2108.09847v1 [cs.SE] 22 Aug 2021

arxiv

FRUGAL: Unlocking Semi-Supervised Learning
for Software Analytics

Huy Tu, Tim Menzies
Com Sci, NCState, USA
hqtu@ncsu.edu, timm@ieee.org

ABSTRACT

Standard software analytics often involves having a large amount
of data with labels in order to commission models with acceptable
performance. However, prior work has shown that such require-
ments can be expensive, taking several weeks to label thousands of
commits, and not always available when traversing new research
problems and domains. Unsupervised Learning is a promising di-
rection to learn hidden patterns within unlabelled data, which has
only been extensively studied in defect prediction. Nevertheless,
unsupervised learning can be ineffective by itself and has not been
explored in other domains (e.g., static analysis and issue close time).

Motivated by this literature gap and technical limitations, we
present FRUGAL, a tuned semi-supervised method that builds on
a simple optimization scheme that does not require sophisticated
(e.g., deep learners) and expensive (e.g., 100% manually labelled
data) methods. FRUGAL optimizes the unsupervised learner’s con-
figurations (via a simple grid search) while validating our design
decision of labelling just 2.5% of the data before prediction.

As shown by the experiments of this paper FRUGAL outperforms
the state-of-the-art adoptable static code warning recognizer and
issue closed time predictor, while reducing the cost of labelling by a
factor of 40 (from 100% to 2.5%). Hence we assert that FRUGAL can
save considerable effort in data labelling especially in validating
prior work or researching new problems.

Based on this work, we suggest that proponents of complex and
expensive methods should always baseline such methods against
simpler and cheaper alternatives. For instance, a semi-supervised
learner like FRUGAL can serve as a baseline to the state-of-the-art
software analytics.

1 INTRODUCTION

Software analytics can guide improvements to software quality,
maintenance and security. For example, analytics can discover
which static code warnings are adoptable [81, 90]; whether the
new issues can be easily fixed [50, 93]; where software defects are
likely to occur [1, 64]; which comments likely to contain technical
debts [48, 94]; what the current health conditions of these open-
source projects [84]; or how to distinguish security bug reports [74].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASE 2021, 15 - 19 November, 2021, Melbourne, Australia

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

However, models that perform these software analytics tasks
typically learn from labelled data. Generating such labels can be
extremely slow and expensive. For instance, Tu et al. [79] reported
that manually reading and labelling 22, 500+ commits required 175
person-hours (approximately nine weeks), including cross-checking
among labellers. Due to the labor-intensive nature of the process,
researchers often reuse datasets labelled from previous studies. For
instance, Lo et al. [89], Yang et al. [91], and Xia et al. [88] certified
their methods using data generated by Kamei et al. [36]. While this
practice allows researchers to rapidly test new methods, it leaves the
possibility for any labelling mistake to propagate to other related
works. In fact, in technical debts identification, before reusing prior
work’s data [48], Yu et al. [94] discovered that more than 98% of
the false positives were actually true positives, casting doubt on
work that used the original dataset. Hence, it is timely to ask:

Can we reduce the labelling effort associated with
building models for software analytics?

Unsupervised learning techniques that learns patterns from unla-
belled data is a promising direction for software analytics. Such
learning has been used for buggy/non-buggy classification [85-
87, 91, 92, 98]. The state-of-the-art (SOTA) unsupervised learner
is Nam and Kim [61]’s CLA(C) method. CLA is based on the binary
split of the output space at the aggregated median (C = 50%) of all
features’ median in the data. However, other areas and different
datasets may not share the same data characteristics for the default
CLA (C = 50%) to perform well. To address this gap, our study
adopts and extends CLA from defect prediction to other software
analytics like static code warnings and issues close time.

Promising extensions for unsupervised learning involves finding
different control settings to configure the system (hyperparameter
tuning) and validating on small labelled data regions (e.g., 2.5%)
before applying the best setting to the test data. Recent software
engineering (SE) research shows many domains’ SOTA can be im-
proved with hyperparameter tuning [1, 2, 12, 21, 23, 60]. DODGE
is one prominent optimizer which shows the output space of the
models on low-dimensional data can be easily surveyed through
dodging away from (1) prior options or options that resulted (2)
in statistically similar performance. Simply, the central function
of CLA (binary split of the output space via aggregated C) is syn-
onymous to SE’s SOTA optimizer DODGE with less information
required, a reduction of 97.5% train data’s labels. Specifically, our
work proposed FRUGAL(C) = three different modes of CLA (as
shown in Figure 1) with C = {5% to 95%, increments by 5%} where
all the combinations can be easily executed in a grid search manner.

To understand and validate the FRUGAL system, we investigate
the following research questions:

https://doi.org/10.1145/nnnnnnn.nnnnnnn

ASE 2021, 15 - 19 November, 2021, Melbourne, Australia

Machine
Learning

?Training

—_— 1) Clustering 1
f " Uniabelled 2) Labeling
I _ Train Data :_> . . %el .
: e ! CLA | Pseudo-Labelled |

] \ Train Data]

N o - ——— -—— = —

3) Features Selecting
4) Instances Selecting

<>

" Unlabelled
Test Data

Predlctlng{

Huy Tu, Tim Menzies
Com Sci, NCState, USA
hqtu@ncsu.edu, timm@ieee.org

{ Unlabelled ¥

Test Data | . %
I —>| ca |- °|
I nnn Predicted
] \ Test Data
N —_— - =

Unlabelled ¥
Test Data

@_@——"%"'

Predicted I
\ TestData

/ Training
PROCESSED‘ﬁ
TRAIN DATA |
S Machine

Learning

-

(procEssED!

I_T E_ST,I_DA_TA_. Predicting

B B,

Predicted
\ Test Data

Figure 1: Three different modes of CLA devised from Nam and Kim [61] for defect prediction.

RQ1: How much labelled data (L%) that FRUGAL requires?

% Result:)

From our investigation of various L values, FRUGAL’s per-
formance plateaus beyond L > 2.5% and FRUGAL'’s success
is not altered by large changes to L.

J

RQ2: How does FRUGAL perform in adoptable static code
warnings identification?

'% Result:

When comparing to the SOTA solution in EMSE’20 [90],
FRUGAL wins on recall, loses in AUC, and draws in FAR
with only 2.5% of the labelled train data.

L J

RQ3: How well does FRUGAL predict issue close time?

'% Result:

When comparing to the SOTA solution in EMSE’20 [93]
(which was compared to ICSE’10 [26], PROMISE’11 [51],
MSR’16 [37], COMAD’19 [50]), FRUGAL outperforms in
FAR, recall, and AUC while performing similarly in accuracy

with only 2.5% of the labelled train data.

. J

In summary, our work’s contributions to the field of software
analytics are as follows:

(1) This work is the first to assess the usage of unsupervised learning
to reduce the labelling efforts to commission models building in
adoptable static code warnings identification and issues close
time prediction.

(2) FRUGAL surpasses the SOTA issues close time predictor and
performs similarly to the SOTA adoptable static code warning
identifier with 97.5% less information.

(3) FRUGAL reduces the labelling efforts to commission new models
building by 97.5%. In another word, FRUGAL is 40 times cheaper
than SOTA methods in issue close time and static code warning
analysis areas.

(4) The performance of our framework suggests that many more
domains in SE could benefit from unsupervised learning solu-
tions in the semi-supervised learning manner beyond defect
prediction [22, 61, 63, 85-87, 91, 92, 98, 100].

(5) To better support other researchers our scripts and data are
on-line at https://github.com/SE-Efforts/SE_SSL.

The rest of this paper is structured as follows. Section 2 and 3
discusses the background, related works, and motivation of this
work. Section 4 describes our methodologies. Section 5 analyzes
the results while Section 6 discusses our short-comings. Finally, 7
concludes the work and states the venues for future work.

2 BACKGROUND AND RELATED WORK
2.1 Studying Static Code Warnings

2.1.1 Background. Static code warning tools detect potential static
code defects in source code or executable files at the stage of soft-
ware product development. This covers a range of potential defects
such as common programming errors, code styling, in-line com-
ments common programming anti-patterns, style violations, and
questionable coding decisions. The distinguishing feature of these
tools is that they make their comments without reference to a partic-
ular input. Nor do they use feedback from any execution of the code

FRUGAL: Unlocking SSL for Software Analytics

being studied. Examples of these tools include PMD', Checkstyle?
and the FindBugs? tool.

Table 1: Categories of Wang et al. [81]’s selected features. (8
categories are shown in the left column, and 95 features ex-
plored in Wang et al. are shown in the right column with 23
golden features in bold.)

Features

size content for warning type;

size context in method, file, package;

warning context in method, file, package;

warning context for warning type;

fix, non-fix change removal rate;

defect likelihood for warning pattern;

variance of likelihood;

defect likelihood for warning type;

discretization of defect likelihood;

average lifetime for warning type;

method, file, package size;

comment length;

comment-code ratio;

method, file depth;

Code method callers, callees;

characteristics methods in file, package;

classes in file, package;

indentation;

complexity;

warning pattern;

type, priority;

rank, warnings in method, file,

package;

latest file, package modification;

File file, package staleness;

file age; file creation;

deletion revision; developers;

call name, class, parameter signature,

return type;

new type, new concrete type;

operator;

field access class, field;

Code catch;

analysis field name, type, visibility, is static/final;

method visibility, return type,

is static/ final/ abstract/ protected;

class visibility,

is abstract / interfact / array class;

added, changed, deleted, growth, total, percentage

of LOC in file in the past 3 months;

added, changed, deleted, growth, total, percentage

of LOC in file in the last 25 revisions;

added, changed, deleted, growth, total, percentage

of LOC in package in the past 3 months;

added, changed, deleted, growth, total, percentage

of LOC in package in the last 25 revisions;

warning modifications;

warning open revision;

history warning lifetime by revision, by time;
file type;

File file name;

characteristics package name;

Category

Warning
Combination

Warning
characteristics

history

Code
history

Warning

One issue with static code warnings is that they generate a large
number of false positives. Many programmers routinely ignore most
of the static code warnings, finding them irrelevant or spurious [81].
Such warnings are considered as “unadoptable” since programmers
just ignored them. Between 35% and 91% of the warnings generated
from static analysis tools are known to be unadoptable. This high

