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Abstract—Mobile cloud computing enables compute-limited
mobile devices to perform real-time intensive computations such
as speech recognition or object detection by leveraging powerful
cloud servers. An important problem in large-scale mobile cloud
computing is computational offloading, where each mobile device
decides when and how much computation should be uploaded
to cloud servers by considering the local processing delay and
the cost of using cloud servers. In this paper, we develop a
distributed threshold-based offloading algorithm where it uploads
an incoming computing task to cloud servers if the number of
tasks queued at the device reaches the threshold and processes it
locally otherwise. The threshold is updated iteratively based on
the computational load and the cost of using cloud servers. We
formulate the problem as a symmetric game, and characterize
the sufficient and necessary conditions for the existence and
uniqueness of the Nash Equilibrium (NE) assuming exponential
service times. Then, we show the convergence of our proposed
distributed algorithm to the NE when the NE exists. Further,
we characterize the performance gap between cost under our
proposed distributed algorithm and the minimum cost in terms
of Price of Anarchy (PoA) when the cost of using cloud servers
is high. Finally, we perform extensive simulations to validate our
theoretical findings, demonstrate the efficiency of our proposed
distributed algorithm under various scenarios such as hyperex-
ponential service times, imperfect server utilization estimation,
and asynchronous threshold updates, and reveal the superior
performance of threshold-based policies over their probabilistic
counterpart.

Index Terms—Mobile Cloud Computing, Distributed Offload-
ing, Nash Equilibrium, Price of Anarchy, Convergence.

I. INTRODUCTION

REAL-TIME mobile cloud applications (see [1], [2]) have
grown rapidly over the last few years and have become

ubiquitous. For example, in an international trade show such
as Consumer Electronics Show, people in the same convention
center may need real-time translation services on their mobile
devices at the same time, making it challenging to provide
low latency language translation with a low service cost. On
the one hand, computing limited devices may not have the
required computational capability to process the data locally;
and on the other hand, offloading the computing tasks to
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a cloud-computing center incurs both communication and
computing costs. Mobile cloud computing, which utilizes both
mobile and cloud computing powers, is a vital solution to
address this challenge. A central question in mobile cloud
computing is: how much to offload and when? This paper
addresses this important question and proposes a distributed
offloading algorithm where each device aims at minimizing a
cost function, including both the local processing delay and
offloading cost at the cloud computing center.

Mobile cloud computing has received significant research
interest in recent years (see [3], [4] for the most recent
thorough surveys). Much of prior works considered the static
model in various application scenarios, where all computation
demands and their required computing time are known at the
beginning of the system operation. For example, [5] considered
the cost as a weighted sum of average energy consumption
and computation time, and developed an iterative algorithm
that minimizes the cost. [6] formulated a multi-objective
optimization problem with the goal of minimizing CPU us-
age, memory overhead, energy consumption, and execution
time, and proposed an efficient heuristic algorithm. [7] jointly
optimized both energy and latency for mobile edge computing
in Internet of Things applications. [8] considered minimizing
the weighted sum of energy consumption and task computation
time as their objective function and proposed an algorithm that
determined both task offloading decisions and CPU frequency.
Some other works focused on the distributed offloading design
for mobile cloud/edge computing based on game-theoretical
approaches (e.g., [9], [10], [11], [12], [13]).

Recent works (e.g., [14], [15]) considered the dynamic
model, where computing tasks dynamically arrive at mobile
devices and are served by either themselves or edge servers.
However, they considered the scenario where all mobile
devices share the same wireless networks and compete for
wireless transmissions. This is not the case for large-scale
mobile cloud computing, where each mobile device may
use a different wireless network and need to pay a certain
amount of cost for using the cloud servers. Despite some
works considering the dynamic models for large-scale mobile
cloud computing, they focused on the class of probabilistic
offloading policies which offload the computing tasks with
a certain probability. For example, [16] considered the of-
floading design in satellite edge computing and proposed
an iterative algorithm that achieves the Nash Equilibrium
of the probabilistic offloading strategies. [17] studied mobile
edge computing in 5G networks and adopted deep learning
techniques to obtain the optimal offloading probability. [18]
analyzed the computation latency of probabilistic offloading in
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mobile edge computing systems under stochastic task arrival
and departure processes. [19] focused on jointly minimizing
energy consumption, execution delay, and price cost, and
designed an algorithm based on the interior point method to
find the optimal offloading probability.

In this paper, we focus on the class of threshold-based
offloading policies under which each mobile device uploads
an incoming computing task to cloud servers if its number of
awaiting tasks is greater than a certain threshold and processes
it by itself otherwise. This is motivated by the following three
facts: (i) threshold-based policies exhibit distributed nature and
are suitable for large-scale mobile cloud computing; (ii) the
threshold-based policy has been proved to be optimal in some
related models (e.g., [20]); (iii) threshold-based policies out-
perform the existing state-independent probabilistic offloading
policies (i.e., uploading an incoming task with a certain prob-
ability and processing it locally otherwise) in our considered
system, as demonstrated via simulations (cf. Section IV-D).
While some prior works (e.g., [21]) considered the threshold-
based offloading design, the service cost is independent of the
threshold decisions. This is not the case in our considered
setup since the service cost depends on the server utilization
relying on the users’ threshold decisions.

For the class of threshold-based policies, the following five
fundamental questions naturally arise:
(i) Algorithm Design: How should a device adapt its thresh-

old to minimize its cost?
(ii) Existence: Does there exist an equilibrium point such

that each device will settle on a threshold and have no
incentive to deviate from it?

(iii) Uniqueness: Is the equilibrium point unique?
(iv) Convergence: Does the system converge to the equilib-

rium when each device adapts its threshold to minimize
its own cost?

(v) Efficiency (or Price of Anarchy) How efficient is the
distributed threshold-based policy compared with the
optimal centralized solution?

There are two main challenges to answer the questions
above: (i) Since each user’s offloading decision (i.e., threshold)
is discrete and unbounded, classical fixed point theorems,
which have been used successfully for proving the existence
and uniqueness of Nash Equilibrium in many applications
(e.g., [22], [23], [24], [25], [26], [27]), do not directly apply
in our model; (ii) Since thresholds take integer values, it is
challenging to show that the integer sequences will converge
to the equilibrium point. In fact, it is not clear whether
a distributed threshold-based algorithm, where each device
chooses the optimal threshold given the current state of the
cloud service, converges. However, we are able to show that
an incremental distributed threshold-based policy, where each
device increases/decreases its threshold to move it closer to
the current optimal threshold, converges under some minor
conditions.

The main results and contributions are listed below:
• Under the exponential service time assumption, we an-

alytically characterize the sufficient and necessary conditions
for the existence and uniqueness of the Nash Equilibrium (see
Theorem 1).

•We develop a distributed implementation of the threshold-
based offloading algorithm (see Section III-A) so that each
user iteratively and incrementally updates its own threshold
based on its own cost function. We prove the convergence of
our proposed algorithm to the Nash Equilibrium offloading
decision if it exists under the exponential service time distri-
bution (see Theorem 2).
• We characterize the efficiency of the Nash Equilibrium

offloading decision via the Price of Anarchy (PoA), capturing
efficiency loss compared with the optimal centralized offload-
ing (cf. Theorem 3).
• We perform extensive simulations (see Section IV) to

validate our theoretical findings. Under various scenarios (e.g.,
hyperexponential service time distributions, transmission delay
when offloads, imperfect server utilization estimation, and
asynchronous threshold updates), we also demonstrate the
convergence of our proposed distributed algorithm to the
Nash Equilibrium offloading decision, which is computed via
numerical calculations. We further reveal the superior per-
formance of threshold-based policies over their probabilistic
counterpart.

This work extends our previous work [28] in the following
aspects: (i) we analytically characterize the PoA performance
when the cost of using cloud servers is large and validate it
via simulations; (ii) more detailed proofs for Theorem 1 and
Theorem 3 are included; (iii) we add additional simulations
to demonstrate the superior performance of threshold-based
offloading algorithms over the existing probabilistic offloading
algorithms in our considered large-scale mobile cloud comput-
ing system.

The remainder of this paper is organized as follows: we
introduce our system model in Section II. In Section III,
we propose a distributed threshold-based offloading algorithm
and present our main theoretical results. In Section IV-B,
we perform extensive simulations to validate our theoretical
findings as well as the efficiency of our proposed distributed
algorithm. Section V concludes our paper.

