

(M,⇡)

For that, let a : I ! T
⇤
M be a cotangent path with base path �a : I ! M and

choose u 2 X in the fiber over the initial point �(0). Since q is complete, it follows
that there is a unique path e�u

a
: I ! X with q(e�u

a
(t)) = �a(t) and satisfying:

8
<

:

d
dte�

u

a
(t) = �(a(t)),

e�u

a
(0) = u

We call e�u

a
the horizontal lift of the cotangent path a with initial point u.

It is easy to check that the horizontal lifts are leafwise paths in the symplectic
orthogonal foliation (ker dq)?. It is proved in [12] that two cotangent paths with
the same initial point are cotangent homotopic if and only if their horizontal lifts
are leafwise homotopic relative to the endpoints (and if this holds for some initial
point u it holds for any other point in the fiber).

In summary, one can characterize the canonical integration ⌃(M,⇡) ◆ M from
the realization q : (X,⌦X)! (M,⇡) as:

⌃(M,⇡) =
{cotangent paths a : I ! T

⇤
M}

cotangent paths w/ lifts leafwise homotopic in (ker dq)?
. (7.1)

If we denote by [a] the class of a cotangent path, the symplectic action of ⌃(M,⇡)
on q : X !M is then given by:

⌃(M,⇡)s ⇥q X ! X, ([a], u) 7! e�u

a
(1). (7.2)

The action gives an isomorphism of Lie groupoids:

⌃(M,⇡)nX ⇠= Mon((ker dq)?), ([a], u) 7! [e�u

a
]. (7.3)

Since ⌃(M,⇡) ◆ M acts on any symplectic realization and it is the largest,
s-connected, symplectic integration of (M,⇡), it is natural to wonder:

• Given a symplectic realization q : (X,⌦X)! (M,⇡), is there is a “smallest”
X-compatible, s-connected, symplectic integration?

The minimality property of the holonomy groupoid of a foliation suggests that, to
construct such a groupoid, one should replace in the description (7.1) of ⌃(M,⇡)
“homotopy” by “holonomy”.

In other words, we define a new equivalence relation between cotangent paths
a1, a2 : I ! T

⇤
M , which we call cotangent holonomy rel X, by:

a1 ⇠h a2 i↵

⇢
their horizontal lifts at any point u, e�u

a1
, e�u

a2
: I ! X,

have the same holonomy in (ker dq)?.

Notice that the base paths of cotangent holonomic paths have the same end points.
Also, it is clear that:

(a) If a0 and a1 are cotangent homotopic then they are also cotangent holo-
nomic rel X;
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(b) If a0 and b0 are cotangent holonomic rel X to a1 and b1, respectively, then
the concatenations a0 · b0 and a1 · b1, if defined, are cotangent holonomic
rel X.

Therefore, we are led to the following:

Definition 7.1.4. The holonomy symplectic groupoid relative to q : (X,⌦X)!
M is the groupoid HolX(M,⇡) ◆ M defined by:

HolX(M,⇡) :=
{cotangent paths}

cotangent holonomy rel X
,

with the obvious structure maps. Denote by [a]h the class of a cotangent path a.

There is an obvious groupoid action:

HolX(M,⇡)

✏✏✏✏

!!

X

q

vv

M

which gives a morphism of groupoids:

HolX(M,⇡)nX ! Hol((ker dq)?), ([a]h, u) 7! [e�u

a
]h. (7.4)

In good cases HolX(M,⇡) will indeed be the “smallest” X-compatible integration
of (M,⇡) and the last morphism will be an isomorphism of Lie groupoids.

Example 7.1.5. For any symplectic groupoid (G,⌦) ◆ (M,⇡), the target map
t : G !M yields a complete symplectic realization of (M,⇡). We claim that in this
case we have a natural isomorphism:

HolG(M,⇡) ⇠= G.
Indeed, the symplectic orthogonal foliation to the t-fibers is the foliation given by
the s-fibers, which obviously has trivial holonomy. Hence, given a cotangent path
a : I ! T

⇤
M starting at x 2M , if one denotes by e�a : I ! G the unique horizontal

lift through 1x, then one has a well defined map [a]h ! e�a(1) and this defines the
desired isomorphism from HolG(M,⇡) onto G.

Example 7.1.6. A Lagrangian fibration q : (X,⌦X)! B with compact connected
fibers is a complete symplectic realization of the zero Poisson structure ⇡ ⌘ 0. We
claim that in this case we have a natural isomorphism:

HolX(B, 0) ⇠= T⇤,
the symplectic torus bundle associated with the integral a�ne structure ⇤ ⇢ T

⇤
B

(see Proposition 3.1.6). Indeed, in this case the symplectic orthogonal foliation to
the fibers coincides with the fibers, and so has trivial holonomy. A cotangent path
a : I ! T

⇤
B starting at x 2 M is just an ordinary path a : I ! T

⇤

x
B and it is

cotangent homotopic to the constant path ↵ =
R 1
0 a(t)dt (see [12]). For a constant

path ↵ 2 T
⇤

x
B, the horizontal lift through u 2 X is the path t 7! �

t

↵
(u) (same

notation as in the proof of Proposition 3.1.6) and we conclude that:

a1 ⇠h a2 i↵

Z 1

0
a1(t)dt�

Z 1

0
a2(t)dt 2 ⇤.
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Hence, the map [a]h !
R 1
0 a(t)dt (mod ⇤) gives the desired isomorphism from

HolX(B, 0) onto T⇤.

7.2. The holonomy groupoid relative to an isotropic realization. In gen-
eral, for a proper Poisson manifold (M,⇡) the canonical integration ⌃(M,⇡) ◆
M will fail to be proper. For a symplectic realization, the holonomy groupoid
HolX(M,⇡) constructed in the previous section is a smaller integration with better
chances of being proper. When HolX(M,⇡) is a proper symplectic groupoid then,
according to Theorem 3.3.1, it will determine a transverse integral a�ne structure
on (M,F⇡). We focus now on a class of proper symplectic realizations to which one
can always attach a transverse integral a�ne structure:

Definition 7.2.1. An isotropic realization of a Poisson manifold (M,⇡) is a
symplectic realization q : (X,⌦X) ! (M,⇡) whose fibers are connected isotropic
submanifolds of (X,⌦X).

Remark 7.2.2. Dazord and Delzant have studied in [19] the notion of a sym-
plectically complete isotropic fibration of a symplectic manifold (X,⌦X). It
is defined as a fibration q : X !M satisfying two properties:

(i) the fibers of q are isotropic;
(ii) the symplectic orthogonal (ker dq)? is an integrable distribution.

If one assumes additionally that the fibers of q are connected it follows that M

carries a unique Poisson structure such that q : (X,⌦X) ! (M,⇡) is a Poisson
map, therefore making q into an isotropic realization of (M,⇡). Conversely, any
isotropic realization of a Poisson manifold satisfies Dazord-Delzant’s conditions.

However, while the two notions are equivalent, they do reflect two di↵erent points
of view, depending on whether one emphasizes the Poisson manifold (M,⇡) or the
symplectic manifold (X,⌦X), respectively. The second point of view makes it clear
that we are dealing with a generalization of the notion of a Lagrangian fibration of
a symplectic manifold (see Section 3.1).

Generalizing from proper Lagrangian fibrations, any proper isotropic realization
also has an associated lattice. The infinitesimal action � : q⇤T ⇤

M ! X(X) asso-
ciated with the Poisson map q : X ! M (see Appendix A) restricts to an action
� : ⌫⇤(F⇡)! X(X), which integrates to a global (bundle of groups) action:

⌫
⇤(F⇡)

✏✏

!!

X

q

ww

M

↵ · u = �
1
�(↵)(u). (7.5)

Of course, this is just a particular case of the previous discussion: the exponential
map exp : ⌫⇤

x
(F⇡)! ⌃(M,x)0 identifies this action with the restriction of the action

of ⌃(M) on X to the connected component of its isotropy.

Definition 7.2.3. The lattice associated to the proper isotropic realization
q : (X,⌦X)! (M,⇡) is the lattice ⇤X ⇢ ⌫

⇤(F⇡) given by:

⇤X,x := {↵ 2 ⌫
⇤

x
(F⇡) : �

1
�(↵) = id}.

The associated torus bundle is TX := ⌫
⇤(F⇡)/⇤X .
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Lemma 7.2.4. If q : (X,⌦X) ! (M,⇡) is a proper isotropic realization, then
⇤X defines a transverse integral a�ne structure for the symplectic foliation F⇡,
containing the monodromy group Nmon of (M,⇡) (see Section 3.4).

Moreover, the action (7.5) induces an action of TX on X,

m : TX ⇥M X ! X, (�, u) 7! � · u,
which is free and proper, makes q : X ! M into a principal TX-bundle and the
action is presymplectic in the sense that

m
⇤(⌦X) = pr⇤1(!T ) + pr⇤2(⌦X), (7.6)

where !T the presymplectic form on TX (cf. Proposition 3.2.8).

Proof. The fact that ⇤X is a transverse integral a�ne structure is proved exactly as
in the case of Lagrangian fibrations (see, e.g., [19], or our proof of Theorem 3.3.1).
The fact that ⇤X contains Nmon is clear because we already know that the action of
⌫
⇤(F⇡) on X factors through the action of the identity component of ⌃(M), which

is ⌫⇤(F⇡)/Nmon.
The action of TX on X is free since ⇤X is precisely the kernel of the ⌫(F⇡)-

action and the properness follows from the properness of TX . To check that the
action is presymplectic, it su�ces to observe that the action of ⌃(M) on X is
symplectic, together with the fact that the presymplectic forms on the conormal
bundle coincides with the the pull-back of the symplectic form of ⌃(M) via the
exponential map exp : ⌫⇤(F⇡)! ⌃(M). ⇤

We can now state the main result of this section:

Theorem 7.2.5. For any proper isotropic realization q : (X,⌦X)! (M,⇡):

(i) HolX(M,⇡) is an X-compatible, s-connected symplectic integration of (M,⇡).
(ii) For any X-compatible, s-connected symplectic integration (G,⌦) ◆ (M,⇡)

there are étale morphisms of symplectic groupoids:

⌃(M,⇡) // G // HolX(M,⇡) ;

(iii) HolX(M,⇡) is a proper Lie groupoid if and only if F⇡ is of proper type.

Moreover, one has a short exact sequence of Lie groupoids:

0 // TX // HolX(M,⇡) // Hol(M,F⇡) // 0 .

For the proof of this theorem we start with an elementary but important prop-
erty of isotropic realizations, which serves as starting point for reconstructing the
holonomy groupoid of (ker dq)? (hence, using (7.4, also the groupoid HolX(M,⇡)).

Lemma 7.2.6. For an isotropic fibration q : (X,⌦X) ! (M,⇡), the foliation
(ker dq)? coincides with the pull-back via q of the symplectic foliation F⇡.

Proof. The definition of the infinitesimal action � shows that Im(�) = (ker dq)?.
Now, the fact that q is a symplectic realization is equivalent to

⇡
](⇠) = dq(�(⇠)), 8⇠ 2 T

⇤
M.

We deduce that, for a vector v tangent to X, one has:

dq(v) 2 F⇡ () dq(v) = dq(�(⇠)), for some ⇠ 2 T
⇤
M

() v 2 Im(�) + (ker dq) = (ker dq)? + (ker dq) = (ker dq)?

where for the last equality we used that the fibers are isotropic. ⇤
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Next, we look at the interaction between TX and the holonomy of the foliation.
Using the general properties of transverse integral a�ne structures (see Section 5.1)
and the discussion on presymplectic actions from Appendix A.5, one finds:

Lemma 7.2.7. The linear holonomy action (2.2) preserves ⇤X so descends to an
action on TX : for any leafwise path � : [0, 1]!M from x to y one obtains

hol� : TX,x ! TX,y.

If Hol(M,F⇡) is endowed with the zero presymplectic form then the resulting action
m : Hol(M,F⇡)⇥M TX ! TX is presymplectic:

m
⇤(!T ) = pr⇤2(!T ). (7.7)

We can now turn to the study of HolX(M,⇡), with the aim of proving Theorem
7.2.5. Following the general discussion in Section 7.1, our strategy will be to un-
derstand the holonomy groupoid Hol((ker dq)?) and then show that the morphism
HolX(M,⇡)nX ! Hol((ker dq)?) is actually in isomorphism.

Lemma 7.2.6 and the fact that q has connected fibers, shows that

Hol((ker dq)?)⇠=q
⇤ Hol(F⇡), (7.8)

where q
⇤ Hol(F⇡) is the pullback groupoid:

q
⇤ Hol(F⇡) = (X ⇥M Hol(M,F⇡)⇥M X ◆ X). (7.9)

This groupoid consists of triples (v, �, u) with q(v) = t(�), s(�) = q(u). The source
and target of the arrow (v, �, u) are u and v, respectively, and the multiplication is
given by:

(w, �1, v) · (v, �2, u) = (w, �1 · �2, u).
Here we will momentarily not distinguish between the leafwise path � and the
element it represents in the holonomy groupoid.

Next, we consider the projection q
⇤ Hol(F⇡) ! M , (v, �, u) 7! q(u), and we

define an action of the torus bundle TX on q
⇤ Hol(F⇡) ! M appealing to Lemma

7.2.7, by setting for each � 2 TX |q(x):

� · (v, �, u) = (hol�(�) · v, �,� · u). (7.10)

Since the action of TX on X is free and proper, it follows easily that the resulting
quotient q⇤ Hol(F⇡)/TX is a Lie groupoid:

Lemma 7.2.8. If q : (X,⌦X) ! (M,⇡) is a proper isotropic realization, the
quotient

q
⇤ Hol(F⇡)/TX = (X ⇥M Hol(M,F⇡)⇥M X) /TX ◆ M

is a smooth groupoid, which is Hausdor↵ whenever Hol(M,F⇡) is Hausdor↵. More-
over, q⇤ Hol(F⇡)/TX is proper if F⇡ is of proper type.

Proof. It is immediate to check from the definitions that the quotient is a groupoid.
When Hol(M,F⇡) is Hausdor↵, then we have a free and proper action of TX on a
Hausdor↵ manifold, hence the quotient is smooth and Hausdor↵. The last part on
properness also follows immediately.

The only remaining question is to show that the quotient is smooth, when
Hol(M,F⇡) is non-Hausdor↵. Since the quotient map can be made into a sub-
mersion in at most one way, we only have to prove the local statement, around a
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neighborhood of an arrow [v0, �0, u0] going from x0 to y0. Choosing two local sec-
tions of TX , ⌧t and ⌧s, defined on opens U(y0) containing y0 and U(x0) containing
x0, respectively, then

TX |U(y0) ⇥M Hol(M,F⇡)⇥M TX |U(x0) ! X ⇥M Hol(M,F⇡)⇥M X

(�2, �,�1) 7! (�2 · ⌧t(t(�)), �,�1 · ⌧s(s(�)))
defines an embedding into an open invariant subspace of X ⇥M Hol⇥MX. Finally,
the quotient of the left hand side modulo the action of TX is clearly smooth. ⇤

Next, we exhibit the symplectic structure of q⇤ Hol(F⇡)/TX :

Lemma 7.2.9. The 2-form e⌦ := pr⇤1 ⌦X � pr⇤3 ⌦X on X ⇥M Hol(M,F⇡) ⇥M X,
where pr

i
is the projection on the i-th factor, descends to a 2-form ⌦ on the quotient

groupoid q
⇤ Hol(F⇡)/TX , making it into a symplectic groupoid integrating (M,⇡).

Proof. A more or less tedious computation shows that the kernel of the closed form
e⌦ = pr⇤1 ⌦X � pr⇤3 ⌦X is the image of the infinitesimal action induced by (7.10).
Also, note that pr3 : (q⇤ Hol(F⇡), e⌦)! (M,⇡) is f-Dirac. It follows that e⌦ descends
to a symplectic form ⌦ on the quotient q⇤ Hol(F⇡)/TX and that the target map

t : (q⇤ Hol(F⇡)/TX ,⌦)! (M,⇡)

is Poisson. Since e⌦ is obviously multiplicative, so is ⌦, hence one obtains a sym-
plectic groupoid (q⇤ Hol(F⇡)/TX ,⌦) integrating (M,⇡). ⇤
Proof of Theorem 7.2.5. We claim that HolX(M,⇡) is a smooth quotient of ⌃(M,⇡),
i.e., that it admits a smooth structure (necessarily unique) such that the canonical
projection is a submersion. As first step we construct an isomorphism of groupoids

� : HolX(M,⇡) ⇠= q
⇤ Hol(F⇡)/TX (7.11)

as follows: for an element [a]h 2 HolX(M,⇡) represented by a cotangent path whose
base path �a starts at x 2M , we choose any u 2 q

�1(x) and we set

�([a]h) := [[a] · u, �a, u] 2 HolX(M,⇡),

where we use the action of [a] 2 ⌃(M,⇡) on X (see (7.2)) and we omit writing [�a]h
for the middle element. This is independent of the choice of u.

The injectivity of � is clear: if �a1 and �a2 have the same holonomy with respect
to F⇡, Lemma 7.2.6 shows that any lifts tangent to (ker dq)? and starting at the
same point, such as e�u

a1
and e�u

a2
, have the same holonomy with respect to (ker dq)?.

