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Abstract. Graph theoretical analyses have become standard tools in
modeling functional and anatomical connectivity in the brain. With the
advent of connectomics, the primary graphs or networks of interest are
structural connectome (derived from DTI tractography) and functional
connectome (derived from resting-state fMRI). However, most published
connectome studies have focused on either structural or functional con-
nectome, yet complementary information between them, when available
in the same dataset, can be jointly leveraged to improve our under-
standing of the brain. To this end, we propose a function-constrained
structural graph variational autoencoder (FCS-GVAE) capable of incor-
porating information from both functional and structural connectome in
an unsupervised fashion. This leads to a joint low-dimensional embed-
ding that establishes a unified spatial coordinate system for comparing
across different subjects. We evaluate our approach using the publicly
available OASIS-3 Alzheimer’s disease (AD) dataset and show that a
variational formulation is necessary to optimally encode functional brain
dynamics. Further, the proposed joint embedding approach can more
accurately distinguish different patient sub-populations than approaches
that do not use complementary connectome information.

Keywords: Neuroimaging + Brain networks + Deep learning

1 Introduction

Advances in magnetic resonance imaging (MRI) technology have made very large
amounts of multi-modal brain imaging data available, providing us with unparal-
leled opportunities to investigate the structure and function of the human brain.
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Functional magnetic resonance imaging (fMRI), for example, can be used to
study the functional activation patterns of the brain based on cerebral blood
flow and the Blood Oxygen Level Dependent (BOLD) response [4], whereas dif-
fusion tensor imaging (DTI) can be used to examine the wiring diagram of the
white matter fiber pathways, i.e., the structural connectivity of the brain [1].

Because of their utility in understanding human brain structure, in exam-
ining neurological illnesses, and in developing therapeutic/diagnostic applica-
tions, brain networks (also called connectomes) have attracted a lot of atten-
tion recently. The principal networks of interest are structural brain networks
(derived from DTI) and functional brain networks (derived from fMRI). Graph-
based geometric machine learning approaches have shown promise in processing
these connectomics datasets due to their ability to leverage the inherent geom-
etry of such data. However the majority of these existing studies in brain net-
work analysis tend to concentrate on either structural or functional connectomes
[13,15]. Our hypothesis is that both the anatomical characteristics captured by
structural connectivity and the physiological dynamics properties that form the
basis of functional connectivity can lead to a much improved understanding of
the brain’s integrated organization, and thus it would be advantageous if both
structural and functional networks could be analyzed simultaneously.

To this end, in this study we propose employing a graph variational autoen-
coder (GVAE) [8] based system to learn low-dimensional embeddings of a collec-
tion of brain networks, which jointly considers both the structural and functional
information. Specifically, we employ graph convolutions to learn structural and
functional joint embeddings, where the graph structure is defined by the struc-
tural connectivity and node properties are determined by functional connectivity.
The goal here is to capture structural and functional network-level relationships
between subjects in a low-dimensional continuous vector space so that inferences
about their individual differences, as well as about the underlying brain dynam-
ics, can be made. Experimental results in Sect. 3 show how the embedding space
obtained through this preliminary line of research enables comparison of higher-
order brain relationships between subjects. We also validate the usefulness of the
resulting embedding space via a classification task that seek to predict whether
the subject is affected by AD or not, and show how it outperforms single modal-
ity baselines.

2 Proposed Framework

2.1 Problem Statement

We are given a set of brain network instances D = Gi,...,Gps, where each
instance G; corresponds to a different subject and is composed of a structural
GES) and a functional Gl(.f ) network. Our goal is to jointly embed the information
contained in the two networks in order to obtain a common coordinate space
that enables interpretable comparisons between subjects. We will test the quality
of the embeddings in this common space via a downstream task that involves
classifying AD subjects and healthy subjects.
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Note that most existing approaches focus on one of the network types (struc-
tural or functional) to learn embeddings. Instead, our objective is to design an
unsupervised learning approach that can extract the complimentary information
that exists across these two modalities to improve the quality of embeddings,
and thus the ability to improve downstream tasks.

