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Abstract—Robotic manipulation is inherently continuous, but
typically has an underlying discrete structure, such as if an object
is grasped. Many problems like these are multi-modal, such as
pick-and-place tasks where every object grasp and placement
is a mode. Multi-modal problems require finding a sequence of
transitions between modes—for example, a particular sequence
of object picks and placements. However, many multi-modal
planners fail to scale when motion planning is difficult (e.g.,
in clutter) or the task has a long horizon (e.g., rearrangement).
This work presents solutions for multi-modal scalability in both
these areas. For motion planning, we present an experience-based
planning framework ALEF which reuses experience from similar
modes both online and from training data. For task satisfaction,
we present a layered planning approach that uses a discrete
lead to bias search towards useful mode transitions, informed
by weights over mode transitions. Together, these contributions
enable multi-modal planners to tackle complex manipulation
tasks that were previously infeasible or inefficient, and provide
significant improvements in scenes with high-dimensional robots.

I. INTRODUCTION

Robotic systems are increasingly challenged with complex
manipulation tasks [1]. For example, systems with many
degrees-of-freedom (DOF) such as mobile manipulators and
humanoids will soon be deployed in cluttered kitchens, ware-
houses, and onboard space stations, such as with NASA’s
Robonaut 2 [2], [3]. Many manipulation problems such as
these can be modeled as multi-modal problems [4], a general
representation that encapsulates many domains including pick-
and-place manipulation.

Multi-modal problems are defined by a finite number of
high-level mode families each with a continuous set of modes
that are parameterized by continuous values. In pick-and-
place domains, an example mode family is the set of object
placements, and a mode would be a placement of an object at
a specific x, y coordinate on a table. Each mode imposes a set
of geometric constraints (specifically manifold constraints) on
the system that must be respected in order for motion to be
feasible (e.g., the cup must always be in the hand of the robot
when grasped). The goal or fask of a multi-modal planner is
to reach a desired state in a set of modes of the system, which
might take many mode transitions to reach.

Many multi-modal motion planners have been proposed to
address high-dimensional problems [4]-[6]. However, these
methods are limited to specific domains, requiring domain-
specific implementation, and suffer from two key challenges.
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First, for high-DOF systems in clutter, motion planning that
respects mode constraints and avoids obstacles is difficult,
time-consuming, and often infeasible. Second, for long-horizon
tasks, it is difficult to find a feasible sequence of mode
transitions among the exponential possibilities.

To improve motion planning, experience-based methods [7]—
[9] use information from prior problems to expedite search
in similar problems. However, these methods are designed
for changing scene geometry, not modes. During multi-modal
planning, many modes are explored, each imposing different
constraints; solutions in one mode might not apply to others
in the same family. To improve task search, some planners use
a layered approach [10]-[12]; a high-level planner informs
a low-level planner what transitions to attempt. However, it
is challenging to design useful task-relevant abstractions for
effective search over mode transitions in general domains.

This work addresses these challenges with two contributions:
a novel experience-based framework named ALEF (Augmented
Leafs with Experience on Foliations) and a general layered
planner that proposes a lead path of mode transitions to guide
search. These contributions enable a multi-modal planner
to learn online during planning and using prior experience,
improving motion planning and task satisfaction performance.
In addition, our approach does not required specialized sam-
plers or planners as we use a general formulation of modes
as manifold constraints, leveraging a manifold-constrained
planning framework [13].

Our experience-based framework ALEF builds a sparse
roadmap within a novel manifold-constrained configuration
space augmented with the mode family parameterization. Paths
from this sparse roadmap are used to bias a sampling-based
planner with valid samples directed by a query start and
goal configuration. We show that ALEF improves planning
performance dramatically only given a few examples and can
be run within a multi-modal planner.

Second, our layered planning approach, inspired by
SYCLOP [14], provides the multi-modal planner a candidate
leads—heuristic sequences of mode families and parameters.
Informed by a novel weighting scheme over the parameters of
the mode family, the lead is generated by finding the lowest-
weighted sequence of transitions to reach a desired mode.
These weights are updated online by motion planning success
or failure. We demonstrate on a variety of complex scenes in
2D and 3D that significant improvements are tied to our lead
and weighting scheme.

This article extends initial work [15], [16] with expanded
definitions (Sec. III-A1), algorithmic details (Sec. VI-A,
Sec. VI-D), and contributions required for experiments in 3D
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workspaces. To address the complexities of 3D manipulation
tasks, we replace our prior explicit encoding of mode transition
graphs with an improved, implicitly-defined transition graph
(Sec. V-C1), as also factor our redundant configuration space
variables by using explicit constraints (Sec. V-B2). These
improvements enable our new experiments on 3D robots—
without these improvements, the baseline approach fails to
solve any of the new problems. These experiments include a
complex pick-and-place domain with an 8-DOF Fetch robot
(Sec. VII-B4) and a handrail climbing domain with NASA’s
21-DOF Robonaut 2 (Sec. VII-B2).

II. RELATED WORK

Manipulation planning is a core problem in robotics [1],
[17] and has been studied for decades [18]-[21]. We focus on
multi-modal manipulation planners that use sampling-based
motion planning. Sampling-based motion planning methods
are probabilistically-complete methods able to scale to high-
dimensional problems [22]-[24]. In Sec. II-A, we discuss
techniques for solving motion planning problems and related
methods for reusing experience. We discuss the multi-modal
planning problem and related methods in Sec. II-B.

A. Experience and Motion Planning

Planning in a single mode requires planning under con-
straints; we focus on geometric planning problems with
manifold constraints. There are many approaches for planning
under manifold constraints, e.g., trajectory optimization [25],
[26] or sampling-based [27]—a survey of sampling-based
techniques is given in [28]. For this paper, we use the
constrained planning framework presented in [13].

To improve efficiency, many sampling-based methods adapt
search online with information gathered during the same
query. For example, the authors of [29] weight different
samplers based on their performance. Other methods use
collision checking to adapt sampling [30], improve solution
quality [31], and adapt the local planner [32]. While our
proposed framework ALEF is itself not an online method,
within a multi-modal planner the framework can be trained
online to improve future motion planning queries.

Some methods store experience for later retrieval. Experi-
ence can be retrieved based on start and goal similarity [7],
[33] or workspace similarity [8], [9]. While these methods can
be used within a multi-modal planner, they are designed for
unconstrained problems, and they cannot transfer experience
across mode constraints. The method most similar ALEF
is THUNDER [7], which also stores experience in a sparse
roadmap. Besides not considering constraints, THUNDER is
designed around a retrieve-and-repair paradigm which assumes
that recovered experience will be “close” to a solution. This
is not the case for ALEF, which uses experience as samples to
guide search under constraints, as retrieved paths are unlikely
to be able to be used wholesale.

In the context of manipulation planning, learning has been
used to infer which action parameterizations are likely to be
valid, both offline [34], [35] and online (such as our guiding
leads). Other techniques have used demonstrations to infer

which constraints are needed in order to perform a task [36].
However, these methods are limited to inferring “good” modes
and do not improve motion planning. Most similar to ALEF,
the authors of [37] bias heuristic search from demonstrations
to solve parameterized constrained problems. Our framework
learns from prior queries within a mode family, either in a
multi-modal planner or standalone, to improve the performance
of motion planning.

B. Multi-Modal and Manipulation Planning

There are a wide variety of approaches to solving multi-
modal planning problems—beyond those covered in this
related work, [38] contains a survey of related techniques.

Frequently, planners use layered planning: a combination of
planners that inform each others’ searches. Layered planning
is a heuristic to speed-up search by solving the problem
at different levels of abstraction [14], [39]. One common
abstraction is to introduce a symbolic or discrete representation,
e.g., PDDL [40] or workspace discretizations [14].

A common abstraction used is a mode graph [18]—
a discrete structure encoding possible transitions between
modes. For problems with finite modes, mode graphs have
been successfully applied to high-dimensional problems [41]—
[43] and dynamic environments [44]. However, manipulation
problems have continuous modes, e.g., an object can be
placed anywhere on the plane of the table. For problems
with continuous modes, transition graphs [4] capture what
transitions between mode families, i.e., which “classes” of
modes are possible. We use a similar abstraction to capture
allowable transitions (see Sec. V-C).

Many planners discretize continuous modes, but if the
discretization is not fine enough a plan will not be found
(e.g, [10], [40], [45]). With an offline discretization, [10]
used a “fuzzy” PRM over the mode graph to determine what
transitions to take, with edge weights proportional to time spent
solving single-mode planning problems, biasing search towards
“easier” planning problems. Manipulation RRT [42], [43] also
weights transitions between modes online, but is limited to a
finite set of modes. Similarly, online adaptation has been used
to bias search, e.g., approximating collisions [30], [46]. Our
lead generation approach uses similar ideas for biasing search
but for continuous modes (see Sec. VI-B).

