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Abstract Keeping track of and managing Self-Admitted Technical Debts
(SATDs) is important for maintaining a healthy software project. Current
active-learning SATD recognition tool involves manual inspection of 24% of
the test comments on average to reach 90% of the recall. Among all the test
comments, about 5% are SATDs. The human experts are then required to read
almost a quintuple of the SATD comments which indicates the inefficiency of
the tool. Plus, human experts are still prone to error: 95% of the false-positive
labels from previous work were actually true positives.

To solve the above problems, we propose DebtFree, a two-mode framework
based on unsupervised learning for identifying SATDs. In mode1, when the ex-
isting training data is unlabeled, DebtFree starts with an unsupervised learner
to automatically pseudo-label the programming comments in the training data.
In contrasts, in mode2 where labels are available with the corresponding train-
ing data, DebtFree starts with a pre-processor that identifies the highly prone
SATDs from the test dataset. Then, our machine learning model is employed
to assist human experts in manually identifying the remaining SATDs. Our
experiments on 10 software projects show that both models yield statistically
significant improvement in effectiveness over the state-of-the-art automated
and semi-automated models. Specifically, DebtFree can reduce the labeling
effort by 99% in mode1 (unlabeled training data), and up to 63% in mode2
(labeled training data) while improving the current active learner’s F1 rela-
tively to almost 100%.
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1 Introduction

When developers rush out code, that code often contains technical debt (TD),
i.e. decisions that must later be repaid with further work. As the initial step
towards understanding and resolving TDs, many research [25, 55, 84] first
detecting the intentionally documented (via comments) TD, i.e., self-admitted
TD (SATD). SATDs are crucial to identify as they (1) are diffused in the
codebase [84]; (2) can survive long-term (more than 1,000 commits) [5]; and
(3) complicate maintainability of the software [22, 73] State-of-the-art (SOTA)
works have identified SATDs automatically [55] or semi-automatically [84].

However, models that recognize TD must be learned from labeled data.
Generating such labels can be extremely slow and expensive. For instance,
Tu et al. [67] reported that manually labeling 22, 500+ commits required 175
person-hours, including cross-checking. Due to the labor-intensive nature of
the process, researchers often reuse datasets labeled from previous studies. For
instance, Lo et al., Yang et al., and Xia et al. certified their methods using data
generated by Kamei et al. [31, 78, 79, 81]. While this practice allows researchers
to rapidly test new methods, it leaves the possibility for any labeling mistake
to propagate to other related works. In fact, before reusing Maldonaldo et al.’s
data [37] to identify SATDs, Yu et al. [84] discovered that more than 98% of
the false positives were actually true positives, casting doubt on related work
using the original dataset. Hence, it is timely to ask:

Can we reduce the labeling effort associated with building models for
technical debt?

An unsupervised learning technique that learns patterns from unlabeled data
is a promising direction in SATD identification. However, without supervision,
the technique alone can be ineffective. As illustrated in Figure 1, our approach
is to first demonstrate that previous methods can be extended or integrated
with unsupervised learning to greatly reduce the labeling effort while effec-
tively recognizing SATDs. This proposed method, called DebtFree, includes
the combination of three separate approaches in a novel manner:
1. Pseudo-Labeling: This step is required if the training data does not have

any labels to start with. First, we frugally pseudo-labels the training data
with unsupervised learning, i.e., identifying hidden patterns in data in order
to map unlabeled examples in two groups. Intuitively, the more complex the
data instance [65], the more likely that the comment is describing a SATD.
CLA by Nam et al.[47] is an example of an unsupervised classifier that
recognizes “complex” examples (those with many values above the median).
The intuition here is well documented [44, 65, 14, 26].

2. Filtering: This step is optional. We identify early and remove instances
from the test dataset that are likely to be SATDs.

3. Active Learning: This step is always required. We train on some labeled
data and then guide the human experts to manually find the comments
that are most likely to contain SATDs. It is critical to assess whether the
labeled data is insightful enough to guide the human experts for the entire
labeling process. If not, we propose Falcon, a new active learning policy to
take advantage of such data while still ensuring effectiveness.
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Fig. 1: Workflows of DebtFree = Pseudo-Labeling (via Unsupervised Learn-
ing, i.e., CLA [47]) + Filtering (via CLA [47] or Jitterbug’s Easy [84]) + Active
Learning (via Emblem [67], Jitterbug’s Hard [84], or this study’s Falcon). Step
1 is required if there is no access to the training data’s labels. Step 2 is op-
tional while Step 3 is required at all times. The gray arrows indicate different
configurations of the method that will be investigated for this study.

In this work, we aim to better data generation associated with building mod-
els for SATDs identification by reducing the labeling effort come from man-
ual method [67] and improving the labeling quality of fully automated meth-
ods [84]. Moreover, our investigation also showed that the effort-aware method
we propose, DebtFree, also performs statistically similar or even better than
two SOTA works [84, 55]. To understand and validate this end-to-end method,
DebtFree, we investigate the following research questions:

RQ1: How well can the state-of-the-art unsupervised learning
method identify SATDs? We investigate variants that stem from Nam et
al.’s unsupervised learning CLA method. As these methods leverage on hidden
patterns within the data, we compare them to the pattern-based SOTA for
identifying SATDs, also by Yu et al. [84].

From our exploration of various unsupervised learners, the original CLA
by Nam et al. performs the best. Moreover, CLA performs similarly to
the SOTA pattern-based approach, Easy [84], without having access to
the data’s labels (100% less effort).

Result:

RQ2: How can the state-of-the-art active learning framework be
combined with the state-of-the-art unsupervised learner? From RQ1,
unsupervised learning methods are promising but not optimal. Hence, we study
different combinations by incorporating a chosen unsupervised learner with
several SOTA active learning frameworks in SE.
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With the effort-aware theme, we investigate different combinations of
active learners and CLA across two settings of the training data, either
with having 1-no access and 2-access to the labels to propose DebtFree.
In setting 1, or DebtFree(0), the best combination is Pseudo-Labeling
(via CLA) with our proposed active learner, Falcon. In setting 2, or
DebtFree(100), the best combination is Filtering (via CLA) with the
SOTA active learner for SATDs identification, Hard.

Result:

RQ3: How does the proposed DebtFree perform against state-of-
the-art models in identifying SATDs? After finalizing two combinations
from RQ2 to propose DebtFree(0)/(100), it is essential to assess their useful-
ness by comparing against the SOTA models for SATDs identification.

When comparing against the SOTA semi-supervised learning work by
Yu et al. [84] and the SOTA supervised learning work (with deep learn-
ing) by Ren et al. [55], our proposed method DebtFree outperforms
them significantly. First, DebtFree(100) performs similarly to Ren et al.
[55]’s work and better than Yu et al. [84]’s work while reducing the la-
beling cost by 2.5 times. Second, DebtFree(0) performs similarly to
Ren et al. [55]’s work without having access to the training data’s labels
and outperforms Yu et al. [84]’s work while expending 99% less effort.

Result:

Our contributions to the field of software analytic are:

1. This work is the first to assess the usage of unsupervised learning to reduce
the cost of labels labeling in identifying SATDs.

2. In the low-resource setting (training data with no label), our unsupervised
methods outperform the prior SOTA models while requiring less knowledge
(prior work used 100% labeled data while we get by with very little) [55, 84].
Counting the training data, we can reduce 99% of the number of examples
that have to be labeled. This is the largest reduction ever reported in the
effort required to commission a SATD identification model.

3. In the high-resource setting (training data with labels), we propose an im-
provement to the two-step Jitterbug technique [84] by replacing the pattern-
based approach with an unsupervised learner to help reduce the commis-
sioning effort of labeling on new data by 62.5% (5/8).

4. Our proposed active learning scheme, Falcon, outperforms both SOTA deep
learning method [55] and SOTA two-step method [84] across both low-
resource and high-resource settings.

5. Nearly all the prior work on unsupervised learning focus on defect predic-
tion [21, 47, 49, 75, 76, 77, 80, 81, 87, 88]. The performance of our framework
suggests that many more domains in software analytics could benefit from
unsupervised learning.

6. To better support other researchers our scripts and data are on-line at
https://github.com/HuyTu7/DebtFree.
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The rest of this paper is structured as follows. Section 2 discusses the moti-
vation, background and related works. Section 3 describes our methodology.
Section 4 focuses on our experimental design, while section 5 analyzes the
results. Section 6 and 7 discuss our short-comings and directions for future
work, respectively.

2 Motivation and Background

2.1 On the merits of studying Technical Debt and SATDs

Technical Debts (TDs) are introduced in the software when developers make
decisions based on short-term benefits instead of long-term stability. TDs can
accumulate interest similar to financial debts if they are not resolved in a
timely manner. In 2012, after interviewing 35 software developers from di-
verse projects in different companies, varying both in size and type, Lim
et al. [34] found developers generate technical debts due to factors like in-
creased workload, unrealistic deadline in projects, lack of knowledge, boredom,
peer-pressure among developers, unawareness or short-term business goals of
stakeholders, and reuse of legacy, third-party, or open-source code. After ob-
serving five large-scale projects and companies in two studies, Wehaibi et al.
[73] and Martini and Bosch [42] found that the number of technical debts in
a project may be very low (only 3% on average). However, those TDs con-
taminate other parts of a software system and create a significant amount of
defects in the future. Fixing such technical debts is more difficult than regular
defects, often twice the cost if not resolving immediately [24]). The Software
Improvement Group study by Nugroho et al. [50] offers a cost estimate of TD
accumulation: a regular mid-level project owes $857, 500 in TD and resolving
TD has a Return On Investment of 15% in seven years. Yet, limited success
has been achieved despite a large body of research on identifying TD as part of
Code Smells using static code analysis [20, 39, 40, 41, 86]. Static code analysis
has a high rate of false alarms while imposing complex and heavy structures
for identifying TD [2, 23, 63, 64].