!https://pmd.github.io/latest/index.html
Zhttps://checkstyle.sourceforge.io/
3http://findbugs.sourceforge.net

ASE 2021, 15 - 19 November, 2021, Melbourne, Australia

Table 2: Summary of Yang et al. [90]’s data distribution. The
gray cells are median values for the corresponding columns.

training set test set

Dataset Features Instance Adoptable Instance Adoptable

Counts Ratio(%) Counts Ratio(%)
commons 39 725 7 786 5
phoenix 44 2235 18 2389 14
mvn (maven) 47 813 8 818 3
jmeter 49 604 25 613 24
cass (cassandra) 55 2584 15 2601 14
ant 56 1229 19 1115 5
lucence 57 3259 37 3425 34
derby 58 2479 9 2507 5
tomcat 60 1435 28 1441 23

false alarm rate is one of the most significant barriers for devel-
opers to use these tools [4, 35, 77]. Hence it is prudent to learn to
recognize what kinds of warnings programmers usually act upon
so the tools can be made more useful by first pruning away the
unadoptable warnings. Various approaches have been tried to re-
duce these false alarms including graph theory [6, 7], statistical
models [14], and ranking schemes [41]. Previous work [90] referred
to the target warnings found by these approaches as “actionable”
warnings, but we found that it actually refer to “adoptable” warn-
ings that were adopted. That means the warnings that are adopted
by developers do not necessarily mean the warnings are actionable
(some developers still need to consult external sources to figure out
the solutions).

2.1.2 Data and Algorithms. The data for this paper comes from
a recent study by Wang et al. [81]. They conducted a systematic
literature review to collect all public available static code features
generated by widely-used static code warning tools (116 in total):

o All the values of these collected features were extracted from
warning reports generated by FindBugs based on 60 revisions
of 12 projects.

o To ensure the difference between prior and later revision inter-
vals of a project is adequate for the solid conclusions to be drawn,
Wang et al. [81] set revision intervals for different projects, e.g.,
3 months for Lucene and 6 months for Mvn. Each project in this
study has at least two-years commit history.

o To eliminate ineffective features to the results of those learn-
ers, a greedy backward selection algorithm is applied. Then
they isolated 23 features as the most useful ones for identifying
adoptable static code warnings.

They called these features the “golden set”; i.e. the features most
important for recognizing adoptable static code warnings.

To the best of our knowledge, this is the most exhaustive research
about static warning characteristics yet published. As shown in
Table 1, the “golden set” features fall into eight categories. These
features are the independent variables used in this study. To assign
dependent labels, we applied the methods of Liang et al. [44]. They
defined a specific warning as adoptable if it is closed after the later
revision interval.

By analyzing FindBugs output from two consecutive releases of
nine software projects, collecting the features of Table 1, and then
applying the Liang et al’s definitions, we created the data of Table
2. In this table, the “training set” refers to release i — 1 and the “test
set” is release i. In this study, we only employ two latest releases.
One of many extensive studies exploring the usage of Machine

https://pmd.github.io/latest/index.html
https://checkstyle.sourceforge.io/
http://findbugs.sourceforge.net

ASE 2021, 15 - 19 November, 2021, Melbourne, Australia

Learning (ML) in this area is Heckaman et al. [29]. They applied 15
ML algorithms to recognize the adoptable warnings (programmers
can act upon) based on 51 features derived from static analysis tool,
they achieved recalls of 83-99 % (average across 15 data sets). The
SOTA system that we will compare against is from Yang et al. [90]
where they took advice from Ghotra et al. [25] to compare several
representative non-neural learners (Table 9 of [25]) in software
analytics with various popular neural-network models. They found
that all treatments performed similarly to each other but non-neural
learners did that with less time than deep learners.

Note that, for any particular data set, the 23 features of Table 1,
can grow to more than 23 features. For example, consider the “return
type” feature in the “code analysis” category. This can include
numerous return types extracted from a given project, which could
be void, int, URL, boolean, string, printStream, file, and date (or a
list of any of these periods). Hence, as shown in Table 2, the number
of features in our data varied from 39 to 60.

2.2 Predicting Bugzilla Issue Close Time

2.2.1 Background. When programmers work on repositories, pre-
dicting issue close time has multiple benefits for the developers,
managers, and stakeholders since it is helpful for (1) end-users who
are directly affected by the product; (2) developers prioritize work;
(3) managers allocate resources and improve consistency of release
cycles; and (4) stakeholders understand changes in project timelines
and budgets:

e Although bugs have an assigned severity, this is not a sufficient
predictor for the lifetime of the issue. For example, the author
who issued the bug may be significant contributors to the project.
Alternatively, an issue deemed more visible to end-users may
be given higher priorities. It is therefore insufficient simply to
consider the properties of the issue itself (the issue metrics), but
also of its environment (context metrics). This is similar to the
recent work on how process metrics are better defect predicting
measurements than product metrics [47].

An example of such issue close times estimator can notify in-
volved parties if the recently created issue is an easy fix.

2.2.2 Data and Algorithms. The state-of-the-art system for pre-
dicting issue close time comes from a recent study by Yedida et al.
[93]. They conducted a literature review of 99 research papers that
are comprised of (1) from Watson’s literature reviews; and (2) top
venues listed in Google Scholar metrics for Software Systems, Arti-
ficial Intelligence, and Computational Linguistics in the last three
years with at least 10 citations per years:

e Traditional or non-neural approaches include (1) Guo et al. [27]’s
study on a large closed-source project (Microsoft Windows) to
predict whether or not a bug will be fixed; and (2) Marks et al.
[51] used ensemble method of decision trees, i.e., random forests,
on Eclipse and Mozilla data.

e Astodeep learning or neural network approach are DASENet [42]
and DeepTriage[50].

e Only a minority of deep learning papers (39.4%) performed any
sort of hyper-parameter optimization, i.e., varied few numbers
of parameters, such as the number of layers of the deep learner,
to edge out the best performance of deep learning. Even fewer

Huy Tu, Tim Menzies

Com Sci, NCState, USA

hqtu@ncsu.edu, timm@ieee.org

Table 3: An overview of the data used in the Lee et al. [42],

Mani et al. [50], and Yedida et al. [93] studies. Note that
because of the manner of data collection, i.e., using bin-
sequences for each day for each report, there are many more
data samples generated from the number of reports mined.

Project Observation Period # Reports # Train # Test
Eclipse Jan 2010-Mar 2016 16,575 44,545 25,459
Chromium Mar 2014-Aug 2015 15,170 44,801 25,200
Firefox Apr 2014-May 2016 13,619 44,800 25,201

papers (18.2%) applied hyper-parameter optimization in a non-

trivial manner; i.e., not using a hold-out set to assess the tuning

before assessing the separate test set).

To obtain a fair comparison with the prior state-of-the-art, we use
the same data as used in the Lee et al. [42], Mani et al. [50], Yedida
et al. [93]’s studies. The data was collected from the three projects
of Firefox, Chromium, and Eclipse:

e Preprocessing involves standard text mining to remove special
characters or stack traces, tokenization, and pruning the corpus
to a fixed length.

o The activities per day were collected into two bins including user
activity (e.g., comments), system records (e.g., added/removed
labels), and metadata (e.g., the user was the reporter, days from
opening, etc). Given issue close times (1, 2, ... k days), they
are grouped into S1 and S2 such that |[S1| ~ |S2| and S1 =
{1,...i},52 = {i + 1,...,k}. For instance, S1 includes 1-43 days
and S2 includes 44-365 days, if the number of issues closed in 1
to 43 days ~ number of issues closed in 43 to 365 days.

o Along with the numerical metadata, user and system records are
transformed to machine-readable data for the models to execute
through word2vec [55, 56].

In the same manner as prior work, the target class is discretized
into two bins (so that each bin has roughly the same number of
samples). This yields datasets that are near-perfectly balanced (e.g.,
in the Chromium dataset, we observed a 49%-51% class ratio).

2.3 Evaluation

2.3.1 Measures of Performance. Since we wish to compare our
approach to prior work, we take the methodological step of adopting
the same performance scores as that seen in prior work. Let TP, TN,
FP, FN are the true positives, true negatives, false positives, and
false negatives (respectively), then Yang et al. [90] used AUC, recall,
and false-alarm while Yedida et al. [93] using only accuracy for
their studies. We also add precision and f1 for additional validation
(but see our cautionary note at the end of this list):

e AUC (Area Under the ROC Curve) measures the two-dimensional
area under the Receiver Operator Characteristic (ROC) curve [30,
83]. It provides an aggregate and overall evaluation of perfor-
mance across all possible classification thresholds to overall re-
port the discrimination of a classifier [81].

e Precision = TP/(TP+FP) represents the ability of one algorithm
to identify instances of positive class among the retrieved positive
instances.

e Recall = TP/(TP + FN) represents the ability of one algorithm
to identify instances of positive class from the given dataset.

e F1=(2xPrecision*Recall)/(Precision+Recall) is the harmonic
mean of both precision and recall metrics.

FRUGAL: Unlocking SSL for Software Analytics

ASE 2021, 15 - 19 November, 2021, Melbourne, Australia

S =) s . B . Y
? Model Y pata— & Data~ ¥ Data_ = Feature = Model * Model S \Model 9 Model
Requirements Collection Cleaning Labeling Engineering Training Evaluation Deployment Monitoring

Figure 2: Nine stages of the machine learning workflow from a case study at Microsoft by Amershi et al. [3]. Some stages are
data-oriented (e.g., data collection, cleaning, and labelling) and others are model-oriented (e.g., model requirements, features
engineering, model training, evaluation, evaluation, deployment and monitoring).

e False Alarms (FAR) = TN/(TN + FP) measures the instances
that are falsely classified by an algorithm as positive which are
actually negative. This is an important index used to measure
the efficiency of a model.

e Accuracy = (TP + TN) /(TP + IN + FP + FN) is the percentage
of correctly classified samples.

o In the effort-aware theme of this paper, we are interested in the

labelling effort to commission new models building which is
_ |{human verified comments} |
Cost =
|{comments}|
o Except for FAR and Cost, for the rest of these metrics (Accuracy,

Recall, and AUC), the higherthe value, the better the performance.
Cautionary note: Menzies et al. [53] warns that precision can
be misleading for imbalanced data sets like that studied here (e.g.
Table 2 reports that for static warning analysis, the median of
target class is 15%). Hence, while we do not place much weight on
classifiers that fail on precision or F1.