II. SYSTEM MODEL

We consider a mobile cloud computing system of N users,
as shown in Fig. 1. Tasks arrive at each user according to
a Poisson process of rate λ > 0. Each user can process a
task either locally or upload it to cloud servers with a total
service rate of Nc, where c > λ ensures that all tasks can
be processed at cloud servers if necessary1. The mean service
time of a task at a local device is 1/µ, where µ > 0. We
assume that each user n (n = 1, 2, . . . , N) maintains a queue
to hold tasks awaiting processing locally, and we use qn(t) to
denote the queue length at time t, i.e., the number of awaiting
tasks of user n at time t.

For each incoming task, it experiences both queueing and
processing delays when being processed locally. We assume

1In this paper, we do not consider the detailed modeling of cloud computing,
such as virtual machines. From the cloud service provider’s perspective, its
goal is to ensure that the processing delay of each computing task is small, and
thus we neglect the processing delay in our theoretical model. However, in our
simulations, we add the latency, including both communication latency and
processing latency, and demonstrate that our proposed algorithm still performs
well.
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Fig. 1: System Model

the user will be charged with a service cost based on server
utilization at the time if a task is offloaded to the cloud, where
server utilization is the current load of the cloud servers. Here,
we assume that cloud servers are high-capacity servers so
that the cloud processing time is negligible compared with
local processing and queueing delays. Under these assump-
tions, each individual user makes an offloading decision that
determines whether its incoming task is processed by itself or
is uploaded to cloud servers with the goal of minimizing both
its delay and service cost.

Since the offloading problem shares a similar spirit of the
optimal admission control of a single queue whose solution
has a threshold-based structure (see [20]), we focus on the
following Threshold-Based Offloading (TBO) Policy.

Threshold-Based Offloading (TBO) Policy with integer
parameters B , (Bn)

N
n=1: For each user n, an in-

coming computing task will be processed by itself if its
current queue length qn(t) is less than Bn. Otherwise,
the task is uploaded to cloud servers for computation.

In the TBO policy, Bn is the threshold of user n. If Bn
is set to 0, then user n will upload all its incoming tasks
to cloud servers. If Bn ↑ ∞, then all computing tasks are
processed by user n. Under the TBO policy, the queue length
of each user only depends on its own threshold Bn when the
threshold is fixed. Therefore, we use Q(Bn) to denote the
average queue length and π(Bn) to denote probability that an
incoming task is uploaded to cloud servers (also referred to as
offloading probability). For each user n, an incoming task is
processed by itself with probability 1−π(Bn). In such a case,
it experiences the average delay of Q(Bn)

λ(1−π(Bn))
by Little’s Law,

where we use the fact that the average rate of tasks processed
by user n is λ(1−π(Bn)). With offloading probability π(Bn),
an incoming task is uploaded to cloud servers and experiences
a cost depending on the server utilization, i.e., g (β(B)),
where B , (Bn)

N
n=1, β(B) , λ

∑N
n=1 π(Bn)/(Nc) is the

utilization of cloud servers, λ
∑N
n=1 π(Bn) is the average

number of tasks that are uploaded to cloud servers, and g(·)
is some convex, non-decreasing, and non-negative function.
This is motivated by the fact that a large server utilization
results in a high service cost in cloud services (see [29]) and
the fact that the cloud service provider would like to ensure a
low processing latency and thus charge a much higher cost for
high server utilization. In the rest of the paper, we assume that

g(x) = kx2, where k > 0 is some scaling parameter to take
the degree of importance between local processing cost and
cloud service cost into consideration. The large the parameter
k, the higher the cloud service cost. When k →∞, the cost of
using cloud servers becomes extremely large, and all the users
in the system tend to use local devices for computation if the
local device can handle the computation traffic. Therefore, the
average cost2 of user n can be expressed as

Q(Bn)

λ
+ kβ2(B)π(Bn). (1)

In this paper, we focus on the large-scale mobile cloud
computing system (i.e., N is large enough). Our goal is
to develop a distributed offloading algorithm under which
each device updates its own threshold, without knowing other
users’ thresholds, to minimize its cost function. The important
questions to answer whether such an algorithm can converge?
If it does, where does it converges to, and how efficient is
the equilibrium point? We study this problem from a game
perspective. In particular, each user n optimizes its own cost
function Q(Bn)/λ+kβ

2π(Bn) given a fixed server utilization
β. B̃ , (B̃n)

N
n=1 is defined to be the Nash Equilibrium (NE)

of the system (when it exists) if

B̃n ∈ argmin
B

Q(B)/λ+ kβ2π(B) (2)

and β = λ
N∑
n=1

π(B̃n)/(Nc).

Note the cost function in (2) is different from (1) because
the N -player game defined by (1) is difficult to solve, so
we approach the problem using a mean-field approximation
(or large-system approach) where we assume that each user’s
choice of the threshold has the minimal impact on the server
utilization β, so each user views the server utilization as a fixed
constant when optimizing its threshold. The NE has to satisfy
two conditions: (i) the threshold is optimal given the server
utilization (optimality condition) (ii) the server utilization is
indeed the one under the chosen thresholds from all users
(consistency condition).

We define the Price of Anarchy (PoA) to be the performance
gap between cost under the NE offloading decision and the
global minimum cost, i.e.,

PoA , 1− Global minimum cost
Average cost under NE offloading decision

.

Note that PoA ∈ [0, 1]. The smaller the PoA, the more efficient
the system under the NE offloading decision.

III. ALGORITHM DESIGN AND MAIN RESULTS

In this section, we first propose a distributed offloading
algorithm that incrementally updates the threshold for each
user. Then, we present our main theoretical results on the
performance of the proposed algorithm.

2The user’s cost is defined as the weighted sum of local processing latency
and cost of using cloud servers, i.e., cost = constant × latency + service cost,
where the unit for the constant can be dollar/second. This is equivalent to
minimizing the cost (= latency + constant × service cost), and our parameter
k serves as the constant in this case.
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A. Algorithm Description

In this subsection, we introduce an Iterative Threshold
Update (ITU) algorithm that constantly updates each user’s
threshold. Let B(m)

n be the threshold of user n in the mth

iteration. Motivated by the fact that the server utilization
asymptotically equals to β(B(m)) as N →∞ at the beginning
of the (m+1)th iteration, we define the approximate average
cost of user n given the server utility β(B(m)) in the mth

iteration as

Tn

(
Bn;B

(m)
)
,
Q(Bn)

λ
+ kβ2

(
B(m)

)
π(Bn),

where B(m) ,
(
B

(m)
n

)N
n=1

.

Algorithm 1 Iterative Threshold Update (ITU) Algorithm

1: Each user starts from some random threshold B(0)
n , where

n = 1, 2, · · · , N ;
2: for m = 0, 1, 2 · · · , do
3: for n = 1, 2, · · · , N do
4:

B̂(m+1)
n ∈ argmin

Bn

Tn

(
Bn;B

(m)
)
. (3)

5: if m = 0 then
6: B

(m)
n ← B̂

(m+1)
n

7: else
8: if B̂(m+1)

n < B
(m)
n then

9: B
(m+1)
n ← B

(m)
n − 1;

10: else if B̂(m+1)
n > B

(m)
n then

11: B
(m+1)
n ← B

(m)
n + 1;

12: else
13: B

(m+1)
n ← B

(m)
n .

14: end if
15: end if
16: end for
17: end for

We describe our proposed ITU algorithm in Algorithm 1,
where each user greedily optimizes its own decision in the
first iteration step to speed up the convergence of the ITU
algorithm and then gradually adjusts its threshold. Here, the
optimal solution to (3) requires the knowledge of the server
utilization, which relies on all users’ offloading decisions
and thus is typically unavailable beforehand. However, the
server utilization can be estimated via the ratio of the average
offloading rate (i.e., the ratio of the total number of offloaded
tasks and the total amount of time) to the total service rate
of cloud servers. After we have the server utilization, we
use a look-up table to solve the optimization problem (3).
Moreover, users in the system may update their offloading
decisions asynchronously. In Section IV, we demonstrate via
simulations that our proposed ITU algorithm still performs
well in the presence of imperfect server utilization estimation
and asynchronous threshold updates.

We are interested in whether the proposed ITU algorithm
converges and which offloading decisions it converges to if
it does converge. We analytically answer these two questions

when the service time of each task is independently and identi-
cally distributed (i.i.d) and exponentially distributed with mean
1/µ. In such a case, when the threshold Bn of user n is fixed,
the queue at a device is an M/M/1/Bn queue (see [30]),
which has a Poisson arrival process with rate λ, exponentially
distributed service time with mean 1/µ, and a finite buffer size
Bn. We can easily calculate π(Bn) and Q(Bn) by using the
detailed balance equation of the underlying Markov Chain.
Therefore, the average queue length Q(Bn) and probability
π(Bn) that an incoming task is uploaded to cloud servers
(also referred to as offloading probability) have the following
closed-forms:

Q(Bn) =

{
Bn+1

ρBn+1−1 +Bn + 1
1−ρ , ρ 6= 1,

Bn

2 , ρ = 1,
(4)

and π(Bn) =

{
ρBn−ρBn+1

1−ρBn+1 , ρ 6= 1,
1

Bn+1 , ρ = 1,
(5)

respectively, where ρ , λ/µ > 0.

