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ABSTRACT
We propose AIM, a new algorithm for di!erentially private syn-
thetic data generation.AIM is a workload-adaptive algorithmwithin
the paradigm of algorithms that "rst selects a set of queries, then
privately measures those queries, and "nally generates synthetic
data from the noisy measurements. It uses a set of innovative fea-
tures to iteratively select the most useful measurements, re#ecting
both their relevance to the workload and their value in approx-
imating the input data. We also provide analytic expressions to
bound per-query error with high probability which can be used to
construct con"dence intervals and inform users about the accuracy
of generated data. We show empirically that AIM consistently out-
performs a wide variety of existing mechanisms across a variety of
experimental settings.
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1 INTRODUCTION
Di!erential privacy [14] has grown into the preferred standard for
privacy protection, with signi"cant adoption by both commercial
and governmental enterprises. Many common computations on
data can be performed in a di!erentially private manner, including
aggregates, statistical summaries, and the training of a wide variety
predictive models. Yet one of the most appealing uses of di!erential
privacy is the generation of synthetic data, which is a collection of
recordsmatching the input schema, intended to be broadly represen-
tative of the source data. Di!erentially private synthetic data is an
active area of research [1, 2, 4, 10, 11, 18, 24, 26, 29, 30, 45, 47, 48, 50–
52, 54–57] and has also been the basis for two competitions, hosted
by the U.S. National Institute of Standards and Technology [43].

Private synthetic data is appealing because it "ts any data pro-
cessing work#ow designed for the original data, and, on its face,
the user may believe they can perform any computation they wish,
while still enjoying the bene"ts of privacy protection. Unfortu-
nately, it is well-known that there are limits to the accuracy that
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can be provided by synthetic data under di!erential privacy or any
other reasonable notion of privacy [13].

As a consequence, it is important to tailor synthetic data to some
class of tasks, and this is commonly done by asking the user to
provide a set of queries, called the workload, to which the synthetic
data can be tailored. However, as our experiments will show, exist-
ing workload-aware techniques often fail to outperform workload-
agnostic mechanisms, even when evaluated speci"cally on their
target workloads. Not only do these algorithms fail to produce ac-
curate synthetic data, but they provide no way for end-users to
detect the inaccuracy. As a result, in practical terms, di!erentially
private synthetic data generation remains an unsolved problem.

In this work, we advance the state-of-the-art of di!erentially
private synthetic data in two key ways. First, we propose a new
workload-aware mechanism that o!ers lower error than all com-
peting techniques. Second, we derive analytic expressions to bound
the per-query error of the mechanism with high probability.

Our mechanism, AIM, follows the select-measure-generate para-
digm, which can be used to describe many prior approaches.1 Mech-
anisms following this paradigm "rst select a set of queries, then
measure those queries in a di!erentially private way (through noise
addition), and "nally generate synthetic data consistent with the
noisy measurements. We leverage Private-PGM [40] for the gener-
ate step, as it provides a robust and e$cient method for combining
the noisy measurements into a single consistent representation
from which records can be sampled.

The low error of AIM is primarily due to innovations in the
select stage. AIM uses an iterative, greedy selection procedure, in-
spired by the popularMWEM algorithm for linear query answering.
Through careful analysis, we de"ne a low-sensitivity quality score
function to determine the best marginal to measure next, which
takes into account: (i) how well the candidate marginal is already
estimated, (ii) the expected improvement measuring it can o!er,
(iii) the relevance of the marginal to the workload, and (iv) the
available privacy budget. This new quality score is accompanied by
a host of other algorithmic techniques including adaptive selection
of rounds and budget-per-round, intelligent initialization, and new
set of candidates from which to select.

In conjunction with AIM, we develop new techniques to quan-
tify the uncertainty in query answers derived from the generated
synthetic data. The bounds on error are useful in practice to under-
stand which queries the synthetic data supports well, and which
it does not, and are therefore critical to avoid the mis-use of the

1Another common approach is based on GANs [19]. Recent research [46] has shown
that published GAN-based approaches rarely outperform simple baselines; therefore,
we do not compare with those techniques in this paper.
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Table 1: Table of Notation

Symbol Meaning
!, ", # Privacy parameters
Ω Domain
$ Number of attributes
% Single record in Ω
& Dataset of records in Ω
' Subset of attributes
(! Marginal query
)! Domain size of attributes '
* Workload (marginal queries + weights
+! Weight on marginal ' in the workload
Δ Sensitivity
, Distribution over Ω
S Set of all distributions over Ω
- Number of rounds of MWEM+PGM
. Privacy budget split of AIM
/! Weighted assigned to marginal ' by AIM

data by downstream users, a danger that could limit the adoption of
synthetic data [27]. To the best of our knowledge, AIM is the "rst
synthetic data mechansim equipped with such guarantees.The prob-
lem of error quanti"cation for data independent mechanisms like
the Laplace or Gaussian mechanism is trivial, as they provide unbi-
ased answers with known variance to all queries. The problem is
considerably more challenging for data-dependent mechanisms like
AIM, where complex post-processing is performed and only a sub-
set of workload queries have unbiased answers. Some mechanisms,
like MWEM, provide theoretical guarantees on their worst-case er-
ror, under suitable assumptions. However, this is an a priori bound
on error obtained from a theoretical analysis of the mechanism
under worst-case datasets. Instead, we develop an a posteriori error
analysis, derived from the intermediate di!erentially private mea-
surements used to produce the synthetic data. Our error estimates
therefore re#ect the actual execution of AIM on the input data but
do not require any additional privacy budget for their calculation.

This paper makes the following contributions:
(1) In Section 3, we assess the prior work in the "eld, character-

izing di!erent approaches via key distinguishing elements
and limitations, which brings clarity to a complex space.

(2) In Section 4, we propose AIM, a new mechanism for syn-
thetic data generation that is workload-aware (for work-
loads consisting of weighted marginals) as well as data-
aware.

(3) In Section 5, we derive analytic expressions to bound the
per-query error of AIM with high probability. These ex-
pressions can be used to construct con"dence bounds.

(4) In Section 6, we conduct a comprehensive empirical evalu-
ation and show that AIM consistently outperforms all prior
work, improving error over the next best mechanism by
1.6× on average and up to 5.7× in some cases.

2 BACKGROUND
In this section we provide the requisite background on datasets,
marginals, and di!erential privacy needed to understand this work.

2.1 Data, Marginals, and Workloads
Data. A dataset & is a multiset of 0 records, each containing

potentially sensitive information about one individual. Each record
% ∈ & is a $-tuple (%1, . . . , %" ). The domain of possible values for %#
is denoted by Ω# , which we assume is "nite and has size |Ω# | = )# .
The full domain of possible values for % is thus Ω = Ω1 × · · · × Ω"
which has size∏# )# = ). We useD to denote the set of all possible
datasets, which is equal to ∪∞

$=0Ω
$ .

Marginals. A marginal is a central statistic to the techniques
studied in this paper, as it captures low-dimensional structure com-
mon in high-dimensional data distributions. A marginal for a set
of attributes ' is essentially a histogram over %! : it is a table that
counts the number of occurrences of each 1 ∈ Ω! .

De!nition 1 (Marginal). Let ' ⊆ [$] be a subset of attributes,
Ω! =

∏
#∈! Ω# , )! = |Ω! |, and %! = (%# )#∈! . The marginal on ' is a

vector 2 ∈ R%! , indexed by domain elements 1 ∈ Ω! , such that each
entry is a count, i.e., 2 [1] = ∑

& ∈' 1[%! = 1]. We let(! : D → R%!
denote the function that computes the marginal on ' , i.e., 2 = (! (&).