For the surjectivity of �, given any [v, �, u], one chooses a cotangent path a with
[�a]h = �. Since [a] · u and v are in the same fiber of q, we can write

[v] = [↵] · ([a] · u)
for some ↵ 2 ⌫

⇤(F⇡), so that:

[v, �, u] = �([↵] · [a]).
To check that HolX(M,⇡) is a smooth quotient of ⌃(M,⇡), we still have to check

that the composition of the map � with the projection ⌃(M,⇡) ! HolX(M,⇡) is
a submersion. For that it su�ces to prove the same property for its pull-back to
X via q. On the pull-back, one has the identification (7.3) with the monodromy
groupoid of (ker dq)?, the interpretation of (7.9) as the holonomy groupoid of the
same foliation, and the map is just the canonical projection between the two.
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For the proof of Theorem 7.2.5 (ii), let G be any otherX-compatible, s-connected,
symplectic integration of (M,⇡). The groupoid q

⇤G is an s-connected integration of
the foliation (ker dq)?. Since q⇤ Hol(M,F⇡) '⇠= ((ker dq)?), and Mon((ker dq)?) ⇠=
q
⇤⌃(M,⇡), there are morphisms q

⇤⌃(M,⇡) ! q
⇤G ! q

⇤ Hol(M,F⇡) so that the
following is a commutative diagram of surjective groupoid maps:

q
⇤⌃(M,⇡)

✏✏

//

%%

q
⇤G

✏✏

// q
⇤ Hol(M,F⇡)

✏✏

⌃(M,⇡) ////

99

G // HolX(M,⇡)

The existence of the dotted arrow follows by surjectivity, so this proves (ii).
Finally, part (iii) of the theorem follows from the description of HolX(M,⇡) as

a quotient of q⇤ Hol(M,F⇡). ⇤

We now look at some consequences of Theorem 7.2.5. We concentrate on Poisson
manifolds (M,⇡) for which the symplectic foliation F⇡ is of proper type, a condition
that is necessary for (M,⇡) to be of proper type. First of all we have:

Corollary 7.2.10. Let (M,⇡) be a Poisson manifold with F⇡ of proper type. If
q : (X,⌦X) ! (M,⇡) is a proper isotropic realization then HolX(M,⇡) is an s-
connected proper symplectic groupoid. Moreover:

(i) the orbifold structure induced on B = M/F⇡ is a classical orbifold structure;
(ii) the transverse integral a�ne structure associated to the proper isotropic real-

ization q coincides with the one induced by the proper integration HolX(M,⇡).

In particular:

Corollary 7.2.11. Let (M,⇡) be a Poisson manifold with F⇡ of proper type. If
(M,⇡) admits a proper symplectic realization, then (M,⇡) is of proper type.

One should be aware however that the properness of (M,⇡) does not imply the
existence of proper symplectic realizations. As we shall explain in the final sections
of the paper, there is one more obstruction to the existence of proper symplectic
realizations: the Lagrangian Dixmier-Douady class.

The previous corollary brings us to yet another aspect of the theory of isotropic
realizations. After eventually passing to a cover, proper symplectic realizations can
be made simple in the sense of the following:

Definition 7.2.12. A simple isotropic realization is an isotropic realization
q : (X,⌦X)! (M,⇡) for which there exists anX-compatible symplectic integration
(G,⌦) ◆ (M,⇡) whose action on X is free.

Using Theorem 7.2.5 and the discussion from Appendix A, we deduce the fol-
lowing equivalent characterizations of simple isotropic realizations of PMCTs:
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Proposition 7.2.13. Let q : (X,⌦X) ! (M,⇡) be a proper isotropic realization
and assume that the symplectic foliation F⇡ is of proper type. Then the following
statements are equivalent:

(a) the symplectic foliation F⇡ is simple;
(b) q : (X,⌦X)! (M,⇡) is a simple isotropic realization;
(c) there exists an X-compatible, s-connected, proper integration (G,⌦) ◆ (M,⇡)

that acts freely on X;
(d) (X,⌦X) is a free Hamiltonian T⇤-space for an integral a�ne manifold (B,⇤)

with reduced space (M,⇡) ⇠= (Xred,⇡red) (see Corollary A.4.2).

Of course, under any of the equivalent conditions of the proposition, one has that
B = M/F⇡, ⇤ the integral a�ne structure on B induced by ⇤X and G is the gauge
groupoid G ⇠= X ?

TX
X associated to the principal TX -space X (Appendix A.4).

Proof. The fact that the holonomy of the symplectic foliation F⇡ is an obstruction
to the existence of simple isotropic realizations of (M,⇡) follows from (7.8), the
minimality property of holonomy groupoids (Theorem 2.1.2) and the fact that for
an X-compatible integration G n X is a foliation groupoid integrating (ker dq)?.
The rest of the statement should be clear. ⇤

In order to show that eventually passing to a cover, proper symplectic realizations
can be made simple, we need to appeal to the main result of Appendix B. This
result applied to the proper foliation (M,F⇡), together with the transversal integral
a�ne structure ⇤X , yields the linear holonomy cover (M lin

,F lin
⇡

) with a smooth
leaf space B

lin = M
lin
/F lin

⇡
- an integral a�ne manifold carrying an action of the

linear holonomy group �lin by integral a�ne transformations, with B
lin
/�lin = B.

The conclusion is that when F⇡ is of proper type, any proper isotropic realization
is obtained as quotient of a simple one:

Corollary 7.2.14. Let (M,⇡) be a Poisson manifold with F⇡ of proper type. If
q : (X,⌦X) ! (M,⇡) is a proper isotropic realization then X

lin := X ⇥M M
lin

yields a �lin-equivariant proper isotropic realization

q
lin : (X lin

, e⌦X)! (M lin
, e⇡), (7.12)

which is simple.

This is summarized in the following diagram:

(X lin
, e⌦X)

✏✏

q
lin

// (M lin
, e⇡)

✏✏

// B
lin

✏✏

(X,⌦X)
q

// (M,⇡) // B

where (X lin
, e⌦X)! B

lin is the moment map of a free Hamiltonian TBlin -space and
(7.12) is the resulting Hamiltonian quotient.

7.3. Isotropic realizations and Morita equivalence. The symplectic groupoids
arising from proper isotropic realizations form a rather special class among all
proper symplectic groupoids. A first illustration is the following result, where we
use the presymplectic version of Morita equivalence (see Appendix A):
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Proposition 7.3.1. If q : (X,⌦X)! (M,⇡) is a proper isotropic realization then
X⇥M Hol(M,F⇡), endowed with the pull-back of ⌦X by the first projection, defines
a presymplectic Morita equivalence between the symplectic groupoid HolX(M,⇡) and
the presymplectic groupoid integrating the Dirac structure LF⇡ :

HolX(M,⇡)

✏✏✏✏

!!

X ⇥
M

Hol(M,F⇡)

q�pr1
uu

s�pr2
**

bb

TX on Hol(M,F⇡)

✏✏✏✏

(M,⇡) (M,LF⇡ )

Proof. For the groupoid on the right hand side we use the description given by
(3.4), while for the groupoid HolX(M,⇡) we use (7.11). The two left and right
actions are defined by

[v, �0, u] · (u, �1) = (v, �0 · �1), (u, �1) · (�, �2) = (hol�1(�)u, �1 · �2).

respectively. The actions obviously commute and it is straightforward to check that
they are principal, so they define a Morita equivalence.

We are left with proving that the actions are presymplectic. We will use the
abbreviated notation Hol = Hol(M,F⇡). For the right action, we have to check an
equality of forms on the fiber product

X ⇥M Hol⇥MTX ⇥M Hol = {((u, �1), (�, �2)) : q(u) = t(�1), s(�1) = t(�2) = p(�)}.

We denote by Hol(2) the space of pairs of composable arrows in Hol and by letting
⌘ = hol�1(�) we reparametrize this fiber product space as

X ⇥M TX ⇥M Hol(2) = {(u, ⌘, �1, �2) : q(u) = p(⌘) = t(�1)}.

The two projections and the multiplication corresponding to the right action on
the bibundle, on this new space become:

• pr1 : X ⇥M TX ⇥M Hol(2) ! X ⇥M Hol, (u, ⌘, �1, �2) 7! (u, �1). We need
to consider the pull-back by this map of the form pr⇤

X
⌦X .

• m : X ⇥M TX ⇥M Hol(2) ! X ⇥M Hol, (u, ⌘, �1, �2) 7! (⌘ · u, �1 · �2). We
need to consider the pull-back by this map of the form pr⇤

X
⌦X .

• pr2 : X ⇥M TX ⇥M Hol(2) ! TX on Hol, (u, ⌘, �1, �2) 7! (hol�1
�1

(⌘), �2).
We need to consider the pull-back by this map of the form pr⇤

TX
!T . How-

ever, due to (7.7), the same result is obtained if one pulls-back !T via
(u, ⌘, �1, �2) 7! ⌘.

Combining these three terms, we find that the equation

m
⇤ pr⇤

X
⌦X = pr⇤1 pr

⇤

X
⌦X + pr⇤2 pr

⇤

TX
!T

reduces to (7.6), so the right action is presymplectic.
For the left action one needs to check that:

m
⇤ pr⇤

X
⌦X = pr⇤1 ⌦+ pr⇤2 pr

⇤

X
⌦X .

If one pulls back both sides of this equation along the submersion:

X ⇥M Hol⇥MX ⇥M X ! HolX ⇥M (X ⇥M Hol)

(v, �0, u, �1) 7! ([v, �0, u], (u, �1))

one obtains an obvious identity, so the the left action is presymplectic. ⇤
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One can pass from presymplectic to symplectic Morita equivalences by restricting
to complete transversals to the symplectic foliation. We obtain:

Corollary 7.3.2. If q : (X,⌦X) ! (M,⇡) is a proper isotropic realization, for
each choice of a complete transversal T ⇢ M to F⇡ there is a symplectic Morita
equivalence:

HolX(M)

✏✏✏✏

!!

X ⇥
M

Hol(M,F⇡)(�, T )

tt

++

bb

TX |T on Hol(M,F⇡)|T

✏✏✏✏

(M,⇡) (T,⇡ ⌘ 0)

The previous two results show that the groupoids associated with proper isotropic
realizations are very special: they are Morita equivalent to torus bundles over the
leaf space. Moreover, their symplectic Morita equivalence class does not depend on
X but only on the transverse integral a�ne structure it defines on (M,F⇡).

When the foliation F⇡ is proper we can do better and pass to torus bundle over
classical orbifolds (see Corollary 7.2.10). Here, as for Corollary 7.2.14, we appeal
again to Appendix B; the Morita point of view leads to an improvement of the
corollary. More precisely, if we consider the linear holonomy cover B

lin, together
with the action of the linear holonomy group �lin, we see that one has not only
the symplectic torus bundle TBlin corresponding to the integral a�ne structure, but
also the semi-direct groupoid (itself a symplectic groupoid!)

TBlin on �lin ◆ B
lin
.

Corollary 7.3.3. If F⇡ is of proper type then, for any proper isotropic realization
q : (X,⌦X) ! (M,⇡), the symplectic holonomy groupoid HolX(M,⇡) is Morita
equivalent to the symplectic groupoid TBlin on �lin ◆ B

lin associated with the linear
holonomy cover of the classical orbifold B = M/F⇡. In particular, there is a 1-1
correspondence:

8
<

:
Hamiltonian

HolX(M,⇡)-spaces

9
=

;
1�1 !

8
<

:
�lin-equivariant

Hamiltonian TBlin-spaces

9
=

;

The advantage of passing to B
lin instead of restricting to transversals is that the

construction is choice-free and the base B
lin remains connected if M is connected.

7.4. Isotropic realizations and E-integrations. If we start from a proper isotropic
realization q : (X,⌦X)! (M,⇡), the corresponding holonomy groupoid fits into a
short exact sequence (see Theorem 7.2.5):

0 // TX // HolX(M,⇡) // Hol(M,F⇡) // 0 .

One the other hand, if we consider an s-connected, proper symplectic integration
(G,⌦) ◆ (M,⇡) then we have the short exact sequence:

0 // T (G) // G // B(G) // 0 ,

where T (G) = ⌫
⇤(F⇡)/⇤ and B(G) ◆ M is a proper foliation groupoid integrating

F⇡. In general, the groupoid B(G) will be a larger integration than Hol(M,F⇡).
This shows that it is not possible to obtain every s-connected, proper symplectic

integration (G,⌦) ◆ (M,⇡) as the holonomy groupoid relative to an isotropic
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realization of (M,⇡). However, one can extend the construction of HolX(M,⇡),
replacing Hol(M,⇡) by any foliation groupoid integrating F⇡, even non s-connected
integrations, if we adopt the identification (7.9) as definition of HolX(M,⇡):

Definition 7.4.1. For any proper isotropic realization q : (X,⌦X) ! (M,⇡) and
any integration E ◆ M of (M,F⇡) the E-integration of (M,⇡) relative to X is

EX(M,⇡) := (X ⇥M E ⇥M X) /TX ◆ M

with the symplectic structure induced from the 2-form e⌦ := pr⇤1 ⌦X � pr⇤3 ⌦X .

This definition recovers HolX(M,⇡) when E = Hol(M,F⇡). However, one should
be aware that when E = Mon(M,F⇡) the groupoid EX(M,⇡) and the Weinstein
groupoid ⌃(M,⇡), in general, do not coincide, since q

⇤ Mon(M,F⇡) may be very
di↵erent from Mon(q⇤F⇡) = Mon((ker dq)?).

Remark 7.4.2. When the foliation groupoid E is s-connected we can still define
the E-integration of (M,⇡) relative to X geometrically, as in Definition 7.1.4: the
pullback groupoid q

⇤E is also an s-connected integration of (ker dq)?, and one can
define cotangent E-equivalent paths, in a manner analogous to the way we defined
cotangent holonomic paths, by requiring their horizontal lifts to induce the same
element in the pull-back q

⇤E . However, this geometric definition fails in general,
and later we do have to deal with non s-connected foliation groupoids.

Exactly the same arguments as before imply the following more general version
of Theorem 7.2.5:

Theorem 7.4.3. For any proper isotropic realization q : (X,⌦X) ! (M,⇡) and
any foliation groupoid E integrating (M,F⇡):

(i) EX(M,⇡) is an an X-compatible symplectic integration of (M,⇡).
(ii) EX(M,⇡) is an s-connected, proper Lie groupoid i↵ E is s-connected and

proper.

Moreover, one has a short exact sequence of Lie groupoids:

0 // TX // EX(M,⇡) // E // 0 .

When F⇡ is proper we still find:

• the transverse integral a�ne structure defined by EX(M,⇡) coincides with
the lattice ⇤X defined by the proper isotropic realization.

• the associated orbifold structure on B = M/F⇡ is the one induced by E .
Also, similar to Proposition 7.3.1, TX on E ◆ M is a presympectic groupoid inte-

grating the Dirac structure LF⇡ associated with the foliation F⇡, and one obtains:

Proposition 7.4.4. If q : (X,⌦X) ! (M,⇡) is a proper isotropic realization
and E is a foliation groupoid integrating (M,F⇡), there is a presymplectic Morita
equivalence:

EX(M,⇡)

✏✏✏✏

!!

X ⇥
M

E

uu

))

bb

TX on E

✏✏✏✏

(M,⇡) (M,LF⇡ )

By restricting to complete transversals T ⇢M to F⇡, one can obtain symplectic
Morita equivalences, leading to the analogue of Corollary 7.3.2.
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7.5. The Dazord-Delzant class. Given a regular Poisson manifold (M,⇡), we
have seen that any proper isotropic realization q : (X,⌦X) ! (M,⇡) defines a
transverse integral a�ne structure ⇤X on (M,F⇡). We now address the converse
problem. Namely, given:

• (M,⇡) a Poisson manifold;
• ⇤ ⇢ ⌫

⇤(F⇡) a transverse integral a�ne structure;

is there a proper isotropic realization q : (X,⌦X)! (M,⇡) defining ⇤? This leads
to a cohomology class, which is essentially due to Dazord and Delzant [19], and
which we will call the Dazord-Delzant class associated to the data (M,⇡,⇤).

In order to describe this class, we will have to deal with sheaf cohomology. For a
bundle E !M we will denote by E the associated sheaf of sections. For example,
T denotes the sheaf of section of the torus bundle T !M and we will also denote
by T cl the sheaf of closed sections, so for an open set V ⇢M we have:

T cl(U) = {↵ 2 T (U) : ↵⇤
!can = d↵ = 0}.