B. Main Results

In this subsection, we analyze the performance of our
proposed ITU algorithm under the exponential service time
distribution assumption. We first characterize the sufficient and
necessary conditions for the existence and uniqueness of the
NE. Then, we show that the proposed ITU algorithm converges
to the unique NE within a finite time when it exists. Finally,
we characterize the efficiency of NE offloading decisions via
the PoA performance metric in some scenarios.

Theorem 1: If W (0) < kλ2/c2 and V1(bx̃c) < kλ2/c2 <
V2(dx̃e), then there is no NE. Otherwise, there exists a unique
NE, in particular,
(i) if W (0) ≥ kλ2/c2, then the unique NE is (0)N×1;

(ii) if W (0) < kλ2/c2 and W (bx̃c) < kλ2/c2 ≤ V1(bx̃c),
then the unique NE is (bx̃c)N×1;

(iii) if W (0) < kλ2/c2 and V2(dx̃e) ≤ kλ2/c2 < W (dx̃e),
then the unique NE is (dx̃e)N×1.

In the statement above, x̃ is the unique solution to W (x̃) =
kλ2/c2 when W (0) < kλ2/c2, and W (x), V1(x), and V2(x)
are defined as follows:

W (x) ,
kλ2

c2

∣∣∣∣ C ′L(x)

(∂CE(x; y)/∂x)|y=x

∣∣∣∣, (6)

V1(x) ,
kλ2

c2

∣∣∣∣ CL(x+ 1)− CL(x)
CE(x+ 1;x)− CE(x;x)

∣∣∣∣ (7)

and V2(x) ,
kλ2

c2

∣∣∣∣ CL(x)− CL(x− 1)

CE(x;x)− CE(x− 1;x)

∣∣∣∣, (8)

where CL(x) , Q(x)/λ denotes the average local computa-
tion cost and CE(x; y) , k (λπ(y)/c)

2 · π(x) represents the
average service cost.3

Proof: If W (0) ≥ kλ2/c2, then it is optimal for each
user to upload all its incoming tasks to cloud servers and
thus (0)N×1 is the unique NE. If W (0) < kλ2/c2, then

3In this paper, byc and dye denote the maximum integer that is not greater
than y and the minimum integer that is not less than y, respectively, (y)N×1

denotes N− dimensional vector with all y values.
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the proof is more involved. It consists of three steps: (i) we
show that if W (0) < kλ2/c2, then given all other users’
offloading decisions x̃, the best response decision is also x̃
for any real numbers x̃ satisfying kλ2/c2 = W (x̃); (ii) we
show that NE must be either (bx̃c)N×1 or (dx̃e)N×1; (iii) by
combining results in (i) and (ii), we only need to find out
the best response offloading decision when all other users’
offloading decisions are either bx̃c or dx̃e. The detailed proof
is available in Appendix A.

To apply Theorem 1, we only need to examine the value of
kλ2/c2 to check whether the NE exists or not given the system
parameters. Note that the term kλ2/c2 denotes the cost of
using cloud servers when all the computing tasks are uploaded
to cloud servers. Therefore, if kλ2/c2 ≤ W (0), then the cost
of using cloud servers is small, and thus, it is better to upload
all the tasks to cloud servers (i.e., x̃ = 0). Otherwise, each user
partially uploads its incoming computing traffic to the cloud
servers with the goal of minimizing its own cost (i.e., x̃ > 0).
In addition, when the NE exists, we can further quantify the
NE. The next theorem shows that the proposed ITU algorithm
converges to the unique NE over a finite number of iterations
when the NE exists.

Theorem 2: If the unique NE exists, then the proposed ITU
algorithm converges to it over a finite number of iterations.

Proof: The proof relies on the following key property:
after each iteration of the ITU algorithm, each user’s threshold
will get closer and closer to the NE, as it is shown in Fig. 2.
Fig. 2 illustrates the convergence of each user’s threshold in
the case when bx̃c is the NE and the case when dx̃e is the
NE, respectively, where we recall that x̃ is the solution to
kλ2/c =W (x̃) if it exists.

Fig. 2: Convergence of the nth user’s thresholds.

Then, in both cases, the updated threshold of each user
exhibits bisection property, i.e., if B

(m)
n < x̃, then the

threshold will increase by one in each iteration until it reaches
the NE. If B(m)

n > x̃, then the threshold will decrease by one
in each iteration until it converges to the NE. Therefore, the
threshold increases or decreases until it is below or above
the equilibrium point to ensure the convergence of the ITU
algorithm. Please see Appendix B for the detailed proof.

Finally, we characterize the PoA of the NE when it exists,
which captures the efficiency of our proposed ITU algorithm
when it converges. In particular, we provide conditions under
which the proposed ITU algorithm is optimal, i.e., the PoA is
equal to zero.

Theorem 3: Whenever the NE exists:

(i) If W (0) ≥ kλ2/c2, then PoA = 0;

(ii) If W (0) < kλ2/c2 and ρ = 1, then PoA ≤ 0.12 as
k →∞;

(iii) If W (0) < kλ2/c2 and ρ 6= 1, then PoA→ 0 as k →∞;

Proof: The proof consists of the following three cases:
(i) If W (0) ≥ kλ2/c2, according to Theorem 1, the unique

NE is (0)N×1 and thus it is optimal to offload all the tasks
to the cloud server. We can also show that in such a case,
the thresholds of the global optimal solution for all users are
0 using a similar argument and is omitted here due to space
limitations. Therefore, PoA = 0 in this case.

(ii) If W (0) < kλ2/c2 and ρ = 1, then we can obtain an
upper bound of PoA as

PoA ≤ 1− 4x∗ + 1

6x̃+ 9
,

where x∗ =
(
6kλ3/c2

) 1
4 − 1 and x̃ =

(
2kλ3/c2

) 1
4 − 1 are

the solutions of equations kλ2/c2 =W (x∗)/3 and kλ2/c2 =
W (x̃), respectively. By letting k → ∞ in the upper bound,
we have the desired results.

(iii) If W (0) < kλ2/c2, 0 < ρ < 1 and ρ > 1, we first
obtain the following upper bound on PoA using its definition:

PoA ≤ 1− (1− ρ) log(ρ)
3(ρ log(ρ) + ρdx̃e+1(1− ρ))

·
(

2 bx∗c+ 2

ρbx∗c+1 − 1
+ 2 bx∗c+ 2 + ρ

1− ρ
+
ρbx

∗c+1

log(ρ)

)
,

where x̃ and x∗ are the unique solutions to the equations
kλ2/c2 = W (x̃) and kλ2/c2 = W (x∗)/3, respectively. In
Appendix C, we further show that this upper bound converges
to 0 as k → ∞ when 0 < ρ < 1. This, together with the
fact that PoA ≥ 0, implies that PoA → 0 as k → ∞ when
0 < ρ < 1.

If W (0) < kλ2/c2 and ρ > 1, we first show
that limk→∞ 3ρx̃/ρx

∗
= 1, where x̃ and x∗ are the

unique solutions to the equations kλ2/c2 = W (x̃) and
kλ2/c2 = W (x∗)/3, respectively. Then, we further show
that lim supk→∞ {PoA upper bound} ≤ 0. Therefore, we can
conclude that PoA → 0 as k → ∞ in this case. The detailed
proof is available in Appendix C.

In case (i), the inequality W (0) ≥ kλ2/c2 indicates that
the cost of uploading all the tasks to cloud servers is relatively
small. Therefore, in this case, the threshold under both the ITU
algorithm and global optimal solution is zero, which means
that users will upload all the tasks to cloud servers under both
solutions and thus, the ITU algorithm is optimal. In case (ii),
we have ρ = 1 and the cost of using cloud servers is high when
k →∞. In this case, users under the ITU algorithm tend to use
local devices more, and users under the global optimal solution
will still upload some computing traffic to the cloud since local
devices can not process all the arrival tasks. Therefore, there
is a performance gap. However, in the last case (i.e., ρ 6= 1),
the cost difference between the ITU algorithm and the global
optimal solution diminishes (and hence the PoA converges to
zero) as the cost of using cloud servers increases to infinity.