In this paper, we use the term marginal query to denote the
function (! , and marginal to denote the vector of counts 2 =
(! (&). With some abuse of terminology, we will sometimes refer
to the attribute subset ' as a marginal query as well.

Workload. A workload is a collection of queries the synthetic
data should preserve well. It represents the measure by which we
will evaluate utility of di!erent mechanisms. We want our mech-
anisms to take a workload as input and adapt intelligently to the
queries in it, providing synthetic data that is tailored to the queries
of interest. In this work, we focus on the special (but common) case
where the workload consists of a collection of weighted marginal
queries. Our utility measure is stated in De"nition 2.

De!nition 2 (Workload Error). A workload* consists of a list of
marginal queries '1, . . . , '( where '# ⊆ [$], together with associated
weights +# ≥ 0. The error of a synthetic dataset &̂ is de!ned as:

Error(&, &̂) = 1
3 · |& |

(∑
#=1

+#
$$(!" (&) −(!" (&̂)

$$
1

We measure error using a normalized 41 distance between the
true workload query answers and the synthetic workload query
answers. This 41 error metric is a common choice [7, 40, 54, 57];
although, alternatives have been considered in prior work including
4∞ error [3, 32, 33, 50] and 42 (squared) error [11, 36]. The 41 metric
is appealing because it captures the overall error better than the 4∞
metric, and is easily interpretable. We also provide supplemental
evaluations with 4∞ and 42 error in Appendix J of the full paper.

2.2 Di"erential Privacy
Di!erential privacy protects individuals by bounding the impact
any one individual can have on the output of an algorithm. This is
formalized using the notion of neighboring datasets. Two datasets
&,& ′ ∈ D are neighbors (denoted & ∼ & ′) if & ′ can be obtained
from & by adding or removing a single record.

De!nition 3 (Di!erential Privacy). A randomized mechanism
M : D → R satis!es (!, ")-di"erential privacy (DP) if for any
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neighboring datasets & ∼ & ′ ∈ D, and any subset of possible outputs
5 ⊆ R,

Pr[M(&) ∈ 5] ≤ exp(!) Pr[M(& ′) ∈ 5] + " .

A key quantity needed to reason about the privacy of common
randomized mechanisms is the sensitivity, de"ned below.
De!nition 4 (Sensitivity). Let 6 : D → R) be a vector-valued
function of the input data. The 42 sensitivity of 6 is
Δ(6 ) = max'∼'′ ‖ 6 (&) − 6 (& ′)‖2.

It is easy to verify that the 42 sensitivity of any marginal query
(! is 1, regardless of the attributes in ' . This is because one individ-
ual can only contribute a count of one to a single cell of the output
vector. Below we introduce the two building block mechanisms
used in this work.
De!nition 5 (Gaussian Mechanism). Let 6 : D → R) be a vector-
valued function of the input data. The Gaussian Mechanism adds i.i.d.
Gaussian noise with scale 7Δ(6 ) to each entry of 6 (&). That is,

M(&) = 6 (&) + 7Δ(6 )N (0, I),
where I is a , × , identity matrix.

De!nition 6 (Exponential Mechanism). Let 8! : D → R be quality
score function de!ned for all ' ∈ R and let ! ≥ 0 be a real number.
Then the exponential mechanism outputs a candidate ' ∈ R according
to the following distribution:

Pr[M(&) = ' ] ∝ exp
( !

2Δ · 8! (&)
)
,

where Δ = max! ∈R Δ(8! ).
Our algorithm is de"ned using zCDP, an alternate version of

di!erential privacy de"nition which o!ers bene"cial composition
properties. We convert to (!, ") guarantees when necessary.
De!nition 7 (zero-Concentrated Di!erential Privacy (zCDP)). A
randomized mechanism M is #-zCDP if for any two neighboring
datasets & and & ′, and all . ∈ (1,∞), we have:

&* (M(&) | | M(& ′)) ≤ # · .,
where &* is the Rényi divergence of order . .

Proposition 1 (zCDP of the Gaussian Mechanism [5]). The Gauss-
ian Mechanism satis!es 1

2+2 -zCDP.

Proposition 2 (zCDP of the Exponential Mechanism [9]). The
Exponential Mechanism satis!es ,2

8 -zCDP.

We rely on the following propositions to reason about multiple
adaptive invocations of zCDPmechanisms, and the translation from
zCDP to (!, ")-DP. The proposition below covers 2-fold adaptive
composition of zCDP mechanisms, and it can be inductively applied
to obtain analogous k-fold adaptive composition guarantees.
Proposition 3 (Adaptive Composition of zCDP Mechanisms [5]).
LetM1 : D → R1 be #1-zCDP andM2 : D×R1 → R2 be #2-zCDP.
Then the mechanism M = M2 (&,M1 (&)) is (#1 + #2)-zCDP.
Proposition 4 (zCDP to DP [8]). If a mechanism M satis!es #-
zCDP, it also satis!es (!, ")-di"erential privacy for all ! ≥ 0 and

" = min
*>1

exp
(
(. − 1) (.# − !)

)
. − 1

(
1 − 1

.

)*
.

2.3 Private-PGM
An important component of our approach is a tool called Private-
PGM [35, 37, 40]. For the purposes of this paper, we will treat
Private-PGM as a black box that exposes an interface for solving
subproblems important to our mechanism. We brie#y summarize
Private-PGM and three core utilities it provides. Private-PGM con-
sumes as input a collection of noisy marginals of the sensitive data,
in the format of a list of tuples (2̃# ,7# , '# ) for 9 = 1, . . . ,3 , where
2̃# = (!" (&) + N (0,72# I).2

Distribution Estimation. At the heart of Private-PGM is an
optimization problem to "nd a distribution ,̂ that “best explains”
the noisy observations 2̃# :

,̂ ∈ argmin
)∈S

(∑
#=1

1
7#

$$(!" (,) − 2̃#
$$2
2

Here S = {, | , (%) ≥ 0 and ∑
& ∈Ω , (%) = )} is the set of (scaled)

probability distributions over the domain Ω.3 When 2̃# are cor-
rupted with i.i.d. Gaussian noise, this is exactly a maximum like-
lihood estimation problem [35, 37, 40]. In general, convex opti-
mization over the scaled probability simplex is intractable for the
high-dimensional domains we are interested in. Private-PGM over-
comes this curse of dimensionality by exploiting the fact that the
objective only depends on , through its marginals. The key obser-
vation is that one of the minimizers of this problem is a graphical
model ,̂- . The parameters : provide a compact representation of
the distribution , that we can optimize e$ciently.

Junction Tree Size. The time and space complexity of Private-
PGM depends on the measured marginal queries in a nuanced
way, the main factor being the size of the junction tree implied
by the measured marginal queries [37, 39]. While understanding
the junction tree construction is not necessary for this paper, it is
important to note that Private-PGM exposes a callable function
JT-SIZE('1, . . . , '( ) that can be invoked to check how large a junc-
tion tree is. JT-SIZE is measured in megabytes, and the runtime of
distribution estimation is roughly proportional to this quantity. If
arbitrary marginals are measured, JT-SIZE can grow out of control,
no longer "tting in memory, and leading to unacceptable runtime.

Synthetic Data Generation. Given an estimated model ,̂ ,
Private-PGM implements a routine for generating synthetic tabular
data that approximately matches the given distribution. It achieves
this with a randomized rounding procedure, which is a lower vari-
ance alternative to sampling from ,̂ [37].

