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Adaptive Experience Sampling for Motion Planning
using the Generator-Critic Framework

Yiyuan Lee, Constantinos Chamzas, and Lydia E. Kavraki

Abstract—Sampling-based motion planners are widely used for
motion planning with high-DOF robots. These planners generally
rely on a uniform distribution to explore the search space.
Recent work has explored learning biased sampling distributions
to improve the time efficiency of these planners. However,
learning such distributions is challenging, since there is no direct
connection between the choice of distributions and the perfor-
mance of the downstream planner. To alleviate this challenge,
this paper proposes APES, a framework that learns sampling
distributions optimized directly for the planner’s performance.
This is done using a critic, which serves as a differentiable
surrogate objective modeling the planner’s performance — thus
allowing gradients to circumvent the non-differentiable planner.
Leveraging the differentiability of the critic, we train a generator,
which outputs sampling distributions optimized for the given
problem instance. We evaluate APES on a series of realistic
and challenging high-DOF manipulation problems in simulation.
Our experimental results demonstrate that APES can learn high-
quality distributions that improve planning performance more
than other biased sampling baselines.

Index Terms—Motion and Path Planning; Learning from
Experience

I. INTRODUCTION

Motion planning [1] is a core component of reasoning in
robotics. Growing fields such as Task and Motion Planning [2]
and collaborative robotics [3] demand the need for more
performant motion planning. Here, motion planning is used as a
time-critical subroutine — called repeatedly by other high-level
modules. Sampling-based motion planners [4], [5] are widely
used today [6], and perform relatively well for practical systems.
These planners have been shown to efficiently approximate the
connectivity of high-dimensional search spaces using a small
number of configuration samples [4]. Such planners typically
explore the search space by drawing samples from a uniform
distribution. However, they still face difficulties in certain high-
dimensional problems [7]. To improve their efficiency, manually
defined criteria can be used to construct a biased sampling
distribution [8]-[10]. However, identifying such criteria may
be challenging for certain problems. On the other hand, recent
approaches have explored using experience to learn high-quality
sampling distributions [11]-[13].
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Figure 1: Overview of the training procedure for APES. The problem instance is
represented as an occupancy grid, a start configuration, and a goal configuration.
Given a problem instance, a generator proposes a set of coefficients to
instantiate a sampling distribution (orange). This sampling distribution is
represented as a basis of paths, weighted by the coefficients (trajectories
shown in the top-most subfigure). The sampling distribution is used to bias
a given planner’s search. After planning, we retrieve a performance estimate,
which is used to update a critic via supervision loss. The critic acts as
a differentiable surrogate objective (solid arrows) for the generator. This
allows the training gradients to circumvent the non-differentiable (dashed
arrows) planner, optimizing the generator directly for downstream planning
performance.

Learning such sampling distributions is challenging because
there is no direct connection between the choice of a sampling
distribution and the planner’s performance. As such, existing
methods seek to optimize the sampling distributions against
other indirect objectives, such as to reconstruct bottlenecks in
offline roadmaps [14], and past solution paths [15]. However,
these indirect learning objectives may not accurately reflect the
core objective of maximizing the planner’s performance. To
the best of our knowledge, no method exists that optimizes the
distributions directly for the performance of non-differentiable
sampling-based planners.

Towards this goal, we present Adaptive Experience Sampling
(APES), a framework that learns sampling distributions opti-
mized directly for a given planner’s performance. Using APES
(Fig. 1), the planner uses the learned distributions to sample
along a basis of paths — where the probability of producing
a sample along each path is described by a set of coefficients.
The core of APES is a generator, which maps a given problem
instance into a set of high-quality coefficients. The generator is
trained via the recent generator-critic framework [16], where
a critic is built from past experience to model the planner’s
performance. The critic is used as a differentiable surrogate
objective to circumvent the non-differentiable planner. This
allows the generator to be optimized directly for planning
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performance via gradient-based methods.

We applied APES to planning with RRTConnect [17] for
a series of realistic and challenging high-DOF manipulation
problems in simulation. In our experiments, we compare
APES with baselines that learn biased sampling distributions
using heuristics. We show that APES discovers better sampling
distributions — by considering the true performance objective
(i.e., minimizing the number of planner iterations required).
Additionally, we also investigate which components of the
problem specification are most important for learning high-
quality distributions, via an ablation study over the generator’s
inputs.