Approaches similar to ours use online discretization via sam-
pling. Manipulation PRM [11], [47], [48] and ASYMOV [12],
[49], [50] build a PRM over the transition manifold. Other
planners [4], [51] build a tree of transitions in the continuous
mode space, similar to how sampling-based planners discretize
a continuous space. In the case of navigation among movable
obstacles, a probabilistically-complete tree-based planner has
been proposed [51]. Task and Motion Planning approaches
(TAMP) also commonly use online sampling, e.g., [52], [53].
These works require specialized samplers or only work for
finite sets of modes.

Our work draws inspiration from [4], a probabilistically-
complete tree-based planner for general multi-modal problems.
“Utility tables” are used by [4] to capture valuable transitions in
multi-modal search, but these are computed offline and require
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specialized domain knowledge. Our lead generation estimates
the value of transitions online (see Sec. VI-C). DARRTH [5],
[54] is a multi-modal planner that takes a layered planning
approach, but uses a simplified continuous planning domain
rather than a discrete layer. [6], [55] propose asymptotically
optimal multi-modal planners. These approaches use special-
ized samplers for transitioning between modes. Similar to our
approach, [56] uses general transition samplers and factors
the configuration based on relevant modes, but does not guide
search beyond immediate transitions.

Our lead generation takes inspiration from SYCLOP, a
general framework which uses a “lead” path through a dis-
cretization of the workspace [14]. In SYCLOP, planning is
informed of promising avenues of exploration via discrete
search, while discrete search is informed by feedback from
local planning. We use leads through possible mode transitions
to inform planning; successes and failures in single-mode
planning inform the discrete layer. Notably, our framework
and other manipulation planners based on SYCLOP avoid
the explicit backtracking found in search-based TAMP frame-
works [57] by considering expansion from any point on the
search tree. Note we do not address tasks with temporal goals,
e.g., [58].

III. SINGLE-MODE MOTION PLANNING

In this work, we consider manipulation planning problems
that are multi-modal. These are composed of a finite set of
mode families, each containing a continuous infinity of modes,
parameterized by some co-parameter (as in [4]). Before we
can discuss the structure of multi-modal problems, we first
discuss the single-mode planning problem, which involves
searching for a feasible motion plan in the presence of a mode
constraint. Single-mode planning problems are sub-problems in
the multi-modal problem—solving them effectively is essential
to multi-modal planning performance. Modes are modeled by
manifold constraints, which are discussed in Sec. I1I-A. Mode
families are modeled as foliated manifolds, which are discussed
in Sec. III-B. For further information on these concepts from
differential geometry, see [59], [60].

A. Manifold Constraints as Modes

In the unconstrained geometric motion planning problem,
we are interested in finding a collision-free path o from a
configuration gy, € Q in a configuration space Q to some
region of interest Qgou C Q, Where o : [0,1] — Qfee such
that 0(0) = gstar, (1) € Qgoal and o () is collision-free for
all t. However, we consider solving motion planning problems
within a mode, which imposes constraints on a robot’s motion.
We consider modes defined by manifold constraints, here
shortened to “constraints.”

Consider a robot system in a mode . A mode ¢ is defined
by a constraint function F' €. R* — R 1< k¢ < n) which
is C2-smooth and is adhered to when F'¢(q) = 0. Planning in
a mode requires finding a path in the mode manifold M¢, an
(n — k%)-dimensional smooth submanifold of Q (Fig. la):

ME={qe Q| Fi(qg) =0}.
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Fig. 1. In a, the lower-dimensional manifold M& in a configuration space
Q is shown. A valid path in mode & lies on the surface of this manifold. b
shows a foliation F= for a mode family =, with a transverse manifold Xz=.
Leaves are shown along the transverse, including £, which is determined
by the configuration g. Although shown here as planes, leaf manifolds are
not necessarily Euclidean.

Algorithm 1 P, a Projection Operator
Input ¢, an initial configuration to project from
Output P(q) € M, the projected state configuration.
On failure, “false” is returned.

1: procedure P(q)

2 x < F(q)

3 while ||z||, > € and iterations remain do
4: qgq—J@te

5 x <+ F(q)

6 return ¢ if ||z, < e else false

Thus, the single-mode motion planning problem is finding
a path from a point gg.x € M to some region of interest
Qgoal C M such that the path is collision-free and satisfies
mode constraints.

1) Solving for Constraints: Essential for planning under
manifold constraints is finding constraint satisfying configu-
rations. As F¢€ is a C2-smooth function, the first derivative
can be taken at a configuration g € Q, JE: 0 — RES xn
(the Jacobian). J¢(q) is of full rank when Fé(q) = O,
i.e., the gradients of the constraint functions are not linearly
dependent at ¢q. To find constraint adhering configurations,
we use a projection operator. For manifold constraints, the
basic gradient descent method presented in Alg. 1 can be
used. Note that this is a basic algorithm for gradient descent,
see [61] for more on solving non-linear equations such as
these. This projection operator is used in both projection-
based sampling-based planning for single modes as well as for
sampling constraint satisfying configurations for transitions
between modes (see Sec. V-A). In general—and especially
in higher dimensions or scenarios with many constraints
(e.g., Sec. V-B1)—the projection operator may fail to converge
for many initial configurations. While this does not affect
completeness, as sampling eventually finds a valid initial
configuration, this does affect the performance of methods
that use projection-based sampling. See [13], [28] for more
details on planning under manifold constraints and projection-
based methods.
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B. Mode Families as Foliated Manifolds

We  consider multi-modal problems  which can
be decomposed into a set of parameterized mode
families—intuitively, these are the “classes” of modes.
For example, consider the “monkey”
robot to the right, which is grasping
the green handrail. Here, modes corre-
spond to all grasps of the handrail, the
parameter in this case being the one-
dimensional coordinate along the bar.
The set of all these grasps comprises 0 Transverse
the mode family—there is a mode Fig. 2. “Monkey” robot.
family for grasping the handrail with each limb. For a system
considering pick-and-place manipulation (e.g., the Fetch robot
in Fig. 15), modes could correspond to all placements of an
object on a table: the object could be placed anywhere on the
table, the parameter in this case being the two-dimensional
coordinate of the objects on the table, with the set of all
placements composing the mode family.

Consider =, the set of all modes, which can be partitioned
into m disjoint mode families =1, ...,=,,, each of which
defines a foliation.

N

DEFINITION III.1: Foliation [59]

An n-dimensional manifold M is a foliation if there is
a smooth fiber bundle Fyy = (X, L, 7). Faq contains a
transverse manifold X of dimension k, a set of disjoint,
connected (n—k)-dimensional leaf manifolds L, forall x € X,
and a smooth surjective bundle projection m : M — X. The
union of all leaves (J, ¢ x £y = M.

An example of a foliation is shown in Fig. 1b. A mode
family is a foliation following their definition by a constraint
function F=i and co-parameters x € X%i, where X=i is
the transverse manifold of dimension kz,. Furthermore, we
assume the co-parameters are explicitly parameterized, e.g.,
with real numbers X=¢ C R¥=:, such as the position along the
bar grasped in Fig. 2. These co-parameters are essential to the
efficiency of our methods—they enable us to succinctly encode
relevant geometric state of the problem. This fact is leveraged
by our methods, discussed in Sec. IV-A for the augmented
space and in Sec. VI-B for weighting transitions.

A mode £ = (Z;,x) in a mode family is defined by its
constraint function and a specific co-parameter x, F=(q) = x,
e.g., a specific grasp of the handrail at a position . This defines
the leaf manifold £, :

ME=L,={qe Q| F5(q) = x}.

The bundle projection of the foliation 7 allows us to map
from a configuration ¢ that lies in the foliation manifold (that
is, satisfies some mode in the mode family =;) to the co-
parameter y of the mode it satisfies. To ground this in the
example, the bundle projection gives the coordinate along
the handrail grapsed by the robot, for any configuration that
grasps the handrail. With the guarantees of continuity afforded
by a foliation, we have guarantees that the mode constraints
between two modes ‘“close by” (in parameter space) will be
“similar.”” Modeling mode families as foliations puts manifold

TABLE I
CONCEPTS AND NOTATION

Concept H Function Representation | Implicit Manifold
Mode Constraint Function Leaf/Mode Manifold
£=(Eix) | FE (@ =xF =0 | £Ly=M"
Mode Family Foliation Constraint Foliation
E; F=i Fz, = (X5, L,7=,)

constraints and the definition of modes under one umbrella,
enabling use of the general constrained planning framework
presented in [13]. The relationship between the concepts of
modes and mode families and their modeling as manifolds is
summarized in Table I.

IV. ACCELERATING SINGLE-MODE PLANNING

We present the ALEF framework (Augmented Leafs with
Experience on Foliations) for experience-based multi-modal
planning under manifold constraints. ALEF learns from valid
paths from solving single-mode planning problems and applies
this experience to problems constrained by modes within the
same mode family, improving the performance of single-mode
planning. An overview of ALEF is given in Fig. 3.

From valid paths (Fig. 4a), a sparse roadmap is constructed
in an augmented foliated space (AFS) (Fig. 4b). An AFS is a
manifold-constrained configuration space with respect to the
foliation constraint. Configurations in the AFS are augmented
to include their co-parameters, i.e., what mode they are in.
The AFS and the sparse roadmap are explained in Sec. [V-A
and Sec. I'V-C.