3 PRIORWORK ON SYNTHETIC DATA
In this section we survey the state of the "eld, describing basic
elements of a good synthetic data mechanism, along with novel-
ties of more sophisticated mechanisms. We focus our attention on
marginal-based approaches to di!erentially private synthetic data
in this section, as these have generally seen the most success in
practical applications. These mechanisms include PrivBayes [54],
PrivBayes+PGM [40], MWEM+PGM [40], MST [37], PrivSyn [57],

2Private-PGM is more general than this, but this is the most common setting.
3When using unbounded DP, % is sensitive and therefore we must estimate it.
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Algorithm 1 MWEM+PGM

Input: Dataset & , workload* , privacy parameter #
Output: Synthetic Dataset &̂
Hyper-Parameters: rounds - = $ , budget split . = 0.9
Initialize ,̂0 = Uniform[X]
! =

√
8(1 − .)#/-

7 =
√
- /2.#

for 1 = 1, . . . ,- do
select '. ∈* using exponential mechanism with ! budget:

8! (&) = ‖(! (&) −(! (,̂.−1)‖1 − )!

measure marginal on ;:
2̃. = (!# (&) + N (0,72I)

estimate data distribution using Private-PGM:

,̂. = argmin
)∈/

.∑
#=1

$$(!" (,) − <#
$$2
2

end for
generate synthetic data &̂ using Private-PGM:
return &̂

RAP [3], GEM [33], and PrivMRF [7]. We will begin with a formal
problem statement:

Problem 1 (Workload Error Minimization). Given a workload
* , our goal is to design an (!, ")-DP synthetic data mechanism
M : D → D such that the expected error de!ned in De!nition 2 is
minimized.

3.1 The Select-Measure-Generate Paradigm
We begin by providing a broad overview of the basic approach

employed by many di!erentially private mechanisms for synthetic
data. These mechanisms all "t naturally into the select-measure-
generate framework. This framework represents a class of mech-
anisms which can naturally be broken up into 3 steps: (1) select
a set of queries, (2) measure those queries using a noise-addition
mechanism, and (3) generate synthetic data that explains the noisy
measurements well. We consider iterative mechanisms that alter-
nate between the select and measure step to be in this class as
well. Mechanisms within this class di!er in their methodology for
selecting queries, the noise mechanism used, and the approach to
generating synthetic data from the noisy measurements.

MWEM+PGM, shown in Algorithm 1, is one mechanism from
this class that serves as a concrete example as well as the starting
point for our improved mechanism, AIM. As the name implies,
MWEM+PGM is a scalable instantiation of the well-knownMWEM
algorithm [21] for linear query answering, where the multiplicative
weights (MW) step is replaced by a call to Private-PGM. It is a
greedy, iterative mechanism for workload-aware synthetic data
generation, and there are several variants. One variant is shown
in Algorithm 1. The mechanism begins by initializing an estimate
of the joint distribution to be uniform over the data domain. Then,
it runs for - rounds, and in each round it does three things: (1)

selects (via the exponential mechanism) a marginal query that is
poorly approximated under the current estimate, (2) measures the
selected marginal using the Gaussian mechanism, and (3) estimates
a new data distribution (using Private-PGM) that explains the noisy
measurements well. After - rounds, the estimated distribution is
used to generate synthetic tabular data. MWEM+PGM represents
one mechansim from this broad class, but many others are very
closely related to it. In fact, RAP and GEM can both be seen as
scalable instantiations of MWEM, that use di!erent algorithms to
estimate the data distribution instead of Private-PGM. PrivMRF
is also closely related to MWEM+PGM (and uses Private-PGM),
with some minor di!erences in design decisions in other parts
of the algorithm. Algorithms like PrivBayes, MST, and PrivSyn
are also conceptually similar to MWEM+PGM, as they attempt
to select marginal queries that are poorly approximated under
a simple model. While all of these algorithms are conceptually
similar, each one makes di!erent design decisions that may have
important performance implications in practice. In the subsequent
subsections, we will characterize existing mechanisms in terms
of how they approach these di!erent aspects of the problem, and
discuss some of the design decisions made by these mechansism.

3.2 Basic Elements of a Good Mechanism
In this section we outline some basic criteria reasonable mecha-
nisms should satisfy to get good performance. These recommenda-
tions primarily apply to the measure step.

Measure EntireMarginals. Marginals are an appealing statistic
to measure because every individual contributes a count of one to
exactly one cell of the marginal. As a result, we can measure every
cell of (! (&) at the same privacy cost of measuring a single cell.
With a few exceptions [3, 33, 50], existing mechanisms utilize this
property of marginals or can be extended to use it. The alternative
of measuring a single counting query at a time sacri"ces utility
unnecessarily.

Use Gaussian Noise. Back of the envelope calculations reveal
that if the number ofmeasurements is greater than roughly log (1/")
+ ! , which is often the case, then the standard deviation of the re-
quired Gaussian noise is lower than that of the Laplace noise. Many
newer mechanisms recognize this and use Gaussian noise, while
older mechanismswere developedwith Laplace noise, but can easily
be adapted to use Gaussian noise instead.

Use Unbounded DP. For "xed (!, "), the required noise mag-
nitude is lower by a factor of

√
2 when using unbounded DP (add

/ remove one record) over bounded DP (modify one record). This
is because the 42 sensitivity of a marginal query(! is 1 under un-
bounded DP, and

√
2 under bounded DP. We remark that these two

di!erent de"nitions of DP are qualitatively di!erent, and because
of that, the privacy parameters have di!erent interpretations. The√
2 di!erence could be recovered in bounded DP by increasing the

privacy budget appropriately. In some cases, the privacy model
is imposed externally, in which case it is better if the mechanism
naturally supports both bounded and unbounded DP. When either
privacy de"nition is acceptable, as in recent NIST competitions
[43], unbounded DP should be preferred.

����



Table 2: Taxonomy of select-measure-generate mechanisms.

Name Year Workload Data Budget E$ciency
Aware Aware Aware Aware

Independent - !
Gaussian - !
PrivBayes [54] 2014 ! ! !
HDMM+PGM [40] 2019 !
PrivBayes+PGM [40] 2019 ! ! !
MWEM+PGM [40] 2019 ! !
PrivSyn [57] 2020 ! ! !
MST [37] 2021 ! !
RAP [3] 2021 ! ! !
GEM [33] 2021 ! ! !
PrivMRF [7] 2021 ! ! !
AIM [This Work] 2022 ! ! ! !

Devote more Budget to the Measure Step. For mechanisms that
select marginal queries based on the data, the privacy budget must
be split between the select step and the measure step. A simple
50/50 split is usually suboptimal, and it is often better to allocate
the majority of the privacy budget for the measure step. Indeed,
prior work has reported 10/90 splits to work well empirically in a
variety of settings [7, 57]. Intuitively, this uneven split makes sense
because the statistics needed to select marginal queries are often
coarser grained aggregations than the marginal queries themselves,
and as a result are more robust to noise.

Summary. The implementation of MWEM+PGM in Algorithm 1
gets these basic elements right. This particular implementation of
MWEM+PGM is new — the original measured a single counting
query per round, used Laplace noise, bounded DP, and an even
select/measure budget split [21, 40]. While the modi"cations made
are simple, as we will show in Section 6.3, they have a substantial
in#uence on the performance of the mechanism in practice.

3.3 Distinguishing Elements of Existing Work
Beyond the basics, di!erent mechanisms exhibit di!erent novel-
ties, and understanding the design considerations underlying the
existing work can be enlightening. We provide a simple taxonomy
of this space in Table 2 in terms of four criteria: workload-, data-,
budget-, and e$ciency-awareness. These characteristics primarily
pertain to the select step of each mechanism.