Note that these theoretical results are obtained under the
assumption that the service time follows an exponential dis-
tribution. In the next section, we perform simulations to
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validate our theoretical results and to demonstrate the effi-
ciency of our proposed ITU algorithm under various practical
scenarios, such as hyperexponential service time distribution,
transmission delay when offloads, imperfect server utilization
estimations, and asynchronous threshold updates.

IV. SIMULATIONS

In this section, we perform simulations to validate our
theoretical findings, especially conditions for the existence and
uniqueness of the NE (cf. Theorem 1) and the convergence
of our proposed ITU algorithm (cf. Theorem 2) under the
exponential service time distribution with µ = 4. Then, we
demonstrate the convergence property of the proposed ITU
algorithm in the presence of the task transmission delay when
the service time follows a hyperexponential distribution, i.e.,
it follows an exponential distribution with a rate of 8p with
probability p and another exponential distribution with a rate
of 8(1−p) otherwise. Note that the mean of the hyperexponen-
tial distribution is 1/4, and the variance is 1/(8p(1−p))−1/16.
We consider hyperexponential distribution in the simulations
mainly for two reasons: (i) the variance of the service time
can be easily configured; (ii) it simplifies the simulation
(using uniformization) and allows for a large-scale simulation.
Moreover, we evaluate the efficiency of the NE via the PoA
performance that characterizes the gap between the cost under
the NE and the global minimum cost. Finally, we demonstrate
the superior performance of threshold-based policies over
their probabilistic counterpart in our considered mobile cloud
computing system. In our simulations, we consider N = 1000
users, each of which has the Poisson arrival process with the
rate of λ = 6, and c = 10 unless we explicitly mention it.

A. Existence of the NE

In this subsection, we perform numerical simulations to
validate the conditions such that the NE exists under the ex-
ponential service time distribution. We consider three different
values of k, i.e., k = 22, k = 30, and k = 40. These
corresponds to the case with W (bx̃c) < kλ2/c2 ≤ V1(bx̃c),
V1(bx̃c) < kλ2/c2 ≤ V2(bx̃c), and V2(dx̃e) < kλ2/c2 ≤
V1(dx̃e), respectively, under which the unique NE is (2)N×1,
NE does not exist, and the unique NE is (3)N×1, according to
Theorem 1. Table I summarize the NE under the above three
different cases4. From Table I, we can see that there exists
a unique NE (2)N×1 when k = 22, and NE (3)N×1 when
k = 40, which means that the optimal threshold of one user
is the same as all other users’ threshold. However, we can
observe from Table I that there does not exist a NE when
k = 30. This validates the conditions for the existence and
uniqueness of the NE, as shown in Theorem 1.

B. Convergence under the ITU Algorithm

In this subsection, we perform simulations to validate the
convergence of the ITU algorithm. We randomly select 5 users

4Here, the NE is obtained by plotting the best response threshold of one
user with respect to all other users’ threshold and finding its intersection with
linear function, where the NE must be an integer vector.

System Setup NE
k = 22, i.e., W (bx̃c) < kλ2

c2
≤ V1(bx̃c) (2)N×1

k = 30, i.e., V1(bx̃c) < kλ2

c2
< V2(dx̃e) NE does not exist.

k = 40, i.e., V2(dx̃e) ≤ kλ2

c2
< W (dx̃e) (3)N×1

TABLE I: NE under exponential distribution service time
distribution.

to study their convergences. Fig. 3 shows the convergence
property of the ITU algorithm when the calculation of the
server utilization uses the exact offloading probability (cf. (5)).
We can see from Fig. 3a and Fig. 3c that our proposed ITU
algorithm can quickly converge to the corresponding NE. The
NE does not exist in the setup for Fig. 3b, in which case the
updated threshold under the ITU algorithm oscillates between
2 and 3. This indicates the bisection property of the updated
threshold of ITU, and validates the convergence property of
the ITU algorithm, as revealed in Theorem 2.

In practice, the service time of local devices may not follow
the exponential distribution, and there exists transmission
delay when uploading tasks to cloud servers. In addition, the
knowledge of the server utilization is not available beforehand
and requires estimating over time. As such, we use the ratio
between the average offloading rate (i.e., the ratio of the total
number of offloaded tasks and the total amount of time) and
the total service rate of cloud servers. Moreover, each user
may not synchronously update its threshold.

System Setup NE
k = 30 NE does not exist.
k = 40 (3)N×1

TABLE II: NE under hyperexponential distribution service
time distribution.

To this end, we consider a hyperexponential distribution
service time distribution with p = 1/8. Each user updates its
threshold asynchronously (i.e., updates with a fixed probabil-
ity) to optimize its cost function in the presence of imperfect
server utilization estimation. We further consider the case that
each task offloading to the cloud server experiences both
the transmission delay and processing delay at the cloud.
In particular, the cost function of each user n is defined as
Q(Bn)/λ + (kβ(B)2 + τn)π(Bn), and τn is the mean delay
and is sampled from an uniform distribution U [0, 1]. Note
that we do not know the theoretical NE, and thus we first
perform numerical simulations to find the NE. The numerical
results are summarized in Table II. From Table II, we can
observe that the NE is (3)N×1 when k = 40, while the NE
does not exist when k = 30. Fig. 4 shows the convergence
of the ITU algorithm under the hyperexponential distribution
service time distribution together with asynchronous threshold
update and imperfect server utilization estimation. From Fig.
4, we can observe that the updated threshold converges to
the corresponding NE when the NE exists (see Fig. 4b), and
oscillates between 2 and 3 otherwise (see Fig. 4a).

In practice, our proposed algorithm still works even when
the number of users is small (e.g., N = 10). As shown in
Fig. 5, our proposed ITU algorithm converges to the same
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(a) k = 22

(i.e., W (bx̃c) < kλ2

c2
≤ V1(bx̃c))

(b) k = 30

(i.e., V1(bx̃c) < kλ2

c2
< V2(dx̃e))

(c) k = 40

(i.e., V2(dx̃e) ≤ kλ2

c2
< W (dx̃e))

Fig. 3: Convergence of the ITU algorithm under exponential distribution service time.

(a) k = 30 (b) k = 40

Fig. 4: The convergence of the ITU algorithm under the
hyperexponential distribution service time distribution.

threshold when the number of users N varies from 10 to 990.

Fig. 5: Thresholds at 100 iterations w.r.t. number of users

C. Price of Anarchy

In this subsection, we perform simulations to evaluate the
efficiency of the NE via the PoA performance under three
different cases: ρ = 0.75 (i.e., λ = 3), ρ = 1 (i.e., λ = 4),
and ρ = 1.25 (i.e., λ = 5). We consider both exponential
service time distribution and hyperexponential service time
distribution with p ∈ {1/4, 1/8, 1/16}. We first verify our
theoretical results in Theorem 3 under exponential service time
distribution. In Fig. 6, we plot the value of PoA with respect
to k varying from 20 to 108. We can see from Fig. 6a, Fig. 6b,
and Fig. 6c that PoA converges to 0, 0.12 and 0 as k → ∞,
respectively, which validates Theorem 3. In Fig. 7, we plot
PoA performance with respect to k varying from 0 to 100.
Here, we ignore the trivial case with kλ2/c2 ≤ W (0), where
PoA is always equal to zero. We can see from Fig. 7 that
both the PoA under different service time distributions share
the similar properties. In addition, PoA only exists in certain

range of k since system parameters have a significant impact
on the existence of the NE (see Theorem 1). From Fig. 7,
we can also observe that PoA < 0.3 in all of our simulation
scenarios, which implies that our proposed ITU algorithm is
at least 70% efficient compared to the global optimal solution.

D. Comparing with Probabilistic Offloading Policies

In this subsection, we demonstrate via simulations that the
threshold-based policies outperform the probabilistic offload-
ing policies that offload computing tasks to cloud servers with
a certain probability and are widely considered in existing
literature (e.g., see [16], [17], [18], and [19]). In particular, we
compared our ITU algorithm with the following three policies:

(i) Distributed probabilistic offloading policy: Each mobile
device minimizes its own cost function by choosing an offload-
ing probability until the system reaches the NE, where the NE
is the offloading probability that users have no incentive to
deviate from.

(ii) Global optimal probabilistic offloading policy: A cen-
tralized controller minimizes the cost function by choosing an
offloading probability for each mobile user in the mobile cloud
computing system.

(iii) Global optimal threshold-based offloading policy: A
centralized controller minimizes the cost function by choosing
a threshold for each user in the system.