Let us denote by (⌦•(M,F⇡), d) the complex of forms whose pullback to the
leaves of F⇡ vanish. We have the short exact of sequence of sheaves (Poincaré
Lemma):

0 // ⌦•

cl(M,F⇡) // ⌦•(M,F⇡)
d
// ⌦•+1

cl (M,F⇡) // 0 (7.13)

where ⌦•

cl(M,F⇡) denotes the sheaf of closed forms. Notice that:

⌦1(M,F⇡) = ⌫
⇤(F⇡),

and we can view ⇤ ⇢ ⌦1
cl(M,F⇡) as a locally constant subsheaf. If T := ⌫

⇤(F⇡)/⇤,
this leads to an identification of quotient sheaves:

T = ⌦1(M,F⇡)/⇤, T cl = ⌦1
cl(M,F⇡)/⇤,

and to the short exact sequence of sheaves:

0 // T cl
// T d

// ⌦2
cl(M,F⇡) // 0

We are interested in the following piece of the corresponding long exact sequence
in sheaf cohomology:

// H
1(M, T ) // H

1(M,⌦2
cl(M,F⇡))

�
// H

2(M, T cl) // (7.14)

Now observe that associated to the leafwise symplectic form !F⇡ there is a class
which is the obstruction to extend !F⇡ to a closed two 2-form on M : if {Ua}a2A

is a good cover of M then we can find closed 2-forms !a 2 ⌦2(Ua) which locally
extend !F⇡ and on Uab = Ua \ Ub their di↵erence is closed and vanishes on the
symplectic leaves, so defines a 2-cycle !ab := !a � !b 2 ⌦2

cl(Uab,F⇡). Hence, we
can set

⇠(M,⇡) := [!ij ] 2 H
1(M,⌦2

cl(M,F⇡)).

Remark 7.5.1. Since ⌦•(M,F⇡) is a fine sheaf, the sequence (7.13) gives:

H
1(M,⌦2

cl(M,F⇡)) '
H

0(M,⌦3
cl(M,F⇡))

dH0(M,⌦2
cl(M,F⇡))

= H
3(M,F⇡).

Under this isomorphism, the class ⇠(M,⇡) corresponds to the class [de!] where
e! 2 ⌦2(M) is any 2-form extending the leafwise symplectic form !F⇡ .
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Definition 7.5.2. If (M,⇡) is a regular Poisson structure and ⇤ ⇢ ⌫
⇤(F⇡) is a

transverse integral a�ne structure, the Dazord-Delzant class c2(M,⇡,⇤) is the
image of ⇠(M,⇡) under the connecting homomorphism (7.14):

c2(M,⇡,⇤) := �(⇠(M,⇡)) 2 H
2(M, T cl),

Notice that an explicit 2-cocycle representing the obstruction class can be ob-
tained by considering a good cover {Ua} of M and local extensions !a 2 ⌦2(Ua) of
the leafwise symplectic form !F⇡ , so that the di↵erence !ab = !a � !b is exact:

!ab = d↵ab, (↵ab 2 ⌦1(Uab,F⇡)).

Then ↵ab + ↵bc + ↵ca is a closed 1-form in Uabc := Ua \ Ub \ Uc vanishing on the
leaves, and its projection gives a 2-cocycle representing c2(M,⇡,⇤):

cabc = [↵ab + ↵bc + ↵ca] 2 ⌦1
cl(Uabc,F⇡)/⇤.

The following result is essentially due to Dazord and Delzant:

Theorem 7.5.3 ([19]). The class c2(M,⇡,⇤) vanishes if and only if ⇤ is defined
by a proper isotropic realization q : (X,⌦X)! (M,⇡).

The proof of this result can be split into two steps:

(i) c2(M,⇡,⇤) = 0 if and only if there is a class c1 2 H
1(M, T ) which is mapped

to ⇠(M,⇡) in the long exact sequence (7.14);
(ii) Given any class c1 2 H

1(M, T ) there is a principal T -bundle q : X ! M

whose Chern class is c1. This bundle has a symplectic structure ⌦X making
q into a symplectic complete isotropic fibration inducing ⇡ on M if and only
if c1 is mapped to ⇠(M,⇡) in the long exact sequence (7.14).

We refer to [19] for the details.

To our knowledge, it is an open problem to give an example of a Poisson manifold
(M,⇡) with Dazord-Delzant class c2(M,⇡,⇤) 6= 0, where ⇤ is a lattice defined by
some proper integration (G,⌦) ◆ (M,⇡).

Remark 7.5.4 (The Dirac setting). The results on proper isotropic realizations
extend to twisted Dirac structures with the appropriate modifications. Now, the
central notion is that of a presymplectic realization (see [8]):

q : (X,⌦X)! (M,L,�),

where ! is a 2-form such that d⌦X + q
⇤
� = 0, q is a f-Dirac map, and one requires

the non-degeneracy condition:

Ker(⌦X) \Ker(dq) = {0}.
One defines HolX(M,L), the holonomy groupoid relative to the presymplectic re-
alization q : (X,⌦X) ! (M,L,�), as the quotient of cotangent paths modulo
cotangent holonomy rel X as in Definition 7.1.4. Then all fundamental proper-
ties of HolX(M,⇡) still hold in the presymplectic setting, namely Theorem 7.2.5,
Proposition 7.2.13 and Corollary 7.3.3. In the proofs one must use the (twisted)
presymplectic version of Hamiltonian G-spaces (see Appendix A).

The Dazord-Delzant theory also extends in a more or less straightforward way
to twisted Dirac structures (see [47] for the case of twisted Poisson structures).
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8. Symplectic gerbes over manifolds

In the previous sections we have seen that Poisson manifolds of proper type
come with a rich transverse geometry. In particular, the leaf space is an integral
a�ne orbifold. We now fix an integral a�ne orbifold (B,⇤) and we investigate
the freedom one has in building Poisson manifolds of proper type with leaf space
(B,⇤). This problem is really about constructing (symplectic) groupoid extensions
with kernel the torus bundle T associated to ⇤, and hence resembles the standard
theory of S1-gerbes ([5, 35, 41, 45, 52]).

Recall that an S1-gerbe is a higher version of the notion of principal S1-bundle
overB. While principal S1-bundles are classified by their Chern class c1 2 H

2(B,Z),
S1-gerbes are classified by a similar class c2 2 H

3(B,Z), called the Dixmier-Douady
class. We will introduce a symplectic variant of the theory, consisting of symplectic
T⇤-gerbes over B and we will show that they are classified by their Lagrangian
Dixmier-Douady class living in H

2(B, T Lagr).
To achieve this, we will need the following variations of the standard theory of

S1-gerbes:
v1: Replace S1 by general torus bundles T : this is straightforward, but

note that, while S1-gerbes arise as higher versions of principal S1-bundles,
in the process of passing from S1 to torus bundles, principal S1-bundles will
be replaced by T -torsors, a special class of principal T -bundles. Therefore,
T -gerbes arise as higher versions of T -torsors;

v2: A symplectic version of the theory: this is the main novelty of our
story. Remarkably, the lower version of the theory, the symplectic story, i.e.
symplectic T -torsors, as well as its relevance to Lagrangian fibrations, has
already appeared in [50];

v3: Gerbes over orbifolds: although a large part of our discussion will be
carried out in the case where B is a smooth manifold, in general our leaf
spaces B are orbifolds. The passage from manifolds to orbifolds will be
based again on Haefliger’s philosophy (Remark 2.3.3). Note that S1-gerbes
over orbifolds have already been considered- see e.g. [35].

Some of the generalizations of S1-gerbes that we will consider could, in principle,
be obtained by making use of the general theory of gerbes with a given “band” over
general “sites” [6, 25, 33]. However, since all our bands will be abelian, and the
most general sites we we need are the ones associated to orbifolds, we do not have
to appeal to the general theory. And, more importantly, our symplectic gerbes can
always be represented by extensions of Lie groupoids (as in, e.g., [45, 35, 5, 52]).

In this Section we take care of symplectic gerbes over smooth manifolds, leaving
the orbifold case for the next section. Regarding PMCTs, the outcome can be
stated in a simplified form as follows:

Theorem 8.0.1. Assume that (M,⇡) is a Poisson manifold of proper type whose
foliation F⇡ has 1-connected leaves. Then each proper integration (G,⌦) ◆ (M,⇡)
gives rise to a symplectic gerbe over B = (M/F⇡,⇤G), which is classified by a class

c2(G,⌦) 2 H
2(B, T Lagr).

Moreover, its pull-back via the projection p : M ! B is precisely the Dazord-Delzant
class c2(M,⇡,⇤G) (Definition 7.5.2). Furthermore, c2(G,⌦) vanishes i↵ G is the
gauge groupoid of a free Hamiltonian T -space q : (X,⌦X)! B (Appendix A.4).
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8.1. Symplectic torsors. Since S1-gerbes are higher versions of principal S1-
bundles, in order to get ready to deal with symplectic gerbes, we first discuss how
to implement the variations that we mentioned in the case of principal S1-bundles.
Here we concentrate on variations v1 and v2. The formalism necessary for passing
to orbifolds will be discussed in the next section.

8.1.1. From S1 to general torus bundles. We would like to replace S1 by a general
torus bundle T ! B and principal S1-bundles by “principal T -bundles”. Some
care is needed, since we will not be dealing with general principal T -bundles.

Recall that a (right) principal H-bundle over M , for any Lie groupoid H ◆ N

over some other manifold N , consists of a bundle P with two maps: the bundle
projection p : P !M , as well as a map q : P ! N along which H acts on P :

P

p
~~

q
&&

bb

H

✏✏✏✏

M N

When M = N = B and G = T is a torus bundle over B, principal T -bundles over
B still come with two maps, p and q, which need not coincide. We will be interested
in principal T -bundles over B, which in addition satisfy p = q. These will be called
T -torsors. To distinguish them from other types of (groupoid) principal bundles,
we will denote them by the letter X.

Hence a T -torsor over B is a manifoldX endowed with a (right) action of T along
a submersion pX : X ! B, along which T acts fiberwise, freely, and transitively:

X

pX

✏✏

ff

T

~~

B

The fusion product of two T -torsors X1 and X2 is the new T -torsor

X1 ?X2 := (X1 ⇥B X2)/T , (8.1)

where T acts on the fibered product by (u1, u2) · � = (u1 · �, u2 · �), and where the
action of T on X1 ?X2 is induced by the action on the second factor. Modulo the
obvious notion of isomorphism, one obtains an abelian group TorB(T ).

Remark 8.1.1 (B-fibered objects). A very useful interpretation to keep in mind
of the condition p = q, distinguishing T -torsors as a particular class of principal
T -bundle, is the following. The base B is fixed from the start and all the objects
that one considers are “fibered” over B or “parametrized” by B, i.e. come with a
submersion onto B. One should refer to them as pairs (N, pN ) with pN : N ! B,
but we will simply say that N is B-fibered without further mentioning pN . They
form a category ManB .

The objects that we consider are B-fibered versions of standard objects, which
maybe recovered by letting B be a point. For instance, a torus bundle T ! B

is just a compact, connected, abelian group object in ManB . More generally, a
Lie groupoid fibered over B, i.e. a Lie groupoid in ManB , is just a Lie groupoid
H ◆ N together with a submersion pN : N ! B such that pN � s = pN � t. These
should be thought of as families of groupoids parametrized by b 2 B, namely the
restrictions of H to the fibers p�1

N
(b). One also has a B-fibered version of principal
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H-bundles over a manifold M : it is a principal H-bundles P as above for which
pM � p = pN � q(= pP ):

P

p
~~

q
&&

pP

✏✏

bb

H

✏✏✏✏

M

pM
  

N

pN

xx

B

When M = N = B, this precisely means that p = q. Hence, T -torsors are the same
thing as B-fibered principal T -bundles over B.

If H ◆ N is a Lie groupoid we denote by BunH(M) the set of equivalence
classes of principal H-bundles over M . The description of principal bundles based
on transition functions, yields an isomorphism:

BunH(M) ⇠= Ȟ
1(M,H), (8.2)

where Ȟ
1(M,H) denotes Haefliger’s first Čech cohomology with values in the

groupoid H [29, 30]: the Čech cocycles are families g = {Vi, gij}, where {Vi}i2I is
an open cover of M and

gij : Vij ! G, gij(x) · gjk(x) = gik(x), 8x 2 Vijk. (8.3)

Two such cocycles g and h are cohomologous if (after eventually passing to a re-
finement) there exist �i : Vi ! H such that:

hij(x) = �i(x) · gij(x) · �j(x)
�1

, 8x 2 Vij .

One has a completely similar B-fibered version of the previous discussion, ob-
tained by requiring that all the maps involved, including isomorphisms of principal
bundles, Čech cocycles {gij}, etc., commute with the projections into B. One
obtains a B-fibered version of (8.2):

BunH,B(M) ⇠= Ȟ
1
B
(M,H). (8.4)

In the case we are interested in, when M = N = B and G = T , notice that

Ȟ
1
B
(B, T ) = H

1(B, T ),

the cohomology with coe�cients in the sheaf T of sections of T .
One can use the exponential sequence of T to pass to the associated lattice ⇤:

1 // ⇤ // t
exp
// T // 1 , (8.5)

Then (8.4) becomes the Chern-class isomorphism

c1 : TorB(T )
⇠
// H

1(B, T ) ⇠= H
2(B,⇤) (8.6)

associating to a T -torsor its Chern class. Concretely, given a T -torsor p : X ! B,
any open cover {Vi} of B with local sections si : Vi ! X, yields on overlaps

si(x) = sj(x)�ij(x), (x 2 Vij), (8.7)

where the {�ij} is a Čech 1-cocycle representing the Chern class ofX. Similarly, the
construction of the real representatives of the Chern class of principal S1-bundles
via connections extends without any problem to the setting of T -torsors.
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8.1.2. A symplectic version of the theory: There is very little left to be to be done
to obtain the symplectic torsors:

• restrict to symplectic torus bundles (T ,!T ) ! B (see Section 3.1), which
are determined by integral a�ne structures ⇤ on B (cf. Proposition 3.1.6);

• consider T -torsors X endowed with a symplectic form ⌦X and require that
the action of T to be symplectic in the sense of Appendix A.

The resulting objects (X,⌦X) are called symplectic (T ,!T )-torsors. Note that
for two such (X1,⌦1) and (X2,⌦2), their composition (8.1) is again symplectic: the
form pr⇤1 ⌦1 � pr⇤2 ⌦2 on X1 ⇥B X2 descends to a symplectic form on X1 ?X2. We
denote by TorB(T ,!T ) the resulting group of symplectic torsors.

Proposition 3.1.7, in this language, says that Lagrangian fibrations are the same
thing as symplectic torsors:

Proposition 8.1.2. For any symplectic T -torsor the projection into B is a La-
grangian fibration. Conversely, any Lagrangian fibration over B is a symplectic
T⇤-torsor, where ⇤ is the integral a�ne structure induced by the fibration.

The construction of the Chern class class has a natural symplectic version, that
dates back to Duistermaat’s work on global action-angle coordinates [20]. This was
further clarified and generalized by Delzant and Dazord [19] and Zung [58], and
rephrased in the language of symplectic torsors by Sjamaar [50]. The relevant sheaf
is no longer T , but rather the subsheaf T Lagr of local Lagrangian sections:

T Lagr(U) = {↵ 2 T (U) : ↵⇤
!can = d↵ = 0}.

The Lagrangian Chern class c1(X,⌦X) 2 H
1(B, T Lagr) of a symplectic T -torsor

X is represented by a Čech-cocycle {�ij}, constructed as before (see (8.7)), but
using now local Lagrangian sections si : Vi ! X.

To realize the Lagrangian Chern class as a degree two cohomology class, one
needs the symplectic analogue of the exact sequence (8.5). For that one considers

O⇤ ⇢ OA↵ ⇢ O,

where O is the sheaf of smooth functions on B, OA↵ is the subsheaf of a�ne
functions (i.e. of type x 7! r +

P
i
c
i
xi in integral a�ne charts), and O⇤ is the

subsheaf of integral a�ne functions (obtained by requiring c
i 2 Z in the previous

expressions). The DeRham di↵erential gives the short exact sequence of sheaves:

1 // O⇤
// O d

// T Lagr
// 1 ,

and this leads to the Chern class map for symplectic torsors (cf. (8.6)):

c1 : TorB(T ,!T )
⇠
// H

1(B, T Lagr) ⇠= H
2(B,O⇤) .

Finally, the forgetful map from TorB(T ,!T ) to TorB(T ) corresponds to the map

H
2(B,O⇤)! H

2(B,⇤)

induced by the DeRham di↵erential d : O⇤ ! ⇤, which interpreted as a sheaf
morphism gives rise to the short exact sequence:

1 // R // O⇤
d
// ⇤ // 1 . (8.8)

For the later use we point out the following:
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Corollary 8.1.3. Let T be a torus bundle over a manifold B. If B is contractible,
then any T -torsor is trivial (or, equivalently, admits a global section). The same
holds for symplectic T -torsors (i.e, they admit Lagrangian sections over contractible
open sets).

Remark 8.1.4. In the construction of the Chern class of a principal S1-bundle via
connections, one passes from integral to real coe�cients. Similarly, in our case, we
have to pass from O⇤ to OA↵ or, equivalently, from TLagr ⇠= O/O⇤ to O/OA↵ . In
other words, to find a representative of the Chern classes in terms of di↵erential
forms, we are interested in the image of c1(X,⌦X) under the map:

H
1(B, T Lagr)! H

1(B,O/O⇤) ⇠= H
2(B,OA↵). (8.9)

To work with these groups, it is useful to use the following fine resolution:

O/OA↵
// ⌦1

@
(B, T

⇤
B)

d⇤
// ⌦2

@
(B, T

⇤
B)

d⇤
// . . .

where ⌦k

@
(B, T

⇤
B) is the kernel of the antisymmetrization map @ : ⌦k(B, T

⇤
B)!