Overall, the main contributions of this work are as follows.
1) We present APES, a framework that can optimize sampling
distributions directly for planning performance. 2) We show that
the representation of sampling distributions as a weighted path
basis is effective for learning. 3) Experimentally validate the
effectiveness of APES on realistic, high-DOF motion planning
problems. 4) We investigate, through an ablation study, the
importance of available problem information for performance.

II. RELATED WORK

Over the years, several methods have been proposed to
improve planning performance of sampling-based planners,
through biased sampling. Some approaches utilize manually
defined criteria, such as Gaussian Sampling [8], Bridge Sam-
pling [9], and Medial-axis Sampling [10], where a configuration
sample is only accepted if it passes a user-defined check.
Another line of work utilizes workspace decompositions —
such as the Ball Decomposition framework of [18] or the
Delaunay Decompositions employed by [19]. More recently,
[20] introduced different section patterns to effectively explore
narrow passages for high-DOF robots.

Instead of handcrafted criteria, many methods have proposed
learning the sampling distributions from a robot’s past experi-
ence. One such class of methods attempt to learn fixed sampling
distributions that exploit problem invariants. For example, [21]
uses Kernel Density Estimation and [22] a Gaussian Mixture
Model (GMM) to model such distributions based on past solution
paths. Although easy to implement, it is difficult for such
methods to generalize across variations in workspaces and start
and goal configurations, since the learned sampling distributions
are not adaptive — they are unable to exploit problem-specific
information to maximize performance.

Instead of fixing the distributions, some methods exploit start
and goal specifications to use past experience for planning.
For example, library-based methods store experience in the
form of paths [23] or roadmaps [24], which are later retrieved
with handcrafted similarity functions defined over the start
and goal of new problems. The retrieved paths, if invalid, can
be used to seed optimization-based planners [25], or can be
reused in tandem with sampling-based planners [23], [24], [26].
In contrast to our method, the retrieval of these paths are
not optimized directly for performance, but rather based on
similarity to past experience.

Another class of methods utilizes only workspace features
to infer good sampling distributions. For example, [27], [28]

learn important workspace regions which are subsequently
transformed into C-space configuration samples through inverse
kinematics. The works of [12], [29] construct databases of local
samplers, which are queried by handcrafted workspace simi-
larity functions to synthesize sampling distributions. However,
these methods ignore the start and goal information, and either
apply only to low-dimensional robots, or require handcrafting
features of the workspace.

Finally, some methods generate sampling distributions that
are conditioned on all available information, i.e., workspace,
start, and goal — by leveraging the representational capabilities
of deep neural networks. The work of [15] uses a conditional
variational autoencoder (CVAE) to reconstruct past solution
paths as a form of sampling distribution. This was adapted
in [11], [14], where the reconstruction of the CVAE is used
to identify critical C-space regions via graph-based methods.
In contrast, APES does not use such reconstruction heuristics,
but learns a sampling distribution by optimizing directly for
downstream planning performance. Similar to our method, [30]
predicts weights of a GMM but defines a similarity cost over
depth images based on reconstruction. These existing methods
optimize against a handcrafted heuristic objective which does
not necessarily correspond to the true performance metric (of
minimizing the planner iterations required). Instead, APES can
optimize against the chosen performance objective directly, by
making use of the differentiable critic.

III. PROBLEM DEFINITION

We consider a motion planning problem, which includes:
1) the geometry and kinematics of the robot we wish to plan
for, 2) the set of obstacles and the distribution of possible
placements for each obstacle, 3) the distribution of possible start
configurations for the robot, and 4) the distribution of possible
goal configurations for the robot. Each problem instance c
defines a specific placement for each obstacle, a specific choice
of start configuration, and a specific choice of goal configuration.
In particular, such a problem instance c is represented as a triplet
of: 1) a 3D occupancy grid of the workspace, 2) a real vector
corresponding to the start configuration in C-space, and 3) a
real vector corresponding to the goal configuration in C-space.

For every problem instance ¢, we seek to produce a sampling
distribution, represented as a Gaussian Mixture Model (GMM)
in the C-space of the robot. The components of the GMM
are constructed from a fixed basis of K known solution paths
from previously seen problem instances. The number of solution
paths K is tuned manually. These solution paths are represented
as a sequence of points in C-space. Every point along these
K paths induces a component centered at that point, and is
given a fixed variance. Such a GMM is parameterized by a set
of coefficients w = (w1, ..., wg) over the paths. The points
along each path 7 are weighted equally and sum up to the path’s
weight w;.