Table 1: Examples of SATD comments.

Project SATD comments
Apache Ant // cannot remove underscores due to

protected visibility >:(
EMF // TODO Binary incompatibility;

an old override must override putAll.
JFreeChart // do we need to update the crosshair values?
JMeter // Can be null (not sure why)
SQuirrel // is this right???
ArgoUML // Why does the next part not work?

Therefore, several re-
searchers proposed to
target self-admitted tech-
nical debt identification
as the first step since
they are often inten-
tionally documented or
“self-admitted” (via source
code comments) by the
developers. Some examples of SATDs within the data are shown in Table 1.
In summary, identifying and resolving SATDs have several benefits:
– Removing SATDs early reduces the maintenance cost of a software project.

As reported by Wehaibi et al. [73] and Wang et al. [71], these SATDs have



6 Huy Tu, Tim Menzies

Fig. 2: Nine stages of the machine learning workflow from a case study at
Microsoft by Zimmermann et al. [4]. Some stages are data-oriented (e.g., data
collection, cleaning, and labeling) and others are model-oriented (e.g., model
requirements, feature engineering, model training, evaluation, deployment and
monitoring).

negative implications on the software development process, in particular by
making it more difficult to change in the future.

– With SATDs elimination, software projects have better evolvability trajec-
tory for accelerating new functionalities addition and integration.

– We can leverage those easily found SATDs as cheap training data for recog-
nizing TDs [84]. SATDs are the documents of TDs that have been “admit-
ted” by the developers, so they are not a specific type of TDs. SATDs cover
different types of TDs such as code, defect, and requirement debts by Bavota
et al.’s categorization [5]. In other words, as long as the document refers
to some aspect of technical debt it is treated as SATD. According to the
recent TDs categorization study, Fucci et al. [22] showed how SATDs are
mapped across 10 categories, e.g., poor implementation choices, partially
implemented, functional issues, etc.

2.2 Methods for Identification of Technical Debt

One of the goals of industrial analytics is that new conclusions can be quickly
obtained from new data just by applying data mining algorithms. As shown
in Figure 2, there are at least nine separate stages that must be completed
before that goal be reached [4]. Each of these stages offers unique and separate
challenges, each of which deserves extensive attention. Many of these steps have
been extensively studied in the literature [15, 16, 17, 30, 35, 37, 38, 53, 84, 85].
However, the labeling work of step 4 has been receiving scant attention. In
literature, there are several approaches for executing the labeling process:

1. Manual labeling;
2. Crowd sourcing;
3. Reuse of labels;
4. Automatic labeling;
5. Active learning (which is a special kind of semi-supervised learning)

All of these approaches have their drawbacks; e.g. they are error-prone
or will not scale. In response to these shortcomings, this study will take two
directions:

– First, we will try a label-free approach using a combination of pure unsuper-
vised learning techniques to pseudo-label the data, and subsequently active
learning, i.e., DebtFree(0);
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– If the label-free approach fails, then we will try a hybrid of an active-learning
approach, called DebtFree(100), which starts with the help of unsupervised
learning to first filter out the highly technical-debt prone comments before
the incrementally learning on all of the SATDs.

2.2.1 Manual labeling

In manual labeling, a team of (e.g.) graduate students assigns labels then (a)
cross-checks their work via say, a Kappa statistic; then (b) use some skilled
third person to resolve any labeling disagreements [36, 66, 67].

Manual labeling can be very slow. Tu et al. recently studied a corpus of
678 Github projects [67, 66]. A random selection of 10 projects from that cor-
pus had 22, 500 commits, which took 175 hours to manually label the commits
buggy, non-buggy (time includes cross-checking). That is, in a hypothetical sit-
uation of manual labeling 500 projects (with each project has 5,000 commits)
would have required 90 weeks of work.

2.2.2 Crowd Sourcing

Tu et al. [67] offers a cost estimate of what resources would be required to
sub-contract that effort to dozens of crowd sourced workers via tools like Me-
chanical Turk (MT). Applying best practices in crowd sourcing [10], assuming
(a) at least USA minimum ages [60]; and (b) our university taking a 50% over-
head tax on grants; then crowd sourcing the labeling of the issues from 500
projects would require $320,000 of grant reserve.

2.2.3 Reusing Labels

Because manual labeling can be time-consuming, crowd sourcing too expen-
sive, and micro-labeling error-prone, researchers often reuse labels from previ-
ous studies [78, 79, 81]. This approach is unsatisfactory for two reasons. One,
when exploring a new domain, there may be no relevant, pre-existing labels to
reuse. Two, reusing labels might propagate unsatisfactory label instances for
future work. For example, the widely cited NASA datasets in defect prediction
were found to have dubious quality [52, 59] in 2013 but has been utilized since
then. Specifically, Yu et al. [84] were exploring self-admitted technical debt
and found that their classifiers had an alarming high false positive rate. But
when they manually checked the labels of their data taken from a prior study
by Maldonado and Shihab [37], they found that over 98% of the reused false-
positive labels were incorrect. Table 2 shows some example comments whose
labels were updated in Yu et al. [84]’s study.

2.2.4 Automatic labeling

If labels cannot be generated manually or reused from other papers, using
automatic labeling processes is an attractive alternative. For example, defect
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Table 2: Examples of different labels from the original datasets curated by Mal-
donado and Shihab [37] and the updated datasets by Yu et al. [84]

Project Comment Text Original Yu et al.’s

Label [37] Label [84]

Apache
Ant

//TODO Test on other versions of weblogic
//TODO add more attributes to the task, to take
care of all jspc options //TODO Test on Unix

no yes

ArgoUML // skip backup files. This is actually a
workaround for the cpp generator, which always
creates backup files (it’s a bug).

no yes

JFreeChart // FIXME: we’ve cloned the chart, but the
dataset(s) aren’t cloned and we should do that

no yes

JRuby // All errors to sysread should be
SystemCallErrors, but on a closed stream Ruby
returns an IOError. Java throws same exception
for all errors so we resort to this hack...

no yes

Columba // FIXME r.setPos(); no yes

prediction papers [8, 28, 31, 32, 45, 48, 56] can label a commit as “bug-fixing”
when the commit text contains certain keywords (e.g. ”bug”, “fix”, “wrong”,
“error”, “fail”, etc [67]). Vasilescu et al. [68, 69] noted that these keywords
are used in a somewhat ad hoc manner (researchers peek at a few results,
then tinker with regular expressions that combine these keywords). Tu et al.
[67] had found that these simplistic keyword approaches can introduce many
errors, perhaps due to the specialization of the project nature or the ad-hoc
nature of their creation [68].

Again, TDs are often “self-admitted” by developers in code comments [53]
as shown in Table 1 in order to signal other developers that the corresponding
code has R-3c TD that will be resolved for better results. In 2014, after
studying four large-scale open-source software projects, Potdar and Shihab [53]
concluded that developers may intentionally leave traces of TDs (i.e., SATDs)
in their comments, such as “hack, fixme, is problematic, this isn’t very solid,
probably a bug, hope everything will work, fix this crap”). These comments tend
to make SATDs much easier to find. Identifying and tracking SATDs have three
important benefits as indicated §2.1. There are two prominent approaches to
automatically identify SATDs:

1. Pattern-based approaches [15, 16, 17, 37, 53] consist of three steps:
(1) manually inspect code comments and label each one as SATD or non-
SATD, (2) manually analyze the labeled items and summarize patterns for
SATDs, e.g., if a comment has keywords like “hack, fixme, probably a bug”,
then it has a high chance of being related to a SATD, (3) apply the summarized
patterns to unlabeled comments to identify SATDs. Instead, Yu et al. [84]
proposed Easy as the SOTA pattern-based method to automatically identify
20-90% of SATDs by finding patterns associated with high precision (close to
100%).

Limitation of the SOTA Pattern-based approach : this approach does need ex-
tensively labeled training data to find patterns that are associated with SATDs
because it relies on precision. As mentioned above, generating that data re-
quires intensive labor and expensive cost. Moreover, this method can still miss
up to 80% of SATDs.
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2. Machine Learning approaches [30, 35, 38, 85] involve models work-
ing in the supervised learning manner, which are trained on labeled SATD
datasets to learn the underlying rules of comments admitting TDs. For exam-
ple, Tan et al. [61, 62] analyzed source code comments using natural language
processing to understand programming rules and documentations and indi-
cates comment quality and inconsistency. In 2017, Maldonado et al. [38] suc-
cessfully identified two types of SATD in 10 open-source projects (average 63%
F1 Score) using Natural Language Processing (Max Entropy Stanford Classi-
fier) using only 23% training data. Huang et al. [35] introduced a Multinomial
Naive Bayes sub-classifier for each training dataset using information gain as
feature selection then combine those sub-classifiers with boosting technique to
achieve an average of 73% F1 scores [30]. A recent IDE for Eclipse was also re-
leased using this technique for identifying SATD in Java projects [35]. Recently,
some studies explore different feature engineering for identifying SATDs, e.g.
Wattanakriengkrai et al. [72] applied N-gram IDF as features, and Flisar and
Podgorelec [19] explored how feature selection with word embedding can help
the prediction. The latest progress are from Wang et al. [71]’s HATD and Ren
et al. [55]’s tuned CNN utilized a deep convolutional neural network to achieve
a higher F1 score than all the previous solutions. The HATD paper asserts that
their algorithm defeats CNN but, after much effort, we could not reproduce
that result1. These machine learning models can be a good indicator for which
comments are more likely to be related to SATDs.

Limitation of the SOTA Machine Learning approach : deep learners often re-
quire having access to a substantial amount of labeled data which is not al-
ways available, especially in new domains (e.g., the success of open-source
projects). With precision ranging from 60% to 85%, it is not reliable to fully
automate the process. Human experts are then required to verify every deci-
sion the machine learning model made and thus costs a large amount of time
and labor.