2.3.2 Statistical Analysis. With the deterministic nature, we em-
ployed Cohen’d effect size test to determine which results are
similar by calculating medium_step2 across Recall, False Alarm,
AUC, Accuracy, and cost. As to what d to use for this analysis, we
take the advice of a widely accepted Sawilowsky et al’s work [70].
That paper asserts that “small” and “medium” effects can be mea-
sured using d = 0.2 and d = 0.5 (respectively). Splitting the differ-
ence, we will analyze this data looking for differences larger than
d=(0.5+0.2)/2 = 0.35:

Mediums;epy or M = 0.35 - StdDeov(All results) (1)

The SOTA adoptable code warnings identifier and the SOTA issue
close time predictor also validated their results with this test but
with d = 0.35 and d = 0.3 respectively.

3 LABELLING

One of the goals of industrial analytics is that new conclusions can
be quickly obtained from new data just by applying data mining
algorithms. As shown in Figure 2, there are at least nine separate
stages that must be completed before that goal be reached [3].
Each of these stages offers unique and separate challenges, each of
which deserves extensive attention. Many of these steps have been
extensively studied in the literature [16-18, 34, 45, 45, 48, 49, 67, 94,
97]. However, the labelling work of step 4 has been receiving scant
attention. In literature, there are several approaches for executing
the labelling process:

(1) Manual labelling;

(2) Crowdsourcing;

(3) Reuse of labels;

(4) Automatic labelling;

(5) Active learning (a special kind of semi-supervised learning)

All of these approaches have their drawbacks; e.g. they are error-
prone or will not scale. In response to these shortcomings, this
study will take two directions:

e First, we will try a label-free approach using a plain unsupervised
learning technique to label the data;

o If the label-free approach fails, then we try tuned semi-supervised
learning, called FRUGAL, which optimizes the unsupervised
learner’s configurations in the grid search manner while vali-
dating the results on only 2.5% of the labelled data.

3.1 Manual Labelling

In manual labelling, a team of (e.g.) graduate students assigns labels
then (a) cross-checks their work via say, a Kappa statistic; then
(b) use some skilled third person to resolve any labelling disagree-
ments [46, 78, 79].

Manual labelling can be very slow. Tu et al. recently studies a
corpus of 678 Github projects [78, 79]. A random selection of 10
projects from that corpus had 22, 500 commits, which took 175 hours
to manually label the commits buggy, non-buggy (time includes
cross-checking). That is, manual labelling of those 500 projects
would have required 90 weeks of work.

3.2 Crowdsourcing

Tu et al. [79] offers a cost estimate of what resources would be
required to sub-contract that effort to dozens of crowdsourced
workers via tools like Mechanical Turk (MT). Applying best prac-
tices in crowdsourcing [13], assuming (a) at least USA minimum
wages [75]; and (b) our university taking a 50% overhead tax on
grants; then crowd sourcing the labelling of the issues from 500
projects would require $320,000 of grant reserve.

3.3 Reusing Labels

Since manual labelling is time consuming and crowdsourcing is
too expensive, researchers often reuse labels from previous studies.
E.g. for defect prediction, researchers [88, 89, 91] certified their
methods using data generated by Kamei et al. [36]. This approach
fails, in two cases. Firstly, when exploring a new domain, there may
be no relevant old labels to reuse. Secondly, reusing labels means
incorrectly labelled examples can contamiante other research. For
example, Yu et al. [94] were exploring self-admitted technical debt
and found that their classifiers had an alarming high false-positive
rate. But when they manually checked the labels of their data (which
they taken from a prior study by Maldonado et al. [48]), they found
that over 98% of the reused false-positive labels were incorrect.

ASE 2021, 15 - 19 November, 2021, Melbourne, Australia

3.4 Automatic Labelling

If labels cannot be generated manually or reused from other papers,
using automatic labelling processes is an attractive alternative. For
example, defect prediction papers [10, 31, 36, 38, 57, 62, 68] can label
a commit as “bug-fixing” when the commit text contains certain
keywords (e.g. "bug", "fix", "wrong", "error", "fail" etc [79]). Vasilescu
et al. [80] noted that these keywords are used in a somewhat ad
hoc manner (researchers peek at a few results, then tinker with
regular expressions that combine these keywords). Tu et al. [79] had
found that these simplistic keyword approaches can introduce many
errors, perhaps due to the specialization of the project nature or the
ad-hoc nature of their creation. In technical debts identification, Yu
et al. proposed a pattern-based method that automatically identified
20-90% of self-admitted technical debts (SATDs) by finding patterns
associated with high precision from the labelled training sets (close
to 100%). This approach does need extensively labelled training
data to find quality patterns that are associated with technical debt
because it relies on precision. Another automatic approach is ML
which involves supervised learning models to train on existing
labelled datasets to learn the underlying rules of the data. However,
this also requires having access to a substantial amount of labelled
data (especially for deep learners) which is not always available in
new domains (e.g., the success of open-source projects).

3.5 Active Learning

A third approach is to (a) only label a representative sample of the
data; then (b) build a classifier from that sample; then (c) use that
classifier to label the remaining data [82]. To find that representa-
tive example, some unsupervised learners like an associations rule
learner or a clustering algorithm or an instance selection algorithm
is used to find repeated patterns in the data [38]. Then a human
oracle is asked to label just one exemplar from each pattern. More
sophisticated versions of this scheme include active learners, where
an Al tool rushes ahead of the human to fetch the most information
next examples to be labelled [40, 72]. If humans first label most
informative examples, then better models can be built faster. This
means, in turn, that humans have to label fewer examples.

The more general term for active learning is semi-supervised
learning. Both terms mean “do what you can with a small sam-
ple of the labels” while active learning adds a feedback loop that
checks new labels, one at a time, with some oracle. Semi-supervised
learning relies on partially labelled data and mostly unlabelled data.

Since 2012, active learning approaches have been received scarce
attention in SE [39, 79, 95, 96]. Initially, it seems to be a promising
method for addressing the cost of label checking and generating.
For self-admitted technical debt identification, only 24% on the
median of the training corpus had to be labelled [96]; Also, using
active learning, effort estimation for N projects only needed labels
on 11% of those projects [39]; Further, while seeking 95% of the
vulnerabilities in 28,750 Mozilla Firefox C and C++ source code files,
humans only had to inspect 30% of the code [95]. That said, after
much work, it must be reported that active learning still produces
disappointing results. It is still daunting to “only” label (say) 5% to
2.5% of the projects in the 1,857,423 projects in RepoReapers [58] or
the 9.6 million links explored by Hata et al. [28]. Also, consider the
Firefox study mentioned in the last paragraph. The human effort
of inspecting 28,750x30% = 8,625 source code files (needed to find

Huy Tu, Tim Menzies
Com Sci, NCState, USA

Table 4: Differences between FRUG&Et%%?fSZﬁ%*n%’“eT@fefﬁég]

FRUGAL (this paper) Zhang et al. [99]
Core Applies SE domain knowl- | Applies graph theory; i.e.
Assumption edge; i.e. higher complex- | continuity and clustering
ity is associated with tar- | (similar things have simi-
get instances (which we | lar properties).
measure as being above C)
Hyperparameter | Yes No
Optimization
Class No Yes (with the Laplacian
Rebalancing score sampling strategy)

Algorithm 1: Pseudocode of FRUGAL

Input: train_data, tune_data, test_data
Output: result

percentiles = range(5, 100, 5)

methods = [CLA, CLA_ML, CLAFI_ML)]
best_result = -1

best_model = None
for M in methods do
for C in percentiles do
model = M(C).fit(train_data)
temp_result = model.predict(tune_data)
if isBetter(temp_result, best_result) then
L best_result = temp_result

[P Y S N R

-
5

best_model = model

-
=

1

S

return best_model.predict(test_data)

identify 95% of the vulnerabilities) it is beyond the resources of
most analysts (but it might be justified for mission-critical projects).
Finally, for defect prediction, Zhang et al. [99] proposed NSGLP
and certified their method by varying the size of labeled software
modules from 10 to 30% of all the NASA datasets. The differences
between our approach and their are listed in the Table 4. They
claimed that the proposed method outperformed several represen-
tative state-of-the-art semi-supervised ones for software defect
prediction. However, reproducing that paper is complex since it
was written before the current focus on research paper artifacts
(so that paper has no reproduction package). Moreover, recent and
widely cited studies argue that the datasets used in that analysis
are of dubious quality [66, 73].

It is opportune that in this adoptable static code warnings iden-
tification and issue close time prediction work, we aim to reduce
the reviewing cost of these labelling methods by two methods (1)
label-free approach with unsupervised learning, or (2) tuned semi-
supervised learning to optimize the unsupervised learner’s config-
urations in the grid search manner while validating the results on
a small amount of the labelled data, i.e., 2.5%.

4 METHODOLOGY

4.1 General Framework

Our approach, shown in Algorithm 1, extends unsupervised learn-
ing with some semi-supervised learning and tuning. Nam et al’s
CLA is the SOTA unsupervised learner for defect prediction, which
is also confirmed by Xu et al. [85]’s large-scale study. As shown
in Figure 1, CLA consists of three modes: CLA, CLA+ML, and
CLAFI+ML. This study shall adopt and extend CLA with tuning in
the grid search manner of (1) three modes of CLA while varying
(2) the C% percentile parameter. Simply, as illustrated in Algorithm
1, FRUGAL finds the best combination of unsupervised learners =

FRUGAL: Unlocking SSL for Software Analytics

{CLA, CLA+ML, CLAFI+ML} and C = {5% to 95% increments by

5%}. The author only proposed CLA and CLAFI+ML but CLA+ML

is a natural medium that can be useful during the tuning process.
We explain the details of our approach in §4.2, §4.3, and §4.4.