⌦k+1(B), and where d⇤ is the covariant derivative induced by the flat connection
associated to ⇤. Hence, H2(B,OA↵) = H

2(⌦•

@
(B, T

⇤
B), d⇤). Now, given a sym-

plectic T -torsor (X,⌦X), one chooses a Lagrangian connection

✓ 2 ⌦1(X, t)

(i.e. the horizontal spaces that it defines are Lagrangian) and one observes that its
curvature

k✓ 2 ⌦2(X, t)⇤�bas = ⌦2(B, T
⇤
B)

actually lives in ⌦2
@
(B, T

⇤
B). The resulting class [k✓] 2 H

2(B,OA↵) is precisely
the class induced by c1(X,⌦X) under (8.9).

8.2. Gerbes and their Dixmier-Douady class. We are now ready to move to
gerbes. Our exposition will be self-contained, overviewing the standard theory of
S1-gerbes and explaining at the same time how to take care of v1, replacing S1 by
a general torus bundle. Throughout this section we fix the base manifold B and all
the objects that we will consider will be fibered over B (see Remark 8.1.1).

8.2.1. Definition of a T -gerbe. Among the various approaches to gerbes, the most
relevant one for us is via extensions of groupoids [5, 35, 45, 52]: an S1-gerbe over
B is, up to Morita equivalence, an S1-extension of B, where B is interpreted as
a the identitiy groupoid. The groupoids that are Morita equivalent to B are the
groupoids M ⇥B M associated to submersions pM : M ! B, and this leads one to
consider central S1-extension of groupoids over M :

1 // S1
M

// G // M ⇥B M // 1 ,

where S1
M

= M⇥S1 is the trivial S1-bundle over M . There is an appropriate notion
of Morita equivalence between two such extensions (see below) and the resulting
equivalence classes are called S1-gerbes over B.

Next we replace the trivial circle bundle S1
B
= B⇥S1 by a general bundle of tori

T ! B. Therefore, we consider central groupoid extensions of type

1 // TM // G // M ⇥B M // 1 , (8.10)

where TM = p
⇤

M
T . Here, by central we mean that:

� · g = g · �
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for any arrow g : x ! y of G and � 2 Tb, with b = pM (x) = pM (y), and where we
use (TM )x = Tb = (TM )y.

Example 8.2.1. Recall that any (right) principal T bundle over M :

P

p
~~

q
&&

bb

T

✏✏

M B

gives rise to the gauge groupoid P ?
T
P (see Appendix A). When P is B-fibered, i.e

when pM �p = pP = q, it follows that the gauge groupoid defines a central extension
as above. Such gauge extensions will soon be considered “trivial”.

All the groupoids appearing in the extension (8.10) are fibered over B, and this
is relevant for the right notion of equivalence. Two such extensions, associated with
projections pi : Mi ! B and groupoids Gi ◆ Mi, i = 1, 2, are said to be Morita
equivalent extensions if there exists a Morita (G1,G2)-bibundle P , in the sense
of Section 2.3, such that:

(i) P is a B-fibered Morita equivalence;
(ii) P is central, i.e. the actions of TMi on P inherited from the Gi-actions coincide:

� · u = u · � for all u 2 P , � 2 Tb, with b = p1(q1(u)) = p2(q2(u)).

The first condition says that the map induced by P between the Gi-orbit spaces, i.e.
B, is the identity. Or, with the notations from Section 2.3, that p1 � q1 = p2 � q2.
Moreover, this condition is used to make sense of the second condition. With these:

Definition 8.2.2. Given a torus bundle T over a manifold B, a T -gerbe over B

is a Morita equivalence class of extensions of type (8.10).

8.2.2. The group of gerbes: fusion product. The set of T -gerbes over B has an
abelian group structure. It is based on the notion of fusion product of two
extensions G1 and G2 of type (8.10), which is the extension associated with the
submersion p12 : M12 = M1 ⇥B M2 ! B:

1 // TM12
// G1 ? G2

// M12 ⇥B M12
// 1 ,

where the groupoid G1 ? G2 ◆ M12 has space of arrows:

G1 ? G2 := (G1 ⇥B G2)/T .

Here, the action of � 2 Tb on a pair (g1, g2) of arrows in the orbits of G1 and G2

corresponding to b 2 B, is given by (g1, g2) · � = (g1 · �,� · g2).
The trivial T -gerbe is the one represented by the trivial extension of the iden-

tity groupoid B ◆ B (hence M = B):

1 // T // T // B // 1 . (8.11)

One checks easily that there are canonical isomorphisms of extensions:

G ? T ⇠= T ? G ⇠= G, G1 ? G2
⇠= G2 ? G1,

(G1 ? G2) ? G3
⇠= G1 ? (G2 ? G3).

The inverse T -gerbe of the gerbe defined by an extension (8.10) is represented
by the opposite extension:

1 // TM // Gopp
// M ⇥B M // 1 ,
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where Gopp is G with the opposite multiplication and the source/target inter-
changed. This is still a T -gerbe because on T the multiplication is unchanged.
Note that the inversion gives an isomorphism G ⇠= Gopp of groupoids but not one
of extensions since it does not induce the identity on T ! The fact that G ? Gopp

represents the trivial gerbe follows from the straightforward Morita equivalence:

G ? Gopp

✏✏✏✏

!! G

(s,t)
vv

p

&&

bb

T

✏✏

M ⇥B M B

where the left action is given by: (g1, g2) · h = g1 · h · g�1
2 . We conclude that the

fusion product induces an abelian group structure on the set of T -gerbes over B.

It is useful to be able to recognize more directly when an extension (8.10) rep-
resents the trivial gerbe. That means that there exists a Morita bibundle P imple-
menting a Morita equivalence with (8.11):

G

✏✏✏✏

!!

P

q1

xx

q2

&&

bb

T

✏✏

M B

Since P is central, the structure of (right) principal T -bundle on P is determined
by the action of G: u ·� = � ·u. Hence, the only thing that matters is the existence
of a principal G-bundle over B:

Lemma 8.2.3. An extension (8.10) represents the trivial T -gerbe i↵ Ȟ
1
B
(B,G) 6= ;,

i.e. i↵ there exists a B-fibered principal G-bundle P over B.

Changing the point of view we also see that G is itself determined, via the gauge
construction, by P and its structure of principal T -bundle. Hence:

Corollary 8.2.4. An extension (8.10) represents the trivial T -gerbe i↵ it is the
gauge extension associated to a B-fibered principal T -bundle (Example 8.2.1).

8.2.3. The Dixmier-Douady class: We now recall the construction of the Dixmier-
Douady class of the gerbe represented by the extension (8.10). It is the obstruction
to triviality that arises from the characterization given in Lemma 8.2.3: any princi-
pal bundle P as in the lemma is pushed forward via the map G !M ⇥B M to the
principal M ⇥B M -bundle over B which is M itself, hence the triviality question
amounts to deciding whether [M ] 2 Ȟ

1
B
(B,M ⇥B M) comes from Ȟ

1
B
(B,G). This

lifting problem can be translated to the language of cocycles. One chooses a good
cover {Vi}i2I of B with local sections si : Vi ! M of the projection into B (maps
in ManB !). Then the Čech cocycle describing M as an element in Ȟ

1
B
(B,M ⇥B M)

is given by

gij = (si, sj) : Vij !M ⇥B M,

and the issue is wether one can lift this cocycle along the projection G !M ⇥B M

of the extension, to a cocycle with values in G.
Viewing G as a T -torsor over M⇥BM , we denote by Gi,j its pull-back via (si, sj):

Gi,j := {g 2 G : t(g) = si(x), s(g) = sj(x) for some x 2 Vij}.
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Since the Vij are contractible, this T -torsor is trivializable and we can find a section:

egij : Vij ! Gi,j , egij 7! gij = (si, sj).

The only issue is that {egij} may fail to be a cocycle. The obstruction arises by
looking at triple intersections, on which we define

cijk := egij · egjk · egki 2 �(Vijk, T ). (8.12)

This is indeed a section of T since everything fibers over B!

Definition 8.2.5. The Dixmier-Douady class of the extension is the cohomol-
ogy class represented by the Čech 2-cocycle:

c2(G) := [{cijk}] 2 Ȟ
2
B
(B, T ) ⇠= H

3(B,⇤T ).

When T = S1 ⇥ B ! B with associated lattice ⇤T = Z ⇢ R, we recover the
usual Dixmier-Douady class of an S1-gerbe living in H

3(B,Z).
It is clear that c2(G) = 0 if and only if G represents the trivial gerbe. Indeed,

the assumption that the 2-cocycle cijk is exact gives us, eventually after passing to
a refinement, smooth functions �ij : Vij ! T , fibered over B, such that:

cijk(x) = �ij · �jk · �kj .

Then we can use the action of TM on G to correct the egij :

g
ij
:= egij · ��1

ij
.

We still have that g
ij
7! gij and that g

ij
· g

jk
· g

ki
= 0, so that g

ij
: Vij ! G is a

1-cocycle representing an element [P ] 2 Ȟ
1
B
(B,G) with i([P ]) = [M ].

The previous constructions can be interpreted as a connecting “homomorphism”
construction, c2(G) = �([M ]), where � arises from the short exact sequence (8.10):

Ȟ
1
B
(B,G) i

// Ȟ
1
B
(B,M ⇥B M)

�
// Ȟ

2
B
(B, T ) = H

2(B, T ) . (8.13)

A formal argument shows that this is exact, i.e. Im(i) = �
�1(0). Here and in what

follows we will use the additive notation for the group structure of H2(B, T ), hence
0 for its identity. Lemma 8.2.3 combined with the remark that Ȟ

1
B
(B,M ⇥B M)

contains only one element, namely [M ], shows that the statement that “G represents
the trivial gerbe i↵ c2(G) = 0” is equivalent to the exactness of (8.13).

The last interpretation of the Dixmier-Douady class, via (8.13), makes it rather
clear that it only depends on the Morita equivalence class of the extension. Indeed,
a Morita (G1,G2)-bibundle Q allows one to transport a principal G1-bundle P ! B

along the Morita equivalence yielding a principal G2-bundle P ⌦G1 Q ! B. This
leads to a bijection in Haefliger cohomology:

Q⇤ : Ȟ1
B
(B,G1) ⇠= Ȟ

1
B
(B,G2).

Because of the naturally of the construction, one obtains a commutative diagram

Ȟ
1
B
(B,G1) //

⇠=
✏✏

Ȟ
1
B
(B,M1 ⇥B M1) //

⇠=
✏✏

Ȟ
2
B
(B, T )

⇠=
// H

2(B, T )

Ȟ
1
B
(B,G2) // Ȟ

1
B
(B,M2 ⇥B M2) // Ȟ

2
B
(B, T )

⇠=
// H

2(B, T )

,
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which implies that c2(G1) = c2(G2). Of course, this can also be proved using Čech
cocycles. The details for the cocycle argument will be given in the next subsection
in the context of symplectic gerbes.

8.2.4. The Dixmier-Douady class as a group isomorphism. The additivity of the
Dixmier-Douady class:

c2(G1 ? G2) = c2(G1) + c2(G2),

can be checked using a formal argument based on the interpretation of c2 via the
exact sequence (8.13), starting from the remark that G1⇥BG2 defines a T ⇥T -gerbe
over M1 ⇥B M2. Alternatively, one can also give a “down to earth” argument in
terms of cocycles. Again, the details of the direct approach will be given in the
next section in the context of symplectic gerbes.

Since c2(G) = 0 if and only if G represents the trivial gerbe, we conclude that c2
is an injective group homomorphism. Since the base manifold M of our extensions
is allowed to be disconnected, c2 is also surjective: any class u 2 H

2(B, T ) is
represented by a Čech cocycle {cijk} with respect to a good cover V = {Vi}i2I of
B, so taking M to be the disjoint union of the Vi, we see that {cijk} becomes a
2-cocycle on the resulting groupoid M ⇥B M with coe�cients in TM , and we let G
to be the corresponding extension.

Putting everything together, one obtains the central result of the theory:

Theorem 8.2.6. The Dixmier-Douady class induces an isomorphism between the
group of T -gerbes over B and H

2(B, T ).

8.3. Symplectic gerbes and their Lagrangian class. We are interested in the
extension of gerbes to the symplectic world. Similar to the passage from torsors
to symplectic torsors (Section 8.1), we replace torus bundles by symplectic torus
bundles over B. Hence, our starting point is an integral a�ne manifold (B,⇤) with
its the associated symplectic torus bundle (T ,!T ) = (T ⇤

B,!can)/⇤.

Definition 8.3.1. Let (B,⇤) be a smooth integral a�ne manifold with associated
torus bundle (T ,!T ). A symplectic (T ,!T )-gerbe over B is a symplectic Morita
equivalence class of central extensions of the form:

1 // TM
i
// (G,⌦) // M ⇥B M // 1 , (8.14)

where pM : M ! B is a surjective submersion, TM = p
⇤

M
T and (G,⌦) is a sym-

plectic groupoid with i
⇤⌦ = p

⇤

M
!T .

Remark 8.3.2. Symplectic Morita equivalence of extensions is the symplectic ver-
sion of the notion from the previous section (see Appendix A). We continue to allow
symplectic groupoids over a disconnected base (and possibly with disconnected s-
fibers). This does not a↵ect the basic property that M carries a Poisson structure
⇡. When dealing with extensions (8.14) with connected s-fibers, then G will make
(M,⇡) into a Poisson manifold of proper type for which the associated leaf space
is the integral a�ne manifold (B,⇤).

Example 8.3.3. The symplectic analogue of Example 8.2.1 is the (symplectic)
gauge groupoid X?

T
X associated to a free Hamiltonian T -spaces q : (X,⌦X)! B,

described in Appendix A.4).
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The fusion product of extensions has a straightforward symplectic version: in
the product G1⇥B G2 one considers the closed 2-form pr⇤1 ⌦1� pr⇤2 ⌦2 and a simple
computation shows that the kernel of this form is precisely the orbits of the diagonal
T -action on G1⇥B G2, so this form induces a multiplicative symplectic form ⌦1 ?⌦2

on the quotient G1 ? G2. We define the fusion of symplectic (T ,!T )-gerbes by:

(G1,⌦1) ? (G2,⌦2) := (G1 ? G2,⌦1 ? ⌦2).

As in the case of T -gerbes, the trivial symplectic (T ,!T )-gerbe is represented
by (T ,!T ) and the inverse of the symplectic (T ,!T )-gerbe defined by (8.14) is the
one represented by the Gopp with the same symplectic form ⌦. Moreover, we have
obvious symplectic isomorphisms:

(G,⌦) ? (T ,!T ) ⇠= (T ,!T ) ? (G,⌦) ⇠= (G,⌦)
(G1,⌦1) ? (G2,⌦2) ⇠= (G2,⌦2) ? (G1,⌦1)

((G1,⌦1) ? (G2,⌦2)) ? (G3,⌦3) ⇠= (G1,⌦1) ? ((G2,⌦2) ? (G3,⌦3))

and there is a symplectic Morita equivalence:

(G ? Gopp
,⌦ ? ⌦)

✏✏✏✏

!! (G,⌦)

(s,t)
uu

p

((

bb

(T ,!T )

✏✏

M ⇥B M B

We conclude that the set of symplectic (T ,!T )-gerbes over B is an abelian group
with the operation induced by the fusion product.

For the symplectic version of the Dixmier-Douady class and of Theorem 8.2.6 it
is not surprising, given the discussion from Section 8.1, that we now have to replace
T by the subsheaf T Lagr of local Lagrangian sections:

Theorem 8.3.4. Given a symplectic groupoid (G,⌦) ◆ M fitting into an extension
(8.14) there is an associated cohomology class:

c2(G,⌦) 2 H
2(B, T Lagr). (8.15)

Moreover:

(i) this construction induces an isomorphism between the group of symplectic
(T ,!T )-gerbes over B and H

2(B, T Lagr).
(ii) c2(G,⌦) = 0 i↵ G is the gauge extension associated to a free Hamiltonian

T -space (Example 8.3.3).

The class c2(G,⌦) is called the Lagrangian Dixmier-Douady class of the
symplectic gerbe. The rest of this section is devoted to the proof of this theorem.

8.3.1. Construction of the Lagrangian Dixmier-Douady class. We proceed like in
the previous section, and using the same notations. We choose the local sections
si : Vi !M giving rise to the 1-cocycle gi,j = (si, sj) and we form the T -torsor Gij

over Vij . This is now a symplectic torsor, with the symplectic form inherited from
(G,⌦), so the bundle projection Gij ! Vij is a Lagrangian fibration with connected
fibers. Since the Vij are contractible, we can choose the lifts egij to be Lagrangian.
Using the multiplicativity of the symplectic form on G, it is straightforward to check
that the resulting 2-cocycle (8.12) is made of Lagrangian sections:

cijk = egij · egjk · egki 2 �(Vijk, TLagr). (8.16)
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A tedious but straightforward argument shows that the resulting cohomology class
does not depend on the choices involved; this defines our Lagrangian Dixmier-
Douady class:

c2(G,⌦) 2 H
2(B, T Lagr).

Note that the characterization of the extensions which represent the trivial gerbes
given by Lemma 8.2.3, has a straightforward version in the symplectic case. This
implies part (ii) of Theorem 8.3.4.

Remark 8.3.5. A symplectic version of the exact sequence (8.13) leads to an
interpretation of the Lagrangian Dixmier-Douady class as the image of a connecting
morphism of the class of (M,⇡), as in the standard case:

c2(G,⌦) = �([(M,⇡)]) 2 H
2(B, T Lagr).