Given a problem instance c, the choice of GMM, described by
a set of coefficients w, is used to bias the chosen sampling-based
planner, RRTConnect [17]. In every iteration of RRTConnect,
we sample a new configuration from the GMM, which is used
as a target to extend the bidirectional trees. The performance of
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Figure 2: Neural network architectures of the generator and the critic. (a) The generator passes the occupancy grid (red) through three layers of 3D convolutions
— each using 64 3 x 3 x 3 filters with leaky ReLU activation and max pooling (over a 2 X 2 X 2 window). The hidden units are flattened into a vector of 1728
real entries. This is concatenated with the start vector (purple) and goal vector (blue), which vary in length depending on the robot used. The result is passed
through three fully-connected layers with 512 hidden units each, using leaky ReLU activation. Finally, the output layer produces a vector of K = 50 real
numbers. This real vector is used to parameterize a Dirichlet distribution over coefficients (specifically, by rectifying the entries to be > O via the exp function,
and using the result as the concentration parameter of the Dirichlet distribution). Coefficient samples (of size K = 50) are then drawn from this distribution. (b)
The critic similarly passes the occupancy grid (red) through three layers of 3D convolutions — each using 64 3 X 3 x 3 filters with leaky ReLU activation and
max pooling (over a 2 X 2 X 2 window). The hidden units are flattened into a vector of 1728 real entries. This is concatenated with the start vector (purple)
and goal vector (blue), which vary in length depending on the robot used; and a choice of K = 50 coefficients (orange). The result is passed through three
fully-connected layers with 512 hidden units each, using leaky ReLU activation. Finally, the output layer produces a vector of two real numbers, which is used
to parameterize a Normal distribution approximating the performance objective (specifically, one entry is used as the mean parameter and the other is rectified
to be > 0 via the exp function and used as the scale parameter of the Normal distribution).

this planning is described by a performance objective V (¢, w),

which is defined as the number of the planner’s internal planning
iterations until a solution is found. The maximum allowed
number of iterations is taken if the planner fails to find a solution
within the given budget. We select this performance objective
since it directly correlates to runtime efficiency. We note that
since the planner is stochastic, this performance objective is a
random variable.

The goal of this work is to find, for each problem instance
¢, a set of coefficients w that maximize the expected planning
performance E[V (¢, w)].

1IV. METHODOLOGY
A. Overview of APES

Using APES (Fig. 1), the problem instance c is passed
to a generator Gy (Fig. 2a), which is a neural network
with parameters 6. The generator outputs Gy(c), a Dirichlet
distribution over coefficients. We use a distributional output
instead of a single output to allow for better exploration [31],
[32]. Coefficient samples w = (wy, ..., wg) are drawn from
the Dirichlet distribution, with the property that w; > 0 and
w1 + -+ +wg = 1. These coefficients induce a GMM, which
is used to bias the sampling of the downstream sampling-based
planner.

The key challenge is to optimize the generator directly for the
performance objective V' (¢, w), which cannot be differentiated
through the planner (RRTConnect). To do this, we adapt the
recent generator-critic framework [16], which was first used
to learn macro-actions for POMDP planning. In [16], a similar
problem was identified — the performance of online POMDP
planning, with respect to the choice of macro-actions, cannot be
differentiated through the selected POMDP planner (since the
POMDP planner is not differentiable). To circumvent this, the
authors built a critic — which is a neural network that models
the performance of the POMDP planner. The critic is used as

Algorithm 1: Generator training

1 0 < InitGeneratorNetWeights ()

2 Y < InitCriticNetWeights ()

3 D+ InitReplayBuffer ()

4 fori=1,...,WW do parallel

5 while TrainingIncomplete () do
6 ¢ < SampleProblemInstance ()
7 w ~ Gp(c)

8 v~ CallPlanner(c,w)

9 D + append(D, (¢,w,v))

10 {(ci,wi, vi) }L, = sample(D, M)
1 ¥ 1 — 17 Vi Jeritie (V)

12 00— Mvejgenerator(e)

13 oo — ﬁvaJemmpy(a)

a differentiable surrogate objective to pass training gradients
into the macro-actions.