2.2  Our Modeling Framework

We propose an augmented function-constrained structural graph variational
autoencoder based system, or FCS-GVAE, that involves a GVAE and an Autoen-
coder (AE), as shown in Fig. 1. We employ graph convolutions to learn the struc-
tural and functional joint embeddings, Z; € RV*P1| where D; represents the
dimensionality of each node embedding. The sampling at the GVAE bottleneck is
similar to the one of a traditional VAE, with straightforward Gaussian sampling
(and the only assumption taken is the one of gaussianity of the latent variables).
Given the joint node level embedding matrix, a graph-level embedding Zo € RP?
is then obtained through an AE, where D5 is the chosen dimensionality of the
graph-level embedding. These resultant embeddings, one per subject, are then
visualized via t-distributed stochastic neighbor (¢-sne) [16].
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Fig. 1. An overview of the proposed FCS-GVAE model: The adjacency matrix A used
as input is represented by the structural connectivity network. An n-dimensional fea-
ture vector x; is assigned on each node, which is the vector of the corresponding node
in the functional connectivity network. The resulting encoded data, Z; is then further
compressed using an autoencoder, whose latent vector, Zs, is the one used to compare
and contrast different subjects.

Once the parameters of the GVAE and AE are learned, each subject’s data
is transformed into the structural functional joint embedding as follows. The
structural connectivity, SC, is the adjacency input matrix, A € R¥*¥ and the
functional connectivity, FC, is the matrix of nodal features, X € RV*¢ where
C = N. In Sect. 3, we compare the value of designing our embedding architecture
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this way against a baseline that removes the FC nodal feature data, as suggested

n [12]. The quality of these embeddings is assessed using a downstream classi-
fication task involving the detection of AD in subjects. Next, we briefly discuss
the notion of graph convolutions and GVAE and justify the need for GVAE vs a
regular graph auto-encoder as well as the need for another downstream AE that
transforms node embeddings to a graph embedding.

2.3 Graph Convolution

A graph convolutional layer [9] works as follows. Let G = {V, A} be a weighted,
undirected graph, where V is a set of N nodes, and A € RV*V is an adja-
cent matrix, specifying the inter-nodal connections. The normalized Laplacian
is defined as L = Iy — D~Y2AD~'/2_ with Iy representing the N-dimensional
identity matrix and the diagonal degree matrix D having entries D; ; = 3 ;A
L can be further decomposed into the form U AUT, where U is the matrix of
eigenvectors of L and A is the diagonal matrix of its eigenvalues.
Let x be the attribute vector corresponding to a node.

Given a filter h € RY, the graph convolutional operation between x and a
filter h is defined as:

x®h=U({UTh)o (UTx)) = UAUx, (1)

where H = diag(0) replaces UTh with 8 € RY parameterizing it in the Fourier
domain. Since the evaluation of Eq. 1 requires explicit computation of the eigen-
vector matrix, it can be prohibitively costly for very large networks; consequently,
H has been approximated through a truncated expansion in terms of the Cheby-
shev polynomials [2,5]. Kipf et al. [9] subsequently provided a second order
approximation, such that x ® h ~ 6(I,, + D~*/?AD~'/?)x. Generalizing the x
vector to the matrix X € R¥*¢ with C input channels, the following graph
convolutional layer filtering is introduced:

7 = AX6 (2)

With A = I,, + D"Y/2AD~1/2, @ € RE*F a matrix of the F filter parameters
to be learned, and Z € RV*¥ the convolved signal matrix. Stacking numer-
ous convolutional layers (see Eq.2 for instance), each of them followed by the
application of a non-linearity [17], graph convolutional networks are defined as:

GON'(A,X) = o(AGCN'(A, X)! O11), ®)

where o (-) represents the activation function and GCN?(A, X) := X. Important
to our setting, note that Egs. 2 and 3 show how the output of the graph convolu-
tion process contains not only the network’s topological information (represented
by A), but also the nodal properties (represented by X). Next we discuss the
GVAE component of our setup.
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2.4 Graph Variational Autoencoder

Variational Autoencoder (VAE) [7] is a variant of deep generative models used
for learning latent representations from an unlabeled dataset by simultane-
ously training an encoder and a decoder to maximize the evidence lower bound
(ELBO). The encoder maps the data into a low-dimensional latent representation
z. The z is then sampled from the approximate posterior distribution ¢(z|X),
typically chosen to be an independent Gaussian distribution N (u,diag(c?)),
where p and o are output by the encoder. The decoder reconstructs the original
data by deriving the likelihood of data X based on the variable z, p(X|z).