Workload-awareness. Di!erent mechanisms select from a dif-
ferent set of candidate marginal queries. PrivBayes and PrivMRF,
for example, select from a particular subset of 3-way marginals, de-
termined from the data. Other mechanisms, like MST and PrivSyn,
restrict the set of candidates to 2-waymarginal queries. On the other
end of the spectrum, the candidates considered by MWEM+PGM,
RAP, and GEM, are exactly the marginal queries in the workload.
This is appealing, since these mechanismswill not waste the privacy
budget to measure marginals that are not relevant to the workload.

Data-awareness. Many mechanisms select marginal queries
from a set of candidates based on the data, and are thus data-aware.
For example, MWEM+PGM selects marginal queries using the
exponential mechanism with a quality score function that depends
on the data. Independent, Gaussian, and HDMM+PGM are the

exceptions, as they always select the same marginal queries no
matter what the underlying data distribution is.

Budget-awareness. Another aspect of di!erent mechanisms is
how well do they adapt to the privacy budget available. Some mech-
anisms, like PrivBayes, PrivSyn, and PrivMRF recognize that we
can a!ord to measure more (or larger) marginals when the privacy
budget is su$ciently large. When the privacy budget is limited,
these mechanisms recognize that fewer (and smaller) marginals
should be measured instead. In contrast, the number and size of the
marginals selected by mechanisms likeMST,MWEM+PGM, RAP,
and GEM does not depend on the privacy budget available.4

E!ciency-awareness. Mechanisms that build on top of Private-
PGM must take care when selecting measurements to ensure JT-
SIZE remains su$ciently small to ensure computational tractability.
Among these, PrivBayes+PGM,MST, and PrivMRF all have built-in
heuristics in the selection criteria to ensure the selected marginal
queries give rise to a tractable model. Gaussian, HDMM+PGM and
MWEM+PGM have no such safeguards, and they can sometimes
select marginal queries that lead to intractable models. In the ex-
treme case, when the workload is all 2-way marginals, Gaussian
selects all 2-way marginals, the model required for Private-PGM
explodes to the size of the entire domain, which is often intractable.

Mechanisms that utilize di!erent techniques for post-processing
noisy marginals into synthetic data, like PrivSyn, RAP, and GEM,
do not have this limitation, and are free to select from a wider
collection of marginals. While these methods do not su!er from
this particular limitation of Private-PGM, they have other pros and
cons which were surveyed in a recent article [35].

Summary. With the exception of our new mechanism AIM, no
mechanism listed in Table 2 is aware of all four factors we discussed.
Mechanisms that do not have four checkmarks in Table 2 are not
necessarily bad, but there are clear ways in which they can be
improved. Conversely, mechanisms that have more checkmarks
than other mechanisms are not necessarily better. For example,
RAP has 3 checkmarks, but as we show in Section 6, it does not
consistently beat Independent, which only has 1 checkmark.

3.4 Other Design Considerations
Beyond these four characteristics summarized in the previous sec-
tion, di!erent methods make di!erent design decisions that are
relevant to mechanism performance, but do not correspond to the
four criteria discussed in the previous section. In this section, we
summarize some of those additional design considerations.

Selection method. Some mechanisms select marginals to mea-
sure in a batch, while other mechanisms select them iteratively.
Generally speaking, iterative methods like MWEM+PGM, RAP,
GEM, and PrivMRF are preferable to batch methods, because the
selected marginals will capture important information about the
distribution that was not e!ectively captured by the previously mea-
sured marginals. On the other hand, PrivBayes, MST, and PrivSyn
select all the marginals before measuring any of them. It is not dif-
"cult to construct examples where a batch method like PrivSyn has

4The number of rounds to runMWEM+PGM, RAP, and GEM is a hyper-parameter,
and the best setting of this hyper-parameter depends on the privacy budget available.
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suboptimal behavior. For example, suppose the data contains three
perfectly correlated attributes. We can expect iterative methods to
capture the distribution after measuring any two 2-way marginals.
On the other hand, a batch method like PrivSyn will determine that
all three 2-way marginals need to be measured.

Budget split. Every mechanism in this discussion, except for
PrivSyn, splits the privacy budget equally among selectedmarginals.
This is a simple and natural thing to do, but it does not account
for the fact that larger marginals have smaller counts that are less
robust to noise, requiring a larger fraction of the privacy budget to
answer accurately. PrivSyn provides a simple formula for dividing
privacy budget amongmarginals of di!erent sizes, but this approach
is inherently tied to their batch selection methodology. It is much
less clear how to divide the privacy budget within a mechanism
that uses an iterative selection procedure.

Hyperparameters. All mechanisms have some hyperparame-
ters than can be tuned to a!ect the behavior of the mechanism.
Mechanisms like PrivBayes, MST, PrivSyn, and PrivMRF have rea-
sonable default values for these hyperparameters, and these mech-
anisms can be expected to work well out of the box. On the other
hand,MWEM+PGM, RAP, and GEM have to tune the number of
rounds to run, and it is not obvious how to select this a priori. While
the open source implementations may include a default value, the
experiments conducted in the respective papers did not use these
default values, in favor of non-privately optimizing over this hyper-
parameter for each dataset and privacy level considered [3, 33].

4 AIM: AN ADAPTIVE AND ITERATIVE
MECHANISM FOR SYNTHETIC DATA

WhileMWEM+PGM is a simple and intuitive algorithm, it leaves
signi"cant room for improvement, even after getting the basic ele-
ments right. Our new mechanism, AIM, is presented in Algorithm 2.
In this section, we describe the di!erences between MWEM+PGM
and AIM, the justi"cations for the relevant design decisions, as well
as prove the privacy of AIM.

Intelligent Initialization. In Line 7 of AIM, we spend a small
fraction of the privacy budget to measure 1-way marginals in the
set of candidates. Estimating ,̂ from these noisy marginals gives
rise to an independent model where all 1-way marginals are pre-
served well, and higher-order marginals can be estimated under
an independence assumption. Intuitively, this feature of AIM is
justi"ed by the fact that MWEM+PGM tends to select marginal
queries covering disjoint attribute subsets in the "rst few rounds in
an attempt to correctly preserve the 1-way marginal distributions.
By measuring all 1-way marginals immediately instead, we are
saving the privacy budget that would otherwise be spent to select
these marginal queries.

New Candidates. In Line 13 of AIM, we make two notable
modi"cations to the candidate set that serve di!erent purposes.
Speci"cally, the set of candidates is a carefully chosen subset of
the marginal queries in the downward closure of the workload. The
downward closure of the workload is the set of marginal queries
whose attribute sets are subsets of some marginal query in the
workload, i.e.,*+ = {' | ' ⊆ =, = ∈* }.

Algorithm 2 AIM: An Adaptive and Iterative Mechanism
1: Input: Dataset & , workload* , privacy parameter #
2: Output: Synthetic Dataset &̂
3: Hyper-Parameters:MAX-SIZE=80MB, - = 16$ , . = 0.9
4: 70 =

√
- /(2 . #)

5: #012" = 0
6: 1 = 0
7: Initialize ,̂. using Algorithm 3
8: /! =

∑
1∈3 +1 | ' ∩ = |

9: 7.+1 ← 70 !.+1 ←
√
8(1 − .)#/-

10: while #012" < # do
11: 1 = 1 + 1
12: #012" ← #012" + 1

8!
2
. + 1

2+2
#

13: ;. = {'. ∈*+ | JT-SIZE('1, . . . , '. )) ≤ 4$%&'
4 ·MAX-SIZE}

14: select '. ∈ ;. using the exponential mechanism with:

8! (&) = /!