We were inspired by [16] to develop APES. Here, our
approach learns sampling distributions optimized for sampling-
based planners. We similarly construct a critic Vw (Fig. 2b),
which is a neural network parameterized by ), to approximate
the performance objective V (¢, w). The critic Vj, takes the
problem instance ¢ and a choice of coefficients w. It returns
f/¢ (¢, w), a normal distribution that seeks to approximate the
true downstream performance objective V (c,w)'. During train-
ing, both the critic and the generator are learned simultaneously.
The critic Vy (¢, w) is used as a differentiable surrogate of the
performance objective V (¢, w), to allow approximate gradients
from V (¢, w) to flow back to the generator. This optimizes the
generator directly for the performance objective.

'Note that the performance objective is a random variable. Hence, both
V(c,w) and Vi, (c,w) are distributions.
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B. Offline training pipeline

The training pipeline is outlined in Alg. 1. The weights for
the generator and the critic are randomly initialized (Line | -
Line 2). An empty replay buffer is created (Line 3) to store
recent experience for training. W asynchronous workers are run
(Line 4) to collect data and to perform training. The workers
share access to the same generator and critic weights and replay
buffer, which are access-controlled by a set of global mutexes.

Each worker runs a data collection and training loop (Line
5). In each round, it first samples (Line 6) a random problem
instance c. It then invokes (Line 7) the generator Gy to produce
a Dirichlet distribution over coefficients, from which a set of
coefficients w is sampled. A GMM is constructed from the
coefficients w, and is used to bias the RRTConnect planner (Line
8). This is done by sampling new points from the GMM when
extending the bidirectional trees maintained within RRTConnect.
After planning, we retrieve the number of planning iterations
used internally by the planner to find a solution. The maximum
allowed number of iterations is taken if the planner fails to find
a solution within the given budget. This value corresponds to a
sample v of the performance objective V' (¢, w). The experience
(c,w,v) is added to the replay buffer (Line 9).

The worker proceeds to update the networks. A mini-batch
with a fixed size of M data points is sampled uniformly (Line
10) from the replay buffer (without repetition within each mini-
batch). This is first used to update (Line 11) the critic by
minimizing the negative log-likelihood loss (with respect to

¥):

M

Jeriic (1) = Z —logpy (v | ci,w;)

i=1

(D

where py (v | ¢;, w;) denotes the p.d.f of observing v using
the model Vw(cl-, w;) produced by the critic. Then, the critic is
used as a differentiable surrogate objective to update (Line 12)
the generator, by minimizing the objective (with respect to 6):

M
J, generator ( 0) = Z E

{]E [V¢(Ci, w)“ —a-H(Go(c)).
7 w~Go(c;)
2
The first term is a planning term representing the expected
planner’s performance over the coefficients distribution output
by the generator. The second term is an entropy regularization
term which prevents the generator from converging prematurely,
by regularizing the entropy H(Gy(c;)) of its outputs. The
weight o > 0 of the entropy regularization term is then adjusted
(Line 13) by minimizing the objective (with respect to «):

1=

M
Jentropy(a) = Za : (H(GG(C'L)) - HO) 3

where we constrain « > 0 through a rectifier’. This effectively
enforces a minimum amount of entropy H, in the coefficients
produced by the generator, using the same scheme as [16], [32].
This finally completes a round of data collection and training
for the worker, and the process is repeated up to an allowed
number of training rounds.

2In particular, o = e? with 8 € R.

C. Reparameterization trick and chain rule

The planning term of Eqn. 2 does not have an analytical
closed-form, since we are unable to compute exactly the
expectation over Gy(c). Instead, we approximate its gradient
via the reparameterization trick [33]. The planning term can
be rewritten as

ww(%(ci) [E |:V¢(C“w):|:| ~ GNNH%OJ) |:E [V¢(Ci, f&(e, Cl)):|:|
“4)
where we reparameterize Gg(c) as a deterministic function
fo(€;¢) — which takes a random seed vector € ~ A(0, 1) and
outputs a coefficient vector.
The value of Eqn. 4 can be estimated in terms of samples
of e. Thus, using an estimate derived from a single sample
of €, we apply the chain-rule to finally derive an approximate

gradient of the planning term:
Vo E

wGol(e:) {E [Vw(civw)ﬂ ~

VuE [Vw(q,w)} ’ Vo fo(e; ;)

w=fg(€;ci)

(&)

where we evaluate the derivative at w = fy(€; ¢;).