Upon a new planning query, ALEF uses experience to bias a
sampling-based algorithm. Given a start and goal configuration,
nearby vertices within the sparse roadmap are retrieved. If
a valid path exists in the roadmap between the retrieved
start and goal vertices (Fig. 4c), the path is projected onto
the current query’s leaf manifold using a projection operator
(shown in Fig. 4d, see Sec. III-A1). Configurations from this
path that are valid are used as samples. Experience retrieval
is discussed in Sec. IV-D.

A. Augmented Foliated Space (AFS)

Recall from Sec. III-B that we model mode families as
foliated manifolds with constraint functions F'=. Foliations are
parameterized by a transverse manifold X, where each y € X
corresponds to a different mode. To relate configurations across
different modes, we introduce a composite space Q X X,
where each configuration is indexed with the parameters of the
mode it satisfies. This can be seen in Fig. 3c, which visualizes
configurations only in Q, and Fig. 3d, which visualizes the
same configurations in Q x X.

However, not all configurations satisfy the foliation con-
straint. The augmented foliated space (AFS) is a submanifold
within the composite space Q@ x X. The AFS manifold is
formally defined as:

={(g.x) € Qx X | F5(q) = x}.

(1

M
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a) b)

Fig. 3. Our experience-based constrained planning framework, ALEF, applied to a simple foliation with a two-link planar manipulator. a) The manipulator
has two continuous joints «, 3, ranging from (—, 7|. The foliation specifies a set of line constraints on the position end-effector, with the choice of line
parameterized by values from X, which determines the height of the line (a mode family). An example line at x € X is shown in pink. The set of these lines
forms a plane—the parameter of each line is visualized with a color gradient. Following the line imposes a manifold constraint on the system (a mode). b)
Visualization of the set of manifold constraints defined by this foliation in the robot’s configuration space. The manifold constraint corresponding to x (white
line) is highlighted in pink, indicated by arrow 1. The color gradient is shared with a)—the continuum of colors in the configuration space correspond to the
different constraints (indicated by arrow 2). ¢) The sparse roadmap generated by ALEF. The color gradient is shared with b), indicating each configuration’s
parameters x. Although vertices in the roadmap satisfy different constraints (modes), our method makes connections between them. d) The manifold constraint
corresponding to X intersecting our sparse roadmap. The parameters X are another dimension (see Sec. IV-A). Edges between vertices traverse through this

manifold, showing related experience our method can apply.

We leverage the general manifold-constrained sampling-
based planning framework of [13] in order to model the AFS.
Through the transverse dimension, connections can be made
between configurations that satisfy different leaf constraints,
since the AFS manifold is a superset of all leaf manifolds
(Fig. 4b). The connections are such that all intermediate states
satisfy the aforementioned foliation constraint.

B. Metrics in the AFS

As sampling-based methods require a distance metric to
explore and find nearby configurations, we define a weighted
metric for the AFS. This metric uses a weighted sum of
the metrics of the configuration space and the transverse
space. By default, we use the Euclidean metric for the
transverse space (although any metric space is admittable). This
weight relates to the relative importance of the co-parameters
versus the configuration. For example, consider the “monkey”
robot (Fig. 2): there are many configurations that are close
in configuration space but possibly distant in terms of co-
parameters. Simply shifting the pose of the base along the
axis of the bar will change parameter values but not cause
large configuration space distances. This can be visualized in
Fig. 3d as “stretching” the X dimension. In our experiments,
we heuristically weight the co-parameter three times more than
the configuration space, which gave good performance.

C. Sparse Roadmap in the AFS

In this work, we represent experiences as valid paths
gathered from leaf-constrained motion planning problems.
Information from these paths is stored within a sparse roadmap
that resides in the augmented foliated space. In particular,
we employ SPARS2 [62], a method that does not require the
maintenance of a dense roadmap. SPARS2 has guarantees of
asymptotic near-optimality—as the roadmap “fills out” the
probability of inserting a new configuration goes to zero, and
paths within the roadmap are within some bound of optimal. A
sparse roadmap has the benefit of finite memory requirements;
the small size of the sparse roadmap, as compared to a dense

roadmap, enables fast search times on new retrieval queries
(Sec. IV-D). Note that we use SPARS2 within the manifold-
constrained AFS. We conjecture that the theoretical properties
of SPARS2 hold in this case given theoretical results from [13].

As our sparse roadmap is built in the AFS, edges can
be added between nodes from different leaves if the edge
satisfies the foliation constraint and is collision-free (Fig. 4c).
In the example shown in Fig. 3, nodes of the roadmap that
lie on different lines are connected by edges that correspond
to the motion of the manipulator that moves between these
lines. Valid connections made in the AFS are indicative of
potentially valid motion on all leaves in-between, due to
continuity between the leaves of the foliated manifold. An
example roadmap is shown in Fig. 3c. Vertices and edges are
colored according to their co-parameter. An example of this
continuity can be seen in Fig. 3d, where a leaf manifold is
shown intersecting the roadmap in the AFS.

The idea of using SPARS2 as a database to store and retrieve
experiences was first introduced in the THUNDER algorithm [7].
However, inserting, retrieving, and reusing paths for SPARS2
in the AFS demands different methods as compared to the
standard unconstrained roadmap used in [7]. In particular, the
nature of the foliation constraint leads to far less exact reuse
of configurations from the roadmap—configurations retrieved
must be adjusted to the current constraint, and retrieved paths
cannot be used as a whole. This motivates the following more
efficient (but less complete) insertion heuristic into the roadmap
as well as the sampling-based retrieval detailed in Sec. IV-D.

As noted by [7], a naive insertion of the waypoints in
sequential order will most likely result in the vertices of the
path being disconnected within the roadmap. This stems from
the way the SPARS2 chooses which vertices to connect in order
to maintain sparseness. Connections between disconnected
components of the roadmap are only attempted when a new
vertex acts as a connectivity node, meaning it is “visible”
from two vertices that do not belong to the same connected
component. A node is visible by another if it is within a
certain radius and there is a valid connection between them.
Additionally, nodes are added as guard nodes when there are
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Fig. 4. Sketch of ALEF, the proposed method. a) Valid paths from different action parameterizations are gathered as experience. These paths exist in the
leaves £1 and Lo of the foliated manifold of the action. Note that these are paths in the configuration space, but are such that each configuration satisfies their
leaf’s constraint. b) ALEF builds a sparse roadmap in the augmented foliated space (AFS, Sec. IV-A), finding feasible connections across leaves. Connections
are such that the foliation constraint is always satisfied. ¢) Upon retrieval for a query in new leaf £’, a path is found in the roadmap (highlighted) given a
start and goal (pink and orange circles). d) This path is projected to £’. Valid configurations are used as samples in the new query.

no other nodes that are visible. However, with this insertion
policy, many paths will end up disconnected. For example,
when sequentially inserting a straight-line path, only nodes that
act as guards will be added, and no connections between them
will be attempted. Thus, we use the ordering heuristic proposed
by [7]—first, the inserted path is interpolated at high resolution,
then, nodes that are likely guards are inserted, and then select
nodes between these guards are added as connectivity nodes.

To improve connectivity, [7] inserts all remaining con-
figurations in the path randomly, resulting in possibly long
roadmap construction times. For efficiency, we do not do this
step. Instead, to improve roadmap connectivity, we employ a
heuristic that attempts to connect newly inserted nodes to other
connected components. This heuristic effectively increases the
visibility radius of SPARS2, possibly yielding longer paths in
the roadmap, but quickly improving connectivity. Our heuristic
enables ALEF to be trained in real-time within a multi-modal
planner.

D. Retrieving Experience from the AFS Roadmap

During motion planning, a planner generates many candidate
goal configurations, e.g., from a goal sampler. Given a start
and goal configuration pair, we find their nearest neighbor in
the AFS roadmap using the weighted metric (Sec. IV-B). A
collision-free path within the roadmap is then found using A"
search (Fig. 4c), again with respect to the weighted metric.
As there might be changes within the environment (e.g.,
changing obstacles between queries), we lazily evaluate edge
validity in roadmap search, which invalidates edges as they are
discovered. Paths retrieved from the roadmap hopefully contain
configurations important for the current planning problem.

After a path is retrieved, the waypoints of the path are
projected to satisfy the query’s leaf constraint and are checked
for collision (Fig. 4d). It is unlikely that the entire retrieved
path is successfully projected onto the new leaf due to pro-
jection failing to converge or collisions with changed obstacle
geometry, thus, we cannot use the retrieved path directly. The
ratio of states that are successfully retrieved is given as the
valid state ratio in our experiments (Sec. VII-A). Instead, we
use the retrieved waypoints as samples to bias the search of a
sampling-based planner. ALEF uses all valid waypoints from
retrieved paths given all start and goal pairs. Heuristically, these
samples are used ordered by their place along the retrieved

path. Samples are used with some probability A € (0,1),
otherwise, default constrained state space sampling is used
(which is probabilistically complete [13]). In our experiments,
we use A = 0.5, but we did not see much sensitivity to this
value.