We perform numerical simulations in two different setups.
From Fig. 8, we can observe that the distributed threshold-
based offloading policy outperforms the probabilistic counter-
part and even performs better than the global optimal proba-
bilistic offloading policy in most of our considered scenarios.

V. CONCLUSION

In this paper, we proposed a distributed threshold-based
offloading algorithm so that each user gradually updates its
own threshold with the goal of minimizing its own cost
function consisting of average processing delay and the cost
of using the cloud services depending on the server utilization
in large-scale mobile cloud computing. We then characterized
the sufficient and necessary conditions for the existence and
uniqueness of the Nash Equilibrium offloading decision under
the exponential service time distribution. Furthermore, we
showed the convergence of our proposed distributed algorithm
to Nash Equilibrium when it exists. Then, we characterized
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(a) ρ = 0.75 (b) ρ = 1 (c) ρ = 1.25

Fig. 6: PoA performance as k →∞.

(a) ρ = 0.75 (b) ρ = 1 (c) ρ = 1.25

Fig. 7: PoA performance.

(a) k = 30 (b) k = 50

Fig. 8: Policies comparison.

the performance of PoA when the cost of using cloud servers
is high. Finally, we performed extensive simulations to con-
firm our theoretical findings, exhibited the efficiency of our
proposed algorithm under various practice scenarios such as
hyperexponential service time distributions, imperfect server
utilization estimation, and asynchronous threshold updates,
and demonstrated the superior performance of threshold-based
policies over their probabilistic counterpart.

APPENDIX A
PROOF OF THEOREM 1

We first consider the cases when the NE exists and then
the case when NE does not exist. Hence, we first consider the
following three cases:

Case (i) W (0) ≥ kλ2/c2: In such a case, given all other
users’ threshold y, the best response is 0. This can be verified
by monotonic increasing property of cost function T (x; y)
when W (0) ≥ kλ2/c2. The proof follows from the basic
calculus and thus is omitted due to the lack of space.

Next, we need two lemmas to prove the second case, whose
proofs are available at the end of this section.

Lemma 1: If W (0) < kλ2/c2 and given all other user’s
offloading decisions x̃ , then the best response is also x̃, where
x̃ is the unique solution to

W (x̃) = kλ2/c2. (9)

The proof of Lemma 1 follows from the following step: (i)
First, we let T (x; x̃) be the cost function when current thresh-
old is x given thresholds of all other users being x̃; (ii) We take
derivative of T (x; x̃) with respect to x and let T (x;x̃)

dx |x=x̃ = 0.
Then, we can obtain equation kλ2/c2 = W (x̃); (iii) Finally,
we show that x̃ is the unique solution to kλ2/c2 = W (x̃).
The detailed proof is available at the end of this section.

Lemma 2: (i) W (x) is strictly increasing on [0,∞);
(ii) W (x), V1(x) and V2(x) satisfy the following inequality:

W (x) < V1(x) < V2(x+ 1) < W (x+ 1), ∀x ≥ 0.

Lemma 3: Functions CL(x) = Q(x)/λ and CE(x; y) =
k(λπ(y)/c)2π(x) (their definitions are defined in Theorem 1)
are strictly increasing and strictly decreasing on the interval
[0,∞) independently of all other users’ offloading decisions
y, respectively.

Lemma 4: Given all other users’ offloading decisions B̃, if
B̃ /∈ {bx̃c, dx̃e}, then NE does not exist.

From Lemma 1, we can see that if W (0) < kλ2/c2, there
exists the unique solution x̃ to equation (9), i.e., kλ2/c2 =
W (x̃). Therefore, according to the monotonic increasing prop-
erty of W (x) (cf. Lemma 2), we have W (bx̃c) < kλ2/c2 <
W (dx̃e) when x̃ is not an integer. Next, we characterize
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the conditions for the existence and uniqueness of the NE
by considering a partition of the interval (W (bx̃c),W (dx̃e)).
Therefore, we consider the following cases under the condition
W (0) < kλ2/c2.

Case (ii) W (bxc) < kλ2/c2 ≤ V1(bx̃c): In such a case,
we would like to show that (bx̃c)N×1 is the unique NE.
From Lemma 4, we know that the NE must be either
(bx̃c)N×1 or (dx̃e)N×1. Therefore, it is sufficient to show that
T (bx̃c; bx̃c) ≤ T (dx̃e; bx̃c), i.e., the best response of an indi-
vidual user is bx̃c given all other users’ offloading decisions
bx̃c. Indeed, according to the condition kλ2/c2 ≤ V1(bx̃c)
and the definition of V1(x) (cf. (7)), we have

kλ2

c2
≤ kλ2

c2

∣∣∣∣ CL(dx̃e)− CL(bx̃c)
CE(dx̃e; bx̃c)− CE(bx̃c; bx̃c)

∣∣∣∣.
By using Lemma 3, this immediately implies that

CE(bx̃c; bx̃c)− CE(dx̃e; bx̃c) ≤ CL(dx̃e)− CL(bx̃c).

By rearranging items of the above inequality, we have

CL(bx̃c) + CE(bx̃c; bx̃c) ≤ CL(dx̃e) + CE(dx̃e; bx̃c),

i.e., T (bx̃c; bx̃c) ≤ T (dx̃e; bx̃c).
Case (iii) V2(dx̃e) ≤ kλ2/c2 < W (dx̃e): In such a case, we

would like to show that (dx̃e)N×1 is the unique NE. Again
following Lemma 4, the NE is either (bx̃c)N×1 or (dx̃e)N×1.
Therefore, it is sufficient to show that T (dx̃e; dx̃e) ≤
T (bx̃c; dx̃e), i.e., the best response of an individual user is
dx̃e given all other users’ offloading decisions dx̃e. Indeed,
according to the condition V2(dx̃e) ≤ kλ2/c2 and the defini-
tion of V2(x) (cf. (8)), we have

kλ2

c2

∣∣∣∣ CL(dx̃e)− CL(bx̃c)
CE(dx̃e; dx̃e)− CE(bx̃c; dx̃e)

∣∣∣∣ ≤ kλ2

c2
.

By using Lemma 3 again, we have

CL(dx̃e)− CL(bx̃c) ≤ CE(bx̃c; dx̃e)− CE(dx̃e; dx̃e),

which immediately implies the desired result.
Finally, we will show the case when NE does not exist. In

this case, we have V1(bx̃c) < kλ2/c2 < V2(dx̃e). Indeed, by
following the same arguments in the previous two cases, we
are able to show that the best response of an individual user
is dx̃e and bx̃c given all other users’ offloading decisions bx̃c
and dx̃e, respectively.

Fig. 9: Conditions for the existence and uniqueness of NE.

Fig. 9 summarizes the sufficient and necessary conditions
of the existence and uniqueness of the NE.

The proofs of Lemma 2 and Lemma 3 follow from basic

calculus and thus are omitted due to space limit. Next, we
prove Lemma 1 and Lemma 4 to complete the proof.

Proof of Lemma 1: Here, we consider three different cases,
i.e., ρ = 1, 0 < ρ < 1 and ρ > 1:

Case (i) ρ = 1: In this case, T (x; x̃) can be calculated as
follows.

T (x; x̃) =
1

λ
· x
2
+
kλ2

c2

(
1

x̃+ 1

)2

· 1

x+ 1
.

Taking the derivative of T (x; x̃) with respect to x and set
x = x̃ we have the following:

1

2λ
− kλ2

c2

(
1

x̃+ 1

)4

= 0. (10)

If kλ2/c2 > W (0) = 1/2λ, then equation (10) has one
unique solution

x̃ =

(
2kλ3

c2

) 1
4

− 1.

Indeed, when x ∈ (0, x̃), we have

dT (x; x̃)

dx
=

1

2λ
− kλ2

c2

(
1

x̃+ 1

)2

·
(

1

x+ 1

)2

<
1

2λ
− kλ2

c2

(
1

x̃+ 1

)4

= 0,

implying that T (x; x̃) is decreasing in (0, x̃). Similarly, we
can show that T (x; x̃) is increasing in x ∈ (x̃,∞). Therefore,
x̃ is the unique solution to kλ2/c2 =W (x̃) in this case.