V. EXPERIMENTS
A. Setup

Problem specifications. We apply APES to a series of
motion planning problems for realistic robots in simulation
— CAGE (Fig. 3a), BOOKSHELF (Fig. 3b), and TABLE (Fig. 3c),
which were generated with MOTIONBENCHMAKER [7]. Within
each problem, every instance contains variations in the position
of the workspace objects, the start configuration, and the goal
configuration. For CAGE, the 3D position of the cage varies by
410 cm along all three axes, while its rotational offset from the
robot varies by +30°. The 2D position of the cube in the cage
varies by +25 cm along both axes, with orientation varying by
490°. For BOOKSHELF, the 2D position of the bookshelf varies
by +£10 cm along both axes, while its rotational offset from the
robot varies by +30°. Each cylinder has a fixed depth within
its allocated compartment, while its lateral position varies by
445 cm. In TABLE, the lateral position of each bar varies by
410 cm. There is also variation in whether the robot is required
to tuck its arms crossed or uncrossed.

For each problem, we pre-generate 500 instances for training
and 500 instances for testing. We use RRTConnect with OMPL
default parameters for planning, and limit the maximum number
of iterations internally allowed by the planner to 1000, 10000,
and 100000 respectively. The TABLE is given a much larger
limit since it is substantially harder — the planner has to plan
for two 7 DOF arms under a small space allowance.

Training and evaluation procedure. APES was applied to
each problem as follows. First, we built a fixed path basis
of size K = 50, using the solution paths of 50 randomly
selected problem instances in the training set. Then, we train
the generator using Alg. 1, for a total of 20000, 50000, 20000
training rounds respectively across W = 8 asynchronous
workers. A replay buffer of size 5000 was used, with mini-
batch sizes of M = 64. These hyperparameters were selected
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Figure 3: Samples of problem instances used in our experiments. The positions and orientations of the objects in the scene are randomized relative to the
robot. The start configurations are uniformly sampled from the robot’s collision-free C-space. The goal configurations are randomly selected according to the
problem. For illustration purposes, we show only the goal configurations. (a) CAGE problem: a URS (6-DOF) robot reaches for a box inside a constrained cage.
(b) BOOKSHELF problem: a Fetch (8-DOF) robot reaches deep inside a bookshelf to pick the cylinder at the back. (c) TABLE problem: a Baxter (14-DOF) robot
tucks both its arms between the bars under the table, given a small space allowance. In some problem instances, the arms need to be tucked crossed (top).

through manual tuning, as well as through consideration of
compute limitations. After training, the fixed path basis and
trained generator are evaluated on the set of 500 problem
instances. All experiments are run on an Intel Xeon Gold 6130
(32x 3.7GHz) with 32GB of RAM and a NVIDIA RTX 3060.

Baselines. APES was compared to 4 baselines. These in-
clude CVAE [15], which learns to reconstruct past solutions
— conditioned on the workspace, start, and goal information —
using a conditional variational autoencoder; FLAME [12], which
builds a database of local samplers from path experience which
are queried with a handcrafted similarity function over local
workspace information; PATHUNION, which simply assigns
equal weights to all waypoints in a set of path experience
to build a GMM (thus learning problem invariants similar to
Repetition Sampling in [22]); and vanilla UNIFORM which runs
the planner with the typical uniform distribution. All baselines
similarly use RRTConnect for planning with the same maximum
allowed number of planner iterations. While APES uses only
500 training instances, it calls the planner repeatedly on these
instances during training, up to a total of 20000, 50000, 20000
invocations respectively. To maintain fairness, we provide
20000, 50000, 20000 training instances to the baselines. We
also tuned the hyperparameters for the baselines for optimal
performance.

B. Training performance

The training performance of APES compared to the baselines
are shown in Fig. 4. In this work, we seek to optimize the
generator for the downstream performance objective — which is
to minimize the number of planning iterations used internally
by the planner until a solution is found. The maximum allowed
number of iterations is taken if the planner fails to find a
solution within the given budget. This metric was chosen over
the metric of time taken, since it correlates directly to sampling
efficiency. On the other hand, the metric of running time is
affected by other factors such as size of the trees maintained
internally by RRTConnect, or overhead from preprocessing.