2.2.5 Semi-supervised Learning

Finally, another approach is to only label a representative sample of the data,
build a classifier from that sample, then use that classifier to label the remain-
ing data [74]. To find that representative example, an unsupervised learner (e.g.
associations rule learner), a clustering algorithm, or an instance selection algo-
rithm is used to find repeated patterns in the data [32]. Then a human oracle
is asked to label one exemplar from each pattern. More sophisticated versions
of this scheme include active learners, where an AI tool advances ahead of the
human to fetch the most informative next sample to be labeled [33, 58]. If
humans agree to first label only the most informative examples, then active
learners can be used to produce better models more efficiently by reducing the
number of examples that humans have to label.

1 We found that there is no reproduction package published with HATD. We tried con-
tacting the authors of that paper, without success.
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The more general term for active learning is semi-supervised learning. Both
terms mean “do what you can with a small sample of the labels” while active
learning adds a feedback loop that checks new labels one at a time with an
oracle. Moreover, semi-supervised learning relies on partially labeled data and
mostly unlabeled data.

Since 2012, active learning approaches have received scarce attention in
SE [33, 67, 83, 84]. Initially, active learning seems to be a promising method for
addressing the cost of label checking and generating: for self-admitted technical
debt, only 24% on a median of the training corpus had to be labeled [84]; using
active learning, effort estimation for N projects only needed labels on 11% of
those projects [33]; further, while seeking 95% of the vulnerabilities in 28,750
Mozilla Firefox C and C++ source code files, humans only had to inspect 30%
of the code [83]. However, active learning still produces disappointing results.
For example, it is still a daunting task to “only” label 5% to 10% of the projects
in the 1,857,423 projects in RepoReapers [46] or the 9.6 million links explored
by Hata et al. [27]. Although it might be justified for very mission-critical
projects, consider the Firefox study [83] which required the human effort of
inspecting 28,750 (total source code files) x 30% = 8,625 source code files
to identify 95% of the vulnerabilities. This is beyond the resources of most
analysts.

Several two-step frameworks were proposed for the active learning ap-
proach. Yu et al. [84] proposed Jitterbug to identify SATDs: (1) identify pat-
terns for the “easy to find” SATDs (20-90% of all SATDs) with close to 100%
precision and automatically classify comments with the patterns as SATDs
(without human verification), (2) apply machine learning techniques to guide
human experts to find the remaining “hard to find” SATDs with least num-
ber of comments read. Interestingly, Guo et al. [25] utilized a similar idea but
using only four keywords (“fixme, todo, hack, xxx”) to identify the “easy to
find” SATDs and applied supervised learning models to incrementally find the
remaining “hard to find” SATDs.
Limitation of the SOTA Active Learning approach :
– Costly in real-world: both steps (pattern-based method and machine learn-

ing) require the training data to be labeled in order to proceed which can be
costly in the real world, especially in a new domain. More importantly, Jit-
terbug’s active learning strategy relies on the first step of the pattern-based
method in order to reach the target recall. Thus, without the labeled train-
ing data, Jitterbug’s guarantee in reaching the user-specified recall would
be almost impossible.

– Difficult for Active Learning: the first step of the pattern-based approach
identified up to 90% of the SATDs, but this makes it difficult for the active
learning strategy to find the rest of 10% SATDs. This can increase human
effort to review the labels. This will be confirmed later in §6.
Hence, in this SATDs identification work, we aim to reduce the labeling

cost of both SOTA works including the SOTA semi-supervised learner from
Yu et al. [84] and the SOTA supervised learner from Ren et al. [55]. In the
process of developing such a method, our investigation shows our proposed
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Table 3: Differences between two SOTAs of Ren et al. [55] and Yu et al. [84]
against our work, DebtFree. Again, the first two steps of DebtFree are optional
as they will be investigated later.

Ren et al. [55] Yu et al. [84] DebtFree

Learning
Type

Supervised Semi-Supervised Semi-Supervised

1. Trains the deep learn-
ing model CNN on (N −
1) labeled datasets.

1. Filtering out easy
SATDs in the target i
dataset with the pattern
recognizer, Easy, to learn
patterns with higher
than 80% precision on
(N − 1) labeled datasets.

1. (Optional) Pseudo-
labels the (N − 1)
datasets with the un-
supervised learner,
CLA [47].

Core
Process

2. Uses the trained CNN
model to identify SATDs
on the target i dataset

2. Trains the RF model
on (N − 1) labeled
datasets and incremen-
tally update the model
in the active learning
manner.

2. (Optional) Filtering
out easy SATDs in the
target i dataset with the
pattern recognizer (e.g.,
Easy or CLA) on (N − 1)
pseudo-labeled/labeled
datasets.

3. Trains the RF model
on (N − 1) pseudo-
labeled/labeled datasets
and incrementally update
the model in the active
learning manner.

- Use all 100% labels from
(N − 1) datasets.

- Use all 100% labels from
(N − 1) datasets.

- Use 0% labels from (N−
1) datasets with step 1.

Labeling
Effort

- No labeling done on the
target i dataset.

- On average, labeling
23% on the target i
dataset.

- On average, labeling
11% on the target i
dataset.

method, DebtFree, also performs statistically similar or even better. The
differences between our approach and their are described in Table 3. The
investigation explores the usefulness of unsupervised learning through a mix
of approaches: (1) unsupervised learning in low-resource setting (unlabeled
data) can frugally pseudo-label the training data, (2) an unsupervised learner
acts as a preprocessor to filter out SATDs without relying on data labels in
high-resource settings (labeled data), and (3) a tuned active learning strategy
to specialize the learning on the target dataset by filtering out the training
datasets when there is no benefit from learning on them anymore.

In order to overcome the previously documented limitations in identifying
SATDs (i.e., the previous supervised learning and active learning methods are
expensive), unsupervised learning is a promising direction, but not competent
enough. To address this literature gap, it is an opportune time to propose
the DebtFree framework, which is based on the integration of unsupervised
learning and active learning. DebtFree investigates the combination of three
approaches including pseudo-labeling, filtering, and active learning with differ-
ent candidates for each approach. DebtFree’s configurations are formulated
after exploring two scenarios: training data labels are known and training data
labels are unknown. In the case of low-resource (training data with no labels),
we will pick DebtFree(0). On the other hand, given resources (training data
with labels), DebtFree(100) is employed instead.
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3 Methodology

3.1 General Framework

Our proposed DebtFree is an end-to-end solution that labels the data, ex-
tends the data corpus, and identifies SATDs in a semi-supervised learning
approach. DebtFree is comprised of two settings DebtFree(0) and Debt-
Free(100).

3.2 DebtFree(0)

When there is no access to the labels of the training data, our study shows
that the filtering step is not needed here and the best combination for Debt-
Free(0) consists of two steps: unsupervised learning with CLA [47] to cheaply
pseudo-labels the training data, and then our proposed active learning strat-
egy, Falcon, to incrementally update and learn to identify the SATDs on the
test data.

3.2.1 Pseudo-labeling via CLA/CLAFI

In the SOTA literature and comparative study of unsupervised models in de-
fect prediction, CLA starts with two steps of (1) Clustering the instances and
(2) LAbeling those instances accordingly to the cluster. In the low resource
setting with no labels available, we can label/predict all instances. CLAFI
is an extension of CLA which is a full-stack framework that also include (3)
Features selection and (4) Instances selection. Both CLA and CLAFI were first
proposed by Nam and Kim [47] in the domain of defect prediction. The intu-
ition of such methods is based on the defect proneness tendency that is often
found in defect prediction research, that is the higher complexity is associated
with the proneness of the defects [14, 26, 44, 47, 54, 65]. Put simply, there is
a tendency where the problematic instance’s feature values are higher than
the non-problematic ones. For instance, Hassan et al. [26] predicted defects
using the entropy (or complexity) of code changes (the more complex changes
to a file, the higher the chance the file will contain faults). This tendency
and CLA’s/CLAFI’s effectiveness were confirmed via the recent literature and
comparative study of 40 unsupervised models in defect prediction across 27
datasets and three types of features. They found CLA’s/CLAFI’s performance
is superior to other unsupervised methods while similar to supervised learning
approaches. Moreover, Tu et al. [65] recently applied this intuition in develop-
ing their method to further the SOTA work for static analysis and issue close
time prediction. Therefore, this study investigates and finds that the hypoth-
esized tendency is also applicable in SATDs data but only effective for the
semi-automated method but not the fully automated one. CLA is preferred
over CLAFI but this study examines both before choosing one over the other.
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Before CLA or CLAFI, DebtFree(0) extracts features from each comment
candidate as L2-normalized terms (the square root of the sum of the squared
vector) terms with the TF-IDF2 scores (after stop word removal).
Clustering:
1. Find the median of feature F1, F2, ..., Fn (median(Fi)) across the whole

dataset.
2. For each data instance Xi, go through each feature value of the respective

data instance to count the time when the feature Fi > median(Fi) as Ki.
Labeling: label the instance Xi as SATD if Ki > median(K), else label it as
non-TD.
Feature Selection: Calculate the violation score per feature, called metric in
the original proposal of Nam et al. [47]. The process is done on both the train
and the test dataset.
1. For each Fi, go through all instances of Xj , a violation happens when Fi at
Xj is higher than the median(Ki) but Yj = 1 and vice-versa.

2. Sum all the violations per feature across the whole dataset and sort it in
ascending order.

3. Select the feature with the lowest violation score, if multiple of them have
the same score then pick all of them.

Instance Selection:
1. With the selected features, go through each instance Xi and check if the

respective Fj values violated the proneness assumption then remove that
instance Xi.

2. If the dataset does not have instances with both classes at the end then
pick the next minimum violation score to select metrics.