V. MULTI-MODAL MOTION PLANNING

We now discuss multi-modal planning, which involves
not only solving single-mode problems, but solving for a
sequence of single-mode problems to reach a desired mode.
We also highlight here extensions necessary for complex
manipulation planning, demonstrated by our experiments with
3D manipulation tasks. Critical to finding valid sequence is
finding valid transitions between modes, which is discussed
in Sec. V-A. Additionally, important to scalability is the ability
to factor the problem into relevant components, discussed
in Sec. V-B. Possible transitions between modes are encoded
in a discrete abstraction discussed in Sec. V-C. Finally, the
multi-modal planning problem is presented in Sec. V-D.

A. Transitions between Modes and Mode Families

Consider two modes £ and &’ of a robot, as shown in Fig. 5a.
To transition between ¢ and ¢/, a path in M¢ must be found
that ends at a fransition configuration ¢’ that simultaneously
satisfies the manifold constraints of ¢ and &’. Thatis, ¢’ € MN
ME', where M N ME is the transition manifold between &
and ¢’ and is of zero volume relative to M¢ and M¢'.

Mener = {qe Q| Fé(q) =0 F¢ (q) =0}-

Mg can be empty if no configuration satisfies both mode
constraints (i.e., transitioning is impossible between £ and ¢£’).
The transition manifold is evaluated by combining F'¢ and
F¢ as described in Sec. V-BI1.

1) Foliations as Transition Goals: To transition from a
mode to another mode family, our method considers not only
a single transition configuration or mode, but a range of modes
in the destination mode family. This desired range is modeled
as a sub-foliation constructed from a contiguous interval of
co-parameters in the desired foliation. For example, consider a
foliation with co-parameters [0, 1]—the total foliated manifold
is Uxe[o,l] L, = M. We take a “slice” of this foliation to
create a sub-foliation M’, e.g., a sub-foliation for the interval
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Fig. 5. In a, two mode manifolds M¢ and MEI are shown, along with
a path that transitions between these modes at a transition configuration ¢’.
b shows a multi-modal path over two mode families with foliations Fz=,
and .7-'52. Here, transitions occur at the configurations g1, g2, and g3. Each
configuration determines the leaf of the foliation.

[0.1,0.2] is ng[o.l,o.z] Ly = M'. We denote the sub-foliation
for a mode family = as =g 1 ¢.9]. As above, the intersection the
current mode and sub-foliation’s constraint is used to sample
transition configurations.

B. Factoring and Composing Modes

In manipulation-focused multi-modal problems, it is not
only the controllable robot(s) R, ..., R, that are of interest,
but also the collection of manipulable objects and kinematic
structures Oy, ..., O, in the scene. The configuration space
of the system is the n-dimensional Cartesian product of the
configuration spaces of the robots and objects:

Q=09p, X xQp, xQo X +XxXQo, .

Typically objects are rigid bodies in SE(3), but could also
be articulated systems such as drawers and doors. Usually
this composite system is under-actuated, as only the robot(s)
are controllable—objects and kinematic structures are kept
stationary by imposed mode constraints (e.g., a placed object
remains in the same position), and are moved when an
appropriate mode is entered (e.g., an object moves when
grasped).

1) Combining Multiple Modes: In complex manipulation
problems, a mode is more easily specified as a combination of
modes. For example, consider a pick-and-place domain with
multiple objects. The system as a whole is in a single mode
composed of multiple objects that are placed, stacked, or held.
This mode is more easily specified as a composition of multiple
modes, i.e., £ = & N---N&;. The constraints Ff, ce F,f are
composed together to define a composite constraint function
which defines the composite mode:

F*(q) = [Fi(q) Fi(g)] -
In our approach, we use projection-based sampling of transition
manifolds to generate candidate transitions, which has a non-
zero probability of sampling the entire transition manifold [13]
(see Sec. III-A1). Note that in general this can lead to poorly-
conditioned functions with many local minima. However,
mode constraint functions usually apply to disjoint subsets
of the composite configuration space or at least different end-
effectors, and thus gradient descent works reasonably well in
practice. Some attention might be needed for cases where there
are overlaps or interactions between constraint functions, e.g.,
by using a damped pseudo-inverse in the gradient descent [63].

2) Implicit and Explicit Constraints: Manifold constraints
discussed so far are implicit constraints, as they do not have an
explicit representation that specifies valid configurations—yvalid
configurations are defined implicitly by adhering configurations
of the constraint function. However, sometimes an explicit
parameterization of a constraint exists, particularly when a
constraint fully determines a subset of configuration variables
in terms of another disjoint subset of configuration variables.
For example, when a robot has grasped an object, the object’s
configuration is fully determined by the robot’s configuration.
These constraints are said to be explicit:

DEFINITION V.1: Explicit Constraint [64]
Let I ={1,...,n} be the set of configuration indices, where
Qy, I' C I is a subspace of the configuration space given those
dimension indices. An explicit constraint E = (Iin, Iou, Fexp)
is a mapping from Q to Q defined as:

o Input indices Ij, C I,

e Output indices Iy C I where Iiy N Ipy = 0,

o A C? smooth mapping Fuy, : Qp, — Qi such that

I = Fexplar,)

Note that explicit constraints can be used as implicit
constraints—this is useful for sampling transitions as described
above. If a mode imposed is explicit, all configuration variables
that are determined by that mode constraint can be factored
from the problem, as these configuration variables are redun-
dant for planning. For example, when an object is grasped
by the robot, the object’s configuration variables are fully
determined by the robot’s configuration and grasp mode, and
thus the object’s configuration does not need to be selected
when planning.

C. Mode Transition Graph

Recall from Sec. III-B the set of mode families =1, ..., Z,,.
In many domains, we have knowledge of what feasible
transitions between mode families exist. For example, consider
a pick-and-place domain with two objects. There are mode
families for picking and placing either object, and we know
the robot cannot grasp another object if an object is already
grasped. We encapsulate this knowledge with a mode transition
graph, similar to [4], which encapsulates domain knowledge
of which mode family foliations intersect with each other, i.e.,
what valid transitions exist.

A mode transition graph G is composed of mode family
vertices V = Z4,...,E,, with edges (£,,E;) € E CV x
V' denoting valid transitions between mode families. Note,
transitions are only possible between different mode families,
and not within the mode family itself. For example, a grasp
cannot be instantaneously changed; a regrasp is necessary,
which corresponds to at least two mode transitions.

The transition graph only describes possible transitions in the
domain and does not include information about mode family
co-parameters. Our multi-modal planner leverages the transi-
tion graph (along with corresponding mode co-parameters) in
order to bias multi-modal search along promising directions
(see Sec. VI-B).
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1 (define
2 (:types bar)

3 (:functions (current-bar)
4 (:action transition

5 :parameters (?dst - bar)
6 :precondition (not (= (current-bar)
7 :effect (= (current-bar) ?2dst))

(domain simple)

- bar)

?dst))

Encodes when mode families are imposed on

9 I

state
10 (:family bar-foliation
11 :parameters (?x - bar)
12 :condition (= (current-bar) ?x)

13 )

15 (define (problem example)

16 (:domain simple)

7 (:objects barl bar2 - bar)
18 PRI

19 )

Fig. 6. A simple PDDL domain that encodes an implicit transition system
between grasping two bars and the resulting explicit transition graph for a
simple problem. In the above PDDL, a new definition : family encodes the
imposition operator X, the condition in which a mode family is imposed on
a symbolic state. If conditions hold, then the mode family is imposed given
the corresponding grounding. Here, F=, corresponds to grasping bar 1 and
F=, to bar 2. This domain is a simplified version of the domain used for
handrail climbing in Fig. 13, minus preconditions to require alternating legs.

1) Implicitly-Defined Transition Graphs: For complex ma-
nipulation domains, explicitly encoding the transition graph is
difficult as there are possibly exponentially many mode families
and transitions to encode, e.g., pick-and-place domains with
respect to objects. Common in many manipulation planners
is the use of a fask language that uses symbolic states and
actions that implicitly describe an underlying transition graph:

DEFINITION V.2: Task Language [40]
The task language is a set of strings of actions, defined by
£ = (B, AT, plo, &), where:

o ‘P is the finite state space ranging over predicate variables
Po,--.,Pn. That is, a state s € P contains the value of
each variable pg, ..., py.

« 2l is the finite set of task operators, i.e., terminal symbols
and the actions in the domain.

e TCP(P) xAxP(P) is the finite set of symbolic
transitions, where P (3) is the power set of B. Each
t; € T denotes transitions pre (t;) % eff (t;), where
a; € 2 is the operator, pre (t;) C P is the precondition
set, and eff (t;) C P is the effect set. A transition at step
t with action a; is such that s € pre (t;),s' ™! € eff (t;),
and for all p, & eff (t;),p% € s, pL = pi".

o B C B, the finite set of accepting states, i.e., the goal.