42 CLA

In the SOTA comparative study of unsupervised models in defect

prediction, CLA starts with two steps of (1) Clustering the instances

and (2) LAbelling those instances accordingly to the cluster. In the

setting with no train data available, we can label or predict all

new/test instances, as shown in the first block of Figure 1.

Clustering;:

(1) Find the median of feature Fy, Fo, ..., F, (percentile(F;, C)) where
C = 50% across the whole dataset.

(2) For each data instance X;, go through each feature value of the
respective data instance to count the time when the feature
F; > percentile(F;,C) as K;.

Labelling: label the instance X; as the positive class if K; > median(K),

else label it as the negative class.

The intuition of such methods is based on the defect proneness
tendency that is often found in defect prediction research, that is the
higher complexity is associated with the proneness of the defects [61].
Simply, there is a tendency where the problematic instance’s feature
values are higher than the non-problematic ones. This tendency and
CLA’s/CLAFI+ML’s effectivenesses are confirmed via the recent
literature and comparative study of 40 unsupervised models in
defect prediction across 27 datasets and three types of features by
Xu et al. [85]. They found CLA’s/CLAFI+ML’s performances are
superior to other unsupervised methods while similar to supervised
learning approaches. Therefore, this study investigated and found
that the hypothesized tendency is also applicable in issues close time
prediction and adoptable static code warning identification data
but not with C at the median (C = 50%). This opens opportunities
for hyperparameter tuning.

43 CLA+ML

If there is an abundant train data in the wild but without labels,
CLA can pseudo-label the train data before applying any machine
learner in the “supervised” manner (as shown in the second block
in Figure 1). For this step, we take Nam and Kim [61]’s advice to
incorporate Random Forest [9] (RF, described in §4.5.1), an ensemble
of tree learners method, as the machine learner of choice.

4.4 CLAFI + ML

CLAFI is an extension of CLA which is a fullstack framework that
also include (3) Features selection and (4) Instances selection. The
setting is similar to CLA+ML, as shown in the | third block of Fig-
ure 1, the pseudo-labelled train data (from CLA) and unlabelled test
data will be processed with FI and F respectively. Finally, machine
learner can train the processed pseudo-labelled train data and then
predict on the processed test data.

Feature Selection: Calculate the violation score per feature, called
metric in the original proposal of Nam et al. [61]. The process is
done on both the train and the test dataset.

ASE 2021, 15 - 19 November, 2021, Melbourne, Australia

(1) For each Fj, go through all instances of X}, a violation happens
when F; at X; is higher than the percentile(K;, C) where C =
50% but Y; = 1 and vice-versa.

(2) Sum all the violations per feature across the whole dataset and
sort it in ascending order.

(3) Select the feature with the lowest violation score, if multiple of
them have the same score then pick all of them.

Instance Selection:

(1) With the selected features, go through each instance X; and
check if the respective F; values violated the proneness assump-
tion then remove that instance X;.

(2) If the dataset do not have instances with both classes at the end
then pick the next minimum violation score to select metrics.

(3) This process is only done on the train dataset.

After selecting features with the minimum violation scores and
removing the instances that violated the proneness tendency, a
practitioner can train an RF model on the processed train data to
identify the target classes from the processed test dataset.

4.5 Machine Learning Models

4.5.1 Random Forest (RF). is an ensemble learning method that
operates by constructing a multitude of decision trees, each time
with different subsets of the data rows R and columns C*. Each
decision tree is recursively built to find the features that reduce
most of entropy, where a higher entropy indicates less ability to
draw conclusions from the data being processed [8]. Test data is
then passed across all N trees and the conclusions are determined
(say) a majority vote across all the trees [9]. Holistically, RF is based
on bagging (bootstrap aggregation) which averages the results over
many decision trees from sub-samples (reducing variance).

4.5.2 Support Vector Machine (SVM). is a classifier defined by a
separating hyperplane [76]. Soft-margin linear SVMs are commonly
used in text classification given the high dimensionality of the
feature space. This was recommended by Yang et al. [90] as the
state of the art for our adoptable static code warning identification
domain. A soft-margin linear SVM looks for the decision hyperplane
that maximizes the margin between training data of two classes
while minimizing the trainipg error (hinge loss):

min A|lw|® + 1§ max (0,1 — y;(w - x; — b)) (2
n
i=1

where the class of x is predicted as sgn(w - x — b).
Both SVM and RF are popular in the field of ML and implemented
in the popular open-source toolkit Scikit-learn by [65].

4.5.3 Feedforward Neural Networks. is the first and simplest tech-
nology devised from artificial neural network [71]. The information
moves in the forward direction only, starting from the input nodes
through the hidden nodes and to the output nodes. At each node
of these networks, the inputs are multiplied with weights that are
learned, and then an activation function is applied. The weights are
learned by the backpropagation algorithm [69]. This uses just a few
layers while the “deep" learners use many layers. Also, the older
methods use a threshold function at each node, while feedforward
networks typically use the Rectified Linear Unit function [59] of

4Specifically, using log, C of the columns, selected at random.

ASE 2021, 15 - 19 November, 2021, Melbourne, Australia

f(x) = max(0, x). This is the base learner for our second domain’s
state of the art where Yedida et al. [93] proposed a framework com-
bining different preprocessors and different configurations of the
simple feedforward neural network.

5 RESULTS

In order to make sure our proposed method’s effectiveness is not
affected by the bias between deterministic and non-deterministic
models or the bias of uncertainty, we randomly shuffle train/test
sets and incorporate stratified sampling with five bins (ensuring
that the class distribution of the whole data is replicated in each
bin). The process is repeated for the train data but also includes an
extra 2.5% validating partition for each 97.5% tuning partition. The
median 2.5% of labelled train data for static warning analysis and
issue close time are 36 and 1120 respectively. During the simula-
tion, the tune partition will not review labels for our unsupervised
learning and semi-supervised learning candidates. FRUGAL does
have access to the corresponding 2.5% labelled validation parti-
tion while deciding on the best configurations. For each 20% of
the test data, the process learns a model on five stratified samples
of the train data. This process is done for both domains in this paper.

RQ1: How much labelled data (L%) that FRUGAL requires?

AUC in Actionable Static
Warning identification.
“medium effect” or M = 5%

Accuracy in Issues Close Time
prediction.
“medium effect” or M = 2%

Derby c
Mvn Firefox mmms—
; | I
Lucene Eclipse s

Pheonix mmss—"

—

Cass

l
Jmeter Emm———

_
\

Tomcat

1.00% « 2.50% m5% 10% m 20%

Figure 3: RQ1 results on two domains with FRUGAL(L €
{1%, 2.5%, 5%, 10%, 20%}). FRUGAL with L > 1% perform sim-
ilarly. However, for adoptable static warning identification,
FRUGAL(L = 2.5%) does perform the best across 7 datasets
except in Lucene and Cass (the highlighted ones) where
FRUGAL(L=20%) outperforms FRUGAL(L=2.5%).

Huy Tu, Tim Menzies
Com Sci, NCState, USA
hqtu@ncsu.edu, timm@ieee.org

Our hypothesis is “there are few key data regions where extra
data would lead to indistinguishable results”. We test the different
amounts of the train data’s labels that are required for FRUGAL’s
performance to plateaus. Let L be 1%, 2.5%, 5%, 2.5%, or 20%, Figure
3 reports FRUGAL'’s performance on both adoptable static warning
identification (in AUC) and issues close time prediction (in accu-
racy). Both metrics are derived from the SOTA’s evaluation metrics.
Specifically, we pick AUC as the representation metric for adoptable
static warning analysis since AUC measures the area under the
curve whereas other metrics only calculate a single point on the
curve. From Figure 3:

e The lower bound for both domains is FRUGAL with L = 1%.

o For adoptable static warning identification, FRUGAL’s perfor-
mance improves initially and plateaus beyond L = 2.5% across
7 datasets. FRUGAL(L = 2.5%) loses to FRUGAL(L = 20%) in
only Lucene and Cass projects but reduces 8 (20%/2.5%) times
the labelling efforts.

o For issues close time prediction, FRUGAL surprisingly performs
statistically similar across all L € {2.5%, 5%, 2.5%, 20%}.

The same effect is absent in issue close time prediction, this
is highly likely due to the balanced nature of the data’s class dis-
tribution. However, the data in static warning analysis is more
imbalanced (with a median of 15% for the adoptable static warning
class ratio). This is consistent with the motivations for oversam-
pling and undersampling techniques for imbalanced data [2, 11].

In summary, our answer to RQ1 is:

From our investigation of various L values, FRUGAL’s per-
formance plateaus beyond L > 2.5% and FRUGAL'’s success
is not altered by large changes to L.

RQ2: How does FRUGAL perform in adoptable static warn-
ings identification?

Wang et al. [81] proposed the “golden set” features along with the
ML study where they employed RF, Decision Tree, and SVM (with
the RBF kernel) with median AUC performances at 70%, 64%, and
50%. Yang et al. [90] extensively investigated different deep learners
(DNN, CNN, RF, Decision Tree, and SVM) that pushed Wang et al’s
results to new higher watermarks in the area with median AUC
performances at 99.5%, 95.9%, and 99.5% with almost 45%, 55%, and
100% relative improvements to the same learner choices as Wang
et al. [81]. The default parameters in Weka (used by Wang et al.
[81]) are different to those used in SciKit-Learn (used by Yang et al.
[90]). For instance, Wang et al’s SVM used RBF kernel while Yang
et al. [90]’s SVM used linear kernel.

Yang et al. [90] proposed the standard linear SVM as the SOTA’s
adoptable static warning identifier. Table 5 reports the comparison
of our proposed method FRUGAL, the SOTA’s SVM (with 100%
labelled data and 2.5% labelled data), and the baseline unsupervised
learners (CLA & CLAFI+RF) across FAR, recall, precision, F1 and
AUC. In those results:

e Standard unsupervised learner CLA/CLAFI+RF performs the
worst as their default behavior is clustering based on the median
of the data which may not apply for all the data and especially in
the static warning analysis. However, CLA’s recalls are almost

FRUGAL: Unlocking SSL for Software Analytics

ASE 2021, 15 - 19 November, 2021, Melbourne, Australia

Table 5: Comparison between CLA[61], SVM[90], and FRUGAL in terms of FAR, Recall, Precision, F1, and AUC for identifying
adoptable static warning. In this table, the FRUGAL results were found after labelling just 2.5% of the data. Except for FAR,
the higher the results the better the performance of the treatment. Medians and IQRs (delta between 75th and 25th percentile,

lower the better) are calculated for easy comparisons. Here, the highlighted cells show best performing treatments.