(
‖(! (&) −(! (,̂.−1)‖1 −

√
2/> · 7. · )!

)

15: measure marginal on '. :
<̃. = (!# (&) + N (0,72. I)

16: estimate data distribution using Private-PGM:

,̂. = argmin
)∈/

.∑
#=1

1
7#

$$(!" (,) − <̃#
$$2
2

17: anneal !.+1 and 7.+1 using Algorithm 4
18: end while
19: generate synthetic data &̂ from ,̂. using Private-PGM
20: return &̂

Algorithm 3 Initialize ,. (subroutine of Algorithm 2)
1: for ' ∈ {' ∈*+ | |' | = 1} do
2: 1 = 1 + 1 7. ← 70 '. ← '
3: <̃. = (! (&) + N (0,72. I)
4: #012" ← #012" + 1

2+2
#

5: end for
6: ,̂. = argmin)∈/

∑.
#=1

1
+"

$$(!" (,) − <̃#
$$2
2

Using the downward closure is based on the observation that
marginals with many attributes have low counts, and answering
them directly with a noise addition mechanism may not provide an
acceptable signal to noise ratio. In these situations, it may be better
to answer lower-dimensional marginals, as these tend to exhibit a
better signal to noise ratio, while still being useful to estimate the
higher-dimensional marginals in the workload.

We "lter candidates from this set that do not meet a speci"c
model capacity requirement. Speci"cally, the set will only consist
of candidates that, if selected, will lead to a JT-SIZE below a pre-
speci"ed limit (the default is 80 MB). This ensures that AIM will
never select candidates that lead to an intractable model, and hence
allows the mechanism to execute consistently with a predictable
memory footprint and runtime.

����



Algorithm 4 Budget annealing (subroutine of Algorithm 2)

1: if
$$(!# (,̂. ) −(!# (,̂.−1)

$$
1 ≤

√
2/> · 7. · )!# then

2: !.+1 ← 2 · !.
3: 7.+1 ← 7./2
4: else
5: !.+1 ← !.
6: 7.+1 ← 7.
7: end if
8: if (# − #012" ) ≤ 2

( 1
2+2

#+1
+ 1

8!
2
.+1

)
then

9: !.+1 =
√
8 · (1 − .) · (# − #012" )

10: 7.+1 =
√
1/(2 · . · (# − #012" ))

11: end if

Be"er Selection Criteria. In Line 14 of AIM, we make two mod-
i"cations to the quality score function for marginal query selection
to better re#ect the utility we expect from measuring the selected
marginal. In particular, our new quality score function is

8! (&) = /!
(
‖(! (&) −(! (,.−1)‖1 −

√
2/> · 7. · )!

)
, (1)

which di!ers from MWEM+PGM’s quality score function 8! (&) =
‖(! (&) −(! (,.−1)‖ − )! in two ways.

First, the expression inside parentheses can be interpreted as
the expected improvement in 41 error we can expect by measuring
that marginal. It consists of two terms: the 41 error under the
current model minus the expected 41 error if it is measured at the
current noise level (Theorem 5 in the full paper [38]). Compared
to the quality score function inMWEM+PGM, this quality score
function penalizes larger marginals to a much more signi"cant
degree, since 7. 1 1 in most cases. Moreover, this modi"cation
makes the selection criteria “budget-adaptive”, since it recognizes
that we can a!ord to measure larger marginals when 7. is smaller,
and we should prefer smaller marginals when 7. is larger.

Second, we give di!erent marginal queries di!erent weights to
capture how relevant they are to the workload. In particular, we
weight the quality score function for a marginal query ' using
the formula /! =

∑
1∈3 +1 | ' ∩ = |, as this captures the degree

to which the marginal queries in the workload overlap with ' . In
general, this weighting scheme places more weight on marginals
involving more attributes. Note that now the sensitivity of 8! is/!
rather than 1. Thus, to apply the exponential mechanism to select a
candidate, we use Δ. = max! ∈5# /! . A nice property of using/! as
a multiplicative weight is a certain invariance to how the workload
is represented: in particular, the behavior of AIM is identical in the
two cases where (1) two copies of a marginal query are included in
the workload, (2) the marginal query appears once with a weight
of two. This is not true of MWEM+PGM, which generally has
di!erent behavior based on how the workload is represented.

This quality score function exhibits an interesting trade-o!: the
penalty term

√
2/>7.)! discourages marginals with more cells,

while the weight/! favors marginals with more attributes. How-
ever, if the inner expression is negative, then the larger weight will
make it more negative, and much less likely to be selected.

Adaptive Rounds and Budget Split. In Lines 12 and 17 of
AIM, we introduce logic to modify the per-round privacy budget as

execution progresses, and as a result, eliminate the need to provide
the number of rounds up front. This makes AIM hyper-parameter
free, relieving practitioners from that often overlooked burden.

Speci"cally, we use a simple annealing procedure (Algorithm 4)
that gradually increases the budget per round when an insu$cient
amount of information is learned at the current per-round bud-
get. The annealing condition is activated if the di!erence between
(!# (,̂. ) and(!# (,̂.−1) is small, which indicates that not much in-
formation was learned in the previous round. If it is satis"ed, then
!. for is doubled, while 7. is cut in half.

This check can pass for two reasons: (1) there were no good
candidates (all scores are low in Equation (1)) in which case increas-
ing 7. will make more candidates good, and (2) there were good
candidates, but they were not selected because there was too much
noise in the select step, which can be remedied by increasing !. .
The precise annealing threshold used is

√
2/> · 7. · )!# , which is

the expected error of the noisy marginal, and an approximation for
the expected error of ,̂. on marginal ' . When the available privacy
budget is small, this condition will be activated more frequently,
and as a result, AIM will run for fewer rounds. Conversely, when
the available privacy budget is large, AIM will run for many rounds
before this condition activates.

As 7. decreases throughout execution, quality scores generally
increase, and it has the e!ect of “unlocking” new candidates that
previously had negative quality scores. We initialize 7. and !. con-
servatively, assuming themechanismwill be run for- = 16$ rounds.
This is an upper bound on the number of rounds that AIM will run,
but in practice the number of rounds will be much less.

Privacy Analysis. The privacy analysis of AIM utilizes the
notion of a privacy !lter [9, 15, 44], and the algorithm runs until
the realized privacy budget spent matches the total privacy budget
available, # . To ensure that the budget is not over-spent, there
is a special condition (Line 8 in Algorithm 4) that checks if the
remaining budget is insu$cient for two rounds at the current !.
and 7. parameters. If this condition is satis"ed, !. and 7. are set to
use up all of the remaining budget in one "nal round of execution.

Theorem 1. For any- ≥ $ , . ∈ (0, 1), # ≥ 0, AIM satis!es #-zCDP.

Proof. There are three steps in AIM that depend on the sen-
sitive data: initialization, selection, and measurement. The initial-
ization step satis"es #0-zCDP for #0 = |{' ∈*+ | |' | = 1}|/2720 ≤
$/2720 = 2.$#/2- ≤ # . For this step, all we need is that the privacy
budget is not over-spent. The remainder of AIM runs until the
budget is consumed. Each step of AIM involves one invocation of
the exponential mechanism, and one invocation of the Gaussian
mechanism. By Propositions 1 to 3, round 1 of AIM is #. -zCDP for
#. = 1

8!
2
. /8 + 1/272. . Note that at round 1 , #012" =

∑.
#=0 ## , and by

Theorem 3.1 of [15], it su$ces to show that #012" never exceeds
# . There are two cases to consider: the condition in Line 8 of Algo-
rithm 4 is either true or false. If it is true, then we know after round
1 that # −#012" ≥ 2#.+1, i.e., the remaining budget is enough to run
round 1 + 1 without over-spending the budget. If it is false, then we
modify !.+1 and #.+1 to exactly use up the remaining budget. Specif-
ically, #.+1 = 8(1−.) (# − #012" )/8 + 2. (# − #012" )/2 = # − #012" .
As a result, when the condition is true, #012" at time 1 + 1 is exactly
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# , and after that iteration, the main loop of AIM terminates. The
remainder of the mechanism does not access the data. !