8.3.2. Independence of the Morita class. In order to show invariance under sym-
plectic Morita equivalence, assume we are given two extensions:

1 // p
⇤

a
T // Ga

// Ma ⇥B Ma
// 1 (a = 1, 2)

associated with submersions pa : Ma ! B, and a symplectic Morita equivalence:

(G1,⌦1)

✏✏✏✏

!! (P,⌦P )
q1

vv

q2

((

bb

(G2,⌦2)

✏✏✏✏

M1 M2

Start with the construction of c2(Ga,⌦a): a good cover {Vi}i2I of B, sa
i
: Vi !Ma

of pa : Ma ! B, ga
ij
= (sa

i
, s

a

j
) : Vij !Ma ⇥B Ma and Lagrangian lifts:

ega
ij
: Vij ! (G1)i,j .

Now, (q1, q2) : P ! M1 ⇥B M2 is a symplectic T -torsor which, when pulled-
back via (s1

i
, s

2
j
) : Vi ! M1 ⇥B M2, gives a symplectic T -torsor over Vi. Since

Vi is contractible, it has a Lagrangian section, i.e. we find ui : Vi ! P such that
u
⇤

i
⌦P = 0, q1 � ui = s

1
i
and q2 � ui = s

2
i
. For each x 2 Vij the elements ui(x) and

eg1
ij
(x) · uj(x) · eg2ji(x) lie in the same fiber of q1 and of q2. By principality, it follows

that there exist unique �ij : Vij ! T such that:

ui(x) = �ij(x) · eg1ij(x) · uj(x) · eg2ji(x) (x 2 Vij).

Because ui, uj and ega
ji

are Lagrangian sections, the actions of Ga on P are sym-
plectic, and !T is multiplicative, it follows that �ij is also Lagrangian.

Looking at triple intersections, and using that the actions of TMa commute, we
obtain for x 2 Uijk:

�ij(x) · eg1ij(x) · �jk(x) · eg1jk(x) · �ki(x) · eg1ki(x) = eg2ij(x) · eg2jk(x) · eg2ki(x),

which can be written as:

c
2
ijk

(x)� c
1
ijk

= �ij(x) + �jk(x) + �ki(x).

Hence, passing to cohomology we have c2(G1,⌦1) = c2(G2,⌦2).
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8.3.3. The Lagrangian Dixmier-Douady class as a group isomorphism. We now
turn to the additivity of the Dixmier-Douady class:

c2((G1,⌦1) ? (G2,⌦2)) = c2(G1,⌦1) + c2(G2,⌦2).

To represent the Dixmier-Douady class of (G1 ? G2,⌦1 ? ⌦2) we start with the
data used to construct c2(Ga,⌦a) for a 2 {1, 2}: a covering {Vi}i2I and sections
s
a

i
: Vi ! Ma of pa : Ma ! B, yielding the 1-cocycle g

a

ij
= (sa

i
, s

a

j
). The lifts

ega
ij
: Vij ! (Ga)i,j lead to the 2-cocycles ca

ijk
given by (8.16). But now observe that

these give similar data for G1 ?G2: the sections si = (s1
i
, s

2
i
) : Vi !M1⇥B M2 with

associated 1-cocycle gij = (g1
ij
, g

2
ij
) and then the Lagrangian lift

egij : Vij ! (G1 ? G2)i,j

obtained by composing (eg1
ij
, eg2

ij
) : Vij ! G1 ⇥B G2 with the projection into G1 ? G2.

We then find that the associated 2-cocycle is given by:

cijk = egij · egjk · egki = c
1
ijk

+ c
2
ijk

.

This proves that c2(G1 ? G2,⌦1 ? ⌦2) = c2(G1,⌦1) + c2(G2,⌦2).
Finally, note that the argument on the injectivity and the surjectivity of c2 from

the previous subsection straightforwardly adapts to the present context.

8.4. Lagrangian Dixmier-Douday class vs Dazord-Delzant class. Given an
extension (8.14) let us observe now that there is an obvious isomorphism of sheaves:

p
�1(T Lagr) ⇠= TM cl

,

so there is an induced map at the level of cohomology:

p
⇤ : Ȟ2(B, T Lagr)! Ȟ

2(M, TM cl
). (8.17)

This map allows to express the precise relationship between the Lagrangian Dixmier-
Douady class of the extension and the Delzant-Dazord class of the underlying Pois-
son manifold (see Section 7.5):

Proposition 8.4.1. Under (8.17) the class c2(G,⌦) 2 Ȟ
2(B, T Lagr) of a symplectic

(T ,!T )-gerbe with representative (G,⌦) ◆ (M,⇡) is mapped to the obstruction class
c2(M,⇡,⇤G) 2 Ȟ

2(M, TM cl
).

Proof. Start with the data (8.16) to construct the cocyle cijk representing c2(G,⌦):
a cover {Vi}i2I of B, sections si : Vi ! M of p : M ! B and the Lagrangian lifts
egij : Vij ! G of the 1-cocycle gij = (si, sj). Since p : M ! B is open, to prove the
proposition it is enough to show that

cijk � p : p�1(Vijk)! p
⇤Tcl,

is a 2-cocycle representing c2(M,⇡,⇤G).
For each i 2 I, we cover the open sets p

�1(Vi) by contractible open sets. The
collection of all such open sets, denoted {Ua}a2A, is an open cover of M which
comes with a map of the indices A! I, a 7! ia, such that:

p
�1(Vi) =

[

ia=i

Ua.
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The sections si give transversals Ti = Im(si) ⇢M to the symplectic leaves and we
have Morita equivalences:

G|p�1(Vi)

✏✏✏✏

!! G(Ti,�)
t

vv

p�s

((

bb

T |Vi

✏✏

p
�1(Vi) Vi

Since the Ua are contractible, we can pick local sections �a : Ua ! G(Tia ,�)
of the principal T |Via

-bundle t : G(Tia ,�) ! p
�1(Via). Now observe that on the

intersection Uab, we have two sections of this principal bundle: the restriction �a|Uab

and the section:

�b(x) · egibia(p(x)), (x 2 Uab).

It follows that there exist �ab : Uab ! TVia
such that:

�a(x) = �b(x) · egibia(p(x)) · �ab(x).

Using this relation successively for �a, �b and �c, we conclude that for x 2 Uabc:

1 = egiaic(p(x)) · �ca(x) · egicib(p(x)) · �bc(x) · egibia(p(x)) · �ab(x)

Using the fact that TM is abelian, we conclude that:

egiaib · egibic · egibia = �ab + �bc + �ca,

where we are now viewing �ab : Uab ! TM . This says that under the map (8.17) the
class c2(G,⌦), represented by the 2-cocycle cijk, is mapped to a class represented
by the 2-cocycle �ab + �bc + �ca : Uabc ! TM . But now observe that:

(a) The map t : (G(Tia ,�),⌦) ! p
�1(Via) is an isotropic realization, so it follows

that �⇤

a
⌦ is a closed 2-form on Ua extending the leafwise symplectic form !F⇡ ;

(b) Since the principle bundle action is symplectic, we find that:

�
⇤

a
⌦ = �

⇤

b
⌦+ (egiaib � p)⇤⌦+ �

⇤

ab
!T

= �
⇤

b
⌦+ p

⇤eg⇤
iaib

⌦+ d�ab

= �
⇤

b
⌦+ d�ab.

where we used the fundamental property of !T and that the egiaib are La-
grangian.

It follows that the 2-cocycle �ab + �bc + �ca takes values in (TM )cl and represents
the obstruction class c2(M,⇡,⇤G), so the proof is completed. ⇤

Remark 8.4.2. In general, the map (8.17) fails to be injective. Hence, it is possible
to have a proper symplectic integration (G,⌦) ◆ (M,⇡) such that c2(G,⌦) 6= 0,
but c2(M,⇡,⇤G) = 0. In this case, the Poisson manifold (M,⇡) admits rather
di↵erent proper integrations defining the same lattice: one of them arising from
free Hamiltonian reduction (Theorem 7.5.3) and the other one not. When the
fibers of p : M ! B (the symplectic leaves) are 1-connected, a spectral sequence
argument shows that (8.17) is injective, and we conclude that either all proper
integrations of (M,⇡,⇤) arise from free Hamiltonian T⇤-reduction, or none of them
does.
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9. Symplectic gerbes over orbifolds

We now extend the theory of symplectic gerbes over manifolds to the case of
orbifolds. Of course, our motivation comes from the fact that the leaf spaces of
PMCTs are, in general, orbifolds. As in Section 8, we start with a simplified
statement of our results, generalizing Theorem 8.0.1:

Theorem 9.0.1. Let (G,⌦) ◆ M be a proper integration of (M,⇡), inducing the
orbifold atlas B = B(G) on the leaf space B = M/F⇡. Then (G,⌦) gives rise to a
symplectic gerbe over (B,B), which is classified by a cohomology class

c2(G,⌦) 2 H
2(B, T Lagr).

Moreover, c2(G,⌦) vanishes i↵ G = BX(M,⇡), the B-integration of (M,⇡) relative
to a proper isotropic realization q : (X,⌦X)! (M,⇡) (cf. Definition 7.4.1).

The passage from symplectic gerbes over manifolds to symplectic gerbes over
orbifolds is based on Haefliger’s philosophy explained in Remark 2.6.8. So through-
out this section we fix an orbifold (B,B), with atlas B ◆ N . The reader should
keep in mind, as main examples: the smooth case of the previous section where B
is B ◆ B (hence N = B), and the leaf space of a proper Poisson manifold (M,⇡)
with proper integration G, where B(G) ◆ M will be the foliation groupoid from
Theorem 2.6.9 (hence N = M).

To handle various geometric structures on the orbifold (B,B) one may, in prin-
ciple, represent them with respect to the atlas B. However, for some purposes this
may not be the most convenient atlas, so we will be looking at other orbifold atlases
E ◆ M related to B through a specified Morita equivalence

QE : E ' B. (9.1)

The organization of this section is similar to that of Section 8, so we will describe
first torsors over orbifolds and then gerbes over orbifolds.

9.1. Symplectic torsors over integral a�ne orbifolds.

9.1.1. Torus orbibundles. The notion of a torus orbibundle T over (B,B) is very
similar to the notion of vector orbibundle (see Remark 5.2.1): they are represented
by a B-torus bundle T , i.e. a torus bundle over M endowed with an action of B:

B

��

��

!! T

~~

N

We can represent the torus orbibundle T with respect to any other atlas E ' B by
a E-torus bundle TE over the base of E . Indeed, any Morita equivalence

E1

✏✏✏✏

!!

Q

q1

xx

q2

&&

bb

E2

✏✏✏✏

N1 N2

gives rise to a 1-1 correspondence between (isomorphism classes of) E1-torus bundles
T1 and E2-torus bundles T2. The correspondence is defined by the condition that
there is a left E1-equivariant and right E2-equivariant isomorphism of torus bundles:

q⇤1T1 ⇠= q⇤2T2.
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Here, the left action of E1 on q⇤1T1 it is the lift of the original action of E1 on T1, while
the left action on q⇤2T2 is the tautological one: the action of an arrow g : x! x

0 of
E1 takes an element (u,�) in the fiber of q⇤2T2 above x, q1(u) = x, � 2 T2,y where
y = q2(x) = q2(x0), to the element (g · u,�) in the fiber of q⇤2T2 above x

0. Similarly
for the right actions. Explicitly, starting from T1 we obtain T2 as q⇤1T1/E1.

As in 8.1.1, it is useful to look at the more general notion ofH-principal bundle
over (B,B), for an arbitrary Lie groupoid H ◆ M . By that we mean a (right)
H-principal bundle P over M , together with a left action of B,

B
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!!

P

p

xx

q

''

bb

H

✏✏✏✏

N M

such that all the axioms from the notion of Morita equivalence are satisfied, except
for the condition that the action of B is principal. We denote by BunH(B) the set
of isomorphism classes of such bundles.

A description in terms of transition functions/Čech cocycles similar to (8.3)
works well when B is étale. For that we need the embedding category EmbU (B)
associated to a basis U for the topology of N [41]. This is the discrete category
whose objects are all open sets U 2 U , and whose arrows � : U ! V are bisections
� : U ! B such that s � � = idU and t � � : U ! V is an embedding. The
composition of � with another arrow ⌧ from V to W is given by

(⌧ � �)(x) := ⌧(t(�(x)) · �(x).

Given a principal H-bundle P over (B,B), one choses U such that p : P ! N has
local sections sU over each U 2 U . Fixing the {sU}U2U , one obtains:

• for each U 2 U , a smooth map fU : U !M , namely fU := q � sU .
• for each arrow � : U ! V in EmbU (B), a smooth map g� : U ! H so that

g�(x) : fU (x)! fV (t�(x)), �(x) · sU (x) = sV (t(�(x))) · g�(x).

The collection {fU , g�} will satisfy the cocycle condition

g⌧��(x) = g⌧ (t(�(x))) · g�(x).

Conversely, P can be recovered from the family {fU , g�} and it is clear that the
usual discussion on transition functions/Čech cocycles extends to this setting.

9.1.2. Symplectic torus orbibundles. For the notion of symplectic torus orbi-
bundles the discussion is simpler when one works with an étale atlases E : we
just require that TE comes with a symplectic structure which is multiplicative and
which is invariant under the action of E . Passing to a non-étale B ◆ N , the non-
degeneracy of the 2-form is lost and the symplectic torus orbibundle is represented
by a presymplectic torus bundle (T ,!T ) ◆ N satisfying (see Proposition 3.2.8):

(i) the kernel of !T coincides with the image of the infinitesimal action of B.
(ii) the action of B on (T ,!T ) is presymplectic (exactly as in Lemma 7.2.7).

The first condition holds if and only if holds at units, i.e. if

(i)’ the foliation induced by (T ,!T ) on M coincides with the orbits of B ◆ M .

Moreover, when B is s-connected then (ii) follows from (i) (see Appendix A).
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As in the smooth case, one obtains a 1-1 correspondence:
8
<

:
integral a�ne

structures on (B,B)

9
=

;
1�1 !

8
<

:
isomorphism classes of

symplectic torus bundles over (B,B)

9
=

;

Example 9.1.1. The first part of Lemma 7.2.4, together with Lemma 7.2.7 can be
reformulated as saying that an isotropic realization gives rise to a symplectic torus
orbibundle (T ,!T ) over the classical orbifold M/F⇡ .

9.1.3. T -torsors over an orbifold. Given a torus orbibundle T over an orbifold
(B,B), a T -torsor over (B,B) is a T -torsor X over the base N of B, together with
a (left) action of B on X which is compatible with the action of T in the sense that
for u 2 X and � 2 T above x 2 N and b : x! y in B, one has:

B

��

��

X
''

✏✏

ff

T

~~

N

, b · (u · �) = (b · u) · b(�),

where b(�) refers to the action of B on T .
This notion can be transported along Morita equivalences, hence X can be rep-

resented similarly with respect to any other atlases (9.1). To see this directly is
rather tedious, but the “fibered point of view” allows for a simple formal argument.

Remark 9.1.2 (Fibered point of view). As in the previous section when (B,B)
was a manifold, it is useful to realize that all our objects are “B-fibered”, i.e. they
come with a “map” into B. For example, while torus bundles over a manifold B

can be looked at as group-like objects in the category ManB of manifolds fibered
over B (see Remark 8.1.1), one should think of a torus bundle T over (B,B) as
encoding a group-like object in the category of groupoids fibered over B, namely
T on B ◆ N with the obvious projection into B.

Furthermore, it is useful to relax the notion of “map” between groupoids from
smooth functors to Morita maps [29] (also called Hilsum-Skandalis maps [31, 44]).
For these generalized maps, the resulting “generalized isomorphisms” will be pre-
cisely the Morita equivalences. One thinks of a principal G2-bundle over G1 (in the
sense described above) as a graph of a map from G1 to G2. Hence such a principal
bundle will also be called a Morita map from G1 to G2 and we set:

M(G1,G2) = BunG2(G1).

Given a third groupoid G3 one has a composition operation:

M(G1,G2)⇥M(G2,G3)!M(G1,G3), (P,Q) 7! Q � P = P ⇥M2 Q/G2.

Moreover, any smooth morphism F : G1 ! G2 can be thought of as a Morita map

PF := M1 ⇥M2 G2 2M(G1,G2),

where the actions of Gi on PF are the obvious ones. More details on Morita maps
can be found in [1, 31, 34, 42, 44].

Now, while a torus bundle T over (B,B) may be thought of as encoding the
groupoid T on B endowed with the obvious projection into B, a T -torsor X over
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(B,B) should be thought of as encoding a left principal bibundle X ⇥N B:

B

✏✏✏✏

!!