P
(o}
. iy g 2 E 2 8 8 o g .g o
Metrics | Treatment 5 % 5 3 < 13 g é £ =} I
AEEE N AR AN NN
A~ = o
CLA 43.3 44.9 30.8 39.1 42.1 39.4 43 45.8 43 43 4.2
FAR CLAFI+RF 0.4 18.1 0.8 29.4 0.5 4.1 0.4 22.5 13.6 4.1 18.5
(M = 6%) FRUGAL 1 4.8 3.1 2.1 0.6 8.0 2.8 87 7.8 3.1 2.9
SVM [90] (L=2.5%) 0.7 100 5.1 0.5 0.8 10.5 2.1 0.2 100 2.1 32.2
SVM [90] 1.3 1.2 6.9 3.5 1.4 2.1 3.2 0.5 5.8 2.1 2.7
CLA 45.8 100 64.5 66.7 98.6 75.9 63.1 80 100 759 | 328
Recall CLAFI+RF 57.2 93.3 67.1 62.1 83.7 73.1 64.4 77.8 77.5 73.1 12.9
(M =9%) FRUGAL 93.7 92.9 100 98.7 92.6 88.4 98.8 94.2 99 94.2 6
SVM [90] (L=2.5%) 0 0 73.6 65.2 31.9 31.4 78.9 58.5 0 319 | 439
SVM [90] 97.8 97 87.1 96.1 90.3 93.3 98.2 95 99.5 96.1 4.8
CLA 4.8 6.6 49.6 22.3 27.3 38.3 31.9 8.2 11.1 223 | 231
Precision CLAFI+RF 1.9 4.3 39.3 15.5 24.1 22 18 4.6 9 15.5 14.6
(M =17%) | FRUGAL 61.4 63.5 60.9 61.3 67 50.6 67.9 32.6 78.4 61.4 8.6
SVM [90] (L=2.5%) 0 0 86.4 85 90.8 54 91.8 94 0 85 55.6
SVM [90] 86.4 100 72.7 84.3 100 71.4 83.1 90 333 | 843 20
CLA 8.7 123 54.2 335 42.9 51.7 42.7 14.8 20 335 | 264
F1 CLAFI+RF 33 8.1 39.2 26.5 35.6 27.3 22.7 8.4 15.9 227 | 154
(M =16%) | FRUGAL 63.6 72.4 62.1 45.6 55.3 45.4 69.1 25.1 58.9 589 | 183
SVM [90] (L=2.5%) 0 0 66.4 34.3 27 22.8 72.7 71.1 0 27 50.5
SVM [90] 86.4 100 72.7 84.3 100 71.4 83.1 90 72.8 84.3 | 20.1
CLA 54.9 88.9 66.8 64.7 83.8 72 69.7 68.5 81.1 69.7 | 13.7
AUC CLAFI+RF 66.8 89 77.3 69.4 78.4 78 75.2 75.9 84.3 77.3 4.2
(M =11%) | FRUGAL 95.3 94.6 82.5 78.6 90.4 74 97 89.6 94.1 | 904 | 12.7
SVM [90] (L=2.5%) 77 0 88.3 89.7 87.1 65.6 95.1 75.3 0 77 395
SVM [90] 99.5 99.6 97.3 98.8 99.7 98.8 99.6 99.7 99 99.5 0.8

100% in a few cases (Mvn, Cass, and Commons) and CLAFI+RF’s
FAR are almost 0% in more than half cases (Derby, Lucene, Cass,
Jmeter and Tomcat). This indicates promising areas for tuning
configurations of unsupervised learners.

The SOTA work originally evaluated their method on FAR, recall,

and AUC. With the same comparison, FRUGAL performs better

than the SOTA’s SVM as FRUGAL wins in Recall and FAR while
losing in AUC. However, when considering precision and F1,

FRUGAL underperforms. Recalling our cautionary note (from

the end of §2.3.1), precision (and hence F1) can be misleading

for data sets where the target class is rare [53] (e.g. as shown
in Table 2, the median of target class is 15%). Therefore, overall,
we say FRUGAL performs similarly to the SOTA’s SVM.

e The SOTA work that was trained on only 2.5% labelled data (i.e.,
SVM with L = 2.5%) underperforms both the SOTA work with
100% labelled data and FRUGAL. This illustrates that FRUGAL’s
effectiveness is not due to random sampling of the data.

o In term of labelling efforts, CLA is label-free, FRUGAL costs
2.5%, and Yang et al.s method costs 100% because FRUGAL and
the SOTA require 2.5% and 100% of the data to be labelled.

% In summary, our answer to RQ2 is:

FRUGAL improves significantly from standard unsupervised
learner CLA with 2.5% of data labelled as a tradeoff while
performing similarly to the SOTA with 97.5% fewer infor-
mation. A simple method that explores small regions of
data does no worse than methods that extensively learn the
whole space.

RQ3: How well does FRUGAL predict issue close time?

Mark et al.[50] proposed DeepTriage as SOTA deep learning
solution extended from bidirectional LSTMs with an “attention
mechanism” to predict issue close time. A Long Short-Term Mem-
ory (LSTM) [33] is a recurrent neural network with an additional
“gate" mechanisms to allow the network to model connections be-
tween long-distance tokens in the input. Bidirectional variants of
recurrent models, such as LSTMs, use token stream in both forward
and backward directions; allowing for the network to model both
previous and following contexts for each input token. Attention
mechanisms[5] use learned weights to help the network “pay atten-
tion" to tokens that are more important than others in a context.

Yedida et al. [93]’s SIMPLE extended basic 1980s’ style feedfor-
ward neural network with state-of-the-art SE’s optimizer DODGE [1]
to automatically select the preprocessors (normalizer, binarizer,
etc) and the neural network model’s hyperparamters (num_layers,
num_units_in_layer, batch_size). SIMPLE outperformed DeepTriage
and other non-neural network methods from Marks et al. [51] and
Guo et al. [27].

SIMPLE is employed as the SOTA solution for predicting issue
close time. Yedida et al. [93] only compared solutions by the accu-
racy metric. In order to ensure the generalizability of our proposed
solution, we also compared different methods with metrics from
static warning analysis in RQ2 (FAR, recall, and AUC). Hence, Table
6 reports the comparison of our proposed method’s FRUGAL, the
SOTA’s SIMPLE, and the baseline unsupervised learners (CLA &
CLAFI+RF) across accuracy, FAR, recall, and AUC. We observe:

ASE 2021, 15 - 19 November, 2021, Melbourne, Australia
Table 6: Comparison between CLA[61], SIMPLE[93], and

FRUGAL in terms of Accuracy, FAR, Recall, and AUC for pre-
dicting issue close time. Note that in this table, the FRUGAL
results were obtained after labelling just 2.5% of the data. Ex-
cept for FAR, the higher the results the better the perfor-
mance of the treatment. Medians and IQRs (delta between
75th and 25th percentile, lower the better) are calculated for
easy comparisons. Here, the highlighted cells show best

performing treatments.

Metrics Treatment g E __E"‘ § g,
= & & = |~
)
CLA 53.6 | 57.1 57.6 | 57.4 2
Accuracy | CLAFI+RF 50.2 | 53.9 | 51.3 | 52.6 19
(M =3%) | FRUGAL 653 | 742 | 68.2 | 68.2 4.5
SIMPLE [93] | 703 | 683 | 68.8 | 68.6 1
CLA 349 | 269 | 373 | 321 5.2
FAR CLAFI+RF 35.1 3.1 32.9 18 16
(M =5%) | FRUGAL 2.2 2 2 2 0.1
SIMPLE [93] 33.1 32.1 225 | 273 53
CLA 549 | 889 | 66.8 | 77.9 17
Recall CLAFI+RF 383 | 454 | 38.1 | 41.8 3.7
(M =8%) | FRUGAL 999 | 97.9 | 97 | 979 | 15
SIMPLE [93] 717 | 741 54 64.1 10.1
CLA 61 76.4 | 629 | 62.9 7.7
Precision | CLAFI+RF 574 | 72.6 | 57.9 | 57.9 7.6
(M =3%) | FRUGAL 69.1 799 | 69.2 | 69.2 5.4
SIMPLE [93] 63.5 67 70.4 67 3.5
CLA 51.3 | 59.1 57.7 | 57.7 3.9
F1 CLAFI+RF 46 55.9 | 45.9 46 5
(M =4%) | FRUGAL 75 823 | 74.8 75 3.75
SIMPLE [93] 63.5 | 614 | 579 | 614 2.8
CLA 588 | 66.4 | 62.2 | 64.3 3.8
AUC CLAFI+RF 534 | 60.6 | 54.2 | 574 3.6
(M =3%) | FRUGAL 72.1 80.2 | 75.8 | 75.8 4.1
SIMPLE [93] 673 | 70.4 | 65.6 68 2.4

e The unsupervised learners CLA/CLAFI+RF performed worst
as it’s default behavior uses clustering based on the median of
the data (which may not apply for all data). While CLAFI+RF
performed better than CLA in static code warnings, that effect
was not seen here (i.e. what works for one domain may not work
for another). Additionally, on average, CLA underperformed
SIMPLE by approximately 1%, 4%, 4%, 5%, 5%, and 11% in FAR,
precision, f1, recall, AUC, and accuracy without access to the
train data. Altogether, both points indicate promising areas for
tuning configurations of unsupervised learners.

e FRUGAL outperforms the SOTA’s SIMPLE as FRUGAL wins
in recall, precision, f1, AUC, and FAR while drawing in accu-
racy. FRUGAL, on average, improves relative SOTA’s precision,
AUC, {1, and recall by 9% 14%, 30%, and 52% respectively while
reducing FAR by 94% relatively.

e In term of labelling efforts, CLA is label-free, FRUGAL costs
2.5%, and the Yedida et al. [93]’s method costs 100% because
FRUGAL and the SOTA need 2.5% and 100% of the data labelled
to execute.