GVAE extends this idea to graph-structured data, and in learning the latent
representation of the data on which it is trained, it incorporates both the input
network’s topological characteristics, as defined by the adjacency matrix, and
the network’s node features [8]. In a GVAE, the encoder is parameterized by a
series of graph convolutional network layers. Technical details about the approx-
imate posterior distribution, as well as the justification for using a non-trainable
innerproduct decoder can be found in [8] and [7].

2.5 Justifying the Choice of GVAE and AE Components

As shown in Fig. 1, our model involves a cascade of two auto-encoders, one of
which is generative. We need the graph auto-encoder to be generative because
we are not only interested in compression but also the generalizability of
the encoders and decoders. For instance, we can reuse the decoder to gener-
ate/sample new structural connectomes, which is not possible with a vanilla
auto-encoder. Further, since the GVAE produces high-granularity node-level
embeddings, we use a straight-forward AE to compress that information to a
low enough dimension for downstream visualization/supervised learning tasks.
While doing so, we are able to obtain a unified graph level embedding (for
a given structural functional connectome pair) that can be much better than
naive approaches (such as averaging node-embeddings). Note that this second
component, the AE, may be replaced, for example by a PCA. However, unlike
PCA, a single layer AE with no-nonlinearity does not impose orthogonality,
hence reducing the reconstruction error. Nonetheless, in our case we make use of
multiple linear layers followed by appropriate non-linearities to achieve maximal
compression (which is beyond what PCA can achieve). As can be seen in the
following section, these choices indeed show the value of complementary infor-
mation present in both networks and how they help define better embeddings
(as evaluated using the AD classification task).

3 Experimental Evaluation and Results

We discuss the dataset, the hyperparameter choices, and how resulting embed-
dings improve on existing methods, using both structural and functional network
information simultaneously. To evaluate our node and graph embeddings, we use
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an auxiliary link prediction problem and the AD classification problem respec-
tively. Both these tasks quantitatively show the value of our joint embedding
approach compared to natural baselines.

3.1 Dataset

MRI imaging used in this study comes from the OASIS-3 dataset for Normal
Aging and Alzheimer’s disease [10] and was collected in a 16-channel head coil of
a Siemens TIM Trio 3T scanner. OASIS-3 includes the clinical, neuropsycholog-
ical, neuroimaging, and biomarker data of 1098 participants (age: 42-95 years;
www.oasis-brains.org). We analyzed the data from 865 participants with com-
bined structural and functional MRI sessions (N = 1326). The dataset includes
738 Females (112 with AD), and 588 Males (163 with AD). AD has been defined
here as having a clinical dementia rating greater than 0.

The brain regions considered for this study, which cover the entire brain,
consist of 132 regions: 91 cortical Region of Interests (ROIs) are obtained from
the FSL Harvard-Oxford Atlas maximum likelihood cortical atlas, 15 subcortical
ROIs are obtained from the FSL Harvard-Oxford Atlas maximum likelihood
subcortical atlas [3], and the remaining 26 are cerebellar ROIs from the AAL
atlas [14].

The brain structure connectivity graph is generated from combining brain
grey matter parcellation extracted from T1-weighted MRI and the white matter
fiber tracking obtained from DTI acquisition. The graph is undirected and each
node v; in V' denotes a specific brain region of interest (ROI). Element A;; in
A, the adjacency matrix, denotes the weight of the connection between the two
nodes v; and v;. Note that we performed minimal processing on the structural
graph and have generated functional graphs via Pearson coefficients of BOLD
signals in a particular time window (without thresholding). Thus, the choice of
time windows is the only preprocessing step.

3.2 Hyperparameter Choices

We chose L = 4 graph convolutional layers to model the encoder of the GVAE
component. The number of layers for GVAE is determined by computing the
diameter of the adjacency matrix, defined as max,, ., (dist(v;,v;)), Vos,v; € V,
where dist(v;, v;) represents the shortest path to reach v; from v;. The maximum
graph diameter for our dataset turned out to be 4, implying that every node
reaches/influences every other node’s representation after 4 graph convolution
layers. Note that this choice is motivated by the need to avoid the wvanishing
gradient phenomena [11].