This is encoded with notations such as STRIPS [65],
ADL [66], and PDDL [67]-[69]. We use PDDL to model complex
domains. See Fig. 6 for a simplified domain similar to the
handrail climbing example in Sec. VII-B2, and Fig. 16 for the
domain used for block stacking with the Fetch robot.

We additionally define for each mode family an imposition
operator X C P () x E which encodes, similar to the set
of symbolic transitions, which mode families imposed their
constraints on the system given a symbolic state s. Each

Algorithm 2 Multi-Modal Planner Skeleton

Input P, a multi-modal planning problem
Output A multi-modal path

1: procedure MultiM odal Planner(P)

2: T + (qstarl»ﬁstarl)

3: while iterations remain do

4: Sample a system state Sgample = (qsample,ssample),
with a small chance < Ao Of being from the
goal ngal

// Use an RRT-like expansion strategy
Select so = (qo,50) in T closest to gsample
51,...5k < EXTENDTREE(S0, Ssamples 1)
if £ > 0 then
Add sq,...,s as descendants of sy in T’
if g1 € Qgou then
10: return path from gy, to gx

R A4

t; € X denotes the condition (similar to action preconditions)
pre (r;) C ‘B where if s € pre(r;), mode family =; is
imposed (see Fig. 6). Note that multiple mode families can be
simultaneously imposed—these constraints are combined as
described in Sec. V-B1. Additionally, no specific implementa-
tion is required for specifying transition manifolds; transition
manifolds are constructed as stated in Sec. V-Al.

D. Multi-Modal Planning

A multi-modal problem is defined by:

« The robot and object configuration spaces (Sec. V-B).

e Mode families =

o The implicit transition graph defined by task language £

and imposition mapping X (Sec. V-C).

« Initial configuration of the system gy, € Q and initial

symbolic state Sgar.

o Goal region Qyny X & of configurations and states.

The multi-modal planning problem is thus to find a con-
tinuous sequence of collision-free paths, each of which is a
valid path in some mode ending in a valid transition to the
subsequent mode. A multi-modal path is shown in Fig. 5b.

VI. GUIDING MULTI-MODAL PLANNING WITH LEADS

With guiding leads, multi-modal planners are able to handle
problems that interleave complex discrete structures with
difficult continuous single-mode planning. This discrete struc-
ture (e.g., information about which objects are grasped by
which grippers) is captured by the mode transition graph
which we augment with information from single-mode plan-
ning (Sec. VI-B). Based on this graph, we compute leads—
promising sequences of modes to reach the goal (Sec. VI-D).
Leads are used to guide the search of a lower-level motion
planner, which then informs weights in the transition graph
(Sec. VI-C). We combine these layers of planning synergisti-
cally to better inform the overall search.

A. Baseline Method

Our lead generation builds on concepts from [4], which
plans given a similar model of a multi-modal problem. The
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Algorithm 3 Random EXTENDTREE

1: procedure EXTENDTREE(So, Sgoal, 1)

2: ai,...,a; < all valid actions from sy based on £

3: Sample a mode family agoy from the set
// Plan to the goal family given the mode constraints
Eo < X(s0) // Imposition op. to get mode family
Xo < T=,(qo) // Bundle projection to get mode
51 ugoal(so)
return SMP(qo, &, X(51)), 51

A A

Algorithm 4 Single-Mode Planning SINGLEMODEPLAN

1: procedure SMP(qyar, &, Eéoal)

2: Sample transitions Qgoa = q1, - - -
using projection sampling

If no samples, return NO SAMPLES

Plan under mode & from ggar t0 Qgoal

if planning fails, return PLANNING FAILED,
else, return gyoy

/!

s g from &N =L,

AN

algorithm presented in [4] transitions between modes by
choosing the next mode using an RRT-like extension scheme,
extending at random, reproduced in Alg. 2. Our approach
modifies the extension step by informing search with a discrete
lead, described in Sec. VI-D. Additionally, [4] uses a “utility-
centered expansion strategy,” where promising transitions are
taken based on a precomputed “utility.” This is reproduced in
the random extension method shown in Alg. 3, albeit with a
weighted sampling method based on this precomputed utility.
Our approach also approximates how likely a transition is to
succeed, but does so online (Sec. VI-C). This is similar to the
weighting done in [10], but for continuously infinite modes.

Moreover, we use a very general formulation of mode
families: a constraint function FZ (recall Sec. ITI-A). For
example, in Fig. 7c, the constraint that defines the mode
family for grasping the handrail is given as a function of the
robot’s kinematics, requiring the end-effector to be positioned
along the rail. We leverage the general constrained sampling-
based planning framework described in [13] to enable single-
mode planning given general mode constraints (using a
manifold-constrained PRM, which is reused if the mode is
revisited). Moreover, if ALEF (Sec. V) is used, the appropriate
sparse roadmap is retrieved based on the mode family of the
current mode constraint. Mode transitions are sampled using
projection-based sampling over the intersection of the leaf
manifold and destination manifold.

B. Weighted Mode Transition Graphs

Recall the mode transition graph from Sec. V-C. We
augment the mode transition graph with statistics on what
transitions are likely to succeed. Attached to every directed
edge (Ege,Zqq) are transition weights D= (xge, Xdst)-
The transition weights D= (g, Xast) are a distribution
with support over the transverse manifolds for the source and
destination mode families,

’DEsrmEdsl(Xsrc’ det) : XEsrc X XEdsl S R.

Informally, D=s'Ze (., vast) captures the difficulty of the
single-mode motion planning problem of transitioning to the
mode g € Egg (Where £y is the mode determined by the co-
parameter Xqg € X Ea) from the mode Ege € Sge (Where €
is the mode determined by the co-parameter g . € X S,
Specifically, the weights are inversely proportional to the
probability of single-mode motion planning succeeding within
a fixed time budget on the leaf manifold £, ., Yse € X
to any transition configuration (that may or may not exist) on
the leaf manifold £,,,, Xds € X =

Recall from Def. III.1 that the transverse manifolds for
a foliation are parameterized. The transverse weights are
a distribution maintained over the Cartesian product of the
underlying spaces X = x X = for a k=, + k=,, dimensional
space.. An example of these weights is visualized in Fig. 7b.
However, these distributions are not known a priori. Estimating
these distributions online is key to effective multi-modal
planning. We cover estimating these distributions in Sec. VI-C.

Consider the example shown in Fig. 7. A robot with two
end-effectors that can climb by grasping bars must position
its base in a goal region above bar 2 (“Base_Goal”). The
graph contains all possible transitions; there is no transition
from “{Left, Right}_Barl” to “Base_Goal” because it is out
of reach, and none between the same end-effector on a bar as
the robot must always be grasping a bar. The obstacle on one
side of the bar makes movement more difficult, corresponding
to a higher weight (seen in the distribution in Fig. 7b and c).
Intuitively, this shows that if the robot is trying to transition
from “Right_Barl” at the grasped location to “Left_Bar2”,
then it is important to consider where it grasps Bar2. Note that
the weights for Fig. 7b were generated by many offline runs,
while our experiments approximate this distribution online
without precomputation.

C. Informing the Transition Graph

As mentioned, the transition weights are meant to capture
the likelihood that single-mode planning will be successful
in moving from one (mode family, co-parameter) pair to the
next. We update the weights using a simple weighting scheme,
based on information gathered during the search. There are
three events that we can use to update the information, given
a single-mode planning instance of (g, Xsre) 10 (Edsts Xdst)-

o Planning is Successful: We add a small penalty Sgyccess tO
the weight to encourage exploration of alternate routes.

e Planning is Unsuccessful: We add a larger penalty pijure
to the weight to discourage attempting this transition
again.

e No Transition Found: That is, no transition configuration
was sampled from (Eg., Xsre) 10 (Edst, Xast)- We add the
largest penalty to the weight, dsample.

Moreover, we add the penalty to all “nearby” co-parameters,
as defined by the composite distance metric in the joint X = x
Xt space. The weight § is distributed by a bump function,
given by exp (1 —1/(1 — d?)), where d is the distance of the
co-parameter to (s, Xdst), normalized to a maximum distance
(a quarter of the space’s extent for experiments).
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Left Bar2 | ey [Right_Bar2

Left_Bar2 Transvers

Left Barl )« [Right Barl

Right_Barl Transverse

Example Goal
Configuration

Left_Bar2 Transverse

Obstacle

Fig. 7. Visualization of transition graph weights. a) A transition graph for the “simple monkey” domain. The transition from grasping bar 1 with the right
limb (“Right_Barl”) to grasping bar 2 with the left limb (“Left_Bar2”) is highlighted. b) A contour map of the weights for the highlighted transition (gathered
offline). The co-parameter for grasping bar 1 with the right limb is plotted on the X-axis, while the co-parameter of grasping bar 2 with the left limb is plotted
on the Y-axis. Darker shading represent higher-weight (transitions we expect to be difficult). A slice for a specific X-axis co-parameter (i.e., initial placement
of the right gripper) is marked in black, and shown in ¢). ¢) The “simple monkey” domain, with the weights of the slice from b) visualized over bar 2. The
left arm of the robot is shown grasping bar 2 (highlighted by the arrow), and thus is a transition configuration. The transition is marked at its co-parameters by
a purple point in b). To reach “Base_Goal,” the robot must grasp bar 2, visualized as an orange region for the base and an example satisfying configuration.