X ⇥N B
q1

vv

q2

((

bb

T on B

✏✏✏✏

N N

where q1(u, b) = pX(u), q2(u, b) = s(b) and the left/right actions on an element
(u, b) 2 X ⇥N B are:

b0 · (u, b) = (b0 · u, b0b), (u, b) · (�, b1) = (u · b(�), bb1).
This bibundle describes a Morita map from B to T on B, which is a right inverse
to the projection T on B ! B. Conversely, from a Morita map P 2M(B, T on B)
right inverse to the projection pr

B
: T on B ! B, one recovers X as X := P/B,

with pX induced by q1, and the obvious left action of B. For the right action of
T on X one remarks that the condition that P be a right inverse makes P into a
principal T -bundle over B, with some projection map pr : P ! B. Using this, for
u 2 X and � 2 T in the fiber above pX(u), one defines

u · � := p · b�1(�)

where p 2 P is any representative of u and b = pr(p). All together, one obtains:

Lemma 9.1.3. The construction X 7! X ⇥N B describes, up to isomorphism, a
1-1 correspondence between:

(i) T -torsors X over (B,B).
(ii) Morita maps P 2M(B, T on B) which are sections of pr

B
: T on B ! B.

9.1.4. Symplectic T -torsors over an orbifold. In the case of presymplectic torus
bundles (T ,!T ) one can talk about symplectic (T ,!T )-torsors over (B,B): then
X comes with a closed 2-form ⌦X and one requires that both actions X⇥N T ! X

and B ⇥N X ! X are compatible with the 2-forms that are present:

(B, 0)

((

((

!! (X,⌦X)

✏✏

bb

(T ,!T )

vv

N

Again, the situation is simpler when B is étale, when the condition on the left
action simply says that the form on X is B-invariant. Lemma 9.1.3 has an obvious
“symplectic version”, which uses (pre)symplectic bibundles (Appendix A).

9.2. Symplectic gerbes over integral a�ne orbifolds.

9.2.1. Gerbes over orbifolds. We now fix a torus bundle T over the orbifold (B,B).
Given an arbitrary atlas QE : E ' B, defined over some other manifold M (so
E ◆ M), we are interested in extensions of type

1 // TE
i
// G pr

// E // 1 (9.2)

Here TE ! M is the E-torus bundle which represents T in the new atlas. Such
an extension induces an action of E on TE obtained by lifting the elements of E to
elements of G and conjugating by the lifts. A central extension is one for which
the induced action coincides with the original action of E on TE . From now on we
consider only central extensions, with no further notice.
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For the notion of Morita equivalence, suppose we are given two such extensions
Gi, relative to two foliated orbifold atlases Ei ◆ Mi. Notice that the two atlases
come with a specific Morita equivalence Q between them

E1

✏✏✏✏

!!

Q

q
1

xx

q
2

&&

bb

E2

✏✏✏✏

M1 M2

where Q = QE1,E2 is obtained by composing QE1 : E1 ' B with the inverse of
QE2 : E2 ' B. Via this Morita equivalence, TE1 corresponds to TE2 , i.e. one has an
isomorphism between the pull-back bundles

Q⇤ : q⇤
1
TE1
⇠= q⇤

2
TE2 ; (9.3)

Hence, for every u 2 Q, denoting q
1
(u) = x1, q2(u) = x2, one has an isomorphism

TE2,x2
⇠= TE1,x1 , denoted � 7! �

u
. (9.4)

Definition 9.2.1. A Morita equivalence of extensions (9.2) is a Morita equiv-
alence P between the two groupoids,

G1

✏✏✏✏

!!

P

q1
xx

q2
&&

bb

G2

✏✏✏✏

M1 M2

,

together with a submersion pr : P ! Q satisfying the following properties:

(i) it is left G1-equivariant and right G2-equivariant, where the actions of Gi on
Q are induced from the actions of Ei via the submersions Gi ! Ei;

(ii) it is a (left) principal TE1 -bundle and a (right) principal TE2 -bundle;
(iii) the two torus actions on P are compatible: if eu 2 P and u = pr(eu) 2 Q, then

eu · � = �
u · eu, 8 � 2 TE2,q2(u).

Example 9.2.2 (Pullback of extensions). Central extensions cannot be transpor-
ted along general Morita maps or equivalences, so they behave quite di↵erently
than the other types of objects over orbifolds that we looked at so far. However,
extensions can be pulled-back. First of all, an atlas QE : E ' B for the orbifold
(B,B), with E ◆ M , can be pulled-back along any smooth map

q : P !M

that is transverse to the leaves of the orbit foliation on M induced by E . It gives
rise to the new atlas q⇤E ◆ P , where q⇤E = P ⇥M E⇥M P is the pull-back groupoid
and Qq⇤E = P ⇥M QE . Now, given an extension (9.2) over E , one has a pull-back
extension over the orbifold atlas q⇤E :

1 // Tq⇤E
// q⇤G // q⇤E // 1 ,

where q⇤G is the pull-back groupoid, while Tq⇤E is the pull-back bundle. Notice
that G ⇥M P gives a Morita bibundle between G and q⇤G.

In particular, extensions can be pulled-back via submersions, without a↵ecting
the Morita class. One can also take for q the inclusion of a complete transversal,
and conclude that any extension is Morita equivalent to one over an étale atlas.
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The pull-back operation can be used to reinterpret and even redefine the notion
of Morita equivalence of extensions. First, a Morita equivalence Q : E1 ' E2 induces
an isomorphism of Lie groupoids

Q⇤ : q⇤
1
E1 ⇠= q⇤

2
E2. (9.5)

Explicitly, a point (u, �1, u0) 2 Q ⇥M1 E1 ⇥M1 Q = q⇤
1
E1 corresponds to the point

(u, �2, u0) where �2 is uniquely determined by the condition �1 · u0 = u · �2. In a
general Morita equivalence between extensions, the conditions on P ensure that the
similar isomorphism P⇤ : q⇤1G1

⇠= q⇤2G2 is an isomorphism of extensions (i.e. not only
of groupoids) that is compatible with Q. More precisely, one has an isomorphism
of commutative diagrams:

1 // TE1

pr⇤ Q⇤

✏✏

// q⇤1G1

P⇤

✏✏

// q⇤1E1

pr⇤ Q⇤

✏✏

// 1

1 // TE2
// q⇤2G2

// q⇤2E2 // 1

,

where the left and right vertical maps are the pull-backs of (9.5) and (9.3) via
pr : P ! X and we use q⇤

i
= pr⇤ �q⇤

i
. From the previous example, we conclude:

Corollary 9.2.3. Two central extensions Gi over Mi (i = 1, 2), are Morita equi-
valent if and only if there is a manifold P together with submersions qi : P ! Mi

such that the pull-backs q⇤
i
Gi are isomorphic extensions.

Definition 9.2.4. Given a torus orbibundle T over the orbifold (B,B), a T -gerbe
over (B,B) is a Morita equivalence class of central extensions (9.2). We say that
the extension represents the gerbe over the atlas QE : E ' B.

As we explained above, a general gerbe can be represented only over some orbi-
fold atlas. Still, Example 9.2.2 shows that if a gerbe is represented by an extension
over the atlas QE : E ' B, with E ◆ M , then we can pullback along any map
q : M 0 !M transverse to the orbits of E . Letting q be the inclusion of a complete
transversal, we see that any gerbe can be represented over an étale atlas.

9.2.2. Group structure. We start by observing that any atlas QE : E ' B for the
orbifold (B,B) comes with a trivial central extension

1 // TE // T on E pr
// E // 1 (9.6)

whose Morita class does not depend on the choice of atlas E . These define the
trivial T -gerbe over the orbifold (B,B).

Example 9.2.5. As in the smooth case, there are non-trivial extensions that may
still represent the trivial gerbe. Actually, one can give a full characterization of such
extensions, generalizing Corollary 8.2.4 to the orbifold context. The starting point
is an orbifold atlas QE : E ' B, with E ◆ M , and a TE -torsor X over M . This gives
rise to the groupoid EX(M) = (X ⇥M E ⇥M X)/TE exactly as in Definition 7.4.1
(hence the quotient is modulo the action (7.10)), which fits into a central extension

1 // TE // EX(M) // E // 1 .

Moreover, exactly as in Proposition 7.4.4, using X ⇥M E as Morita bibundle, it
follows that this extension represents the trivial gerbe. For the converse, one uses
an argument similar to that of Lemma 9.1.3.
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The inverse T -gerbe of the gerbe defined by an extension (9.2) is represented
by the opposite extension:

1 // TE
i
// Gopp pr

// Eopp
// 1

Note that inversion gives a groupoid isomorphism E ⇠= Eopp, so this extension rep-
resents a well defined gerbe over the same orbifold.

Next, for the fusion product of extensions, we start with two extensions Gi as
above, relative to two orbifold atlases Ei ◆ Mi. We still denote by Q the induced
Morita equivalence between E1 and E2, with projections denoted qi : Q ! Mi

(i = 1, 2). While the pull-backs of Ei to Q are isomorphic by (9.5), there is a more
symmetric way to represent the resulting groupoid over Q, namely as the fibered
product over M1 (for n) and M2 (for o):

E1,2 := E1 nQo E2.
Indeed, (�1, u, �2) 7! (�1 · u, �1) identifies E1,2 with q⇤

1
E1 (and similarly for q⇤

2
E2).

The groupoid E1,2 ◆ Q is another atlas for (B,B) and the advantage of this point
of view is that one can define similarly the groupoid

G1,2 = G1 nQo G2 ◆ X

and the torus bundle:

T1,2 = TE1 nQo TE2 = q⇤
1
TE1 ⌦ q⇤

2
TE2 .

We now act with the smaller torus bundle (9.3) using, e.g. its left hand side q⇤
2
TE2 .

The action is along the map G1,2 !M2, (g1, u, g2) 7! q
2
(u) and it is given by

(g1, u, g2) · � := (g1 · �u
, u,� · g2),

where we use again the notation (9.4). Finally, we define the fusion product of
extensions by considering the groupoid

G1 ? G2 := (G1 nQo G2)/T1,2
and the associated central extension over the orbifold atlas E1,2.

It is tedious but straightforward to extend the discussion from the smooth case
to conclude that the fusion product gives rise to a group structure on the set of T -
gerbes over the orbifold (B,B) with the above identity gerbe and inverse operation
on gerbes.

9.2.3. The Dixmier-Douady class. We proceed as in the smooth case, starting with
a characterization of triviality. This is the following generalization of Lemma 8.2.3
to the orbifold case, which should now be obvious:

Lemma 9.2.6. Given a central extension (9.2), the following are equivalent:

(a) it represents the trivial gerbe over (B,B);
(b) there exists a principal G-bundle P over B which lifts the principal E-bundle

over B given by the atlas QE : E ' B. Equivalently: P 2M(B,G) fits into a
commutative diagram of Morita maps

G
pr

✏✏

B QE
//

P

88

E
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Next, eventually after pulling back to a complete transversal T ,! N , we may
assume that the atlas B ◆ N is already étale. This allows us to use a Čech-type
description of orbifold cohomology, due to Moerdijk [41], which we now recall.

We consider abelian sheaves over (B,B), i.e. sheaves S of abelian groups on N

together with an action of B from the right: hence any arrow x ! y of B gives a
group homomorphism between germs Sy ! Sx. These form an abelian category
with enough injectives and the sheaf cohomology groups H

•(B,S) are defined
as the right derived functors associated to the functor �(·)B of taking invariant
sections. Hence:

H
n(B,S) := H

n(�(I•)B),

for some injective resolution 0 // S // I
0

// I
1

// · · · . This sheaf
cohomology is invariant under Morita equivalences.

For the Čech cohomology description we use the embedding category EmbU (B)
[41, Section 7] (see Section 9.1.1) . Similar to the transition functions for principal
bundles over B, any abelian B-sheaf S gives rise to a preseheaf eS on EmbU (B),
i.e. to a contravariant functor A : EmbU (B) ! AbGrp. Explicitly, eS associates
to U 2 U the space S(U) of sections of S over U and to an arrow � : U ! V

of EmbU (B) the map �
⇤ : S(V ) ! S(U) described as follows: for � 2 S(V ) the

section �
⇤(�) 2 S(U) has germ at x 2 U :

�
⇤(�)x = �t(�(x)) · �(x).

The Čech complex of B relative to U with coe�cients in S, denoted (Č•

U
(B,S), d), is

defined as the standard complex computing the cohomology of the discrete category
EmbU (B) with coe�cients in eS. That means:

• a cocycle c 2 Č
n

U
(B,S) is a map which associates to each string of n-

composable arrows U0 U1
�1
oo · · ·�2

oo Un

�n
oo an element c�1,...,�n 2 S(Un).

• the di↵erential d : Čn

U
(B,S)! Č

n+1
U

(B,S) is given by

(dc)�1,...,�n+1 = c�2,...,�n+1 +
nX

i=1

(�1)nc�1,...,�i�i+1,...,�n+1+

+ (�1)n+1
�
⇤

n+1 (c�1,...,�n) .

We denote the resulting cohomology by Ȟ
•

U
(B,S). The Čech complex and the Čech

cohomology are functorial with respect to refinements of covers, so one can pass to
colimits and define the Čech cohomology of the orbifold (B,B) with coe�cients
in S as:

Ȟ
•(B,S) = colimH

•

U
(B,S).

We now have the following result:

Proposition 9.2.7 ([17]). If Hi(U,S) = 0 for i > 0 and all U 2 U , then

H
•(B,S) ⇠= Ȟ

•

U
(B,S),

and these isomorphisms are compatible with taking refinements. In particular,

Ȟ
•(B,S) ⇠= H

•(B,S).

And here is a result that is relevant for our discussion on orbifolds and which
makes essential use of properness.
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Lemma 9.2.8. For any proper étale groupoid B and a torus bundle T over B, with
corresponding lattice ⇤, one has

H
•(B, T ) ⇠= H

•+1(B,⇤).
Similarly, if (T ,!T ) is a symplectic torus bundle over a proper étale groupoid B:

H
•(B, T Lagr) ⇠= H

•+1(B,O⇤).

Proof. The key remark is that, due to the properness of B ◆ N , for any B-sheaf S
of R-vector spaces which is fine as a sheaf over the base manifold N , one has

H
•(B,S) = 0, 8 k � 1.

Use now the exact sequences induced by (8.5) and (8.8) in cohomology. ⇤
With all the cohomology apparatus in place, we can now proceed to define the

Dixmier-Douady class of a gerbe over (B,B). The construction is entirely similar to
the smooth case, the main di↵erence being that we have to start with an extension
(9.2) over an atlas E ◆ M which may be di↵erent from B. We denote by Q = QE

the given Morita equivalence between E and B and we would like to measure the
failure of extending Q, viewed as a principal E-bundle over B, to a principal G-
bundle over B. This can be rephrased in terms of transition functions: we choose
the basis U of N together with local sections sU : U ! Q of q2 : Q ! N , so that
we can consider the transition system {fU , g�}. We may assume that each U 2 U
is contractible. For each arrow � : U ! V of EmbU (B), the pull-back of pr : G ! E
via g� : U ! E gives a T -torsor G� ! U . Since U is contractible it will admit a
section, i.e. we obtain a lift eg� : U ! G of g�. Of course, the cocycle condition

may fail: for composable arrows U0 U1
�1
oo U2

�2
oo in EmbU (B), one has a section

of T over U given by
c�1,�2 := eg�1��2eg�1eg�2

and (�1,�2) 7! c�1,�2 defines a cocyle in C
2
U
(B, T ). This gives rise to a class in

cohomology which, by the usual arguments, is independent of the various choices:

Definition 9.2.9. The Dixmier-Douady class of the gerbe represented by the
extension (9.2) is

c2(G) := [c�1,�2 ] 2 H
2(B, T ) ⇠= H

3(B,⇤).

To see that c2(G) only depends on the Morita equivalence class, one first proves
the additivity with respect to the fusion product:

c2(G1 ? G2) = c2(G1) + c2(G2).

This is done exactly like in the smooth case, but using the embedding category.
Also, it is clear that c2(Gopp) = �c2(G). Hence, if G1 and G2 are Morita equivalent
then, since G1 ? Gopp

2 is Morita equivalent to the trivial extension, we find:

c2(G1)� c2(G2) = c2(G1 ? Gopp
2 ) = 0.

Notice that, by construction, the vanishing of this class is equivalent to the fact
that G represents the trivial gerbe. In this way we have extended the discussion of
gerbes from the smooth to the orbifold case.

Theorem 9.2.10. Given a torus bundle T over the orbifold (B,B) with lattice ⇤,
the Dixmier-Douady class induces an isomorphism:

c2 : Gerb(B,B)(T )! H
2(B, T ) ⇠= H

3(B,⇤).
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9.2.4. Symplectic gerbes. The symplectic version of gerbes over an orbifold should
now be obvious. One starts with a symplectic torus bundle (T ,!T ) over the orb-
ifold (B,B) or, equivalently, with an integral a�ne structure. Then one looks at
symplectic central extensions of the form

1 // TE
i
// (G,⌦) pr

// E // 1 , (9.7)

where (G,⌦) is now a symplectic groupoid and i
⇤⌦ = !T . Similarly for the notion

of symplectic Morita equivalence, using symplectic Morita bibundles (Appendix
A.3). Therefore a symplectic (T ,!T )-gerbe over (B,B) is a symplectic Morita
equivalence class of such symplectic central extensions.

The group structure on gerbes is, this time, a bit more subtle; e.g., even the
trivial extension (9.6) may fail to be symplectic. The most satisfactory solution is
to consider presymplectic extensions (see Section 9.3). The shortest solution is to
pass to an étale atlas. Indeed, if B is étale, then:

• The trivial central extension (9.6) is now symplectic, yielding the trivial
symplectic gerbe. Similarly, the inverse of a symplectic gerbe is symplectic.