3. This process is only done on the training dataset.
After selecting features with the minimum violation scores and removing

the instances that violated the technical-debt proneness tendency, a practi-
tioner can train any machine learners on the preprocessed training data to
identify the SATDs from the unlabeled/test dataset. For this step, we picked
Random Forest which is also Jitterbug’s choice of learner after being compared
across other ones [84].

3.2.2 Active Learning via Falcon

The data that do not share the technical-debt proneness tendency is being
continuously learned through human and AI partnership, named Falcon as
the proposed active learning strategy from this study. First, a classification
model (for SATD or non-SATD comments) is trained on the training dataset.
When reading the new comments, Falcon initially uses uncertainty sampling
to quickly build the model, then switches to certainty sampling to greedily
find technical debt comments. The machine learner (RF) uses this feedback

2 For token t, its tf-idf score: Tfidf (t) =
∑

d∈D Tfidf (t, d), in which for token t in comment

or document d, Tfidf (t, d) = wt
d × (log

|D|∑
d∈D sgn(wt

d
)

+ 1) where wt
i is the number of times

token t appears in document d.
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from human to learn their models incrementally. These trained model then
sorts the stream of comments such that humans read the most informative
ones first (and the comments are sorted again each time a human offers a new
label for a comment). After the found SATDs reach a specific threshold then
Falcon drops the training data and incrementally updates it with the target
data. This is similar to the separation action of the Falcon rocket to drop the
thruster for boosting up the rocket’s speed after reaching a required height.
More specifically, Falcon executes as follows:

Step 1 Feature Extraction: Given a set of comments candidates, Falcon
extracts features from each candidate as L2-normalized terms with
the highest TF-IDF. Initialize the set of labeled data points as L← ∅
and the set of labeled positive data points as LB ← ∅.

Step 2 Bootstrap Learning: Falcon utilizes the labeled training dataset to
train a machine learning model, i.e., Random Forest (Yu et al.’s choice
of learner [84]).

Step 3 Initial Sampling: Falcon starts by randomly sampling unlabeled
candidate studies until humans declare that they see N1 = 1 technical-
debt examples.

Step 4 Uncertainty Sampling: Then, as human assessors offer labels, one
example at a time, Falcon trains and updates with weighting to con-
trol query with uncertainty sampling, until N2 = 10 technical-debt
examples are found. Here, different weights are assigned to each class
(WB = 1/|LB |, WN = 1/|LN |).

Step 5 Certainty Sampling: Next, Falcon trains further using certainty
sampling and Wallace’s “aggressive undersampling” [70] that culls
majority class examples closest to the decision boundary.

Step 6 Training Data Separation: Falcon drops training data after finding
more than 10% of estimated SATDs then the model is retrained on
the reviewed target data.

Step 7 Early Stopping: Falcon stops training when it is estimated that
N3 = 90% of the SATDs have been found.

To generate the N4 estimate, whenever the RF model is retrained, Falcon
makes temporary “guesses” about the unlabeled examples (by running those
examples through the classifier). To turn these guesses into an estimate of the
remaining technical-debt comments, Falcon:

1. Builds a fast and simple model, e.g., Logistic Regression, using the guesses.
Faster feedback cycle to update the model and for the users to make deci-
sions

2. Using that regression model, Hard makes new guesses on the remaining
unlabeled examples.

3. Loops back to step1 until the new guesses are the same as the guesses in
the previous loop.

4. Uses this logistic regression model to estimate the remaining number of
positive examples in the data.
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The reader will note that there are many specific engineering decisions
built into the above design (e.g. the values {N1 = 1, N2 = 10, N3 = 90%}).
Those decisions were initially made by Yu et al. [82] after exploring 32 different
kinds of active learners. Those were later adopted by the SOTA active learning
framework Jitterbug [84] for SATD identification.

3.3 DebtFree (100)

DebtFree(100) is inspired by the SOTA’s Jitterbug framework in the high-
resource setting, i.e., have access to labeled training data. Instead of a pattern-
based approach with a active learning strategy, we propose to replace the
pattern-based approach with an unsupervised learner to filter out the highly
technical-debt prone comments. Then, the state-of-the-art active learning ap-
proach (i.e., Hard [84]) guides the human experts to first start with training on
training data labeled by the experts and then identify all of SATD comments
on new coming data.

3.3.1 Filtering via CLA

Here, SATDs from the test data can be early filtered out with CLA. However,
instead of picking thresholdK = median(K) to label the training and test
data, we iterate thresholdK = percentile(allK , i) for i from 50% to 95% per-
centile. Then, the best thresholdK is the one with the highest precision to iden-
tify the SATDs within the training set. The test set with Ki > best thresholdK
are labeled as SATDs. Then, instances that meet the tendency in both test and
training datasets are removed. The intuition is similar to Yu et al. [84] is that
the “easier” SATDs can first be easily identified where easier here means they
share the tendency of the higher complexity is associated with the proneness
of the technical-debts.

Table 4: Differences between the active learning strategies for this study: EM-
BLEM [67], HARD [84], and our proposed approach, i.e., FALCON.

Emblem[67] Hard[84] Falcon

start with learning on existing
training datasets.

5 3 3

drop the training data and re-
train the model on the re-
viewed test data after at-
taining a certain threshold of
SATDs

5 5 3
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(a) Emblem (b) Hard (c) Falcon

Fig. 3: The visual analogy of rocket launching for the comparison of Emblem,
Hard, and Falcon processes.

3.3.2 Active Learning via Hard

The active learning strategy here is Hard from Yu et al. [84]’s Jitterbug which
is similar to Falcon (as discussed previously in §3.2.2) except it does not filter
out training data at any point in the learning process. Another variation for
comparison also includes Tu et al.’s Emblem [67]. Emblem only uses one hun-
dred randomly sampled labeled test data to start the active learning strategy.
For Emblem, we suspected that due to the randomness in sampling, in the
first one hundred instances the performance will be unstable. In summary, the
differences and similarities are documented in Table 4 and the performance of
all three methods will be compared in RQ2.1. For a more intuitive compar-
ison, Figure 3 shows the rocket launching process in each method. Emblem
is cheap with no need for the booster (labeled training data) but difficult to
reach a substantial height (acquiring SATDs). Hard is effective but expensive
to carry the whole booster all the way till the end. Falcon is a hybrid that uses
the booster upon launch to boost the rocket’s speed but is discarded once the
rocket reaches a certain height.

4 Experimental Design

4.1 Data

To validate this study’s hypothesis and the proposed methods’ effectiveness, we
use the dataset from Maldonado et al. [37] which has been corrected by Yu et
al. [84]. The dataset includes ten open-source projects collected from Github:
Apache-Ant-1.7.0, Apache-Jmeter-2.10, Hibernate-Distribution3.3.2.GA, Ar-
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Table 5: Dataset Details

Project Release
/ Year

Domain Comments Original
SATDs [37]

Corrected
SATDs [84]

Apache
Ant

1.7.0 /
2006

Automating
Build

4098 131 (3.2%) 135 (3.3%)

JMeter 2.10 /
2013

Testing 8057 374 (4.6%) 416 (5.2%)

ArgoUML - UML Dia-
gram

9452 1413 (15%) 1630 (17.3%)

Columba 1.4 /
2007

Email Client 6468 204 (3.2%) 220 (3.4%)

EMF 2.4.1 /
2008

Model
Framework

4390 104 (2.4%) 119 (2.7%)

Hibernate 3.3.2 /
2009

Object Map-
ping Tool

2968 472 (16%) 493 (17%)

JEdit 4.2 /
2004

Java Text
Editor

10322 256 (2.5%) 259 (2.5%)

JFreeChart 1.0.19 /
2014

Java Frame-
work

4408 209 (4.7%) 247 (5.6%)

JRuby 1.4.0 /
2009

Ruby for Java 4897 622 (12.7%) 665 (13.4%)

SQuirrel - Database 7215 286 (4%) 313 (4.3%)
SUM 62275 4071 (6.5%) 4497 (7.2%)
MEDIAN 5683 271 (4.8%) 286 (5%)

goUML, Columba-1.4-src, EMF-2.4.1, jEdit-4.2, jFreeChart-1.0.19, jRuby-1.4.0,
SQL12. The provided dataset contains project names, classification type (if
any) with actual comments.

Table 5 lists the varying statistics of the comments found in these 10
projects. As only a small ratio of the source code comments describe SATDs, it
would be time-consuming to label all comments manually. Thus, Maldonado
and Shihab developed 5 filtering heuristics to eliminate comments that are
unlikely to be classified as comments [37]: (1) remove license comments/auto-
generated comments, (2) remove commented source code, (3) remove Javadoc
commented source comments, (4) group multiple single-line comments to-
gether, and (5) removing duplicate comments. In the end, the number of com-
ments that require manual annotation was significantly reduced from 259,229
to 62,275 (reducing the data by 75%).

Furthermore in their work [37], two humans then manually classified each
comment according to the six different types of SATD mentioned by Alves
et al. [3] if they contained any SATD at all, else marked them WITHOUT
CLASSIFICATION . Note that, we do not use the fine-grained SATD cate-
gories proposed by Maldonado et al. [38], rather we focus on a binary problem
of instances being a SATD or not. Our study is concerned specifically with
identifying if a problem is SATD (e.g., DEFECT , IMPLEMENTATION ,
DESIGN , etc) or not (WITHOUT CLASSIFICATION). Simply, as long
as the code comment refers to some aspect of technical debt it is treated as
SATD. Similarly to previous work [84, 55], we have changed the final label
into a binary problem by defining WITHOUT CLASSIFICATION as no and
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the rest of the categories as yes. Stratified sampling of the dataset is applied
to check personal bias, revealing with a 99% confidence interval of 5%. A third
human verified the agreement between the two using stratified sampling and
reported a high level of agreement (Cohen’s Kapp [12] coefficient of +0.81).
The significantly high level of agreement indicates that the dataset is unbiased
and reliable.