Thus, search is biased not only against attempting this
transition again, but also nearby “similar” transitions, as nearby
co-parameter pairs will have similar planning conditions due
to the assumptions of continuity from transverse of the foliated
manifold. We conjecture this weighting scheme maintains
probabilistic completeness as we never rule out a possible
transition.

Our experiments show that this simple weighting scheme can
dramatically improve runtime on a variety of scenes. We used
fixed weights for all experiments of 3, 5, and 10 respectively
for the three weights. Other weighting approaches are possible,
but this simple scheme gave us excellent results.

D. Building Leads

Given a mode family transition graph with suitable weights,
we compute leads to bias search. Essentially, the idea of a lead
is to suggest the most likely sequence of mode transitions to
reach a destination. Here, a destination is a sample at random or
from the goal, and the source is an existing configuration in the
search tree. The lead generation is used within the multi-modal
planning algorithm’s EXTENDTREE method. Two variants are
used in our experiments: “Dijkstra” and “Augmented”, shown
in Alg. 5 and Alg. 6 respectively.

In the “Dijkstra” method, we compute a sequence of mode
families that is effective for reaching the desired destination,
shown in Alg. 5. In practice, this means finding a shortest path
in the mode transition graph from the mode of the current state
to the mode of the desired destination mode—which results
in a sequence of mode families to transition between. For this
approach, we simply use Dijkstra’s shortest path algorithm
over the transition graph (either implicit or explicit). Note
that this approach does not use any weighting information
over co-parameters, but instead over the transitions between
mode families themselves—rather than a distribution over the
parameters, a single number is used.

In the “Augmented” method, we compute not only a
sequence of likely mode families that will be useful for search,

Algorithm 5 Dijkstra ExtendTree
1: procedure EXTENDTREE(Sq, Sgoal, 1')
2: Compute shortest sequence of states sq, . .
from sy t0 Sgoal

-5 5k
// We use Dijkstra’s algorithm

3 = X(SQ), X 7T5/((]0)

4 S+ {}

5: for s’ € 51,...,5, do

6: S X(5)

7 if ¢ «— SMP(qO,§X/7 Et) then
8 x' 1= (q)

9: Append (¢',s") to S

10: Update D="=" with Syuccess
11: else if NO SAMPLES then

12: Update D="=" with Sgmple
13: break

14: else if PLANNING FAILED then
15: Update DEE" with Ofailure
16: e L

17: return S

but also co-parameters to those mode families that will likely
result in a sequence of successful transitions. Formally, the
“Augmented” method solves the following problem:

DEFINITION VI.1: Augmented Shortest Path Problem

Given a transition graph G, a starting mode specified by a
mode family and co-parameter (S, Xsc), and destination
mode (Egq, Xast), find the lowest cumulative weight path,
(Z1,x1) - - - (Ek, X&), that minimizes the total cost:

k-1
Z D= (X, Xit1)

=1

Thus, a lead is a sequence of (mode family, co-parameter)
pairs, realized in sequence by single-mode planning. The
EXTENDTREE variant that uses the augmented shortest path
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Algorithm 6 Augmented ExtendTree
1: procedure EXTENDTREE(S, Sgoal, 1)
2: B« X(So), X/ — = (qo)
// We use Dijkstra’s algorithm over the
augmented graph, which returns a sequence of
mode families and co-parameter intervals

3: Compute shortest sequence of states
(515 [Xllv X}ll]) ] (Sk’a [th Xill]) from (5Oa X/) to 5goal
S+ {}

s: - for &', (X', x") € (51, X4, X0 -+ (s, [XE X)) do
6: 2 X(¢)
// Plan to sub-foliation defined by interval

7: if ¢/ + SMP(qO’gx”Efxl,xh]) then
X' m=(q)

: Append (¢',s") to S
10: Update D= & (X', x*) with Sgyccess
11: else if NO SAMPLES then
12: Update D="=" (y/, x" + x!/2) with Ssample
13: break
14: else if PLANNING FAILED then
15: Update D= &' (s X" + x!/2) with Saiture
16: = )
17: return S

is shown in Alg. 5.

In practice, we do not produce enough samples to make
exact computations of this shortest path worthwhile. Instead,
we approximate the continuous distribution by discretizing
the co-parameter for each mode family into intervals, tracking
weights over transitions from interval to interval. For our im-
plementation, we simply use Dijkstra’s shortest path algorithm
over the discretized mode family transition graph to solve
Def. VI.1, generating a lead that consists of a sequence of
mode families and intervals of co-parameters.

For both the “Augmented” and “Dijkstra” approach, search-
ing the mode transition graph is time-bounded for efficiency’s
sake, and the current “best” lead is returned after time runs
out. For our experiments, we use a time bound of 5 seconds
for both methods.

E. Putting It All Together

The complete multi-modal planning algorithm is presented
in Alg. 2. In an iteration of planning, a random configuration
and mode or goal configuration is sampled with some bias.
Using an RRT-like scheme, a node from the existing tree
is selected to expand from. A lead is generated from this
node to the sample, guiding single-mode search to extend the
search tree—we presented three variants of the EXTENDTREE
function: one that randomly expands as a baseline (Alg. 3),
one that is informed at the level of mode family transitions
(Alg. 5), and our method which exploits transition information
over the co-parameters of the mode families (Alg. 6). The
planner uses a single-mode constrained planner (Alg. 4) to
attempt to resolve the desired transitions as proposed by the
lead. All successful transitions are added to the planning tree.

VII. EXPERIMENTS

Both of our contributions are implemented with the Open
Motion Planning Library (OMPL)’s [70] general constrained
planning framework [13] and use Robowflex [71] for 3D
workspace experiments. All experiments were performed on a
desktop computer with an Intel® Core™ i7-6700K processor
at 4GHz with 32GB of DDR4 RAM at 2400 MHz. Unless
otherwise specified, all trials succeeded in planning.

A. ALEF Experiments

We evaluate ALEF on an example “monkey” robot tasked
with climbing across a set of bars and a “handoff” problem with
two manipulators. We use PRM for all single-mode planning
problems under manifold-constraints [13].
1) Monkey Example: First, we illustrate ALEF’s ability
to improve single-mode planning in a foliation in isolation.
The robot is shown in Fig. 8a and has two end-effectors that
can grasp the bars. There are two foliations we consider in
this problem: one with all grasps of the right limb on bar
1 (the source foliation), and one with all grasps of the left
limb on bar 2 (the destination foliation). The co-parameter is
the location along the bar the robot has grasped (labeled in
Fig. 8a). Problems are generated by randomly sampling grasps
on bar 1, which determine which leaf the problem lies on. The
goal is to reach the destination foliation. All tested problems
within both the test and training sets are solvable.
Fig. 8b shows timing results for planning on 500 randomly
sampled problems with a timeout of 30 seconds. Our frame-
work achieves notable speed-up even with a few examples
and continues to improve performance as the training set size
increases. Additionally, even with few examples, the variance
in solution time decreases, showing that our framework learns
to solve ‘“hard” problems faster. This is also visible in
Fig. 8c, which shows the cumulative distribution of solving
the planning problem versus planning time.
Fig. 8d shows the path retrieval and valid state ratio distribu-
tions for our framework over the 500 tested queries. The path
retrieval ratio is the ratio of how many paths were successfully
retrieved for all start/goal query pairs. A ratio of 1 means that
all queries had relevant experience retrieved from the roadmap,
while 0 means that no relevant experience was found. The valid
state ratio is the ratio of the states from retrieved paths that
were successfully projected onto to the new leaf. A high valid
state ratio means that the experience retrieved was “useful”
to the new problem. Even with only 10 plans inserted into
the roadmap, a high ratio of experience is retrieved. However,
the average of the ratio of valid states was low (the peak at
0 in Fig. 8d). As the amount of experience in the roadmap
increases so does the ratio of the valid states, improving the
performance of ALEF.
We now show how ALEF improves the performance of a
multi-modal planner. We test the following variations:
e “None”: This is the baseline multi-modal planner (essen-
tially an emulation of [4]).

o “Adaptive”: Here, ALEF is learns online for each foliation
while the baseline planner is running. The results of
every planning query the multi-modal planner makes are
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Fig. 8. a) A two-limbed “monkey” robot must grasp the other bar. Start configurations are sampled such that the robot grasps the first bar. The location of
the robot’s grasp on the bar corresponds to the co-parameter of the foliation, indicated below the bar. b) Timing results for 500 trials are presented. On the
x—axis, we show results for ALEF trained on increasing numbers of training paths. We achieve significant speed-up given only a few examples. ¢) Cumulative
probability of finding a solution versus time. Our method solves more problems faster as experience is gathered. d) Retrieval ratio and valid state ratio for
ALEF trained on 10 and 500 examples. More paths are retrieved and the number of relevant experiences increases given more training data.
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Fig. 9. a) The swept volume of a multi-modal plan. The start configuration
and an example goal configuration are highlighted. b) Total multi-modal
planning time for 100 trials for each method, including training time for
ALEF. Obstacles vary in position and rotation between each query. Shown are
a baseline method with no experience (“None”), ALEF which learns from an
empty roadmap (“Adaptive”), and ALEF trained on n multi-modal queries (“n
plans”). Starting with an empty roadmap, our method provides a small benefit
over the baseline. Training from prior queries gives substantial benefit for
multi-modal planning. ¢) Timing results presented as a cumulative distribution
curve. textbfd) Retrieval and valid state ratios for all motion planning queries.
ALEF retrieves more relevant experience as its training set increases.

inserted into ALEF. The planner can only learn during its
current query.

o “n Plans”: Here, ALEF was trained incrementally using
all motion plans generated during n prior multi-modal
planning queries.