Huy Tu, Tim Menzies
Com Sci, NCState, USA
hqtu@ncsu.edu, timm@ieee.org

% In summary, our answer to RQ3 is:

FRUGAL exceeds both standard unsupervised learner CLA
and the SOTA SIMPLE (EMSE’20 [93] which outperformed a
decade of research including ICSE’10 [26], PROMISE’11 [51],
MSR’16 [37], COMAD’19 [50]) in predicting issues close
time. FRUGAL requires only 2.5% of the train data to be la-
belled when being compared against unsupervised learning
while using 97.5% less information than the SOTA tuned
deep learning method. Hence, FRUGAL is not only effective
in static warning analysis, but also in issue close time predic-
tion. The success in both areas let this study hypothesizes
that other areas of SE may also benefit from FRUGAL.

6 THREATS OF VALIDITY

There are several validity threats [20] to the design of this study.
Any conclusion made from this work must be considered with the
following issues in mind:

Conclusion validity focuses on the significance of the treat-
ment. To enhance conclusion validity, we run experiments on 12
different target projects across stratified sampling (25 runs) and
find that our proposed method always performed better than the
state-of-the-art approaches. More importantly, we apply a similar
statistical testing of Cohen’d as the SOTA work [90, 93] from the
two domains to obtain fair comparison. In addition, we have taken
into generalization issues of single evaluation metrics (e.g., recall
and precision) into consideration and instead evaluate our methods
on metrics that aggregate multiple metrics like AUC while being
effort-aware via cost. As future work, we plan to test the proposed
methods with additional analyses that are endorsed within SE liter-
ature (e.g., P-opt20 [79]) or general ML literature (e.g., MCC [15]).

One of the possible explanations for the simple effectiveness of
both binary split of the output space (CLA/CLAFI+ML/FRUGAL’s
centrality) and 2.5% labelled train data requirement is highly due
to the intrinsic dimensionality. Levina and Bickel [43] argued that
many datasets embedded in high-dimensional spaces can be com-
pressed without significant information loss (similar to the PCA
method [52]). To compute Levina’s intrinsic dimensionality, a 2-
d plot is created where the x-axis shows r; i.e. the radius of two
configurations while the y-axis shows C(r) as the number of con-
figurations after spreading out some distance r away from any of n
data instances:

2 n n

y=C0 = o ;j;11[||x,,xjn <l 0
The maximum slope of In C(r) vs. Inr is then reported as the intrin-
sic dimensionality, D. Note that I[-] is the indicator function (i.e.,
I[x] = 1if x is true, otherwise it is 0); x; is the ith sample in the
dataset. Applying this calculation to the 12 datasets of two domains
(reports in Table 7), we found the intrinsic or latent dimensionality
(D) of our data is very low (median around one, no more than three).
Agrawal et al’s DODGE [1] is the SOTA optimizer for SE, DODGE
executes by binary splitting the tuning space, each chop moves
in the bounds for numeric choices by half the distance from most
distant value to the value that produced the “best” performance.

FRUGAL: Unlocking SSL for Software Analytics

Table 7: Summary of intrinsic dimensions (D) of this study’s
12 datasets from Levina and Bickel [43].

Static Code Warnings Issue Close Time

Derby

Lucene
Firefox
Eclipse

a
>
=

Phoenix
Cass
Jmeter
Tomcat
Ant
Commons
Chromium

D|0.78[1.100.15] 0.62| 1.94] 1.54| 0.73] 0.82] 1.04| 1.95 | 210 | 1.9

According to Agrawal et al., DODGE’s effectiveness roots in how
the performance score generated from SE data can be divided into
a few regions (low dimensional). FRUGAL’s central function of
binary splitting is similar to DODGE as FRUGAL compresses the
data dimensions (features) via aggregated percentile C and survey
the whole space by varying C ({5% to 95% increments by 5%}). Men-
zies et al. [54] and Hindle et al. [32] also reported on how several
SE data are low dimensional and the benefits from building effec-
tive tools from such data. This work extends those findings: the
labelling efforts to commission to tools building can be reduced
greatly because of the low dimensionality of SE data.

Internal validity focuses on how sure we can be that the treat-
ment caused the outcome. To enhance internal validity, we heavily
constrained our experiments to the same dataset, with the same
settings, except for the treatments being compared.

Construct validity focuses on the relation between the theory
behind the experiment and the observation. To enhance construct
validity, we compared solutions with and without our strategies in
Table 5 and 6 while showing that both components (unsupervised
learning with CLA/CLAFI+ML [61] and tuned semi-supervised
method of FRUGAL) and in various amounts of labelled data re-
quired for the proposed mehtod to improve the overall performance.
Moreover, we also benchmarked our solution with the SOTA’s so-
lution that is trained on the same L = 2.5% to ensure that our
proposed solution’s effectiveness is not due to random sampling
of the data. However, we only show that with our default param-
eters settings of random forest learner. The performance can get
even better by tuning the parameters, employing different learners
(e.g., deep learners), and introducing a variety of data preprocessors
(e.g., synthetic minority over-sampling or SMOTE that is known to
help with imbalanced datasets [2, 11] like our static code warnings
domains). We aim to explore these in our future work.

External validity concerns how widely our conclusions can be
applied. In order to test the generalizability of our approach, we
always kept a project as the holdout test set and never used any
information from it in training. Moreover, we have validated our
proposed method on two important software analytics domains:
adoptable static code warnings identification and issues close time
prediction. Our experiments with default CLA/CLAFI+ML [61]
demonstrates the danger of treating all data with the state-of-the-art
method, especially when switching domain (from defect prediction
to issue close time prediction and adoptable static code warning
identification).

7 CONCLUSION AND FUTURE WORK

There is much recent advance for software analytics research with
automated and semi-automated methods. However, these methods

ASE 2021, 15 - 19 November, 2021, Melbourne, Australia

are built on a sufficiently large amount of data labelled. Generating

such labels can be labor-intensive and expensive (as discussed in §3).

Such requirement can introduce barrier for entering new research

domains (e.g., the success of open-source projects). In order to re-

duce the label famine and human effort, FRUGAL is recommended.

FRUGAL tunes the state-of-the-art unsupervised learner from de-

fect prediction (CLA/CLA+ML/CLAFI+ML) and it’s corresponding

percentile parameter C in the grid search manner while validating
on only 2.5% of the labelled data. Our findings include:

(1) Unsupervised Learners without access to the train data’s labels
performed approximately 10% less than the SOTA methods on
average. The results are promising but still not effective enough.

(2) FRUGAL performed similarly to the SOTA adoptable static code
warning identifier while surpassing the SOTA issue close time
predictor with 97.5% less information.

(3) FRUGAL reduced the labelling efforts needed for the software
analytics tools by 97.5%. Simply, FRUGAL is 40(100% / 2.5%)
times cheaper than the SOTA methods in issue close time and
static code warnings analysis areas.

(4) The success of FRUGAL for the two domains here suggests that
many more domains in software analytics could benefit from un-
supervised learning. As mentioned above, those benefits include
the ability to commission new models with less human efforts
and costs. By restricting human involvement in the process, we
also reduced erroneous labels that can cascade to the whole
research community since human are still error-prone (Yu et
al. [94] found 98% of the false-positive labels within Maldonado
and Shihab [48] were actually true-positive labels).

(5) Overall, our proposed method restated the benefit in exploring
low dimensional SE data [1, 32, 54, 90, 93] and extended their
findings that the labelling efforts can be reduced greatly because
of the low dimensionality of SE data.

That said, FRUGAL still suffers from the validity threats discussed
in §6. To further reduce those threats and to move forward with
this research, we propose the following future work:

o Comparing FRUGAL to other semi-supervised learning methods

within software engineering, e.g., NSGLP [99].

Test whether replacing the Random Forest model in FRUGAL

with a deep learning model will further improve its performance.

e Explore non-SE or high-dimensional SE data with FRUGAL to

see if our current conclusions still hold.

e Apply non-trivial hyper-parameter tuning (e.g., DODGE [1] or

FLASH [60]) on various data preprocessors and machine learners

with FRUGAL to test whether tuning can further improve the

performance.

Extend the work to other software engineering domains (e.g.,

security [24], technical debts [48], software configurations [19],

etc) and compare it with other state-of-the-art methods which

continue to appear.

ACKNOWLEDGEMENTS
This work was partially funded by an NSF CISE Grant #1931425.

REFERENCES

[1] A. Agrawal, W. Fu, D. Chen, X. Shen, and T. Menzies. How to "dodge" complex
software analytics. Preprint, IEEE Transactions on Software Engineering, 2019.
Available on-line at http://arxiv.org/abs/1902.01838.

http://arxiv.org/abs/1902.01838

ASE 2021, 15 - 19 November, 2021, Melbourne, Australia

[2]

[3

[4]

[5

oy
&

[16

(17

[18

[19

[20

[21

[22]

(23]

[24

[25]

[26

[27

Amritanshu Agrawal and Tim Menzies. Is" better data" better than" better
data miners"? In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pages 1050-1061. IEEE, 2018.

S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi,
and T. Zimmermann. Software engineering for machine learning: A case study.
In ICSE, 2019.

Pavel Avgustinov, Arthur I Baars, Anders S Henriksen, Greg Lavender, Galen
Menzel, Oege de Moor, Max Schéfer, and Julian Tibble. Tracking static analysis
violations over time to capture developer characteristics. In Proceedings of the
37th International Conference on Software Engineering-Volume 1, pages 437-447.
IEEE Press, 2015.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,
2014.

Pamela Bhattacharya, Marios Iliofotou, Iulian Neamtiu, and Michalis Falout-
sos. Graph-based analysis and prediction for software evolution. In 2012 34th
International Conference on Software Engineering (ICSE), pages 419-429. IEEE,
2012.