Overall training performance. Starting with a randomly
initialized generator, APES was able to optimize the generator
to produce high-quality coefficients. Given sufficient data,
APES eventually outperformed the baselines in CAGE and
TABLE, while achieving similar performance as FLAME in
BOOKSHELF. Despite our best efforts in tuning CVAE, it had
similar performance as UNIFORM. We believe that this is
due to the multimodality of the motion planning problem
[34] which cannot be captured by the unimodal output of
CVAE. Additionally, in this work, we used a 3D occupancy
grid to represent the workspace, instead of the geometric
representations used in prior works for CVAE [12], [14]. This
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Figure 4: Performance of APES against learning baselines with increasing amounts of training data. We evaluated the number of planning iterations used
internally by the planner until a solution is found, averaging the results over 500 test problems. Each planner iteration involves drawing a sample from the
learned sampling distributions, to extend the bidirectional trees maintained in RRTConnect. The maximum allowed number of iterations is taken if the planner
fails to find a solution within the given budget. The performance of UNIFORM is shown as a horizontal line for comparison. The missing evaluations for FLAME
in the TABLE problem could not be done within the 32GB memory limit, and are omitted.

CAGE BOOKSHELF TABLE
Iterations  Success Rate  Time (s) Iterations Success Rate  Time (s) Iterations Success Rate Time (s)
APES (Ours) 152 (12) 0.94 (0.01) 42 (3) 3765 (190) 0.73 (0.02) 59 (3) 8014 (820) 0.98 (0.01) 61 (7)
CVAE 855 (13) 0.15 (0.02) 113 (2) 8494 (130) 0.27 (0.02) 152 (2) 61493 (4500) 0.41 (0.02) 2397 (90)
FLAME 249 (12) 0.94 (0.01) 97 (5) 3796 (130) 0.89 (0.01) 104 (2) 15670 (1200) 0.93 (0.01) 156 (11)
PATHUNION 253 (12) 0.93 (0.01) 89 (5) 4113 (160) 0.81 (0.02) 122 (4) 14310 (1000) 0.96 (0.01) 150 (11)
UNIFORM 936 (8) 0.14 (0.02) 87 (2) 8470 (120) 0.30 (0.02) 173 (3) 62610 (2100) 0.41 (0.02) 2559 (96)

Table I: Detailed performance of APES and baselines across the test problems. [ferations refer to the number of planning iterations used internally by the
planner until a solution is found. The maximum allowed number of iterations is taken if the planner fails to find a solution within the given budget. Success
rate refers to the probability of finding a solution within the iteration budget. Numbers indicate the mean, with standard errors in braces. Time refers to the

time taken to find a solution or to use up the iteration budget. Bold entries indicate the best-performing results.

likely made it harder to learn a mapping from workspace to
C-space.

Comparing data usage. The baselines generally took much
fewer training data to converge compared to APES. However,
APES is able to utilize larger amounts of data to improve per-
formance. For the case of using FLAME for the TABLE problem,
there is a noticeable memory overhead which makes it infeasible
to execute for very large amounts of data. Interestingly, FLAME
and PATHUNION seem to degrade in performance with more
data for the TABLE problem. A possible explanation is that
for TABLE, the solutions require exploring small regions in a
concentrated manner. Using less data, FLAME and PATHUNION
were able to concentrate the planner on such small regions of
the C-space. With more data, the sampling distributions spread
out over a larger volume, causing it to dilute this concentration.

C. Planning results

In Table I, we analyzed the performance of the learned
generator against the other baselines. In addition to the metric
of planning iterations used internally by the planner, we also
show the success rate of finding a solution in the allowed
number of iterations, and the time taken.

Overall planning performance. Our results show that APES
produces the best sampling distributions for RRTConnect, in
terms of the number of planning iterations used internally by
the planner. We also achieved the highest success rate for CAGE
and TABLE. APES also achieves the lowest planning time across
all problems.

Trade-off between metrics. In CAGE and TABLE, APES
achieves a success rate similar to FLAME and PATHUNION, but
uses fewer iterations. This indicates that APES was able to
identify regions of the C-space that allow for fewer planning
iterations despite providing the same success rate. On the other
hand, in BOOKSHELF, APES achieves a similar number of plan-
ning iterations used while having a lower success rate compared
to FLAME. This indicates that APES has favored riskier regions
which cut down planning iterations. We also note that the
metric of planning time time appears disproportionate. This is
because the time taken is affected by various additional factors.
For example, RRTConnect maintains an internal structure of
the trees grown for nearest-neighbour lookup, which grows
with more samples added to the tree. Since we are primarily
concerned with the efficiency of samples, we focus on the
number of planning iterations instead of the time taken.