Next, we consider the cases when ρ > 1 and 0 < ρ < 1.
By the definition of W (x) (cf. (2), (4) and (5)), we have:

T (x; x̃) =
1

λ

(
x+ 1

ρx+1 − 1
+ x+

1

1− ρ

)
+
kλ2

c2

(
ρx̃ − ρx̃+1

1− ρx̃+1

)2

· ρ
x − ρx+1

1− ρx+1
. (11)

Taking derivative of T (x; x̃) with respect to x, then set x =
x̃ and let dT (x; x̃)/dx = 0, we have

kλ3(1− ρ)3

c2ρ3

(
ρx̃+1

ρx̃+1 − 1

)2

+
ρx̃+1 − 1

log(ρ)
= x̃+ 1, (12)

where log(·) is the logarithm with the natural base e.
Next, we will find the condition such that the equation (12)

has one unique solution. To simply the notations, we let a =
kλ3(1 − ρ)3/(c2ρ3), b = 1/ log(ρ) and u = ρx+1 − 1. Then
we rewrite (12) as follows.

h1(u) = h2(u),

where

h1(u) , a

(
1 +

1

u

)2

+ bu, u > −1,

and h2(u) , logρ(u+ 1), u > −1.

Then, we consider the following cases when 0 < ρ < 1 and
ρ > 1, respectively.

Case (ii) 0 < ρ < 1: In this case, we have −1 < u ≤
ρ − 1 < 0, a > 0 and b < 0. In addition, we have both
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d2h1(u)/du
2 > 0 and d2h2(u)/du

2 > 0, which implies
that h1(u) and h2(u) are strictly convex. We also have
dh2(u)/du < 0 implying that h2(u) is strictly decreasing.
Moreover, we have h2(ρ − 1) = 1. As shown in Fig. 10, the
tangent line lT (u) to the function h2(u) at the point (ρ−1, 1)
can be expressed as follows.

lT (u) =
u− ρ+ 1

ρ log(ρ)
+ 1.

Fig. 10: Relations between h1(u) and h2(u): 0 < ρ < 1 and
kλ2/c2 > W (0)

Since lT (−1) = −1/ log(ρ) + 1, we have

lT (−1) > h1(−1) = −
1

log(ρ)
. (13)

If kλ2/c2 > W (0), then we have h1(ρ − 1) > h2(ρ − 1).
Since h2(u) is strictly decreasing in u ∈ (−1, ρ − 1] and
lT (u) is the tangent line lT (u) to the function h2(u) at the
point (ρ− 1, 1), we have

h2(u) ≥ lT (u), ∀u ∈ (−1, ρ− 1],

which implies that dT (x; x̃)/dx > 0. This together with (13)
implies that limu→−1 h2(u) > h1(−1). Therefore, we have
that h1(u) and h2(u) have only one intersection point in the in-
terval (−1, ρ−1], which implies that equation h1(u) = h2(u)
has one unique solution ũ and thus the unique solution x̃.

Next, we will show that such x̃ is indeed unique best
response of T (x; x̃) given that all other users’ offloading
decisions x̃. If x ∈ [0, x̃), then we have u ∈ (ũ, ρ − 1].
Therefore, we have

dT (x; x̃)

dx
=
u+ 1

bλu2

(
a

(
1 +

1

ũ

)2

+ bu− h2(u)

)
(a)
<

u+ 1

bλu2
(h1(ũ)− h2(ũ))

(b)
= 0,

where step (a) follows from the fact that b = 1/ log(ρ) < 0
and u + 1 > 0 imply (u + 1)/(bλu2) < 0 and the fact that
bu − h2(u) > bũ − h2(ũ) (will be shown shortly); step (b)
follows from the fact that h1(ũ) − h2(ũ) = 0. Next, we will
show that bu−h2(u) > bũ−h2(ũ). To that end, let’s consider
function

hw(u) , bu− h2(u), u ∈ [ũ, ρ− 1].

The derivative of hw(u) can be expressed as

dhw(u)

du
=

bu

u+ 1
> 0 (due to b < 0, u < 0 and u+ 1 > 0),

which implies that hw(u) is increasing on [ũ, ρ−1]. Thus, we
have hw(u) > hw(ũ) when u > ũ.

Similarly, we can show dT (x; x̃)/dx > 0, ∀x ∈ [x̃,∞).
Thus, T (x; x̃) is decreasing in [0, x̃), and is increasing in
[x̃,∞).

Case (iii) ρ > 1: To facilitate our proof, we let hd(u) denote
the difference between h1(u) and h2(u), i.e.,

hd(u) , h1(u)− h2(u).

By taking derivative of hd(u) we can show that: If ρ > 1,
then hd(u) is strictly increasing when u ∈ [ρ− 1,∞).

Fig. 11: Relations between h1(u) and h2(u): ρ > 1 and
kλ2/c2 > W (0)

In this case, if kλ2/c2 > W (0), then we have h1(ρ− 1) <
h2(ρ−1), as shown in Fig. 11. Thus, we have hd(ρ−1) < 0.
Since hd(u) is strictly increasing in u ∈ [ρ−1,∞), then there
must exist a unique ũ > ρ−1 satisfying hd(ũ) = 0. Therefore,
there exists some x̃ = log(ũ+ 1)−1, which is the solution to

dT (x; x̃)

dx
=
u+ 1

bλu2
hd(ũ) = 0.

Next, we will show that such x̃ is the unique best response
of T (x; x̃) given all other users’ offloading decisions x̃.
Indeed, if x ∈ [0, x̃), then we have u ∈ [ρ − 1, ũ). Hence,
we have

dT (x; x̃)

dx
=
u+ 1

bλu2

(
a

(
1 +

1

ũ

)2

+ bu− h2(u)

)
(a)
<

u+ 1

bλu2
hd(u)

(b)
< 0,

where step (a) follows from the fact that b = 1/ log(ρ) > 0
implies (u + 1)/(bλu2) > 0 and (1 + 1/ũ)2 < (1 + 1/u)2;
step (b) follows from the fact that hd(u) < 0 for all u ∈
[ρ−1, ũ), which follows from the fact that hd(u) is increasing
in [ρ− 1,∞) and the fact that hd(ũ) = 0.

Similarly, we can show that dT (x; x̃)/dx > 0, ∀x ∈ [x̃,∞).
Thus, T (x; x̃) is decreasing in x ∈ [0, x̃) and is increasing in
x ∈ [x̃,∞). Therefore, x̃ is the unique solution to kλ2/c2 =
W (x̃).

Proof of Lemma 4: We want to show that (B̃)N×1 is not the
NE when B̃ /∈ {bx̃c, dx̃e}. To that end, we consider the best
response of an individual user given all other users’ integer
offloading decisions B̃, denoted by xB̃ , where xB̃ is real
number and satisfies the following equations.

1

2λ
− kλ2

c2

(
1

B̃ + 1

)2

·
(

1

xB̃ + 1

)2

= 0 (14)
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when ρ = 1, and

ρ
(
ρxB̃+1 − 1

)
− (xB̃ + 1)ρ log(ρ) =

kλ3(ρ− 1)3 log(ρ)

c2
·

(
ρB̃

ρB̃+1 − 1

)2

, (15)

when ρ 6= 1, which is obtained by setting dT (xB̃ ; B̃)/dxB̃ =
0. It can be shown shortly that the best response xB̃ is
decreasing with respect to B̃. Since B̃ /∈ {bx̃c, dx̃e}, we have
B̃ < bx̃c or B̃ > dx̃e. Then, we have the following two
different cases:

• If B̃ < bx̃c < x̃, then according to the monotonic
decreasing property of the best response xB̃ , we have xB̃ > x̃,
where we use the fact that the best response of an individual
user is x̃ given all other users’ offloading decisions x̃. This
implies that bxB̃c ≥ bx̃c > B̃ and hence (B̃)N×1 is not a
NE.

• If B̃ > dx̃e > x̃, then following the same arguments as
in the case of B̃ < bx̃c < x̃, we again can show that (B̃)N×1
is not a NE.

Next, we show the monotonic decreasing property of xB̃
with respect to B̃ in both ρ = 1 and ρ 6= 1 cases to complete
the proof.

• ρ = 1 case: From (14), we have

f1(xB̃) = g1(B̃), (16)

where

f1(x) ,
(x+ 1)2

2
and g1(x) ,

kλ3

c2

(
1

x+ 1

)2

, x ≥ 0.

From (16), we have

f1

(
xB̃+1

)
− f1

(
xB̃
)
= g1

(
B̃ + 1

)
− g1

(
B̃
)
< 0,

where the last step follows from the monotonic decreasing
property of g1(x). Therefore, we have f1

(
xB̃+1

)
< f1

(
xB̃
)
.

Since f1(x) is strictly increasing with respect to x, we have
that xB̃+1 < xB̃ holds for any non-negative integer B̃.