On the contrary, Yu et al. [84] inspected this dataset for biases, and found
that 98% of the false positives were wrongly labeled. The differences between
the original and corrected SATDs count are reported in the last two columns
of the Table 5. Specifically, Maldonado et al. [37] missed more than 10% of
the total SATDs. This discrepancy highlights the importance of validating
prior research’s conclusions, data, and methodologies should one employ them
in their work, a process that might add significant overhead to the amount of
required effort. Fortunately, active learning offers feasible remedial venues. Our
proposed method DebtFree also established new state of the art that outshined
the state-of-the-art active learning method for technical debt, Jitterbug.

4.2 Data Miners

There are several data miner options for the active learning part of the Debt-
Free(100) or supervised learning part of the DebtFree(0). For this study, we
only test simple and fast learners since the active learning model is updated/re-
trained frequently while practitioners appreciate quick feedback loop to im-
prove software,code, and technical-debts. Such learners include:

Logistic Regression: a statistical method that uses a logistic function
to model a binary dependent variable [29]. A standard logistic function is a
common “S” shape with Equation 1:

p(x) =
1

1 + e−(β0+β1x)
(1)

where p(x) ∈ [0, 1] for all t. Fitting on the training data, logistic regression
looks for the best parameter β to classify input data x into two target classes
{0, 1}. LR is used for estimating SATDs in DebtFree(100)’s active learning.

Random Forest: an ensemble learning method that constructs a multi-
tude of decision trees, each time with different subsets of the data rows R and
columns C3. Each decision tree is recursively built to find the features that
yields the most reduction in entropy (higher entropy indicates lower ability to
draw conclusions in the paritioned data) [7]. Test data is then passed across all
N trees. Conclusions are determined by a majority vote across all the trees [6].
Holistically, RF is based on bagging (bootstrap aggregation) which averages
the results over multiple trees from sub-samples (reducing variance). Both
methods are popular in Machine Learning, and are implemented in the open-
source toolkit Scikit-learn [51]. Random Forest is used for classifying SATD
comments in DebtFree(0), DebtFree(100), and Yu et al.’s Jitterbug [84].

3 Specifically, using log2 C of the columns, selected at random.
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4.3 Experimental Process

Experiments are conducted on the SATD dataset with 10 projects described
in §4.1. Each time, one project is selected as a target project (with labels
unknown) and the rest 9 datasets are treated as source projects. This study
addresses the following research questions:

RQ1: How well can the state-of-the-art unsupervised learning
method identify SATDs?

RQ2: How can the state-of-the-art active learning framework be
combined with the state-of-the-art unsupervised learner?

RQ3: How does the proposed DebtFree perform against state-of-
the-art models in identifying SATDs?

Recall our study investigates the combination of three approaches including
Pseudo-labeling, Filtering, and Active Learning. In this big data era, there are
available datasets easily curated from the web (e.g., Github) with no labels and
we can harvest valuable insights from them without labeling the data. The first
RQ demonstrates that unsupervised learning by itself is not effective but it is
useful for understanding some hidden patterns and early filtering out SATDs.
In order to extend both the unsupervised learning approach and the active
learning approach, the second RQ experiments different ways of integrating
both frameworks in two settings with RQ2.1 where there is no access to the
labels of the training data and RQ2.2 where there is access to the labels. For
RQ2.1, we test different candidates for all three steps whereas in RQ2.2 we
only focus on candidates for the filtering step and the active learning step.
With RQ2.1, we can simulate a real world situation of having data with no
labels by hiding the labels of the training data. During the active learning
step across the experiments, the oracles are queried for the target project, the
ground truth labels are applied to label the queried comments to simulate the
human-in-the-loop labeling process.

From RQ2, we finalize the best combination for two settings from RQ2 as
DebtFree(0) and DebtFree(100). In RQ3, we assess DebtFree(0)/(100)’s
usefulness by comparing them against the SOTA semi-supervised learning
work by Yu et al. [84] (i.e., Jitterbug) and the SOTA supervised learning
work by Ren et al. [55] (i.e., CNN). We recycle the available implementations
of their approaches instead of re-implementing them ourselves to generate the
results. Therefore, we are more confident that our conclusions or insights would
align with the original work.

4.4 Statistical Testing

We employ Cohen’d effect size test to determine which results are similar by
calculating medium step2. We take guidance from Sawilowsky [57] at al.’s
work to determine the value of d to be used. That paper asserts that “small”
and “medium” effects can be measured using d = 0.2 and d = 0.5, respectively.
We analyze this data looking for differences larger than d = (0.5 + 0.2)/2 =
0.35. This d is higher than the Jitterbug’s d = 0.2, ensuring the differences in
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the results are statistically significant, and consequently higher confidence in
the effectiveness of the proposed methods:

Mediumstep2 = 0.35 · StdDev(All results) (2)

5 Results

This section will provide details on the experiments and results for answering
the research questions listed above.

RQ1: How well can the state-of-the-art Unsupervised Learning
method identify SATDs?

In this experiment, we compare the performance of the following five treat-
ments:

– CLA: The unsupervised learner described in §3.2.1, which clusters the test
data instances based on the features’ median by marking the ones with
features higher than the median as SATDs and vice-versa.

– CLAFI+RF: A combination of CLAFI (§3.2.1) and the data miner RF
(§4.2). It started with pseudo-labeling the unlabeled training data with
CLA. Then the data is preprocessed by removing the features (for nine
train and one target datasets) and instances (only on the nine training
datasets) that violated the assumption from CLA. Then we pick Random
Forest as the learner choice from SOTA Yu et al.’s Jitterbug work’s data
miner of choice for supervised learning.

– CLA+RF: This is similar to the previous step except no features and
instances preprocessing step.

– Easy: The pattern-based approach, first step of Jitterbug. For each pattern
p, find score = Prec(p)4 · P (p) = TP (p)4/P (p)3 where P (p) is the number
of comments p (positives) and TP (p) is the number of SATD comments
containing p (true positives). We iteratively select the pattern with the
highest score, then removes comments containing that pattern from both
train and test data until the selected pattern has lower than 80% precision
on the training data. Then, stop and evaluate.

– Easy+CLA: First, the pattern-based approach Easy filters out test data
comments with patterns that have more than 80% precision on training
data and then passed to CLA for identified the rest of SATDs.

These pattern-based approaches can be seen as two groups: unsupervised
learners (i.e., CLA variants) and supervised learners (i.e., Easy and Easy+CLA).
In term of the effectiveness of these methods, it is recommended to evaluate
multiple metrics so we employ Recall and APFD.

Recall measures the ability to identify the SATDs, Recall = TP/(TP +
FN). TP is the number of true positives (SATD comments predicted as
SATDs), TN is the number of true negatives (non-SATD comments predicted
as non-SATDs), FP is the number of false positives (non-SATD comments pre-
dicted as SATDs), and FN is the number of false negatives (SATD comments
predicted as non-SATDs).
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Table 6: Comparison between CLA, CLAFI+RF, CLA+RF, Easy, and
Easy+CLA are made in terms of Recall and APFD (the higher the bet-
ter). Medians and IQRs (delta between 75th percentile and 25th percentile,
lower the better) are calculated for easy comparisons. CLA, CLA+RF, and
CLAFI+RF do not have access to training data’s labels while Easy and
Easy+CLA do. Here, the darker cells show top rank while the lighter cells
show rank two where the difference between two ranks is statistically signifi-
cant by being higher than M reported in the left most column.
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CLA 65 72 55 67 67 62 79 55 64 65 65 5
CLAFI+RF 53 31 30 46 47 42 39 25 23 23 35 17

Recall CLA+RF 81 75 77 91 85 84 76 78 61 82 80 8
(M = 8%) Easy 58 77 41 27 90 75 22 55 88 90 67 47

Easy+CLA 93 96 82 91 95 95 98 71 98 98 95 7

APFD

CLA 73 73 61 78 72 65 91 61 70 72 72 8
CLAFI+RF 74 63 58 64 70 57 76 57 67 68 66 10
CLA+RF 74 74 64 73 53 62 80 64 64 68 66 9

(M = 6%) Easy 57 76 41 27 83 71 22 54 87 85 64 42
Easy+CLA 92 94 81 82 96 93 93 80 98 98 93 14

In order to take effort into consideration for the performance of the model,
we also employ APFD. APFD calculates the area under the curve of the recall-
cost curve whereas other metrics (e.g. precision, recall, F1, G1) only evaluate
a single point of the curve. APFD ranges from 0.0 to 1.0, with higher values
indicating that higher recall could be achieved at a lower cost, and thus, more
advantageous. An APFD value of 0.5 can be achieved by randomly select the
next item each time.

– Recall =
|{SATDs}∩{human verified comments}|

|{SATDs}|

– Cost =
|{human verified comments}|

|{comments}|

Cautionary note: Menzies et al. [43] warned that precision can be mis-
leading for imbalanced data sets like those studied here (e.g. Table 5 reports
that the median of target class is 5%). Hence, we will not report precision
results and will not place much weight on F1. Table 6 shows the results of the
experiment. The Cohen’d effect size test is applied to determine which results
are similar by calculating medium step2 or M across Recall and APFD.

On each target project in Table 6, the darker cells show top rank while

the lighter cells show rank two. Different colors indicate the statistically sig-

nificant differences at least equal or larger than the best result(s) subtracts
the medium step2 (M). Observations from Table 6 include:

– Surprisingly, there was no improvements from the data preprocessing (met-
rics and instances selection) and supervised learning (RF) step after CLA.

– CLA performs similarly to Easy in the recall, betters in APFD. In another
word, CLA performs better than Easy without access to the train labels.
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– CLA+RF performs better than Easy in recall and APFD. CLA+RF per-
forms better than Easy without access to the training data’s labels.