What have we learned? To illustrate the effect of learning
using APES, we visualize the learned coefficients in Fig. 5 for
the BOOKSHELF problem. We select three problem instances
where the robot has to reach into different compartments of
the bookshelf. For each instance, we call the learned generator
and visualize the top three paths with the highest coefficients.
From Fig. 5, it can be seen that depending on the goal, the
proposed paths lead towards the corresponding compartment
of the bookshelf.

D. Ablation study

In Table II, we conducted an additional ablation study to
investigate how much the information of the workspace, the
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(a) Upper compartment

(b) Middle compartment

(c) Lower compartment

Figure 5: Visualization of the sampling distributions learned by APES, for different problem instances of BOOKSHELF. The paths visualized are taken from
the path basis used by APES. We show only the top three paths with the highest coefficients. The relative value of a path’s coefficient is indicated by its
opacity. (a-c) It can be seen from the visualizations that depending on the object the robot needs to pick, the most prominent paths guide the robot towards the

corresponding compartment of the bookshelf.

start, and the goal affect performance. We use variants of the
generator that take only the workspace information or the start
and goal information when generating coefficients. Additionally,
we included an unconditioned version where we learned a fixed
coefficient distribution for all workspaces, start, and goals.

Conditioning generally improves performance. Our re-
sults show that in all problems, information of all of the
workspace, the start, and the goal is beneficial to achieving
the best results using APES. In CAGE, both workspace and start
and goal information appear equally important. In BOOKSHELF
and TABLE, information about the start and goal appears to be
more important.

Comparing with baselines. We note that APES generally
performs better than the baselines (in Table I) when given
the same amount of information — CVAE uses workspace,
start, and goal; FLAME uses only workspace information;
while PATHUNION is unconditioned. This indicates that by
optimizing directly for planning performance, APES can utilize
the given information more efficiently. The exception is the
unconditioned version of APES applied to BOOKSHELF, which
performs worse than PATHUNION. Indeed, unconditioned APES
simply resolves to a weighted variant of PATHUNION where
each path is given a learned set of weights. Since PATHUNION
is constructed from many more paths (compared to a basis of
just 50 paths in APES), it is likely that the wide coverage of
paths in PATHUNION was able to compensate for the lack of
optimization of path weights.

VI. DISCUSSION

In this paper, we proposed APES — a learning method that can
be used to informatively guide a sampling-based planner using a
biased sampling distribution. The key advantage of APES is that
it can directly optimize for the desired performance objective —
in our case, the number of planning iterations used internally
by the planner until a valid path is found. Additionally, APES
is able to utilize all the available information to condition the
sampling distribution. We demonstrate the benefits of APES
in 3 challenging manipulation problems where it outperforms
other baselines.

CAGE BOOKSHELF TABLE
All Information 152 (12) 3765 (190) 8014 (820)
Workspace Only 219 (14) 5458 (190) 10694 (1000)
Start & Goal Only 212 (14) 4218 (190) 9275 (930)
Unconditioned 241 (14) 5363 (180) 9216 (880)

Table II: Ablation study using partial problem information. We show the
number of planning iterations used internally by the planner until a solution is
found. The maximum allowed number of iterations is taken if the planner fails
to find a solution within the given budget. Numbers indicate the mean, with
standard errors in braces. Bold entries indicate the best performing results.

One of the limitations of our current approach is that the
selection of the path basis greatly affects the performance of
the learned distributions. Currently, the path basis is randomly
selected and fixed, and it is not clear how to optimize it. In
our future work, we would like to investigate ways to improve
upon this. Other future work could investigate using APES
with different planners and performance objectives. It could
also include a deeper investigation into the generalization
capabilities of APES, such as across different problems, planners,
and robots.

This work could also aid in investigating the connection
between the choice of 1) sampling-based planner, 2) perfor-
mance metric, and 3) sampling distribution. For example, is it
possible that different planners have different optimal sampling
distributions? Is it possible that a sampling distribution which
maximizes the success probability is completely different from
one which minimizes the iterations used? Indeed, we can easily
swap these components in APES, with minimal changes to the
training pipeline. Overall, we hope that our work will serve
as a general tool to better understand the relationship between
sampling-based planners and the sampling distributions which
they use.
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