• ρ 6= 1 case: We first rearrange terms in (15),

f2(xB̃) = g2(B̃), (17)

where

f2(x) , ρx+1 − 1− (x+ 1) log(ρ),

and g2(x) ,
kλ3(ρ− 1)3 log(ρ)

c2ρ

(
ρx

ρx+1 − 1

)2

,

for all x ≥ 0. It can be easily shown by calculus that f2(x)
and g2(x) are strictly decreasing and increasing, respectively.
The proofs are omitted due to the lack of space. Then, from
(17), we have

f2

(
xB̃+1

)
− f2

(
xB̃
)
= g2

(
B̃ + 1

)
− g2

(
B̃
)
< 0,

where the last step follows from the monotonic decreasing and
increasing property of f2(x) and g2(x), respectively. Hence,
we have xB̃+1 < xB̃ holds for any non-negative integer B̃.

APPENDIX B
PROOF OF THEOREM 2

From Theorem 1, we know that if the NE exists, it is either
(0)N×1, (bx̃c)N×1 or (dx̃e)N×1. Hence, We will consider
these three cases, respectively.

(i) (0)N×1 is the NE: In this case, we have kλ2/c2 ≤
W (0). (cf. Theorem 1) and T (x; x̃) is increasing with respect
to x, which can be easily verified by taking derivative with
respect to x. Therefore, we have B̂(m+1)

n = 0. Then, for any
B

(1)
n > 0, the threshold will decrease by one in each iteration

and goes to zero within B(1)
n + 1 steps .

In order to prove the convergence in the other two cases, we
need the following lemma that shows the bisection property
of the updated threshold under the ITU algorithm.

Lemma 5: If kλ2/c2 > W (0), then for any x̃ > 0, where x̃
satisfies kλ2/c2 =W (x̃), and m ≥ 1, we have:

(i) If B(m)
n < bx̃c or B(m)

n = bx̃c but (bx̃c)N×1 is not NE,
then B̂(m+1)

n ≥ B(m)
n ;

(ii) If B(m)
n > dx̃e or B(m)

n = dx̃e but (dx̃e)N×1 is not NE,
then B̂(m+1)

n ≤ B(m)
n .

From Lemma 5 we have that for any B
(m)
n < x̃, then in

the next iteration, B(m+1)
n will move closer to x̃. Similarly,

for any B
(m)
n > x̃, B(m+1)

n will also move closer to x̃. In
either cases, in each iteration, the threshold will get closer
and closer to x̃, as shown in Fig. 2. Note that in the first
iteration (i.e., m = 0), all users in the system solve the same
optimization problem and obtain the same threshold, since the
server utilization is the same for all users. Then, after the first
iteration (i.e., m > 1), all users will adjust their threshold in
the same way and thus we just need to focus on a particular
user n. Now, we are ready to prove the convergence of the
ITU algorithm when the NE is not (0)N×1.

(ii) (bx̃c)N×1 is the NE: In this case , for any B
(1)
n <

bx̃c < x̃, the threshold will increase by one in each iteration
until reaching to bx̃c. For any B(1)

n > x̃ > bx̃c, the threshold
will decrease by one in each iteration until reaching to bx̃c.
Thus, it will take at most

∣∣∣bx̃c −B(1)
n

∣∣∣+ 1 iterations for user
n’s threshold to converge to bx̃c.

(iii) (dx̃e)N×1 is the NE: In this case , for any B(1)
n < x̃ <

dx̃e, the threshold will increase in each iteration until reaching
to dx̃e. For any B(1)

n > dx̃e > x̃, the threshold will decrease
by one in each iteration until reaching to dx̃e. Thus, it will
take at most

∣∣∣dx̃e −B(1)
n

∣∣∣+1 iterations for user n’s threshold
to converge to dx̃e.

Next, we prove Lemma 5 to complete the proof.
Proof of Lemma 5: We first define the following two func-

tions:

U1(x) ,

{
x, ρ = 1,

ρx+2 − (x+ 1)ρ log ρ− ρ, ρ 6= 1.

and U2(x) ,


√
2kλλ

c(x+1) − 1, ρ = 1,

kλ3(ρ−1)3 log ρ
c2 ·

(
ρx

1−ρx+1

)2
, ρ 6= 1.

It can be easily showed that function U1(x) is strictly
increasing on [0,∞) and U2(x) is strictly decreasing on
[0,∞). Therefore, U2(x) − U1(x) is strictly decreasing. The
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detailed proofs are omitted due to space limit. Now we are
ready to prove Lemma 5.

In the ITU algorithm, all users will solve the same optimiza-
tion problem in the first iteration. Thus, all users will have the
same threshold when m = 1. Then, for any m ≥ 1, we can
simplify the cost function in (3) as

T
(
x;B(m)

n

)
=
Q(x)

λ
+ k

π
(
B

(m)
n

)
c

2

π(x), (18)

where x ≥ 0 is some real number and B(m)
n is the threshold

of user n in the mth iteration.
Since we have shown that cost function T (x; x̃) is decreas-

ing and increasing in [0, x̃) and [x̃,∞) when kλ2/c2 > W (0),
respectively (cf. Proof of Lemma 1). We notice that T (x; x̃)
(cf. (11)) and T (x;B

(m)
n ) share the similar form. Therefore,

we take derivative of T (x;B(m)
n ) with respect to x and set

to zero. Then, we have U1 (x̂) = U2

(
B

(m)
n

)
, where x̂ is a

real number such that
(
dT(x;B(m)

n )
dx

) ∣∣∣
x=x̂

= 0. Therefore, we

have

B̂(m+1)
n ∈ {bx̂c , dx̂e} . (19)

Note that x̃ satisfies equation W (x̃) = kλ2/c2 and through
simple algebraic operations, we have U1(x̃) = U2(x̃). Next,
we consider the following two different cases:

(i) If B(m)
n < bx̃c or B(m)

n = bx̃c but is not NE, then we
have B(m)

n < x̃. Then we have

U1 (x̂)− U1

(
B(m)
n

)
= U2

(
B(m)
n

)
− U1

(
B(m)
n

)
(a)
> U2 (x̃)− U1 (x̃) = 0,

where step (a) follows from the fact U2(x)−U1(x) is strictly
decreasing. Therefore, we have U1 (x̂) > U1

(
B

(m)
n

)
. Since

U1(x) is strictly increasing, we have x̂ > B
(m)
n . Thus, by (19),

we have B̂(m+1)
n ≥ B(m)

n .
(ii) If B(m)

n > dx̃e or B(m)
n = dx̃e but is not NE, then we

have B(m)
n > x̃. Then we have

U1 (x̂)− U1

(
B(m)
n

)
= U2

(
B(m)
n

)
− U1

(
B(m)
n

)
(a)
< U2 (x̃)− U1 (x̃) = 0,

where step (a) follows from the fact that U2(x) − U1(x) is
strictly decreasing. Therefore, we have U1 (x̂) < U1

(
B

(m)
n

)
.

Since U1(x) is strictly increasing, we have x̂ < B
(m)
n .

Therefore, by (19), we have B̂(m+1)
n ≤ B(m)

n .

APPENDIX C
PROOF OF THEOREM 3

Here, we show that the PoA converges to zero as k → ∞
in both 0 < ρ < 1 and ρ > 1 cases. We first present the
following two lemmas to facilitate our proof.

Lemma 6: Let B∗ denote the optimal threshold determined
by some central controller. If W (0) < kλ2/c2, then B∗ =
bx∗c, where x∗ satisfies function 3kλ2/c2 =W (x∗).

Lemma 6 characterizes the optimal threshold determined by
a central controller in the system when W (0) < kλ2/c2.

Lemma 7: If W (0) < kλ2/c2, then we have

PoA ≤ 1− 4x∗ + 1

6x̃+ 9

when ρ = 1 and

PoA ≤ 1− (1− ρ) log(ρ)
3(ρ log(ρ) + ρdx̃e+1(1− ρ))

·
(

2 bx∗c+ 2

ρbx∗c+1 − 1
+ 2 bx∗c+ 2 + ρ

1− ρ
+
ρbx

∗c+1

log(ρ)

)
when ρ 6= 1, where x∗ satisfies function 3kλ2/c2 =W (x∗).

Lemma 7 characterizes a upper bound of PoA when
W (0) < kλ2/c2 and ρ 6= 1. Having characterized the optimal
threshold under some central controller and PoA upper bound
when W (0) < kλ2/c2, we are ready to prove Theorem 3.