– Notably, CLA+RF performs similarly to CLA, wins in Recall but loses in
APFD so CLA’s performance is more balanced.

– Easy+CLA performs the best. This indicates additional effectiveness of
CLA as in bettering the performance of Easy. It is notable that Easy re-
lies on training data’s labels (i.e., supervised learning) in order to identify
SATDs when variants of CLA do not.

The results confirm the effectiveness of unsupervised learning (1) by itself
or with supervised learning in the case of no labels available, and (2) as a
post-processor after the SOTA pattern-based approach. There is a technical-
debt proneness tendency within the data to identify SATDs. Moreover, this
positive effect also comes with the benefit of not needing access to the labels.

The negative results from preprocessing the data (metrics and instances se-
lection) then supervised learning show that the selected metrics and instances
are not fully representative or relevant to identify SATDs on new data. Simply,
the technical-debt proneness tendencies that exist inside the training datasets
cannot be transferred completely to the target test dataset. Therefore, it might
not be effective to learn from the training data at all.

At the same time, in case there are resources available for labeling the
training data, Easy is still a useful pattern-based approach to automatically
identify “easy to find” SATDs. Then, CLA can be employed to identify the
rest of SATDs. The combination of Easy+CLA should be the state-of-the-art
automatic method for identifying SATDs. It is simple without any deployment
of a machine learning model for the traditional supervised learning approach.

The findings of this RQ is that:

From our exploration of various unsupervised learners, the original CLA
by Nam et al. performs the best. Moreover, CLA performs similarly to
the SOTA pattern-based approach, Easy [84], without having access to
the data’s labels (100% less effort).

Result:

RQ2: How can the state-of-the-art active learning framework be
combined with the state-of-the-art unsupervised learner?

In the situation where business users want to reach a specific amount of
SATDs, our previously discussed automatic methods would not be able to
guarantee such recall. For this demand, an active learning approach is more
suitable [84]. However, the SOTA active learner [84] requires the training data
to be labeled which is very expensive why the RQ1’s unsupervised learning
method is efficient but not effective enough. Therefore, this RQ explores how
to integrate both methods in order to minimize the cost of labeling while
improving the effectiveness in identifying SATDs in both settings of training
data labels unknown versus known.

RQ2.1: How to find SATDs with no access to labeled training data?
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In the low-resource setting (unlabeled training data), unsupervised learning
can help guess or pseudo-label the training data with no cost or the experts
can label the first 100 instances or 1% of the test data before applying the
active learning strategy. The following methods are tested in this experiment:
– Emblem: without utilizing the training data, we start with random 100 test

data instances to incrementally update the model to guide the developers
to find SATDs.

– Pseudo-labeling (via CLA) + Filtering (via CLA) + Hard: First, apply
unsupervised learning to pseudo-label the training data that highly fits the
hypothesized technical-debts proneness tendency with zero human effort.
Second, automatically identify the SATDs in test data via the same unsu-
pervised learner. Then, a active learning strategy (as explained in §3.2.2)
with the data miner RF (referenced in §4.2) to incrementally acquire infor-
mation and update the model in identifying the SATDs that do not fit such
a tendency.

– Pseudo-labeling (via CLA) + Hard: This is synonymous with the previ-
ous one except skipping the filtering via CLA step and simply apply Hard
to incrementally learn and identify SATDs on both frugally pseudo-labeled
data and new data.

– Pseudo-labeling (via CLA) + Filtering (via CLA) + Falcon: First, ap-
ply unsupervised learning to pseudo-label the training data based on the
hypothesized technical-debts proneness tendency. Then, the same method
is employed to filter out the highly technical-debt prone SATDs in the test
data. RF model is applied to continuously train on the pseudo-labeled data
and the rest of the test/target data until the found SATDs are 10% of
the estimated SATDs. Finally, the model will discard the cheaply labeled
training data while retraining the model on the reviewed test data so far
and continuously until the found SATDs are more than the user-specified
threshold (i.e. 90%).

– Pseudo-labeling (via CLA) + Falcon: This is synonymous to the previous
one except no early filtering via CLA.
Beside APFD, we will also evaluate the methods in F1, G1, and the la-

beling cost. It is recommended to evaluate with metrics that aggregate mul-
tiple metrics like F1 and G1. F1 is a harmonic mean of recall and precision,
Precision = TP/(TP +FP ). G1 is a harmonic mean of recall and false-alarm
rate, FAR = FP/(TP + TN):

F1 =
2 · Precision · Recall

Precision + Recall
(3)

G1 =
2 · Recall · (1 − FAR)

Recall + (1 − FAR)
(4)

Table 7 reports the comparison between all the previously discussed meth-
ods across four metrics: F1, G1, APFD, and the labeling Cost. F1, G1, and
the labeling cost are measured for all methods aiming to find 90% of the rest
SATDs. Except for the labeling cost, the higher the values of the other metrics
the better. The labeling cost is for labeling the test data labels. Pseudo-labeling
and Filtering are abbreviated to P and F. Similarly to RQ1, we also employ
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Table 7: Comparison between Emblem [67], P+Hard, P+F+Hard,
P+Falcon, and P+F+Falcon where P is Pseudo-Labeling and F is Fil-
tering. P and F are done via CLA. The comparison is made in terms of F1
score, G-score, APFD, and cost for identifying SATDs in the low-resource la-
beled data setting. For F1 score, G-score, and reviewing cost, both methods
target at finding 90% of the SATDs with its estimator. Medians and IQRs
(delta between 75th and 25th percentile, lower the better) are calculated for

easy comparisons. Here, the light red cells show best performing methods
where the difference between them are higher than M reported in the left
most column.
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F1

Emblem[67] 61 49 9 8 93 75 7 30 66 81 55 66

P+Hard 28 40 12 17 70 47 32 21 36 52 34 26

P+F+Hard 47 59 19 26 88 79 38 39 53 86 50 41

(M = 8%) P+Falcon 50 68 22 29 88 73 41 46 63 83 57 32

P+F+Falcon 30 49 17 22 76 64 35 39 41 73 40 29

G1

Emblem[67] 83 88 20 14 95 82 75 40 82 87 82 47

P+Hard 82 87 75 77 87 77 87 52 88 79 81 10

P+F+Hard 83 83 87 83 91 86 74 78 91 95 85 8

(M = 6%) P+Falcon 89 90 77 80 94 88 83 74 94 94 89 14

P+F+Falcon 79 86 75 76 88 85 72 78 84 92 82 10

APFD

Emblem[67] 92 92 77 82 90 84 88 87 95 90 89 6

P+Hard 77 81 66 78 81 67 90 63 81 77 78 14

P+F+Hard 86 91 79 86 89 77 95 75 90 85 86 11

(M = 3%) P+Falcon 90 93 81 84 88 83 93 69 93 89 89 10

P+F+Falcon 91 92 83 86 92 87 93 69 92 91 91 6

Cost

Emblem [67] 6 13 4 3 17 15 65 4 4 13 10 11

P+Hard 20 17 32 25 25 38 10 15 13 24 22 10

P+F+Hard 5 3 19 12 11 12 3 10 3 11 11 9

(M = 4%) P+Falcon 10 7 14 14 19 31 6 11 7 17 13 10

P+F+Falcon 10 9 13 11 13 20 4 12 9 16 12 4

Cohen’d medium effect size test [57] to determine the best treatment(s) in
each target project. From the results, we can see:

– F1: P+Falcon performs the best (9/10) while P+F+Hard performs the
second-best (7/10).

– G1: P+Falcon outperforms the rest (9/10) while P+F+Hard’s performance
is placed at second.

– APFD: P+F+Falcon’s performance is the best (9/10) while P+Falcon and
Emblem perform similarly as the second best (7/10).

– Cost: Emblem’s and P+F+Hard’s processes are the most efficient (7/10).

P+F+Hard always performs better than P+Hard across all four metrics.
However, the same effect is not observed in P+Falcon and P+F+Falcon due to
Falcon losing some insights of frugally pseudo-labeled data after dropping the
training data at a certain threshold and the filtering step further reduce the
insights (i.e, highly technical-debt prone comments) for Falcon to learn. How-
ever, P+Falcon outperforms all methods, except slightly lost to P+F+Falcon
in G1, and makes the system experts read 3% more on average. Falcon’s ef-
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fectiveness overwrites the necessity of filtering. Moreover, P+Falcon’s perfor-
mance is better than P+Hard indicating the effectiveness of Falcon over Hard.

Overall, in the situation of having no access to the labeled training data,
the effectiveness of Pseudo-labeling (via CLA) + Falcon demonstrates that:
– Unsupervised learning can cheaply and quickly guess the labels of the train-

ing data to provide insights for bootstrapping the active learning strategy.
However, those frugally pseudo-labeled data do not have enough insights
to help Hard guide the experts efficiently to identify the SATDs the whole
way up to 90%.

– Emblem alone is cost-efficient but it does not effectively identify the SATDs.
– A hybrid of both is more preferable as Falcon would drop training data

with guessed labels after the found SATDs are at least 10% of the estimated
SATD% so there are enough insights to help Falcon guide the experts to
efficiently identify the rest of SATDs.