Fig. 9a shows an extension of the environment from Fig. 8a,
where there are now three bars. The robot is tasked with

climbing to reach a goal past the far bar. In this environment,
the monkey starts always from the same configuration, but the
obstacles are varied between different multi-modal queries.
Specifically, each obstacle can rotate 20 degrees around its
center and vary in position as much as their thinnest width.
Depending on the location of the obstacles, the robot might
have to discover an alternate route to the goal, as the middle
path might be closed.

Timing results for total multi-modal planning time are
presented in Fig. 9b and Fig. 9c. Starting from nothing, the
“Adaptive” planner provides a small benefit over baseline
performance, showing that our framework helps solve queries
faster even with limited experience. Note that these reported
times include training time for ALEF, which is negligible.
Offline training from other queries gives substantial benefit
and accelerates multi-modal planning.

Fig. 9d shows path retrieval and valid state ratio distributions
for all single-mode plans made by the multi-modal planner.
Here, “Adaptive” does not retrieve much experience, and the
experience it retrieves is typically unhelpful, given the low
valid state ratio. As our method is trained on more plans, the
retrieval ratio and valid state ratio both increase significantly,
which is corroborated by their performance.

2) Handoff Example: Fig. 10a shows a “handoff” environ-
ment, where an object must be transferred from one side to
the other (stills 1 and 3 in Fig. 10a). However, due to the
length of the manipulators and the obstacle in the middle, the
object must be handed off (still 2 in Fig. 10a). Additionally,
the end-effector of the manipulator is constrained to always
remain upright. Here, there is a mode family for grasping the
object anywhere along its length, and another mode family
for placing the object anywhere on the flat surface. Similar to
before, the problem starts from the same configuration, but the
gray obstacle varies between queries. Here, the gray obstacle
can vary up to 20 degrees about its center, and in position by
the height of its peak in both the x- and y-axes.

Results for total multi-modal planning time are presented
in Fig. 9b. As before, the “Adaptive” planner provides a small
benefit over baseline, while training ALEF with multiple queries
gives dramatic performance improvements. This example
reveals the generality of our framework.
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Fig. 10. a) Three stills from a multi-modal plan in the “handoff” environment.
The thin object must be handed off to the far robot to reach the other side of
the environment. Many motion plans are attempted in this environment, as
the choice of parameterization determines if a handoff is possible. b) Total
multi-modal planning time for 100 trials for each method, including training
time for ALEF. Obstacles vary in position and rotation between each query.
ALEF shows significant improvement over the baseline method.

B. Guiding Lead Experiments

The following experiments are chosen to measure the
importance of the discrete component (building leads) and
continuous component (updating transition weights) of our
algorithm in various scenarios. Note that in all of the following
experiments, ALEF is not used. We compare three algorithms:

1) Uniform, which chooses mode transitions uniformly
at random from the neighboring modes (essentially,
an emulation of [4] by our planner). This uses the
EXTENDTREE presented in Alg. 3.

2) Dijkstra, which searches for a sequence of mode family
transitions, but does not select co-parameters. This uses
the EXTENDTREE in Alg. 5.

3) Augmented, our proposed method which searches for
a sequence of mode family transitions as well as co-
parameters. This uses the EXTENDTREE in Alg. 6.

Uniform is the baseline. Many manipulation problems have
challenging discrete structure, in that many transitions are
necessary to achieve the task. Intuitively, Dijkstra should
perform well when this discrete structure is important, because
good choices of which mode to transition to make the
search much more efficient (e.g., Fig. 11, Fig. 15a). Augmented
should perform well relative to Dijkstra when the continuous
co-parameters are relatively important (e.g., Fig. 12, Fig. 17).
Using the augmented transition graph also allows us solve
difficult manipulation problems (see Fig. 14) more efficiently.

1) Handrail Climbing: Fig. 11 shows results for the “long
monkey” domains. Here, a “monkey” robot with two end-
effectors grasps handrails to move through the environment
(similar to Fig. 7). The “monkey” has nine degrees of freedom
(three for each arm and three for the pose of the base). There
are two mode families for each bar, corresponding to grasping
the bar with either end-effector—the co-parameter corresponds
to the location grasped on the bar. Fig. 11 shows that Dijkstra
works well when the discrete aspect of the problem is the
primary challenge. Intuitively this makes sense as the robot

6 Bars
uniform |—I—|
dijkstra ‘

augmented |-||i

9 Bars
uniform
dijkstra

augmented

12 Bars
uniform
dijkstra |-I—|

augmented |—D]—|
0 5 10
Time (s)

Fig. 11. Timing results for three “long monkey” domains. On the right the
“12 Bars” version of the environment is shown, along with the swept volume
of by an example multi-modal plan. On the left, timing results for “6 Bars,”
“9 Bars,” and “12 Bars” are shown for Uniform, Dijkstra, and Augmented—
each box plot represents 30 trials. Note that as the problems become more
challenging (i.e., there are more bars and thus a longer sequence of transitions
needed), the benefits of using the discrete leads become more pronounced.
In this scenario the specificity of Augmented does not provide any benefits
over Dijkstra, as the location of the grasps matters less than the sequence.

must traverse many bars—choosing a good order makes the
problem significantly easier. Dijkstra helps the robot choose
which rung to grasp.

Fig. 12 shows results in the “lateral monkey” domains, each
domain increasing in clutter. There are eight bars the monkey
can grasp in each domain, with the same monkey robot as
before. Fig. 12 shows that Augmented improves significantly
over Dijkstra in problems where choosing the right co-
parameters becomes a significant aspect of the problem. While
similar to the above problem, the bars are much longer; the
greater latitude means where the robot grasps the bar (the
co-parameter) is much more important in this problem.

2) Robonaut 2: Fig. 13 shows results for NASA’s Robo-
naut 2 in a similar handrail climbing domain as presented
before for the “monkey” robot. Here, Robonaut 2 has two
seven DOF limbs, a single DOF waist joint, and is free-flying,
for a total of 21 DOF. The mode families are identical to
the “monkey” domains. Moreover, Robonaut 2 must keep
its waist upright and facing forward within a small angular
tolerance, adding an additional manifold constraint to each
mode family. Fig. 13b shows results for both Dijkstra and
our proposed Augmented method—Uniform was unable to
solve this problem within the allotted time of 1200 seconds,
due to the long-horizon of the task and complexity of single-
mode planning. Augmented was able to outperform Dijkstra
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Fig. 12. Timing results for “lateral monkey” domains. On top, the swept
volume of an example multi-modal plan is shown for each of the domains.
Obstacles are shown as dark rectangles, and the graspable handrails are shown
in green. On bottom, timing results for each environment are shown: each dot
corresponds one of the 30 trials done for each scenario and planner. As the
problems become more challenging (i.e., the clutter in the scene increases),
the benefits of Augmented become more pronounced. This happens because
as the weighting scheme helps bias away from known failure regions and
toward unexplored transitions. Note the Y-axis changes between each plot.

in this environment due to the presence of the obstacles which
prevented certain transitions from occurring. Augmented is able
to more effectively focus search by learning the co-parameter
distributions.

3) Handoff Example: Fig. 14 shows results for the “tall
handoff” domain. In this case, there are two translating end-
effectors that can grasp a long object. Here, there are seven
mode families: five corresponding to the placement of the
object along the flat surfaces, and a mode family corresponding
to each end-effector grasping the object—the co-parameter
corresponds to where the end-effector grasps the object.
Fig. 14 shows that we can solve complex TAMP-like problems.
This scenario is difficult due to obstacles preventing the object
from being removed from the narrow passage while grasped,

necessitating a sequence of handoffs to reach the goal. The
robot needs to repeatedly place the object in order to regrasp
the object, so it may be handed off. This combines a difficult
motion planning problem with the discrete structure inherent
to the problem. Our approach can solve problems intractable in
typical TAMP frameworks (e.g., [40]), as search looks for short
task plans. Such plans are not feasible, so these methods waste
time by assuming the “best” plan has fewer actions, while our
approach inherently biases towards solving the motion planning
problem using discrete structure as a guide.