Cathal Boogerd and Leon Moonen. Assessing the value of coding standards: An
empirical study. In 2008 IEEE International Conference on Software Maintenance,
pages 277-286. IEEE, 2008.

L. Breiman, J. H. Friedman, R. A. Olshen, and C.]. Stone. Classification and
regression trees. Cytometry, 1987.

Leo Breiman. Random forests. Machine Learning, 45(1):5-32, Oct 2001. ISSN
1573-0565. doi: 10.1023/A:1010933404324. URL https://doi.org/10.1023/A:
1010933404324.

G. Catolino. Just-in-time bug prediction in mobile applications: The domain
matters! In MOBILESoft, 2017.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.
Smote: synthetic minority over-sampling technique. Journal of artificial intelli-
gence research, 16:321-357, 2002.

D. Chen, W. Fu, R. Krishna, and T. Menzies. Applications of psychological
science for actionable analytics. In FSE, 2018.

Di Chen, Kathyrn T Stolee, and Tim Menzies. Replication can improve prior
results: A github study of pull request acceptance. In 2019 IEEE/ACM 27th
International Conference on Program Comprehension (ICPC), pages 179-190. IEEE,
2019.

Wei-Chou Chen, Shian-Shyong Tseng, and Ching-Yao Wang. A novel manu-
facturing defect detection method using association rule mining techniques.
Expert systems with applications, 29(4):807-815, 2005.

Davide Chicco and Giuseppe Jurman. The advantages of the matthews cor-
relation coefficient (mcc) over f1 score and accuracy in binary classification
evaluation. BMC Genomics, 2020. doi: 10.1186/s12864-019-6413-7.

Mério André de Freitas Farias, Manoel Gomes de Mendonga Neto, André Batista
da Silva, and Rodrigo Oliveira Spinola. A contextualized vocabulary model for
identifying technical debt on code comments. In MTD, 2015.

Mario André de Freitas Farias, José Amancio Santos, Marcos Kalinowski, Manoel
Mendonga, and Rodrigo Oliveira Spinola. Investigating the identification of
technical debt through code comment analysis. In ICEIS, 2016.

Mario André de Freitas Farias, Manoel Gomes de Mendong¢a Neto, Marcos
Kalinowski, and Rodrigo Oliveira Spinola. Identifying self-admitted technical
debt through code comment analysis with a contextualized vocabulary. IST,
2020.

Jacky Estublier, David Leblang, André van der Hoek, Reidar Conradi, Geoffrey
Clemm, Walter Tichy, and Darcy Wiborg-Weber. Impact of software engineering
research on the practice of software configuration management. ACM Trans.
Softw. Eng. Methodol., 2005.

R. Feldt and A. Magazinius. Validity threats in empirical software engineering
research-an initial survey. In SEKE, 2010.

W. Fu and T. Menzies. Easy over hard: A case study on deep learning. In FSE,
2017.

Wei Fu and Tim Menzies. Revisiting unsupervised learning for defect predic-
tion. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, pages 72-83. ACM, 2017.

Wei Fu, Tim Menzies, and Xipeng Shen. Tuning for software analytics: Is it
really necessary? Information and Software Technology, 76:135 — 146, 2016.
ISSN 0950-5849. doi: http://dx.doi.org/10.1016/j.infsof.2016.04.017. URL http:
//www.sciencedirect.com/science/article/pii/S0950584916300738.

Michael Gegick, Pete Rotella, and Tao Xie. Identifying security bug reports via
text mining: An industrial case study. In 2010 7th IEEE Working Conference on
Mining Software Repositories (MSR 2010), pages 11-20, 2010. doi: 10.1109/MSR.
2010.5463340.

B. Ghotra, S. McIntosh, and A. E. Hassan. Revisiting the impact of classification
techniques on the performance of defect prediction models. In 2015 37th ICSE.
Emanuel Giger, Martin Pinzger, and Harald Gall. Predicting the fix time of bugs.
In Proceedings of the 2nd International Workshop on Recommendation Systems

for Software Engineering, pages 52-56, 2010.
Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Mur-

phy. Characterizing and predicting which bugs get fixed: an empirical study of

[28

[29]

[30]

[31

[32

[33]

[34

[35

[36

[37]

[38]

[39

[40

[41]

[42

[43]

[44

[45

[46

[47

[48]
[49]

[50

[51

[52

Huy Tu, Tim Menzies
Com Sci, NCState, USA
hqtu@ncsu.edu, timm@ieee.org

microsoft windows. In Proceedings of the 32Nd ACM/IEEE International Confer-
ence on Software Engineering-Volume 1, pages 495-504, 2010.

Hideaki Hata, Christoph Treude, Raula Gaikovina Kula, and Takashi Ishio. 9.6
million links in source code comments: Purpose, evolution, and decay. In
Proceedings of the 41st International Conference on Software Engineering, ICSE
’19, page 1211-1221. IEEE Press, 2019. doi: 10.1109/ICSE.2019.00123. URL
https://doi.org/10.1109/ICSE.2019.00123.

Sarah Heckman and Laurie Williams. A model building process for identifying
actionable static analysis alerts. In 2009 International Conference on Software
Testing Verification and Validation, pages 161-170. IEEE, 2009.

Sarah Heckman and Laurie Williams. A systematic literature review of action-
able alert identification techniques for automated static code analysis. Informa-
tion and Software Technology, 53(4):363-387, 2011.

A. Hindle, D. M. German, and R. Holt. What do large commits tell us?: A
taxonomical study of large commits. MSR, 2008.

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
On the naturalness of software. In 2012 34th International Conference on Software
Engineering (ICSE), pages 837-847. IEEE, 2012.

Sepp Hochreiter and Jiirgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735-1780, 1997.

Q. Huang, E. Shihab, X. Xia, D. Lo, and S. Li. Identifying self-admitted technical
debt in open source projects using text mining. EMSE, 2018.

Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
Why don’t software developers use static analysis tools to find bugs? In Proceed-
ings of the 2013 International Conference on Software Engineering, pages 672-681.
IEEE Press, 2013.

Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and
N. Ubayashi. A large-scale empirical study of just-in-time quality assurance.
TSE, 2013.

Riivo Kikas, Marlon Dumas, and Dietmar Pfahl. Using dynamic and contex-
tual features to predict issue lifetime in github projects. In Proceedings of
the 13th International Conference on Mining Software Repositories, MSR 16,
page 291-302, New York, NY, USA, 2016. Association for Computing Ma-
chinery. ISBN 9781450341868. doi: 10.1145/2901739.2901751. URL https:
//doi.org/10.1145/2901739.2901751.

S. Kim, E. J. Whitehead, Jr., and Y. Zhang. Classifying software changes: Clean
or buggy? IEEE Trans SE, 2008.

Ekrem Kocaguneli, Tim Menzies, Jacky Keung, David Cok, and Ray Madachy.
Active learning and effort estimation: Finding the essential content of software
effort estimation data. IEEE Transactions on Software Engineering, 39(8):1040—
1053, 2012.

Ekrem Kocaguneli, Tim Menzies, Jacky Keung, David Cok, and Ray Madachy.
Active learning and effort estimation: Finding the essential content of software
effort estimation data. IEEE Transactions on Software Engineering, 39(8):1040—
1053, 2013.

Ted Kremenek, Ken Ashcraft, Junfeng Yang, and Dawson Engler. Correlation
exploitation in error ranking. In ACM SIGSOFT Software Engineering Notes,
volume 29, pages 83-93. ACM, 2004.

Youngseok Lee, Suin Lee, Chan-Gun Lee, Ikjun Yeom, and Honguk Woo. Con-
tinual prediction of bug-fix time using deep learning-based activity stream
embedding. IEEE Access, 8:10503-10515, 2020.

Elizaveta Levina and Peter Bickel. Maximum likelihood estimation of intrinsic
dimension. Advances in neural information processing systems, 17:777-784, 2004.
Guangtai Liang, Ling Wu, Qian Wu, Qianxiang Wang, Tao Xie, and Hong Mei.
Automatic construction of an effective training set for prioritizing static analysis
warnings. In Proceedings of the IEEE/ACM international conference on Automated
software engineering, pages 93-102. ACM, 2010.

Z.Liu, Q. Huang, X. Xia, E. Shihab, D. Lo, and S. Li. Satd detector: a text-mining-
based self-admitted technical debt detection tool. In ICSE, 2018.

Robyn R Lutz and Inés Carmen Mikulski. Empirical analysis of safety-critical
anomalies during operations. IEEE Transactions on Software Engineering, 30(3):
172-180, 2004.

Suvodeep Majumder, Pranav Mody, and Tim Menzies. Revisiting process versus
product metrics: a large scale analysis. arXiv preprint arXiv:2008.09569, 2020.
E. da S Maldonado and E. Shihab. Detecting and quantifying different types of
self-admitted technical debt. In MTD, 2015.

E. da S. Maldonado, E. Shihab, and N. Tsantalis. Using natural language pro-
cessing to automatically detect self-admitted technical debt. TSE, 2017.
Senthil Mani, Anush Sankaran, and Rahul Aralikatte. Deeptriage: Exploring
the effectiveness of deep learning for bug triaging. In COMAD’19: ACM India
Joint International Conference on Data Science and Management of Data, pages
171-179, 2019.

Lionel Marks, Ying Zou, and Ahmed E Hassan. Studying the fix-time for bugs
in large open source projects. In Proceedings of the 7th International Conference
on Predictive Models in Software Engineering, pages 1-8, 2011.

Andrzej Mackiewicz and Waldemar Ratajczak. Principal components analysis
(pca). Computers & Geosciences, 1993. ISSN 0098-3004. doi: https://doi.org/

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
http://www.sciencedirect.com/science/article/pii/S0950584916300738
http://www.sciencedirect.com/science/article/pii/S0950584916300738
https://doi.org/10.1109/ICSE.2019.00123
https://doi.org/10.1145/2901739.2901751
https://doi.org/10.1145/2901739.2901751

FRUGAL: Unlocking SSL for Software Analytics

(53]

[54]

(55

(57]

[58

(59]
[60]

[61]

o
&,

[63]

[64

(65

[76]

[77

[78

10.1016/0098-3004(93)90090-R. URL https://www.sciencedirect.com/science/
article/pii/009830049390090R.