The dimension D; of the GVAE latent space is selected by taking in consid-
eration the Average Precision (AP) and the Area Under the Curve (AUC) of an
auxiliary link prediction problem that is solved while maximizing ELBO. Based
on Fig.2b, we set the D; parameter to be equal to 6. Note that this result also
suggests that the non-linear dynamics of the brain (as defined using structural
and functional graphs) can essentially be captured by a 6 dimensional node
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embedding space. In addition to the methodological justification for choosing
GVAE compare to a vanilla graph auto-encoder given in Sect. 2.5, we also show
empirically that GVAE performs much better when compared to a vanilla/non-
variational graph auto-encoder (GAE) on the link prediction task (see Fig. 2a).
The first graph convolutional layer in the encoder of the GVAE component is
characterized by 48 filters, the second one by 24, the third by 12 and both
GCN, (A, X) and GCN}(A, X) have 6 filters each. To maximize evidence lower
bound (ELBO), we use a gradient descent variant known as Adaptive Moment
Estimation (ADAM) [6], setting a learning rate equal to 0.001.

We further compress the latent matrices corresponding to node-level embed-
dings of a subject, viz., Z; € R'32%6_into a smaller subject level graph embed-
ding vector, z; € RP2 through the vanilla AE component (see Fig.1). This
second latent space is obtained through an encoding structure composed of 5
linear layers, with each of them using the ReLU activation function. To learn
the parameters of the AE, we employ a mean squared error (MSE) loss func-
tion, which we minimize using the same ADAM optimizer mentioned earlier.
The learning rate is set to 0.001 and the weight decay is set to 0.00005. The
dimensionality Do is set to the value 6 based on the convergence of the MSE
loss.
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Fig. 2. Performances of the two different models on the link prediction task: a) FCS-
GVAE performs better than the GAE for both the considered metrics. b) Performances
obtained by varying the dimensionality of the embedding layer. It can be seen that a
plateau is reached when the dimensionality is > 6.

3.3 Results Demonstrating the Quality of Joint Embeddings

A key point of our work is to identify how including the functional connectome
(as nodal features) can help further characterize the underlying biology, relative
to a baseline model that does not use it (instead using the identity matrix as
the nodal feature, a common practice in the graph neural networks research
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community [12]). Indeed, Fig.3 qualitatively shows how including the FC (left
panel) leads to better clustering in the latent space with respect to diagnostic
labels (e.g., the right cluster comprises primarily healthy subjects), likely by
forcing the latent embedding to account for the temporal dynamics of FC. By
contrast, right panel shows the embedding with structural information alone.
We also evaluate the performance of our learned embeddings for AD detec-
tion. Here, the latent embedding vector representations across all brain regions
of an individual are used as features to predict their diagnostic label (AD versus
not AD) using 2 classic classification models: multi-layer perceptron and ran-
dom forest. With the hyperparameters set to default values in sklearn, we ran
classification by randomly splitting the data into training/test sets (80%/20%),
and reported performance over the test set with cross-validation. The results
(Table 1) highlight the value of using functional connectome as the nodal fea-
tures, as evidenced by the performance improvement over the baseline model
(identity matrix as the nodal feature) in terms of F1l-score, precision, and recall.

Table 1. Classification performances under two different embedding approaches. Using
the FC as nodal features (right column) leads to an overall improvement in the classifier
performance when compared to simply using the identity matrix as nodal features (left
column).

Model Identity matrix Functional connectome

Precision Recall F1l-score Precision Recall Fl-score
Multi layer perceptron|0.308 £+ 0.018|0.045 £ 0.012|0.109 + 0.031|0.587 £ 0.014|0.762 £ 0.045/0.663 £ 0.023
Random forest 0.304 £ 0.013/0.189 + 0.042|0.233 + 0.032|0.573 £ 0.009|0.706 £ 0.002/0.63 £ 0.014

Nodal Features = Functional Connectome Nodal Features = Identity Matrix

* D e A
®  Healthy ®  Healthy

Fig. 3. T-sne projections of the learned embeddings. When using the joint embeddings
computed by FCS-GVAE, different sub-populations are captured.

4 Conclusion

We introduced a variational graph auto-encoder framework to unify DTI struc-
tural and resting-state functional brain networks, allowing for the definition of
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a common-coordinate embedding space, i.e., a joint structure-function represen-
tation of the brain. When trained on a large AD dataset, this joint embedding
framework was able to uncover biologically meaningful sub-populations in an
unsupervised manner. Further, we quantitatively demonstrated improvement in
classification tasks with our variational formulation (versus a more traditional
non-variational graph auto-encoder), suggesting that a variational framework is
necessary in optimally capturing functional brain dynamics. In the future, we
will aim to further use our approach to uncover the biological underpinnings of
different AD sub-populations.
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