4) Fetch Block World: Fig. 15 shows results for two exper-
iments using an 8-DOF Fetch manipulator [72]. Note that in
these experiments, Uniform was unable to solve any problem
within the allotted time of 60 seconds. In these problems, the
implicit mode graph of the problem is important for scalability,
as there are an exponential number of mode families and
transitions as objects are added to the problem—a truncated
version of the domain specified in PDDL is presented in Fig. 16.
Moreover, explicit constraints are leveraged heavily in this
domain to avoid the exponential blow-up of considering all
block configuration variables—object variables are factored out
when placed or grasped, and thus, only the robot configuration
needs to be considered.

Fig. 15a shows a complex, long-horizon task planning prob-
lem. The Fetch must reorganize the blocks on two tables into
an ordered tower. Here, Dijkstra outperforms the Augmented
method, as there are no complex geometric elements to
consider: motion planning is straight-forward (as in Fig. 11).
However, when the geometry of the problem is important, as
in Fig. 15b, Augmented outperforms Dijkstra. In this problem,
a tower needs to be constructed from the three long blocks
on two tables. If the tower is started too close or too far from
the Fetch, it will be unable to complete the tower. Moreover,
to complete the tower, the last block cannot be grasped from
the top. Augmented method here quickly learns which of these
transitions are infeasible.

Finally, Fig. 17 shows results for a complex “puzzle”
domain. The Fetch must maneuver the dumbbell-like object
first to the middle of the puzzle box (which can only be done
from certain grasps), so that it can be regrasped near the top
to be extracted from the box. As above in Fig. 14, Augmented
outperforms Dijkstra given the importance of geometry in the
problem.

VIII. CONCLUSION

We have presented two contributions to improving the
efficiency and scalability of multi-modal planning: ALEF,
an experience-based learning framework for multi-modal
problems, and a guiding lead informed by weights over co-
parameters.

ALEF builds a sparse roadmap in an augmented, manifold-
constrained space that considers the parameters of the mode
family and configuration space, and uses the roadmap to
retrieve experience as a sampler on future queries. Our frame-
work achieves significant speedup given only a few examples
and improves the performance of multi-modal planning. ALEF
increases in usefulness as planning on the constraint manifold
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Fig. 13. Timing results for NASA’s Robonaut 2 climbing in a handrail domain with obstacles. a) shows the sequence of transition states found in one trial of
the multi-modal planner. b) shows timing results for 30 trials of both Dijkstra and Augmented. Uniform was unable to solve this problem with 1200 seconds
per trial for all 30 trials. Augmented achieves more consistent performance due to learning to avoid obstacles and challenging transitions. ¢) shows another

view of the same trial shown in a).

Tall Handoff

uniform  dijkstra augmented

Fig. 14. Timing results for the “tall handoff” domain. On the left, five stills are shown from a multi-modal plan in this domain. The start and goal are shown
on the far left and right respectively. The end-effectors are red and blue, the graspable object is purple. An example of a necessary regrasp to achieve a
handoff is shown in the middle. Timing results are shown on the right, 30 trials for each planner. Even in difficult TAMP-like scenarios, Augmented learns
important information about feasibility to make search more efficient. Uniform had four failures given 1200 seconds, which are not included in the box plot.

defined by the foliation increases in difficulty, e.g., due to non-
linearities, dimensionality, or clutter. Moreover, we believe that
using an experience-based planning framework is essential for
efficient manipulation planning, given the amount of redundant
effort in single-mode planning. Currently, ALEF can adapt
to changing environment obstacles, but not changes in the
foliation itself. For example, consider a foliation for grasping
a bar—if the bar moves in the workspace, the underlying
foliation constraint function will change as well, invalidating
experience. While small changes in the foliation will most
likely result in usable experience, it is not clear how to associate
this experience between larger problem changes, e.g., between
two bars nearby but of different lengths. In the future, we would
like to improve our method by considering workspace features
such as in [8] to generalize to retrieving experience from
multiple, similar foliations to apply to novel problem instances.
We would also like to investigate performance when the co-
parameter is less informative. For example, in the bar grasping

example, if the bar is very long relative to the size of the robot,
experience is applicable in a much smaller neighborhood.

Our guiding leads enable us to inform search across a
wide variety of problems with continuous modes. Both the
lead and its choice of continuous parameters yield more
efficient planning, which enables scaling to complex problems,
such as the 21-DOF handrail climbing example with NASA’s
Robonaut 2. Guiding leads, like many guiding heuristics,
are most useful for long-horizon tasks that have complex
structure. As demonstrated in our experiments, information
about continuous parameters only provides benefit when the
parameterization is important for the task, e.g., due to obstacles
or goal preconditions. This is shown in experiments where
the Dijkstra variant outperforms Augmented, and vice versa.
Adaptively choosing the amount of information that should
be considered at each transition would improve efficiency and
efficacy of lead generation, and is left for future work. In
the future, we would like to improve the representation of
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Fig. 15. In a), an ordered tower needs to be built from an initial random
configuration of the initial block towers. In this case, the specificity of the
Augmented works causes it to perform worse than Dijkstra, as the placement
of the blocks is not as important as the task itself. b) poses a block stacking
problem with “long” blocks that the Fetch can grasp anywhere along the
block’s length. Placement of the tower and the grasp of the block are important,
as the tower cannot be completed if started too far or close to the Fetch, and
the last block cannot be grasped from the top. Here, the Augmented method
outperforms Dijkstra, demonstrating that when geometry is important, our
co-parameter learning is useful. Uniform was unable to solve either problem
in the allotted time of 60 seconds. Timing results represent 30 trials.

the weights on co-parameters to a continuous representation,
and investigate transferring learned weights to novel problems
similar to experience-based methods. Moreover, our method
provides feasible multi-modal motion, but not “optimal” motion
with respect some cost (e.g., minimizing the number of
transitions, total path length). Although our single-mode plans
are heuristically optimized [73], how to effectively optimize
multi-modal paths is an open question, and a fruitful line of
future work, e.g., similar to the heuristics used in [12] or joint
optimization [74]-[76].

I (define (domain tabletop-blocks)

2 (:types block table)

3 (:predicates (on ?x - block ?y - block)

4 (ontable ?x - block ?y - table)
5 (clear ?x - Dblock)

6 (handempty)

7 (holding ?x))

8

9 HH stack, unstack

. Standard pick-up,
actions ..

place,

11 i

When a block is placed on a table

12 (:family placed
13 :parameters (?x - block ?y - table)
14 :condition (ontable ?x ?y))

16 ;; When a block is grasped by the robot

17 (:family held
18 :parameters (?x - block)
19 :condition (holding ?x))

When a block is stacked on another block

2 rr

2 (:family stacked
23 :parameters (?x - block ?y - block)
24 :condition (on ?x ?y))

Fig. 16. The PDDL domain used in block stacking experiments (includ-
ing Fig. 17). This is a simple block world domain—the standard “pick up,”
“place,” “stack,” and “unstack” actions are not shown. There are three classes
of mode families here: when a block is placed, held, or stacked on another
block. Each of these mode families has a specific grounding according to
the relevant grounded expression in : condition. All mode families with
satisfied conditions are composed together into a composite mode family.

We believe both ALEF and weight-guided leads to be broadly
applicable to other manipulation planners besides our baseline
approach, and that in general adaptive and a priori biased meth-
ods will be essential to scalability of these planners. Currently,
our methods require extensive modeling of the environment—
every foliation requires definition of a function, Jacobian, and
bundle projection. For explicit constraints, information about
which configuration space variables are controlled is also re-
quired. A PDDL description of the domain and when foliations
are applied is also required, as well as a problem description
that contains all geometry. Lowering the burden of specification
either through learning [77] or other means is of interest for
realistic usage of these methods, and to deploying complex
model-based manipulation planners in general. Additionally,
while our abstract constraint representation provides great
benefits for combining constraints, these implicit constraints
become very difficult to solve for in complex scenarios, e.g.,
the combination of handrail grasp constraints and waist upright
constraints for Robonaut 2.

In the future, we want to investigate the performance of
combinations of approaches to improve single-mode planning
and task guidance, including our own proposed methods.
Moreover, we want to push the scalability of these methods
by increasing the dimension of the co-parameters and the
branching factor of the discrete task. In this work, we only
investigated foliations with a transverse dimension of 1 and
2. Scaling to high-dimensional co-parameters (e.g., SE(2),
SE(3)) will introduce challenges with requiring more data in
order to be informative over the larger volume of space—both
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Fig. 17. A complicated “puzzle” domain for the Fetch block stacking problem. Here, a dumbbell-shaped object can be grasped anywhere along its spine. The
Fetch must move the dumbbell from the initial configuration to the middle of the box, so it can be regrasped from the top to be extracted from the box.
Similar to Fig. 14, given the importance of grasp and placement location, Augmented outperforms the other methods. Timing results represent 30 trials.

ALEF and the guiding leads are affected by this dimensionality
(recall as well that guiding leads weight in the product space of
the source and destination transverse). Using low-dimensional
projections (e.g., as in KPIECE [78]) might be effective for
guiding search.
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