– The best configuration for a “label-free” process including a labeler to utilize
the unlabeled data for bootstrapping and the tuned active learning strategy
is labeling via CLA and Falcon. Hence, DebtFree(0) = Pseudo-labeling
(via CLA) + Falcon as shown in Figure 4.
RQ2.2: How to find SATDs with having access to labeled training data?
For this research question, we are interested in the best configurations of

DebtFree(100) to take advantage of an abundant amount of labeled data
from previous research work [37, 84]. The comparison is made through the
F1 score, G1 score, APFD, and cost metrics. The methods are similar to the
previous RQ but without the labeling step:
– Filtering (via CLA) + Hard: First, apply unsupervised learning to learn

the hypothesized technical-debts proneness tendency on the humanly la-
beled training data then automatically identify the SATDs in test data
with zero human effort. Second, an active learning strategy adopted from

Fig. 4: Workflows of DebtFree(0) = Pseudo-Labeling (via Unsupervised
Learning, i.e., CLA [47]) + Active Learning (via Falcon).
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Table 8: Comparison between Hard, F+Hard, Falcon, and F+Falcon in
terms of F1 score, G-score, APFD, and cost in identifying SATDs in the high-
resource labeled data setting. Filtering-F are done via CLA. For F1 score,
G-score, and reviewing cost, both methods target at finding 90% of the “hard
to find” SATDs with its estimator. Medians and IQRs (delta between 75th
and 25th percentile, lower the better) are calculated for easy comparisons.

Here, the light red cells show best performing methods where the difference
between them are higher than M reported in the left most column.
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F1

Hard 48 59 28 25 94 82 29 53 84 92 56 55

F+Hard 34 52 23 24 82 66 44 51 73 80 52 29

(M = 8%) Falcon 55 70 28 44 93 73 50 48 54 82 55 25

F+Falcon 34 45 18 24 84 66 30 34 35 70 35 36

G1

Hard 93 92 88 87 98 89 93 82 97 96 93 8

F+Hard 90 91 86 85 95 86 92 80 98 94 91 8

(M = 2%) Falcon 86 90 83 78 96 90 88 80 96 94 89 11

F+Falcon 88 89 81 82 94 88 91 78 93 92 89 10

APFD

Hard 95 95 95 91 91 89 95 90 98 92 94 4

F+Hard 98 96 97 96 97 94 96 89 98 96 96 1

(M = 2%) Falcon 94 95 91 90 91 89 94 83 97 92 92 4

F+Falcon 97 97 94 92 96 92 98 76 98 96 96 5

Cost

Hard 13 11 14 20 18 17 14 10 4 14 14 6

F+Hard 8 7 5 12 11 10 9 7 5 10 9 3

(M = 2%) Falcon 9 7 11 9 12 20 3 9 8 14 9 4

F+Falcon 8 7 12 7 17 24 6 11 9 17 10 10

the SOTA work [84] (§3.3.2) with the data miner RF (§4.2) to incrementally
acquire information and update the model in identifying the SATDs that
do not fit such tendency.

– Hard (§3.3.2): This is synonymous with the previous one except no filtering
via CLA in the beginning.

– Filtering (via CLA) + Falcon: The filtering step is the same as above.
Then, an RF model is applied to continuously learn on the unfiltered train-
ing data and the rest of the unfiltered test/target data until the found
SATDs are 10% of the estimated SATDs. Finally, the model will discard
the labeled training data while retraining the model on the reviewed test
data so far and continuously until the found SATDs are more than the
user-specified threshold (i.e. 90%).

– Falcon (§3.2.2): This method is synonymous with the previous one except
for no filtering step in the beginning.

The results for this RQ are reported in Table 8. Similarly, F1, G1, and
the labeling cost are measured for all methods aiming to find 90% of the rest
SATDs. Except for the labeling cost, the higher the values of the other metrics
the better. The labeling cost is for labeling the test data labels. Filtering is ab-
breviated to F. Similarly to RQ1, we also employ Cohen’d medium effect size
test [13, 57] to determine the best treatment to determine the best treatments
in each target project. From the results, it is observed that:
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Fig. 5: Workflows of DebtFree(100) = Filtering (via Unsupervised Learning,
i.e., CLA [47]) + Active Learning (via Hard [84]).

– F1: Hard’s and Falcon’s performance are similarly as the best ones (7/10).
– G1: Hard outshines the rest over all the projects while F+Hard performs

as the second best (7/10).
– APFD: F+Hard outperforms the rest on ten out of ten projects and F+Falcon

comes in as second place (7/10).
– Cost: F+Hard is the most efficient in eight out of ten projects and then

Falcon (6/10).

Falcon still outperforms F+Falcon across F1, G1, and cost while losing
on APFD. However, Hard outshines Falcon here, wins in cost, draws in F1,
and loses in G1 and APFD. This indicates that when there is an abundant
amount of labeled data, discarding them after reaching a certain threshold is
not as effective as just active learning on the rest since there is enough insights
from the labels. Hard performs similarly to F+Hard as the best ones across all
methods by winning on F1 and G1 while losing on APFD and cost. However,
the benefit of filtering here is it helps stabilize Hard’s performance as Hard by
itself has a high variance across four metrics. As mentioned previously RQ1,
F1 and G1 scores are only single points of the curve while APFD calculates
the area under the recall-cost curve. In the theme of effort-aware, the best
configurations of DebtFree(100) include Filtering (via CLA) with Hard as
shown in Figure 5.

From this RQ, we conclude that:
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With the effort-aware theme, we investigate different combinations of
active learners and CLA across two settings of the training data, either
with having 1-no access and 2-access to the labels to propose DebtFree.
In setting 1, or DebtFree(0), the best combination is Pseudo-Labeling
(via CLA) with our proposed active learner, Falcon. In setting 2, or
DebtFree(100), the best combination is Filtering (via CLA) with the
SOTA active learner for SATDs identification, Hard.

Result:

RQ3: How does the proposed DebtFree perform against state-of-
the-art models in identifying SATDs?

For this research question, we are interested in the overall performance of
DebtFree by comparing (1) “label-free” DebtFree(0), (2) the latest state-of-
the-art deep convolutional neural network-based approach [55], (3) two-step
SOTA Jitterbug approach [84], and (4) DebtFree(100). The comparison is
made via F1 score, G1 score, APFD, and cost metrics:

– DebtFree(0): First, apply unsupervised learning to label the unlabeled
training data based on the hypothesized technical-debts proneness tendency.
Finally, Falcon is applied to continuously learn and identify the rest of
SATDs.

– Jitterbug [84]: First apply pattern-based approach (i.e, Easy, described in
§5’s RQ1) to automatically identify the “easy to find” SATDs, then apply
a active learning strategy (i.e., Hard, described in §3.3.2) with RF as the
learner of choice to guide humans in identifying the “hard to find” SATDs.

– CNN: deep learning solution that is based on a convolutional neural net-
work structure with word2vec features and hyperparameter tuning to clas-
sify each comment into SATD or non-SATD [55].

– DebtFree(100): First, apply CLA as an unsupervised learner to filter out
the test data that are most likely to be technical debts. Then, the SOTA
active learning strategy of Hard is applied to incrementally identify the rest
SATDs.

The results for this RQ are reported in Table 9. Similarly, F1, G1, and
the labeling cost are measured for all methods aiming to find 90% of the
rest SATDs. Except for the labeling cost, the higher the values of the other
metrics the better. The labeling cost is for labeling the test data labels. Similar
to RQ1, we also employ Cohen’d medium effect size test [13] to determine the
best treatment to determine the best treatments in each target project. From
the results, it is observed that:

– F1: CNN outperforms the rest of the methods in eight out of ten projects
and then DebtFree(0)’s performance is placed at second.

– G1: DebtFree(100) outshines the rest in nine projects and then Jitterbug
comes in second place.

– APFD: DebtFree(100) performs similarly as Jitterbug as the best ones in
nine out of ten projects.
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Table 9: Comparison between DebtFree(0), CNN, Jitterbug, and Debt-
Free(100) in terms of F1 score, G-score, APFD, and cost. For F1 score, G-
score, and reviewing cost, both methods target at finding 90% of the “hard to
find” SATDs with its estimator. Medians and IQRs (delta between 75th and
25th percentile, lower the better) are calculated for easy comparisons. Here,

the darker cells show top rank while the lighter cells show rank two where
the difference between two ranks is statistically significant by being higher
than M reported in the left most column.
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F1

DebtFree(0) 50 68 22 29 88 73 41 46 63 83 57 32

CNN [55] 60 62 51 45 82 78 52 51 76 87 61 27

(M = 8%) Jitterbug [84] 24 55 61 17 21 34 23 75 47 23 29 32

DebtFree(100) 34 52 23 24 82 66 44 51 73 80 52 29

G1

DebtFree(0) 89 90 77 80 94 88 83 74 94 94 89 14

CNN [55] 87 91 83 84 92 90 79 76 98 95 89 33

(M = 2%) Jitterbug [84] 91 85 88 85 93 88 91 93 90 88 89 3

DebtFree(100) 90 91 86 85 95 86 92 80 98 94 90 8

APFD

DebtFree(0) 90 93 81 84 88 83 93 69 93 89 89 10

CNN [55] 69 83 58 66 87 79 64 81 89 88 80 21

(M = 4%) Jitterbug [84] 95 99 95 93 92 94 100 99 95 94 95 5

DebtFree(100) 98 96 97 96 97 94 96 89 98 96 96 1

Cost

DebtFree(0) 10 7 14 14 19 31 6 11 7 17 13 10

CNN [55] 0 0 0 0 0 0 0 0 0 0 0 0

(M = 4%) Jitterbug [84] 18 35 28 24 12 25 17 19 23 27 24 8

DebtFree(100) 8 7 5 12 11 10 9 7 5 10 9 3

– Cost: CNN is the most efficient since it is modeled as the traditional su-
pervised approach (i.e., not touching the test/target data).

DebtFree(100) performs similarly to the SOTA supervised learning ap-
proach of CNN [55], wins in APFD, draws in G1, and loses in F1 and cost.
However, DebtFree(100)’s performance exceeds the SOTA two-step Jitterbug
approach [84] across three metrics (F1, G1, and cost) while performing sim-
ilarly in APFD. In particular, DebtFree(100) saves the labeling cost 250%
from Jitterbug on average (except in ArgoUML projects).