5 UNCERTAINTY QUANTIFICATION
We now propose a solution to the uncertainty quanti"cation prob-
lem for AIM. Our method uses information from both the noisy
marginals, measured with Gaussian noise, and the marginal queries
selected by the exponential mechanism. The method does not re-
quire additional privacy budget, as it quanti"es uncertainty only
by analyzing the private outputs of AIM. We give guarantees for
marginals in the (downward closure of the) workload, which is
exactly the set of marginals the analyst cares about. Providing
guarantees for marginals outside this set is an area for future work.

We break our analysis up into two cases: the “easy” case, where
we have access to unbiased answers for a particular marginal, and
the “hard” case, where we do not. In both cases, we identify an
estimator for a marginal whose error we can bound with high
probability. Then, we connect the error of this estimator to the error
of the synthetic data by invoking the triangle inequality. Proofs of
all statements in this section appear in the full paper [38].

The Easy Case: Supported Marginal Queries. A marginal
query r is “supported” whenever ' ⊆ '. for some 1 . In this case,
we can readily obtain an unbiased estimate of(! (&) from <. , and
analytically derive the variance of that estimate. If there aremultiple
1 satisfying the condition above, we have multiple estimates we
can use to reduce the variance. We can combine these independent
estimates to obtain a weighted average estimator :

Theorem2 (WeightedAverage Estimator). Let '1, . . . , '. and<1, . . . ,<.
be as de!ned in Algorithm 2, and let ? = {'1, . . . , '. }. For any ' ∈ ?+,
there is an (unbiased) estimator <̄! = 6! (<1, . . . ,<. ) such that:

<̄! ∼ N((! (&), 7̄2! I) where 7̄2! =
[ .∑
#=1
! ⊆!"

)!
)!"7

2
#

]−1
,

While this is not the only (or best) estimator to use [12], the sim-
plicity allows us to easily bound its error, as we show in Theorem 3.

Theorem 3 (Con"dence Bound). Let <̄! be the estimator from The-
orem 2. Then, for any @ ≥ 0, with probability at least 1 − exp (−@2):

‖(! (&) − <̄! ‖1 ≤
√
2 log 27̄!)! + @7̄!

√
2)!

Note that Theorem 3 gives a guarantee on the error of <̄! , but
we are ultimately interested in the error of &̂ . Fortunately, it easy
easy to relate the two by using the triangle inequality:

Corollary 1. Let &̂ be any synthetic dataset, and let <̄! be the esti-
mator from Theorem 2. Then with probability at least 1 − exp (−@2):$$(! (&) −(! (&̂)

$$
1 ≤

$$(! (&̂) − <̄!
$$
1 +

√
2 log 27̄!)! + @7̄!

√
2)!

The LHS is what we are interested in bounding, and we can
readily compute the RHS from the output of AIM. The RHS is a
random quantity that, with the stated probability, upper bounds
the error. When we plug in the realized values we get a concrete
numerical bound that can be interpreted as a (one-sided) con"dence

interval. In general, we expect(! (&̂) to be close to <̄! , so the error
bound for &̂ will not be that much larger than that of <̄! .5

The Hard Case: Unsupported Marginal Queries. We now
shift our attention to the hard case, providing guarantees about
the error of di!erent marginals even for unsupported marginal
queries (those not selected during execution of AIM). This problem
is signi"cantly more challenging. Our key insight is that marginal
queries not selected have relatively low error compared to the mar-
ginal queries that were selected. We can easily bound the error of
selected queries and relate that to non-selected queries by utilizing
the guarantees of the exponential mechanism. In Theorem 4 be-
low, we provide expressions that capture the uncertainty of these
marginals with respect to ,̂.−1, the iterates of AIM.

Theorem 4 (Con"dence Bound). Let 7. , !. , '. , <̃. ,;. , ,̂. be as de-
!ned in Algorithm 2, and let Δ. = max! ∈5# /! . For all ' ∈ ;. , with
probability at least 1 − A−6

2
1/2 − A−62 :

‖(! (&) −(! (,̂.−1)‖1 ≤ /−1
!

(
B! + @17.

√
)!# + @2

2Δ.
!.

)
where B! is equal to:

/!#

$$(!# (,̂.−1) − <.
$$
1︸!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!︸

estimated error on !#

+
√
2/>7.

(
/!)! −/!#)!#

)
︸!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!︸

relationship to
non-selected candidates

+ 2Δ.
!.

log ( |;. |)︸!!!!!!!!!!!!︷︷!!!!!!!!!!!!︸
uncertainty from
exponential mech.

We can readily compute B! from the output of AIM, and use it
to provide a bound on error in the form of a one-sided con"dence
interval that captures the true error with high probability. While
these error bounds are expressed with respect to ,̂.−1, they can
readily be extended to give a guarantee with respect to &̂ .

Corollary 2. Let &̂ be any synthetic dataset, and let B! be as de!ned
in Theorem 4. Then with probability at least 1 − A−6

2
1/2 − A−62 :$$(! (&) −(! (&̂)

$$
1

≤
$$(! (&̂) −(! (,̂.−1)

$$
1 +/

−1
!

(
B! + @17.

√
)!# + @2

2Δ.
!.

)
Again, the LHS is what we are interested in bounding, and we

can compute the RHS from the output of AIM. We expect ,̂.−1 to
be reasonably close to &̂ , especially when 1 is larger, so this bound
will often be comparable to the original bound on ,̂.−1.

Pu"ing it Together. We’ve provided guarantees for both sup-
ported and unsupportedmarginals. The guarantees for unsupported
marginals also apply for supported marginals, although we gener-
ally expect them to be looser. In addition, there is one guarantee
for each round of AIM. It is tempting to use the bound that provides
the smallest estimate, although unfortunately doing this invalidates
the bound. To ensure a valid bound, we must pick only one round,
and that cannot be decided based on the value of the bound. A
natural choice is to use only the last round, for three reasons: (1)
7. is smallest and !. is largest in that round, (2) the error of ,̂.
generally goes down with 1 , and (3) the distance between ,̂. and
5From prior experience, we might expect the error of '̂ to be lower than the error of
7̄! [40, 41], so we are paying for this di!erence by increasing the error bound when
we might hope to save instead. Unfortunately, this intuition does not lend itself to a
clear analysis that provides better guarantees.
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&̂ should be the smallest in the last round. However, there may
be some marginal queries which were not in the candidate set for
that round. To bound the error on these marginals, we use the last
round where that marginal query was in the candidate set.

6 EXPERIMENTS
In this section we empirically evaluate AIM, comparing it to a
collection of state-of-the-art mechanisms and baseline mechanisms
for a variety of workloads, datasets, and privacy levels.

6.1 Experimental Setup
Datasets. Our evaluation includes datasets with varying size

and dimensionality. We describe our exact pre-processing scheme
in the full paper [38], and summarize the pre-processed datasets
and their characteristics in the table below.

Table 3: Summary of datasets used in the experiments.