Case (i) 0 < ρ < 1: First, we will show that as k → ∞,
both x̃→∞ and x∗ →∞. By Theorem 1 and Lemma 6, we
have kλ2/c2 =W (x̃) and 3kλ2/c2 =W (x∗). As k →∞, we
have both W (x̃) → ∞ and W (x∗) → ∞. By Lemma 2 we
know that W (x) is strictly increasing on [0,∞). Therefore,
both x̃ → ∞ and x∗ → ∞ as k → ∞. Hence, we have
ρdx̃e → 0 and ρbx

∗c → 0. This combines with the upper
bound on PoA (cf. Lemma 7), yielding

PoA ≤ 1− (1− ρ) log(ρ)
3(ρ log(ρ))

(
−2 bx∗c − 2 + 2 bx∗c+ 2 + ρ

1− ρ

)
= 0.

Case (ii) ρ > 1: From the previous case we know that if
x̃ → ∞ and x∗ → ∞, then we have both ρx̃ → ∞ and
ρx

∗ →∞. By Taylor series we have ρdx̃e ≥ ρx̃ = 1+x̃ log ρ+

O
(
x̃2
)

and ρbx
∗c = 1 + bx∗c log ρ + O

(
bx∗c2

)
. Therefore,

we have both x̃/ρdx̃e → 0 as x̃ → ∞ and bx∗c /ρbx∗c → 0
as x∗ →∞. Therefore, by dividing ρdx̃e+1 for the numerator
and denominator terms of PoA upper bound (cf. Lemma 7),
we have

1− (1− ρ) log(ρ)
3(ρ log ρ/ρdx̃e+1) + (1− ρ))

(
2 bx∗c+ 2

(ρbx∗c+1 − 1)ρdx̃e+1

+
2 bx∗c
ρdx̃e+1

+
2 + ρ

(1− ρ)ρdx̃e+1
+

ρbx
∗c+1

log(ρ)ρdx̃e+1

)
(a)
=1− log ρ

3
·
(
2 bx∗c log ρ+ ρbx

∗c+1

log(ρ)ρdx̃e+1

)
, (20)

where step (a) follows from the fact that both x̃/ρdx̃e → 0 as
x̃→∞ and bx∗c /ρbx∗c → 0 as x∗ →∞.

Next, we will analyze the relation between x∗ and x̃. By
Theorem 1 and Lemma 6 we have kλ2/c2 = W (x̃) and
3kλ2/c2 = W (x∗). Therefore, we have 3W (x̃) = W (x∗).
By (6) we have

3(1− ρx̃+1)2

λ(1− ρ)3ρ2x̃−1

(
x̃+ 1− ρx̃+1 − 1

log ρ

)
=

(1− ρx∗+1)2

λ(1− ρ)3ρ2x∗−1

(
x∗ + 1− ρx

∗+1 − 1

log ρ

)
. (21)
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Note that as x∗, x̃ → ∞, we have
(
1− ρx̃+1

)2
/ρ2x̃ → ρ2

and
(
1− ρx∗+1

)2
/ρ2x

∗ → ρ2. Therefore, as x∗, x̃ → ∞, we
have

lim
k→∞

3
(
x̃+ 1− ρx̃+1−1

log ρ

)
x∗ + 1− ρx∗+1−1

log ρ

= lim
k→∞

3ρx̃

ρ∗
= 1. (22)

Next, we want to show that ρx̃ > O
(
bx∗c2

)
. We show this

result by contradiction. Assume that ρx̃ ≤ O
(
bx∗c2

)
. Then

from (22) we have that ρx
∗ ≤ 3O

(
bx∗c2

)
. However, by

Taylor series expansion we have

ρx
∗
= 1 + x∗ log ρ+

(x∗ log ρ)2

2!
+O

(
x∗3
)
> O

(
bx∗c2

)
.

Therefore, we have a contradiction, which means that ρx̃ >
3O(bx∗c2). Therefore, by letting x̃, x∗ →∞ we have

PoA ≤ 1− log ρ

3

(
2 bx∗c log ρ+ ρbx

∗c+1

log(ρ)ρdx̃e+1

)
= 1− ρbx

∗c

3ρdx̃e
,

Thus, we have

lim sup
k→∞

PoA ≤ 1− lim sup
k→∞

ρbx
∗c

3ρdx̃e
= 1− lim

k→∞

ρx
∗

3ρx̃
= 0,

where the last step follows directly from (22).
Next, we prove Lemma 6 and 7 to complete the proof.
Proof of Lemma 6: The proof of Lemma 6 consists of three

parts: (i) We first take derivative of cost function T (x;x) (cf.
(18)) with respect to x and set the derivative equal to 0. By
rearranging terms we have the equation 3kλ2/c2 = W (x);
(ii) We can show that the equation 3kλ2/c2 = W (x) has
one unique solution x∗ when W (0) < kλ2/c2 using the
similar argument in the proof of Lemma 1(cf. Appendix
A). Furthermore, we can show that T (x;x) is decreasing on
[0, x∗) and increasing on [x∗,∞), which implies that optimal
threshold can be either bx∗c or dx∗e; (iii) Finally, we can show
that T (bx∗c ; bx∗c) < T (dx∗e ; dx∗e) when W (0) < kλ2/c2.
The detailed proof is omitted due to space limitation.

Proof of Lemma 7: First, we consider the cost function
of optimal threshold decisions determined by some central
controller, we have

T (bx∗c ; bx∗c) ≥Q(x∗)

λ
+
W (x∗)

3
π3(x∗) =

4x∗ + 1

6λ
(23)

when ρ = 1 and

T (bx∗c ; bx∗c) = Q(bx∗c)
λ

+
W (bx∗c)

3
π3(bx∗c)

=
1

3λ

(
2 bx∗c+ 2

ρbx∗c+1 − 1
+ 2 bx∗c+ 2 + ρ

1− ρ
+
ρbx

∗c+1

log(ρ)

)
(24)

when ρ 6= 1, where the inequality in (23) follows from the
fact that kλ2/c2 = W (x∗)/3 ≥ W (bx∗c)/3 (cf. Lemma 2
and Lemma 6).

By Theorem 1, we have that the NE must be either
(bx̃c)N×1 or (dx̃e)N×1 if it exists. Therefore, we have the
following two cases:
• (bx̃c)N×1 is NE (under the condition W (bx̃c) <

kλ2/c2 ≤ V1(bx̃c)). In such a case, according to the def-

inition of the individual cost function T (·; ·), the fact that
kλ2/c2 ≤ V1(bx̃c) and bx̃c ≤ x̃, we have

T (bx̃c; bx̃c) ≤ x̃+ 1

λ
,

when ρ = 1 and

T (bx̃c; bx̃c) ≤ 1

λ

ρ− ρbx̃c+2

1− ρ
,

when ρ 6= 1.
• (dx̃e)N×1 is NE (under the condition V2(dx̃e) ≤

kλ2/c2 < W (dx̃e)). In such a case, again according to the
definition of the individual cost function T (·; ·), the fact that
kλ2/c2 < W (dx̃e) and dx̃e ≤ x̃+ 1, we have

T (dx̃e; dx̃e) ≤ 2x̃+ 3

2λ
,

when ρ = 1 and

T (dx̃e; dx̃e) ≤ 1

λ

(
ρ

1− ρ
+
ρdx̃e+1

log(ρ)

)
,

when ρ 6= 1.
Therefore, we have

T (B̃; B̃) ≤ max

{
x̃+ 1

λ
,
2x̃+ 3

2λ

}
=

2x̃+ 3

2λ
, (25)

when ρ = 1 and

T (B̃; B̃) ≤ max

{
1

λ

ρ− ρbx̃c+2

1− ρ
,
1

λ

(
ρ

1− ρ
+
ρdx̃e+1

log(ρ)

)}
,

when ρ 6= 1. Next, we show

1

λ

ρ− ρx+2

1− ρ
<

1

λ

(
ρ

1− ρ
+

ρx+2

log(ρ)

)
to complete the proof. As such, we consider

1

λ

ρ− ρx+2

1− ρ
− 1

λ

(
ρ

1− ρ
+

ρx+2

log(ρ)

)
=
−ρx+2

λ

(
log(ρ) + 1− ρ
(1− ρ) log(ρ)

)
.

Note that we have log(ρ) + 1 − ρ < 0, which can be easily
shown by basic calculus. Therefore, we have

−ρx+1

λ

(
log(ρ) + 1− ρ
(1− ρ) log(ρ)

)
< 0

in both 0 < ρ < 1 and ρ > 1 cases. Hence, we have

T
(
B̃; B̃

)
≤ 1

λ

(
ρ

1− ρ
+
ρdx̃e+1

log(ρ)

)
(26)

when ρ 6= 1.
Therefore, substituting (23) and (25) when ρ = 1 into the

definition of PoA (cf. Section II) or (24) and (26) when ρ 6= 1
into the definition of PoA (cf. Section II). Then, we have the
desired results.
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