T. Menzies, A. Dekhtyar, J. Distefano, and J. Greenwald. Problems with precision:
A response to "comments on 'data mining static code attributes to learn defect
predictors’™. TSE, 2007.

Tim Menzies, David Owen, and Julian Richardson. The strangest thing about
software. Computer, 40(1):54-60, January 2007. ISSN 0018-9162. doi: 10.1109/
MC.2007.37. URL https://doi.org/10.1109/MC.2007.37.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems, pages 3111-3119, 2013.

A. Mockus and L. Votta. Identifying reasons for software changes using historic
databases. In ICPC, 2000.

Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. Cu-
rating github for engineered software projects. Empirical Software Engineering,
22(6):3219-3253, Dec 2017.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted
boltzmann machines. In ICML, 2010.

Vivek Nair, Zhe Yu, and Tim Menzies. Flash: A faster optimizer for sbse tasks.
arXiv preprint arXiv:1705.05018, 2017.

Jaechang Nam and Sunghun Kim. Clami: Defect prediction on unlabeled datasets.
In ASE 2015, 2015.

M. Nayrolles and A. Hamou-Lhadj. Clever: Combining code metrics with clone
detection for just-in-time fault prevention and resolution in large industrial
projects. In MSR, 2018.

C.Nj, X. Xia, D. Lo, X. Chen, and Q. Gu. Revisiting supervised and unsupervised
methods for effort-aware cross-project defect prediction. IEEE Transactions on
Software Engineering, pages 1-1, 2020. doi: 10.1109/TSE.2020.3001739.
Thomas J Ostrand, Elaine] Weyuker, and Robert M Bell. Where the bugs are. In
ACM SIGSOFT Software Engineering Notes, volume 29, pages 86-96. ACM, 2004.
Fabian Pedregosa, Gaél Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Journal of
machine learning research, 2011.

Jean Petri¢, David Bowes, Tracy Hall, Bruce Christianson, and Nathan Baddoo.
The jinx on the nasa software defect data sets. In EASE, EASE ’16, 2016.

A. Potdar and E. Shihab. An exploratory study on self-admitted technical debt.
In ICSME, 2014.

C. Rosen, B. Grawi, and E. Shihab. Commit guru: Analytics and risk prediction
of software commits. ESEC/FSE 2015, 2015.

David E Rumelhart, Geoffrey E Hinton, and Ronald] Williams. Learning internal
representations by error propagation. Technical report, California Univ San
Diego La Jolla Inst for Cognitive Science, 1985.

S. Sawilowsky. New effect size rules of thumb. Journal of Modern Applied
Statistical Methods, 8:26, 2009.

Jirgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 2015. doi: https://doi.org/10.1016/j.neunet.2014.09.003. URL https:
//www.sciencedirect.com/science/article/pii/S0893608014002135.

Burr Settles. Active learning literature survey. 2009.

Martin Shepperd, Qinbao Song, Zhongbin Sun, and Carolyn Mair. Data quality:
Some comments on the nasa software defect datasets. TSE, 2013.

Rui Shu, Tianpei Xia, Jianfeng Chen, Laurie Williams, and Tim Menzies. Im-
proved recognition of security bugs via dual hyperparameter optimization.
EMSE, 11 2019.

M Six Silberman, Bill Tomlinson, Rochelle LaPlante, Joel Ross, Lilly Irani, and
Andrew Zaldivar. Responsible research with crowds: pay crowdworkers at least
minimum wage. Communications of the ACM, 61(3):39-41, 2018.

J. AK Suykens and J. Vandewalle. Least squares support vector machine classi-
fiers. Neural processing letters, 1999.

Ferdian Thung, David Lo, Lingxiao Jiang, Foyzur Rahman, Premkumar T De-
vanbu, et al. To what extent could we detect field defects? an extended empirical
study of false negatives in static bug-finding tools. Automated Software Engi-
neering, 22(4):561-602, 2015.

Huy Tu, Rishabh Agrawal, and Tim Menzies. The changing nature of computa-
tional science software, 2020.

[79]

[80

[81

[82

[83]
[84]

[85]

[86]

[87

[88

[89

[90

[o1

[92

[93

[94

[95

[96

[97

[98

[99

[100

ASE 2021, 15 - 19 November, 2021, Melbourne, Australia

Huy Tu, Zhe Yu, and Tim Menzies. Better data labelling with emblem (and how
that impacts defect prediction). IEEE Transactions on Software Engineering, 2020.
B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov. Quality and productivity
outcomes relating to continuous integration in github. In FSE, 2015.

Junjie Wang, Song Wang, and Qing Wang. Is there a golden feature set for
static warning identification?: an experimental evaluation. In Proceedings of the
12th ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement, page 17. ACM, 2018.

I Witten, Eibe Frank, M Hall, and C Pal. : Data mining: practical machine

learning tools and techniques. elsevier inc. 2017.
Ian H Witten, Eibe Frank, Mark A Hall, and Christopher J Pal. Data Mining:

Practical machine learning tools and techniques. Morgan Kaufmann, 2016.
Tianpei Xia, Wei Fu, Rui Shu, and Tim Menzies. Predicting project health for
open source projects (using the decart hyperparameter optimizer), 2020.

Zhou Xu, Li Li, Meng Yan, Jin Liu, Xiapu Luo, John Grundy, Yifeng Zhang,
and Xiaohong Zhang. A comprehensive comparative study of clustering-based
unsupervised defect prediction models. Journal of Systems and Software, 172:
110862, 2021. ISSN 0164-1212. doi: https://doi.org/10.1016/j.js5.2020.110862. URL
https://www.sciencedirect.com/science/article/pii/S0164121220302521.

Meng Yan, Yicheng Fang, David Lo, Xin Xia, and Xiaohong Zhang. File-level
defect prediction: Unsupervised vs. supervised models. In Empirical Software
Engineering and Measurement (ESEM), 2017 ACM/IEEE International Symposium
on, pages 344-353. IEEE, 2017.

Jun Yang and Hongbing Qian. Defect prediction on unlabeled datasets by using
unsupervised clustering. In High Performance Computing and Communica-
tions; IEEE 14th International Conference on Smart City; IEEE 2nd International
Conference on Data Science and Systems (HPCC/SmartCity/DSS), 2016 IEEE 18th
International Conference on, pages 465-472. IEEE, 2016.

X. Yang, D. Lo, X. Xia, and J. Sun. Tlel: A two-layer ensemble learning approach
for just-in-time defect prediction. IST, 2017. URL http://www.sciencedirect.com/
science/article/pii/S0950584917302501.

Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling Sun. Deep learning for
just-in-time defect prediction. In QRS, pages 17-26. IEEE, 2015.

Xueqi Yang, Jianfeng Chen, Rahul Yedida, Zhe Yu, and Tim Menzies. How to
recognize actionable static code warnings (using linear svms). In EMSE, 2020.
Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung. Effort-aware
just-in-time defect prediction: Simple unsupervised models could be better than
supervised models. FSE, 2016. URL http://doi.acm.org/10.1145/2950290.2950353.
Yibiao Yang, Yuming Zhou, Jinping Liu, Yangyang Zhao, Hongmin Lu, Lei Xu,
Baowen Xu, and Hareton Leung. Effort-aware just-in-time defect prediction:
simple unsupervised models could be better than supervised models. In Pro-
ceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, pages 157-168. ACM, 2016.

Rahul Yedida, Xueqi Yang, and Tim Menzies. When simple is better than
complex: A case study on deep learning for predicting bugzilla issue close time.
In EMSE, 2021.

Z.Yu,F. M. Fahid, H. Tu, and T. Menzies. Identifying self-admitted technical debts
with jitterbug: A two-step approach. TSE, 2020. doi: 10.1109/TSE.2020.3031401.
Zhe Yu, Christopher Theisen, Laurie Williams, and Tim Menzies. Improving
vulnerability inspection efficiency using active learning. IEEE Transactions on
Software Engineering, 2019.

Zhe Yu, Fahmid Morshed Fahid, Huy Tu, and Tim Menzies. Identifying self-
admitted technical debts with jitterbug: A two-step approach. IEEE Transactions
on Software Engineering, 2021.

F. Zampetti, A. Serebrenik, and M. Di Penta. Automatically learning patterns
for self-admitted technical debt removal. In SANER, 2019.

Feng Zhang, Quan Zheng, Ying Zou, and Ahmed E Hassan. Cross-project defect
prediction using a connectivity-based unsupervised classifier. In Proceedings of
the 38th International Conference on Software Engineering, pages 309-320. ACM,
2016.

Zhi-Wu Zhang, Xiao-Yuan Jing, and Tie-Jian Wang. Label propagation based
semi-supervised learning for software defect prediction. Automated Software
Engineering, 2017.

Yuming Zhou, Yibiao Yang, Hongmin Lu, L. Chen, Yanhui Li, Y. Zhao, J. Qian,
and B. Xu. How far we have progressed in the journey? an examination of
cross-project defect prediction. ACM Trans. Softw. Eng. Methodol., 27:1:1-1:51,
2018.

https://www.sciencedirect.com/science/article/pii/009830049390090R
https://www.sciencedirect.com/science/article/pii/009830049390090R
https://doi.org/10.1109/MC.2007.37
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0893608014002135
https://www.sciencedirect.com/science/article/pii/S0164121220302521
http://www.sciencedirect.com/science/article/pii/S0950584917302501
http://www.sciencedirect.com/science/article/pii/S0950584917302501
http://doi.acm.org/10.1145/2950290.2950353

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Studying Static Code Warnings
	2.2 Predicting Bugzilla Issue Close Time
	2.3 Evaluation

	3 Labelling
	3.1 Manual Labelling
	3.2 Crowdsourcing
	3.3 Reusing Labels
	3.4 Automatic Labelling
	3.5 Active Learning

	4 Methodology
	4.1 General Framework
	4.2 CLA
	4.3 CLA + ML
	4.4 CLAFI + ML
	4.5 Machine Learning Models

	5 Results
	6 Threats of Validity
	7 Conclusion and Future Work
	References