• The fusion product of symplectic extensions is a symplectic extension, and
is independent of the symplectic Morita class.

For the construction of the Lagrangian Dixmier-Douady class of a symplectic gerbe,
we assume again that B is étale, and we proceed exactly as in the non-symplectic
case, except that in the construction above one now choses Lagrangian sections
sU : U ! Q, making use of Corollary 8.1.3. This leads to:

Theorem 9.2.11. Given a symplectic groupoid (G,⌦) ◆ M fitting into an exten-
sion (9.7) there is an associated cohomology class:

c2(G,⌦) 2 H
2(B, T Lagr).

Moreover:

(i) this construction induces an isomorphism between the group of symplectic T -
gerbes over (B,B) and H

2(B, T Lagr).
(ii) c2(G,⌦) = 0 if and only if (G,⌦) is isomorphic to EX(M,⇡), the E-integration

of (M,⇡) relative to a proper isotropic realization (X,⌦X)! (M,⇡).

Finally, let us look at the relationship between gerbes and symplectic gerbes.
At the level of the Dixmier-Douady classes, the relationship is provided by the
cohomology sequence induced by (8.8), which gives:

H
3(B,R) i⇤

// H
3(B,O⇤)

d⇤
// H

3(B,⇤) // H
4(B,R) (9.8)

Since d⇤ maps c2(G,⌦) to c2(G), the preimage d⇤�1(c2(G)) is the a�ne space
c2(G,⌦) + i⇤H

3(B,R). A geometric interpretation will be given in the next sec-
tion, using twisted Dirac structures, where the role of H3(B) will be to provide
the background 3-forms. For now, let us recall a more explicit model for H•(B,R):
in the DeRham complex (⌦•(N), d) on the base B ◆ N we consider the subcom-
plex (⌦•(N)B, d) of B-invariant forms. Of course, this makes sense for any étale
groupoid B and defines a cohomology H

•

bas(B).

Corollary 9.2.12. For any proper étale groupoid B one has natural isomorphisms

H
•

bas(B) ⇠= H
•(B,R).



108 MARIUS CRAINIC, RUI LOJA FERNANDES, AND DAVID MARTÍNEZ TORRES

The concrete description of H•(B,R) can be extended to non-étale orbifold at-
lases QE : E ' B. If E ◆ M is any proper foliation groupoid one can talk about
forms on M which are E-basic: they are the forms on M whose pull-back via the
source and the target map of E coincide. This defines a sub-complex (⌦•

bas(E), d)
of the DeRham complex of M and gives rise to a (Morita invariant!) cohomology
of E , denoted H

•

bas(E). When E is étale, this agrees with the previous definition.

Corollary 9.2.13. For any proper étale groupoid B and any orbifold atlas E ' B
one has natural isomorphisms

H
•

bas(E) ⇠= H
•

bas(B) ⇠= H
•(B,R).

In particular, when H
3
bas(E) = H

3
bas(B) = 0, if the ordinary gerbe defined by a

symplectic extension is trivial, then so is the induced symplectic gerbe.

9.3. The twisted Dirac setting. We close our discussion on gerbes by explaining
briefly how to pass from the Poisson to the (twisted) Dirac setting. The main
outcome will not be a new theory of “twisted presymplectic gerbes”, but a new
way to represent symplectic gerbes by more general extensions.

Let (G,⌦,�) ◆ M be �-twisted presymplectic groupoid integrating a Dirac
manifold (M,L) with background 3-form �. As discussed in Remark 3.3.3, in the
proper regular case this still gives rise to a central extension

1 // T (G) // (G,⌦) // E(G) // 1

inducing an integral a�ne orbifold structure on the space B of orbits, with associ-
ated presymplectic torus bundle T (G) equipped with the restriction of ⌦.

Start now with a sympletic torus bundle (T ,!T ) over the orbifold (B,B) and
look at central extensions defined over some orbifold atlas QE : E ' B, of type

1 // TE // (G,⌦,�) // E // 1 ,

with i
⇤⌦ = !TE , but where (G,⌦,�) is now a twisted presymplectic groupoid. Such

an extension will be called a central twisted presymplectic extension on the
integral a�ne orbifold (B,B). The notion of presymplectic Morita equivalence
between such extension is defined exactly as in the symplectic case, with the only
di↵erence that one now allows twisted presymplectic bibundles and the twisting will
vary (see Appendix A). The construction of the Lagrangian Dixmier-Douady
class of such an extension carries over modulo some obvious modifications, giving

c2(G,⌦,�) 2 H
2(B, T Lagr) ⇠= H

3(B,O⇤).

However, one does not obtain a new notion of “twisted presymplectic gerbes”:

Proposition 9.3.1. For an integral a�ne orbifold (B,B), one has that:

(i) any twisted presymplectic extension is presymplectic Morita equivalent to a
symplectic extension;

(ii) two symplectic extensions are presymplectic Morita equivalent if and only if
they are symplectic Morita equivalent.

Proof. Part (i) follows by observing that:

(a) given a (regular) twisted presymplectic groupoid (G,⌦,�), after restricting to a
complete transversal to the foliation induced on the base, one obtains a twisted
presymplectic groupoid whose 2-form becomes non-degenerate. Moreover, as
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in Example 9.2.2, this operation does not change the (presymplectic) Morita
equivalence class;

(b) given an extension (G,⌦,�) over M and any 2-form ⌧ 2 ⌦2(M), the original
extension is presymplectic Morita equivalent to its ⌧ -gauge transform (G,⌦ �
t
⇤
⌧ + s

⇤
⌧,�� d⌧). In particular, if � is exact, then by such a gauge transform

one can pass to an untwisted presymplectic extension.

To prove (ii) we invoke again the fact that a presymplectic Morita equivalence
between symplectic groupoids is automatically symplectic. ⇤

However, it is still interesting to think about twisted presymplectic representa-
tions of symplectic gerbes. To illustrate that let us assume first that B is smooth,
so that (9.8) gives us the exact sequence:

H
3(B,R) i⇤

// H
3(B,O⇤)

d⇤
// H

3(B,⇤) . (9.9)

From the construction of the Dixmier-Douady classes we immediately deduce:

Proposition 9.3.2. Given an integral a�ne manifold (B,⇤), any closed 3-form
⌘ 2 ⌦3

cl(B) and a twisted presymplectic extension over the submersion pM : M ! B

1 // (T⇤)M // (G,⌦,�) // M ⇥B M // 1 ,

then (G,⌦,�+ p
⇤

M
⌘) defines another twisted presymplectic extension with class:

c2(G,⌦,�+ p
⇤

M
⌘) = c2(G,⌦,�) + i⇤[⌘].

In particular, even if we are only interested in symplectic extensions, twisted
(symplectic!) ones arise if one wants to understand the di↵erence between symplec-
tic gerbes and non-symplectic ones:

Corollary 9.3.3. Given an integral a�ne manifold (B,⇤), if two T⇤-central sym-
plectic extensions (Gi,⌦i) induce the same (non-symplectic) gerbe, i.e. if there is a
Morita equivalence of extensions:

G1 ' G2,

then there exists a closed 3-form ⌘ on B and a twisted symplectic Morita equivalence
of extensions:

(G1,⌦1) ' (G2,⌦2, ⌘).

This discussion can be generalized from a smooth B to orbifolds (B,B) by using
(9.9) instead of (9.8) and the description of H3(B,R) via basic forms, provided by
Corollary 9.2.13. In other words, one works with presymplectic extensions

1 // TE // (G,⌦,�) // E // 1

defined over orbifold atlases QE : E ' B and one replaces the closed 3-forms ⌘ on B

by E-basic closed 3-forms on the base M of E . One concludes that for any E-basic
3-form ⌘ on M , the twisted presymplectic groupoid (G,⌦,�+⌘) has class satisfying
the same formula as in the previous proposition.

Remark 9.3.4. It is not hard to see that all our definitions of (symplectic) gerbes
over orbifolds extend to gerbes over any Lie groupoid (gerbes over stacks) and the
definition of the (Lagrangian) Dixmier-Douady class makes sense at least for gerbes
over any foliation groupoid.
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Appendix A. Symplectic groupoids and moment maps

In this appendix we recall some basic notions and results associated with sym-
plectic groupoids and their actions on symplectic manifolds, which are needed
throughout the paper. Much of this material goes back to the work of Mikami
and Weinstein [39] and Xu [56], complemented by the results in [12].

A.1. Hamiltonian G-spaces. Given a Poisson manifold (M,⇡) and an integrat-
ing symplectic groupoid (G,⌦), a Hamiltonian G-space is a symplectic manifold
(X,⌦X) endowed with a smooth map

q : (X,⌦X)!M,

as well as an action m of G on X along q which symplectic. The condition that the
action is symplectic can be expressed by saying that its graph:

Graph(m) = {(g, x, g · x) : g 2 G, x 2 X, s(g) = q(x)} ⇢ G ⇥X ⇥X

is a Lagrangian submanifold of (G ⇥ X ⇥ X,⌦ � ⌦X � �⌦X). Alternatively, this
condition can be rewritten in the multplicative form:

m
⇤(⌦X) = pr⇤1(⌦) + pr⇤2(⌦X),

where pr
i
are the two projections.

Recall that a Poisson map q : X ! M is called complete if for any complete
Hamiltonian vector field Xh 2 X(M) the pullback Xh�q 2 X(X) is complete. The
very first basic fact about Hamiltonian G-spaces is:

Lemma A.1.1. Given a symplectic groupoid (G,⌦) integrating the Poisson mani-
fold (M,⇡) and a symplectic action of (G,⌦) on (X,⌦X), one has:

(i) q : (X,⌦X)! (M,⇡) is a complete Poisson map;
(ii) the induced infinitesimal action T

⇤
M on X,

� : q⇤T ⇤
M ! TX, �(u,↵x) =

d

dt

����
t=0

exp(t↵x) · u.

satisfies the moment map condition

i�(↵)(⌦X) = q
⇤
↵ 8 ↵ 2 ⌦1(M). (A.1)

Conversely, if one starts with a Poisson map q : (X,⌦X) ! (M,⇡), it is imme-
diate to check that the moment map condition (A.1) defines an infinitesimal Lie
algebroid action � : q⇤T ⇤

M ! TX. Moreover, one has:

Lemma A.1.2. Let q : (X,⌦X)! (M,⇡) be a Poisson map with associate infini-
tesimal action � : q⇤T ⇤

M ! TX. Then:

(i) if for some symplectic groupoid (G,⌦) integrating (M,⇡) the infinitesimal ac-
tion � integrates to an action of G on X, then the action is symplectic;

(ii) if q : (X,⌦X)! (M,⇡) is complete, the infinitesimal action always integrate
to a symplectic action of the Weinstein groupoid (⌃(M,⇡),⌦) on (X,⌦X).

The standard theory of Hamiltonian G-spaces for a Lie group G is recovered by
letting G = T

⇤
G = G n g⇤ be the cotangent symplectic groupoid integrating the

linear Poisson structure on g⇤, and q : (X,⌦X)! g⇤ be the usual moment map.
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A.2. Symplectic quotients of Hamiltonian G-spaces. Given a Hamiltonian
G-space (X,⌦X), we will say that:

(a) the action is free at u 2 X if the isotropy group Gu of the action is trivial.
(b) the action is infinitesimally free at u 2 X if the isotropy group Gu of the

action is discrete. Equivalentely, if the isotropy Lie algebra of the infinitesimal
action � is trivial, or still if �u is injective. By (A.1) this is also equivalent to
q being a submersion at u.

Symplectic reduction makes sense in the general context of a Hamiltonian G-space
q : (X,⌦X)! (M,⇡): the symplectic quotient of (X,⌦X) at a point x 2M is:

X//x G := q
�1(x)/Gx.

This carries a canonical symplectic form uniquely determined by the condition that
its pull-back to q

�1(x) is ⌦X |q�1(x).
As in the classical case, to ensure smoothness one assumes that G is proper and

one restricts to points where the action is free, which form an open dense subspace
of M . The following proposition shows that, in that case, if the fibers of q are
connected, then the symplectic reductions q

�1(x)/Gx can be interpreted as the
symplectic leaves of a second Poisson manifold:

Xred := X/G,
which will still be of proper type, with the same space of symplectic leaves as (M,⇡).

Proposition A.2.1. Let (G,⌦) be a proper symplectic integration of (M,⇡) and
let q : (X,⌦X)!M be a free Hamiltonian G-space. Then:

(i) Xred is smooth and carries a unique Poisson structure ⇡red making the canon-
ical projection

p : (X,⌦X)! (Xred,⇡red)

into a Poisson submersion;
(ii) the gauge groupoid of the principal G-space X:

X?
G
X := (X ⇥M X/G ◆ Xred) , (A.2)

with the 2-form induced from pr⇤1 ⌦X � pr⇤2 ⌦X 2 ⌦2(X ⇥M X), is a proper
symplectic groupoid integrating (Mred,⇡red);

(iii) the connected components of the symplectic quotients q�1(x)/Gx are the sym-
plectic leaves of (Xred,⇡red).

A.3. Symplectic Morita equivalence. Free Hamiltonian G-spaces are also the
main ingredient in symplectic Morita equivalences. Moreover, the previous propo-
sition becomes an immediate consequence of one of the main properties of such
equivalences. We start by recalling the definition (see [56]):

Definition A.3.1. A symplectic Morita equivalence between two symplectic
groupoids (Gi,⌦i) ◆ Mi is a Morita equivalence (see Section 2.3):

G1

✏✏✏✏

!!

X

q1
xx

q2
&&

bb

G2

✏✏✏✏

M1 M2

together with a symplectic form ⌦X on X such that the actions of G1 and G2 on
(X,⌦X) are symplectic.
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Hence, the two legs in a symplectic Morita equivalence are left/right free Hamil-
tonian Gi-spaces. The two actions are proper, but the groupoids need not be proper.

Similar to the non-symplectic case, one can recover one groupoid in a symplectic
Morita equivalence from the other groupoid and the the bibundle (X,⌦X) by the
gauge construction:

G2
⇠= X ?

G1
X, G1

⇠= X ?
G2
X.

This is precisely the construction of (A.2) in Proposition A.2.1.
A Morita equivalence allows to identify various “transversal objects” associated

to G1, such as leaf spaces, isotropy groups, isotropy Lie algebras, monodromy
groups, etc., with the similar ones of G2. Moreover, in the symplectic case, one
obtains an equivalence between Hamiltonian G1-spaces and Hamiltonian G2-spaces
(see [56]). It is not di�cult to see that all these fit nicely together in the proper
case, when the homeomorphism between the two resulting leaf spaces will be a
di↵eomorphism of integral a�ne orbifolds and the variation of symplectic areas of
symplectic reductions for Hamiltonian G1-spaces will correspond to the ones for G2.

A.4. Hamiltonian T⇤-spaces. The discussion above is interesting even in the case
of proper integrations of the zero Poisson structure. By Proposition 3.1.6, these
correspond to integral a�ne structures ⇤ ⇢ T

⇤
B: the associated torus bundle

T⇤ = T
⇤
B/⇤ can be viewed as a symplectic groupoid integrating (B,⇡ ⌘ 0).

Therefore, for any integral a�ne manifold (B,⇤) one can talk about Hamiltonian
T⇤-spaces in the sense discussed above, and we have:

Corollary A.4.1. Let (B,⇤) be an integral a�ne manifold and let (X,⌦X) be a
symplectic manifold endowed with an action of T⇤ along a smooth map q : X ! B.
Then the following are equivalent:

(a) (X,⌦X) is a Hamiltonian T⇤-space;
(b) the moment map condition i�(↵)(⌦X) = q

⇤
↵ holds for all ↵ 2 ⌦1(B), where

� : q⇤T ⇤
B ! TX is the infinitesimal action induced by the action of T⇤ on X.

From Proposition A.2.1 and the discussion on Morita equivalences we deduce:

Corollary A.4.2. Given an integral a�ne manifold (B,⇤) and a free T⇤-Hamil-
tonian space q : (X,⌦X)! B, with quotient Xred := X/T⇤, one has:

(i) There a unique Poisson structure ⇡red on Xred carries such that the projection
is a Poisson submersion with connected fibers:

p : (X,⌦X)! (Xred,⇡red). (A.3)

Moreover, p makes (X,⌦X) into a proper isotropic realization of (Xred,⇡red).
(ii) (Xred,⇡red) admits the following proper integrating symplectic groupoid:

X ?
T⇤
X := (X ⇥B X) /T⇤ ◆ Xred, (A.4)

with the 2-form induced from the 2-form pr⇤1 ⌦X � pr⇤2 ⌦X 2 ⌦2(X ⇥B X).
(iii) (X,⌦X) defines a symplectic Morita equivalence:

X ?
T⇤
X

✏✏✏✏

!!

X

uu

((

bb

T⇤

✏✏

Xred B

In particular, there is a 1-1 correspondence between Hamiltonian T⇤-spaces
and Hamiltonian X ?

T⇤
X-spaces.
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Note that the s-fibers of the gauge groupoid (A.4) are copies of the q-fibers, so we
we conclude that Xred is of proper type when the fibers of q are connected. There
are examples where the fibers are not connected, the gauge groupoid is proper, but
its source connected component fails to be proper.