Dataset Records Dimensions Min/Max Total
Domains Domain Size

adult [28] 48842 15 2–42 4 × 1016
salary [23] 135727 9 3–501 1 × 1013
msnbc [6] 989818 16 18 1 × 1020
fire [43] 305119 15 2–46 4 × 1015
nltcs [34] 21574 16 2 7 × 104
titanic [17] 1304 9 2–91 9 × 107

Workloads. We consider 3 workloads for each dataset, all-
3way, target, and skewed. Each workload contains a collection of
3-way marginal queries. The all-3way workload contains queries
for all 3-way marginals. The target workload contains queries
for all 3-way marginals involving some speci"ed target attribute.
For the adult and titanic datasets, these are the income>50K
attribute and the Survived attribute, as those correspond to the
attributes we are trying to predict for those datasets. For the other
datasets, the target attribute is chosen uniformly at random. The
skewed workload contains a collection of 3-way marginal queries
biased towards certain attributes and attribute combinations. In par-
ticular, each attribute is assigned a weight sampled from a squared
exponential distribution. 256 triples of attributes are sampled with
probability proportional to the product of their weights. This results
in workloads where certain attributes appear far more frequently
than others, and is intended to capture the situation where analysts
focus on a small number of interesting attributes. In Appendix K,
we provide results on a fourth workload, all-2way as well. All
randomness in the construction of the workload was done with a
"xed random seed, to ensure that the workloads remain the same
across executions of di!erent mechanisms and parameter settings.

Mechanisms. We compare against both workload-agnostic and
workload-awaremechanisms in this section. Theworkload-agnostic
mechanisms we consider are PrivBayes+PGM, MST, PrivMRF. The
workload-aware mechanisms we consider are MWEM+PGM, RAP,
GEM, and AIM. We set the hyper-parameters of every mechanism
to default values available in their open source implementations.
While these default hyper-parameters may be suboptimal, we con-
ducted sensitivity experiments in Appendix I to evaluate the impact

of hyper-parameters on the performance of competing mechanisms,
and found that the improvement in utility from optimizing hyper-
parameters is outweighed by the cost to privacy needed to run
an appropriate DP hyper-parameter selection mechanism. We also
consider baseline mechanisms: Independent and Gaussian. The for-
mer measures all 1-way marginals using the Gaussian mechanism,
and generates synthetic data using an independence assumption.
The latter answers all queries in the workload using the Gaussian
mechanism (using the optimal privacy budget allocation described
in [57]). Note that this mechanism does not generate synthetic data,
only query answers.

Privacy Budgets. We consider a wide range of privacy param-
eters, varying ! ∈ [0.01, 100.0] and setting " = 10−9. The most
practical regime is ! ∈ [0.1, 10.0], but mechanism behavior at the
extremes can be enlightening so we include them as well.

Evaluation. For each dataset, workload, and ! , we run each
mechanism for 5 trials, and measure the workload error from De"-
nition 2. We report the average workload error across the "ve trials,
along with error bars corresponding to the minimum and maximum
workload error observed across the "ve trials. In Appendix J, we
evaluate error using 42 and 4inf error metrics as well.

Runtime Environment. We ran most experiments on a single
core of a compute cluster with a 4 GB memory limit and a 24 hour
time limit.6 These resources were not su$cient to run PrivMRF or
RAP, so we utilized di!erent machines to run those mechanisms.
PrivMRF requires a GPU to run, so we used one node a di!erent
compute cluster, which has a Nvidia GeForce RTX 2080 Ti GPU. RAP
required signi"cantmemory resources, so we ran those experiments
on a machine with 16 cores and 64 GB of RAM.

6.2 Experimental Results
Experimental results are shown in Figure 1. Results for the titanic
dataset are omitted due to space. Workload-aware mechanisms are
shown by solid lines, while workload-agnostic mechanisms are
shown with dotted lines. Some points are missing from the plots,
indicating a mechanism failed to complete in under the 24 hour
time limit for that experimental setting. From these plots, we make
the following observations:

all-3wayWorkload.
(1) AIM consistently achieves competitiveworkload error, across

all datasets and privacy regimes considered. On average,
across all six datasets and nine privacy parameters, AIM
improved over PrivMRF by a factor of 1.3×,MST by a factor
of 2.6×,MWEM+PGM by a factor of 1.5×, PrivBayes+PGM
by a factor 2.2×, RAP by a factor 5.6×, and GEM by a fac-
tor 2.0×. In the most extreme cases, AIM improved over
PrivMRF by a factor 3.6×,MST by a factor 118×,MWEM+PGM
by a factor 16×, PrivBayes+PGM by a factor 14.7×, RAP by
a factor 47.1×, and GEM by a factor 11.7×.

(2) Prior to AIM, PrivMRF was consistently the best perform-
ing mechanism, even outperforming all workload-aware
mechanisms. The all-3way workload is one we expect
workload agnostic mechanisms like PrivMRF to perform

6These experiments usually completed in well under the time limit.
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Figure 1: Workload error (y-axis) vs Epsilon (x-axis) of competing mechanisms on the all-3way (left), target (center),
and skewed (right) workloads for " = 10−9.

����



well on, so it is interesting, but not surprising that it out-
performs workload-aware mechanisms in this setting.

(3) Prior to AIM, the best workload-aware mechanism varied
for di!erent datasets and privacy levels:MWEM+PGMwas
best in 72% of settings, GEM was best in 28% of settings
7 , and RAP was best in 0% of settings. Including AIM,
we observe that it is best in 76% of settings, followed by
MWEM+PGM in 18% of settings and GEM in 5% of settings.
Additionally, in the most interesting regime for practical
deployment (! ≥ 1.0), AIM is best in 100% of settings.

targetWorkload.
(1) All three high-level "ndings from the previous section are

supported by these "gures as well.
(2) Somewhat surprisingly, PrivMRF outperforms all workload-

awaremechanisms prior toAIM on this workload. This is an
impressive accomplishment for PrivMRF, and clearly high-
lights the suboptimality of existing workload-aware mech-
anisms like MWEM+PGM, GEM, and RAP. Even though
PrivMRF is not workload-aware, it is clear from their paper
that every detail of the mechanism was carefully thought
out to make the mechanism work well in practice, which
explains it’s impressive performance. While AIM did out-
perform PrivMRF again, the relative performance did not
increase by a meaningful margin — o!ering a 1.4× improve-
ment on average and a 4.6× improvement in the best case.

skewedWorkload.
(1) All four high-level "ndings from the previous sections are

generally supported by these "gures as well, with the fol-
lowing interesting exception:

(2) PrivMRF did not score well on salary, and while it was
still generally the second best mechanism on the other
datasets (again out-performing the workload-aware mech-
anisms in many cases), the improvement o!ered by AIM
over PrivMRF is much larger for this workload, averaging
a 2× improvement with up to a 5.7× improvement in the
best case. We suspect for this setting, workload-awareness
is essential to achieve strong performance.

6.3 Ablations
In this section, we systematically evaluate the components of AIM,
by making modi"cations to the base mechanism and measuring
their impact on workload error. Speci"cally, the elements we study
are enumerated in Figure 2b, and are labeled by B1, B2, and B3 for
the basic elements of a good mechanism described in Section 3.2,
A1, A2, and A3 for the new elements of AIM described in Section 4,
and O1 for an additional relevent element. For each element of AIM
listed below, we run AIM with and without that element across
the entire set of experimental con"gurations we considered in this
work, i.e., 9 privacy budgets × 6 datasets × 3 workloads × 5 trials.
For each of the 162 (privacy budget, dataset, workload) triples, we
have 5 measurements which we use to compute two things: (1) the
ratio of average workload errors with and without the speci"ed
7We compare against a variant of GEM that selects an entire marginal query in each
round. In results not shown, we also evaluated the variant of that measures a single
counting query, and found that this variant performs signi"cantly worse.

element, and (2) a p-value from a one sided t-test. The former
quantity provides a measure of practical signi!cance, while the
latter quantity provides a measure of statistical signi!cance.

Figure 2a shows the distribution of error ratios for each element
across experimental settings, visualized as a box-and-whisker plot;
ratios above 1 indicate the element of AIM reduced error. Aggre-
gating the error ratios via geometric mean reveals the three basic
elements improved error by a factor 1.18 on average for Gaussian
noise, 1.13 for unbounded DP, and 1.08 for a 10/90 budget split. The
new elements of AIM improved error by a factor of 1.03 for ini-
tialization, 1.37 for the new selection critera, and 1.48 for adaptive
rounds and budget split. Finally, using Private-PGM in the generate
step, rather than an alternative known as relaxed projection [3],
improved error by a factor of 2.36 on average. Among these ele-
ments, the improvement o!ered by using adaptive rounds + budget
split, as well as Private-PGM, showed a clear depeendence on ! ,
with improvements growing with increasing ! . The other elements
showed no clear dependence on ! .

Aggregating the 162 p-values via Stou!er’s Z-score method [53],
we see that the combined p-value for every element tested ranges
from 10−22 for A1 (initialization) all the way to 10−166 for A3 (adap-
tive rounds + budget split). Thus, it is clear that all elements have a
positive e!ect on the performance of AIM in a statistical sense.

In addition to the algorithmic elements of AIM we evaluate in
this section, we conducted experiments varying the model capacity
parameter of AIM in Appendix G. Unsurprisingly, the utility of
AIM increases with larger model capacities, at the cost of increased
runtime.

6.4 Uncertainty Quanti!cation
In this section, we demonstrate that our expressions for uncertainty
quanti"cation correctly bound the error, and evaluate how tight
the bound is. For this experiment, we ran AIM on the fire dataset
with the all-3way workload at ! = 10. In Figure 6 (c), we plot
the true error of AIM on each marginal in the workload against
the error bound predicted by our expressions. We set @ = 1.7 in
Corollary 1, and @1 = 2.7, @2 = 3.7 in Corollary 2, which provides
95% con"dence bounds. Our main "ndings are listed below:

(1) For all marginals in the (downward closure of the) workload,
the error bound is always greater than true error. This
con"rms the validity of the bound, and suggests they are
safe to use in practice. Note that even if some errors were
above the bounds, that would not be inconsistent with our
guarantee, as at a 95% con"dence level, the bound could
fail to hold 5% of the time. The fact that it doesn’t suggests
there is some looseness in the bound.

(2) The true errors and the error bounds vary considerably,
ranging from 10−4 all the way up to and beyond 1. In
general, the supported marginals have both lower errors,
and lower error bounds than the unsupported marginals,
which is not surprising. The error bounds are also tighter
for the supported marginals. The median ratio between er-
ror bound and observed error is 4.4 for supported marginals
and 8.3 for unsupported marginals. Intuitively, this makes
sense because we know selected marginals should have
higher error than non-selected marginals, but the error
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(a) Practical Signi!cance

Variant Element of AIM Alternative
B1 Gaussian Noise Laplace Noise
B2 Unbounded DP Bounded DP
B3 10/90 budget split 50/50 budget split
A1 Independent initialization Uniform initialization
A2 New selection criteria + MWEM+PGM selection +

candidate set criteria + candidate set
A3 Adaptive rounds + $ rounds + "xed

budget split budget per round
O1 Private-PGM Relaxed Projection

(b) Element codes and descriptions (c) True Error vs. Error Bound

Figure 2: (a) Box plot of the ratio of errors with and without using an element of AIM across all experimental settings. (b)
Table describing elements of AIM removed and the alternatives used in this ablation study. (c) Accuracy of the uncertainty
quanti!cation estimates.

of the non-selected marginal can be far below that of the
selected marginal (and hence the bound), which explains
the larger gap between the actual error and our predicted
bound.

7 DISCUSSION AND LIMITATIONS
In this paper, we studied the problem of di!erentially private syn-
thetic data generation, surveying the "eld and identifying strengths
and weaknesses of prior work. While much of the prior work is
conceptually similar, details and speci"c design decisions di!er
from mechanism to mechanism, and these small di!erences can
lead to large performance di!erences in practice. In practical de-
ployments of di!erential privacy, these details matter to obtain
the best privacy-utility trade-o!. In this work, we propose AIM,
a new mechanism where every detail is carefully thought out to
maximize utility in practice. These details allowed AIM to consis-
tently and signi"cantly outperform competitors in our empirical
evaluation. In addition, our uncertainty quanti"cation guarantees
enables analysts to understand which queries the synthetic data
preserves well, and which it does not, which is important to know
when performing downstream analyses on synthetic data. While
our work signi"cantly improves over prior work, the problem of
di!erentially private synthetic data remains far from solved, and
there are a number of promising avenues for future work in this
space. We enumerate some of the limitations of AIM below, and
identify potential future research directions.

Handling More General Workloads. In this work, we focused
on weighted marginal query workloads. Designing mechanisms
that work for the more general class of linear queries (perhaps
de"ned over the low-dimensional marginals) remains an important
open problem.While the prior work,MWEM+PGM, RAP, andGEM
can handle workloads of this form, they achieve this by selecting a
single counting query in each round, rather than a full marginal
query, and thus there is likely signi"cant room for improvement.
Beyond linear query workloads, other workloads of interest include
more abstract objectives like machine learning e$cacy and other
non-linear query workloads. These metrics have been used to eval-
uate the quality of workload-agnostic synthetic data mechanisms,
but have not been provided as input to the mechanisms themselves.

Handling Mixed Data Types. In this work, we assumed the
input data was discrete, and each attribute had a "nite domain with

a reasonably small number of possible values. Data with numerical
attributes must be appropriately discretized before running AIM.
The quality of the discretization could have a signi"cant impact on
the quality of the generated synthetic data. Designing mechanisms
that appropriately handle mixed (categorical and numerical) data
type is an important problem.

Utilizing Public Data. A promising avenue for future research
is to design synthetic data mechanisms that incorporate public data
in a principled way. There are many places in which public data
can be naturally incorporated into AIM, and exploring these ideas
is a promising way to boost the utility of AIM in real world settings
where public data is available. Early work on this problem includes
[32, 33, 37], but it certainly warrants additional research.

Uncertainty Quanti/cation Guarantees. In this paper, we
initiated the study of formal and well-calibrated guarantees about
the error of the synthetic data on di!erent marginal queries. These
error estimates can be used to determine to what degree the syn-
thetic data should be trusted. However, our guarantees only pertain
to the 41 error of each marginal, and we provide no guarantees
on the error in each individual cell of the marginals. These "ner-
grained guarantees could be useful in some applications, and is an
interesting technical challenge for future research.

SmallWorkloads. In our experimental evaluation, as in much of
the current literature, we focus onworkloads with a large number of
marginal queries where privacy and scalability constraints prevent
measuring them all. For smaller workloads, simpler techniques like
Gaussian+PGM may achieve better performance than AIM, since
it does not have to devote budget to the select step.

High-cardinality a"ributes. The scalability of AIM, and more
generally any method that uses Private-PGM depends on the do-
main of attributes in the dataset. The datasets we considered in
Section 6 were preprocessed to have reasonable domain sizes (most
attributes had a domain size ≤ 50). Datasets with high-cardinality
attributes often have sparse marginals that may deserve special
treatment not covered in this paper.
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