We show in Section 3.1 that Hamiltonian T⇤-spaces are nothing more than La-
grangian fibrations (X,⌦X) ! B inducing the integral a�ne structure ⇤ on B.
When B = Tn with its standard integral a�ne structure, T⇤ is the trivial Tn-
bundle over Tn and Hamiltonian T⇤-spaces are the same thing as quasi-Hamiltonian
Tn-spaces in the sense of (Reference [4]).

A.5. The twisted Dirac case. Let us mention briefly how to modify the previous
discussion in the case of twisted Dirac manifolds. For details see [55].

Given a presymplectic groupoid (G,⌦,�) integrating a twisted Dirac manifold
(M,L) with background 3-form � 2 ⌦2(M), a Hamiltonian G-space consists of
a manifold X, endowed with a 2-form ⌦X , together with a smooth map

q : (X,⌦X)!M,

as well as an action m of G on X along q, satisfying:

(a) multiplicativity: m⇤(⌦X) = pr⇤1(⌦) + pr⇤2(⌦X);
(b) twisting: d⌦X � q

⇤
� is horizontal relative to the action.

For such a Hamiltonian G-space, the map q : (X,⌦X)! (M,L) is a forward Dirac
map. One also has analogues of Lemmas A.1.1 and A.1.2.

For a free Hamiltonian G-space, the reduced space:

Xred := X/G,

now carries a unique �red-twisted Dirac structure Lred for which the projection
p : (X,!)! (Xred, Lred) is a forward Dirac map and the twisting satisfies:

d⌦X = q
⇤
�� p

⇤
�red.

The gauge groupoid:

X?
G
X := (X ⇥M X/G ◆ M) ,

with the 2-form induced from pr⇤1 ⌦X � pr⇤2 ⌦X , is a �red-twisted presymplectic
groupoid integrating (M,Lred), with leaves the presymplectic quotients q�1(x)/Gx.

A presymplectic Morita equivalence between two �i-twisted presymplectic
groupoids (Gi,⌦i) ◆ Mi is a Morita equivalence:

G1

✏✏✏✏

!!

X

q1
xx

q2
&&

bb

G2

✏✏✏✏

M1 M2

together with a 2-form ⌦X on X such that the actions are presymplectic:

m
⇤

i
(⌦X) = pr⇤1(⌦i) + pr⇤2(⌦X) (i = 1, 2),

and the following twisting condition holds:

d⌦X = q⇤1�1 � q⇤2�2.
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Hence, the two legs in a presymplectic Morita equivalence are left/right free
Hamiltonian Gi-spaces and one can recover one groupoid from the other groupoid
and the bibundle (X,⌦X) by the gauge construction:

G2
⇠= X ?

G1
X, G1

⇠= X ?
G2
X.

Note that a twisted presymplectic groupoid maybe presymplectic Morita equi-
valent to a non-twisted symplectic groupoid. Moreover, it is easy to check that:

(i) Any �-twisted presymplectic groupoid (G,⌦,�) ◆ (M,L) is presymplectic
Morita equivalent to its restriction to a complete transversal G|T ◆ T , which
is a twisted symplectic groupoid with twisting the restriction of � to the
transversal T ;

(ii) A presymplectic Morita equivalence between two symplectic groupoids is ac-
tually a symplectic Morita equivalence.

Finally, given a 2-form B 2 ⌦2(M), there is a presymplectic Morita equivalence
between a �-twisted presymplectic groupoid (G,⌦) ◆ (M,L) and its B-transform,
namely the (� + dB)-twisted presymplectic groupoid (G,⌦0) ◆ (M, e

B
L), where

⌦0 = ⌦+ t
⇤
B � s

⇤
B.

Appendix B. Proper transverse integral affine foliations

In this section we show that some of the ideas from Molino’s structure theory
of riemannian foliations ([42, 43]) can be adapted to the case of transverse integral
a�ne foliations proving in particular that the leaf spaces of proper transverse inte-
gral a�ne foliations are good orbifolds, i.e. global quotients modulo proper actions
of discrete groups. In the terminology of [51, 27], we show that proper integral
a�ne foliations are complete.

Throughout this section we fix a foliated manifold (M,F) together with a trans-
verse integral a�ne structure ⇤ ⇢ ⌫

⇤(F).

B.1. Transverse integral a�ne structures and the foliation holonomy. We
start by investigating the influence of the transverse integral a�ne structure ⇤ on
the holonomy of F Note first that the various groupoids associated to the foliation
discussed in Section 2.1 fit into a sequence of groupoid morphisms

Mon(M,F)
hol
// Hol(M,F)

lin
// Hollin(M,F) ⇢ GL⇤(⌫(F)),

where the ⇤ in the last factor is justified by the fact that the holonomy of the
foliation preserves ⇤. As pointed out in Section 2.1, unlike the other groupoids in
this sequence, Hollin(M,F) does not have a smooth structure making lin smooth
unless the holonomy is linear.

Proposition B.1.1. If (M,F) admits a transverse integral a�ne structure then
its holonomy is linear, i.e. lin is bijective. Moreover, with the induced smooth
structure, Hollin(M,F) is an immersed Lie subgroupoid of GL(⌫(F)).

Proof. For a leafwise path � from x to y, choosing small transversals S through
x and T through y, the induced holonomy germ hol(�) : (S, x) ! (T, y) preserves
the integral a�ne structures on the transversals. Using transverse integral a�ne
charts, we obtain a a germ of a di↵eomorphism Rq ! Rq around the origin which
preserves the standard integral a�ne structure. Such germs are clearly linear. ⇤
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Note that Hollin(M,F) ⇢ GL(⌫(F)) may fail to be an embedding: one example
is given by the the Kronecker foliation on the torus, with an irrational slope. This
problem will soon disappear, once we assume properness of the foliation.

Next we compare the holonomy of the foliation, which we will refer to as F-
holonomy, with the ones associated to the transverse integral a�ne. Recall from
Section 5.1 that, associated to ⇤, we consider:

• the linear holonomy h
lin : ⇧1(M)! GL⇤(⌫(F)) with image denoted by

⇧lin
1 (M,⇤) ⇢ GL⇤(⌫(F)).

• the a�ne holonomy h
A↵ : ⇧1(M)! A↵⇤(⌫(F)) with image denoted by

⇧A↵
1 (M,⇤) ⇢ A↵⇤(⌫(F)).

While the holonomies associated to ⇤ are defined on ⇧1(M), the F-holonomy is
defined on Mon(M,F). Hence, to compare the two, we will use the tautological
map sending the leafwise homotopy class of a leafwise path to its homotopy class
as a path in M :

i⇤ : Mon(M,F)! ⇧1(M).

Proposition B.1.2. For a transverse integral a�ne structure ⇤ on a foliation
(M,F), its holonomies are related to the F-holonomy through the following com-
mutative diagrams:

⇧1(M)
h
lin
// GL⇤(⌫(F))

Mon(M,F)

i⇤

OO

hollin

77

⇧1(M)
h
Aff
// A↵⇤(⌫(F))

Mon(M,F)

i⇤

OO

(0,hollin)

77

In particular, the F-holonomy sits inside both the linear and the a�ne holonomy,
and Hol(M,F) sits as an immersed subgroupoid:

j : Hol(M,F) ,! ⇧lin
1 (M,⇤), (0, j) : Hol(M,F) ,! ⇧A↵

1 (M,⇤).

Proof. For the commutativity of the first diagram it su�ces to check that the flat
connection r on ⌫(F), whose parallel transport gives rise to h

lin, when computed
on vectors tangent to F , becomes the Bott F-connection, whose parallel transport
gives rise to hollin. In other words, that we have:

rV (X) = [V,X], 8 V 2 �(F), X 2 �(⌫(F)).

This is a local statement that follows right away using local vector fields X1
, . . . , X

q

spanning the integral lattice and such that [V,Xi] 2 �(F) whenever V 2 �(F).
The commutativity of the second diagram follows from the first one and the

remark that the developing map dev : ⇧1(M)! ⌫(F) vanishes on the image of i⇤.
To prove the remark observe that the projection TM ! ⌫(F), an algebroid 1-cocyle
whose integration is dev, is zero on the sub-algebroid F ⇢ TM ; hence h

A↵ � i⇤, as
a groupoid cocycle integrating the zero algebroid cocycle, must be trivial. ⇤

B.2. Lifting to the linear holonomy cover. As in Section 5.1, one can be more
concrete by fixing

• a base point x 2M , and
• a Z-basis b⇤ = {�1, . . . ,�q} for ⇤x.
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Then one can represent the F-holonomy at x as a map

hollin|x : ⇡1(S, x)! GLZ(Rq),

and similarly for the holonomies of ⇤, hlin|x and h
A↵ |x, defined on ⇡1(M,x) (see

(5.1)). The diagrams in Proposition B.1.2 become the following diagrams:

⇡1(M,x)
h
lin

|x
// GLZ(Rq)

⇡1(L, x)

i⇤

OO

hollin|x

88

, ⇡1(M,x)
h
Aff

|x
// A↵Z(Rq)

⇡1(L, x)

i⇤

OO

(0,hollin|x)

88

The images of hlin|x and h
A↵ |x will be denoted by

�lin ⇢ GLZ(Rq), �A↵ ⇢ A↵Z(Rq),

respectively. These groups, being quotients of ⇡1(M,x), give rise to a sequence of
covering spaces endowed with pull-back foliations:

(fM, eF) // (MA↵
,FA↵) // (M lin

,F lin) // (M,F)

Each of these foliations has a (pull-back) transverse integral a�ne structure. Using
the base point x, we can identify each of these spaces with the source fiber at x of
the corresponding groupoids:

fM = ⇧1(M)(x,�), M
A↵ = ⇧A↵

1 (M,⇤)(x,�), M
lin = ⇧lin

1 (M,⇤)(x,�).

Remark B.2.1. One can also use the basis b⇤ to obtain a more concrete model
for M lin, as the connected component through (x, b⇤) of the ⇤-frame bundle:

Fr(⌫(F),⇤) := {(x, v1, . . . , vq) : x 2M, v1, . . . , vq � basis of ⇤x} ⇢ Fr(⌫(F)).

We will not use this description in what follows, but it provides some geometric
insight into the linear holonomy cover and actions on them. Incidentally, it also
shows that ⇧lin

1 (M) is the unit connected component of GL⇤(⌫(F)).

Next, we state the main properties of the foliation (M lin
,F lin). An entirely

similar result holds for (MA↵
,FA↵), but we leave the details to the reader.

Lemma B.2.2. If p : M
lin ! M is the covering projection, then the foliation

(M lin
,F lin) has the following properties:

(i) it has trivial F-holonomy;
(ii) the action of �lin on M

lin takes leaves to leaves;
(iii) each leaf L0 of F lin is isomorphic to the F-holonomy cover of a leaf L of F ,

with covering projection the restriction of p : M lin !M ;
(iv) there is a free, possibly non-proper, action of Hol(M,F) ◆ M on M

lin !M

and Hol(M lin
,F lin) ◆ M

lin is isomorphic to the resulting action groupoid
Hol(M,F)nM

lin ◆ M
lin;

Proof. Property (i) should be clear since the transverse integral a�ne structure p⇤⇤
on (M lin

,F lin) has linear holonomy map the composition of the linear holonomy
map of ⇤ on (M,F) with p⇤ : ⇡1(M lin) ! ⇡1(M). Using Proposition B.1.2, we
conclude that (M lin

,F lin) must have trivial holonomy.
Property (ii) follows from general properties of covers and pullback foliations.
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For the proof of property (iii), we consider the s-fiber ⇧lin
1 (x,�) above x, together

with the target map
p : ⇧lin

1 (x,�)!M,

as a model for the covering p : M lin ! M . From the homotopy exact sequence of
the �lin-cover p : M lin !M , we obtain the following short exact sequence:

0 // ⇡1(M lin) // ⇡1(M)
h
lin
// �lin

// 0 .

For any embedded sub-manifold L ⇢ M and for any connected component L
0

of p�1(L), the restriction p|L0 : L0 ! L is a covering projection with group the
image of i⇤(⇡1(L)) by h

lin. In particular, ⇡1(L0) is isomorphic to the kernel of
the composition h

lin � i⇤ which equals the linear holonomy group of (M,F) by
Proposition B.1.2. This proves (iii) in the case where the leaves are embedded.
With some care, the argument can be adapted to immersed leaves L ⇢ M . An
alternative proof of (iii) follows also from the proof of (iv), to which we now turn.

In the model above, the action of Hol(M,F) onM
lin is induced from the inclusion

j : Hol(M,F) ,! ⇧lin
1 (see Proposition B.1.2): this clearly gives a free, left, action

Hol(M,F)⇥⇧lin
1 (x,�)! ⇧lin

1 (x,�), (a, �) 7! j(a)�.

The orbit of the action through any � 2 ⇧lin
1 (x,�) is the image of the immersion:

R� : Hol(M,F)(x0
,�)! ⇧lin

1 (x,�), R�(a) = j(a)�.

We claim that the tangent space at � to such an orbit coincides with T�F lin. Since
these orbits are smooth, connected, immersed submanifolds of M lin = ⇧lin

1 (x,�), it
will follow that they are precisely the leaves of F lin. To prove the claim we compute

(dp)(dR�(Ta Hol(M,F)(x0
,�))) = (dt)�(T� Hol(M,F)(x,�)) = Tt(a)F .

This shows that dR�(Ta Hol(M,F)(x0
,�)) ⇢ Tj(�)aF lin; by a dimension counting,

this inclusion must be an equality, proving the claim. Therefore Hol(M,F)nM
lin

is a groupoid over M lin integrating F lin, so it comes with a groupoid submersion

Hol(M,F)nM
lin ! Hol(M lin

,F lin).

Composing this map with the anchor (s, t) : Hol(M lin
,F lin)!M

lin⇥M lin gives the
anchor (s, t) : Hol(M,F)nM

lin !M
lin⇥M

lin, which is injective by freeness of the
action. Therefore the submersion is actually a di↵eomorphism and (iv) follows. ⇤

B.3. Proper Foliations: a Molino type Theorem. In the proper case we have:

Lemma B.3.1. If (M,F) is a proper foliation with a transverse integral a�ne
structure then the immersions Hol(M,F) ,! GL(⌫(F)), Hol(M,F) ,! ⇧lin

1 (M)
and Hol(M,F) ,! ⇧A↵

1 (M) are embeddings of Lie groupoids.

Proof. By Proposition 2.4.2, the properness of (M,F) implies that Hol(M,F) is
a proper groupoid. It then su�ces to remark that if H is a proper groupoid and
F : H ! G is a morphism of Lie groupoids over M covering the identity on the
base, then F is automatically a proper map: for K ⇢ G compact, F�1(K) is closed
inside the compact H(s(K), t(K))), hence it must be compact. In particular, if F
is an injective immersion, than it is automatically a closed embedding. ⇤

As explained in Example 3.2.6, under the present assumptions, B = M/F is an
integral a�ne orbifold. Our final result shows that B is actually a good orbifold:
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Theorem B.3.2. If (M,F) is a foliation of proper type with a transverse integral
a�ne structure, then the linear holonomy cover (M lin

,F lin) is simple and carries
a transverse integral a�ne structure. Hence, its space of leaves

B
lin := M

lin
/F lin

is a smooth integral a�ne manifold. Moreover, the action of �lin on M
lin descends

to a proper action on B
lin by integral a�ne transformations and M

lin yields a
Morita equivalence:

Hol(M,F)

✏✏✏✏

!!

M
lin

p

vv

q

((

~~

B
lin o �lin

✏✏✏✏

M B
lin

In particular, we have an isomorphism of integral a�ne orbifolds:

M/F ⇠= B
lin
/�lin

.

Proof. By Lemma B.2.2 (iv), the holonomy groupoid of (M lin
,F lin) is proper and

this foliation has trivial holonomy. Hence, it must be a simple foliation with smooth
orbit space B

lin. Equivalently, now the free action of Hol(M,F) on M
lin is also

proper, hence B
lin = M

lin
/Hol(M,F) is smooth and q : M lin ! B

lin is a principal
Hol(M,F)-bundle. By Lemma B.2.2 (ii) we have an action of �lin on B

lin and
p : M lin !M is a principal Blin o �lin-bundle.

The two actions on M
lin clearly commute, hence we obtain a Morita equiva-

lence. Since properness is a Morita invariant, it follows that the action of �lin on
B

lin must be proper. The properties concerning the integral a�ne structure are
straightforward. ⇤
Remark B.3.3. There is a version of the previous theorem where the linear ho-
lonomy cover M

lin is replaced by the a�ne holonomy cover M
A↵ , giving rise to

a similar Morita equivalence of Hol(M,F) ◆ M with B
A↵ o �A↵ ◆ B

A↵ . Here
B

A↵ is the a�ne holonomy cover of the integral a�ne manifold B
lin. This version

allows us to view the developing map dev : MA↵ ! Rq as the composition of the
projection M

A↵ ! B
A↵ with the developing map dev : BA↵ ! Rq of the integral

a�ne manifold B. The argument uses the a�ne version of Lemma B.2.2.

Since a classical integral a�ne orbifold can always be obtained as the leaf space
of a foliation of proper type with a transverse integral a�ne structure, we conclude:

Corollary B.3.4. Any classical integral a�ne orbifold is a good orbifold.
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