DebtFree(0) outperforms the SOTA two-step Jitterbug approach [84]
while performing similarly to the SOTA supervised learning approach of CNN
[55]. DebtFree(0) wins CNN in APFD, draws in G1, and loses in F1 and
cost. DebtFree(0) wins Jitterbug in F1 and cost, draws in G1, and loses in
APFD. Specifically, DebtFree(0) saves the labeling cost almost double than
Jitterbug on average (except in ArgoUML and Hibernate project). However,
DebtFree(0) loses to DebtFree(100) across four metrics. In general, both
of these SOTA work’s and DebtFree(100)’s effectiveness rely on the labeled
training data, without them, they might not exist. On the other hand, Debt-
Free(0) does not require the training data to be labeled, and requiring no
labels from the training data is already a win in itself. Specifically, out of the
total ten datasets, there are nine labeled training datasets (90%) so CNN needs
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90% labeled data while Jitterbug needs 92% on average while DebtFree(0)
only need 1% of the data to be labeled (99% cheaper).

Notably, Falcon having access to labeled training data actually surpasses
CNN on three metrics (F1, G1, and APFD) while losing in cost. Moreover,
Falcon performs better than Jitterbug in F1 and cost, draws in G1, and loses
in APFD. Specifically, Falcon saves the labeling cost 240% from Jitterbug on
average (except in ArgoUML project). Hence, Falcon is more balanced than
Filtering (via CLA) and Hard in term of effectiveness over both methods.

On a side note, active learning without the training data, Emblem, per-
forms similarly to Jitterbug (with access to labeled training data and a pattern-
based approach) as Emblem wins in F1 and Cost but loses in G1 and APFD.
Moreover, Emblem loses to Jitterbug by a small margin for G1 (median at 82
versus 89) versus APFD (median at 89 versus 95) but wins over by a larger
margin for F1 (median at 55 versus 29) and Cost (median at 13 versus 24).
This restates how labeled training data and insights from them are not com-
pletely transferred to the learning of the continuous strategy which contradicts
the previous SOTA’s conclusion.

Altogether, DebtFree’s effectiveness can be concluded that:

When comparing against the SOTA semi-supervised learning work by
Yu et al. [84] and the SOTA supervised learning work (with deep learn-
ing) by Ren et al. [55], our proposed method DebtFree outperforms
them significantly. First, DebtFree(100) performs similarly to Ren et al.
[55]’s work and better than Yu et al. [84]’s work while reducing the la-
beling cost by 2.5 times. Second, DebtFree(0) performs similarly to
Ren et al. [55]’s work without having access to the training data’s labels
and outperforms Yu et al. [84]’s work while being 99% less effort.

Result:

6 Threats of Validity

There are several validity threats [18] to the design of this study. Any con-
clusion made from this work must be considered with the following issues in
mind:

Conclusion validity focuses on the significance of the treatment. To en-
hance conclusion validity, we ran experiments on 10 different target projects
and found that our proposed method always performed better than the state-
of-the-art approaches. More importantly, we applied a wider step (d = 0.35)
for the statistical testing of Cohen’d (described in RQ1 of §5) than the state-
of-the-art work [84] (d = 0.2) so the observed effects are validated with more
confidence. In addition, we have considered generalization issues of single eval-
uation metrics (e.g., recall and precision) and instead evaluate our methods
on metrics that aggregate multiple metrics like F1 and G1 while being more
effort-aware (APFD and cost). As future work, we plan to test the proposed
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Table 10: The left subtable showed TP/P rate after Easy and CLA while the
right subtable are the median ratios of estimated SATDs over actual SATDs
per iteration of the active learning strategies of Emblem, DebtFree(0)’s-
D(0)’s Falcon, DebtFree(100)’s-D(100)’s Hard, and Jitterbug’s-J’s Hard [84].
The median and IQR are also reported for ease of comparison.

(a) Percentage of SATDs being iden-
tified by the Easy and CLA in each
project.

Datasets Easy CLA
SQuirrel 58 47
JMeter 77 22
EMF 41 25
Apache Ant 27 42
ArgoUML 90 45
Hibernate 76 31
JEdit 22 35
JFreeChart 55 13
Columba 88 18
JRuby 90 27
Median 67 29
IQR 47 13

(b) Median ratio of estimated SATDs over ac-
tual SATDs across all iterations per project
by each active learning method. The higher
the number than 100%, the more the approach
overestimate and vice-versa.

Datasets Emblem D(0)’s D(100)’s J’s
Falcon Hard Hard

SQuirrel 81 88 69 153
JMeter 94 104 83 429
EMF 13 101 75 76
Apache Ant 7 60 100 23
ArgoUML 125 93 58 1195
Hibernate 74 97 85 362
JEdit 122 71 85 148
JFreeChart 34 60 81 128
Columba 60 98 86 592
JRuby 72 103 84 826
Median 73 95 84 258
IQR 60 30 4 464

methods with additional analyses that are endorsed within SE literature (e.g.,
P-opt20 [67]) or general ML literature (e.g., MCC [11]).

Finally, in order to understand why our proposed method outshines the
others, we offer a deeper analysis via Table 10. The SOTA active learning
Jitterbug starts with the filtering step (Easy) before active learning (Hard)
on the rest. Recall §2.2.5, one of our hypothesized Jitterbug’s shortcomings is
Jitterbug’s Easy can find up to 90% of the SATDs can make it difficult for Hard
to follow up and find the rest of 10% SATDs. Hence, Table 10.a reported the
percentage of SATDs being found via the filtering step (Easy [84] or CLA [47])
and Table 9.b reported the median ratio of estimated SATDs 0over actual
SATDs across all iterations per project for Jitterbug’s Hard [84] (after Easy),
DebtFree(0)’s Falcon, DebtFree(100)’s Hard (after CLA), and Emblem [67].
The hypothesis here is that the higher the SATDs being discovered by the
early filtering step, the harder it is to find the rest of SATDs, and the higher
the overestimation is done by the consequent active learning strategy. This
forces the human experts to review more comments than necessary, which
results in more cost and effort. For instance, in JRuby, Easy finds 90% of the
SATDs so Jitterbug’s Hard has a difficult time finding the rest 10% and ends
up overestimating the rest SATDs on average by 8.3 times. Jitterbug’s Hard
always overestimates (up to 12 times than the actual SATDs) than the rest of
the methods except in the case of Apache Ant and EMF. Meanwhile, CLA only
finds up to 29% of the SATDs on average so the estimation of DebtFree(100)’s
Hard is only 16% away of the actual SATDs and more balanced (i.e, lowest
in IQR). With no prior filtering step, Emblem tends to underestimate by 27%
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but DebtFree(0)’s Falcon has the closest estimation to the actual SATDs ,
i.e., 95%.

Internal validity focuses on how sure we can be that the treatment caused
the outcome. To enhance internal validity, we heavily constrained our experi-
ments to the same dataset, with the same settings, except for the treatments
being compared.

Construct validity focuses on the relation between the theory behind the
experiment and the observation. To enhance construct validity, we compared
solutions with and without our strategies in Table 7 and 8 while showing that
both components (unsupervised learning with CLA and active learning of
Falcon/Hard) and in both settings (low-resource labels versus labels abun-
dant) to improve the overall performance. However, we only showed that with
our setting of featurization and default parameters of random forest learn-
ers. The performance can get even better by tuning the parameters, variety of
scalers, and different data preprocessors (e.g., synthetic minority over-sampling
or SMOTE that is known to help with unbalanced datasets [1, 9]). We plan
to explore these in our future work.

External validity concerns how widely our conclusions can be applied.
In order to test the generalizability of our approach, we always kept a project
as the holdout test set and never used any information from it in training.

7 Conclusion and Future Work

Managing Self-Admitted Technical Debts are important to maintaining a healthy
software project. The current automated solutions do not have satisfactory
precision and recall in identifying SATDs to fully automate the process. More-
over, the learning requires the training data to be labeled, which is not always
available because of high cost and labor as the case discussed in §2.1. We
showed that there is a “technical-debt proneness tendency” in the data where
SATDs are associated with higher complexity of the data. In order to reduce
the label famine and human effort, a half-automated two-mode framework was
proposed, called DebtFree. If there is a lack of labeled data, DebtFree(0)
first pseudo-labels the training data’s labels using an unsupervised learning
method that is based on “technical-debt proneness tendency”. When there
are abundant labeled training data, DebtFree(100) applies the same unsu-
pervised learner to find the best tendency on the training data to filter out
the highly prone SATDs from the test data. Then, an active learning model
iteratively trains and update on both historically labeled data and new human-
labeled ones while guiding the human experts to target the most likely SATDs
according to the model’s ranking. Our proposed active learning method (i.e,
Falcon) is the best one for DebtFree(0) while Yu et al.’s Hard [84] is the best
one for DebtFree(100). The process can be repeated till the estimated recall
from the model reaches the predefined target recall. Our findings include:
1. When combining the previous SOTA’s pattern-based approach (i.e., Easy)

and a simple unsupervised learning (i.e., CLA), the performance was higher
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than Easy alone without any human effort. Therefore, Easy+CLA should
be considered as the new simple baseline method for identifying SATDs.

2. In case of low-resource data, a combination method of CLA to pseudo-label
the training data and a novel active learning strategy (i.e., Falcon) surpassed
both the SOTA semi-automated method Jitterbug [84] and the SOTA deep
learning automated method CNN [55]. This serves as a proof-of-concept of
how unsupervised learning can cheaply label the training data to bootstrap
the active learning of a machine learning model to identify SATDs on the
test data.

3. In case of having access to the labeled data, a combination method of CLA
to filter out the highly prone SATDs and Hard performed similarly to Ren
et al.’s CNN [55] while outperforming Yu et al. [84] (5/8 cheaper).

4. Falcon is our novel active learning method for its effectiveness in identifying
SATDs by frugally pseudo-labeling data and also when having access to the
training data labels (as Falcon without filtering performed better than both
SOTA methods, in RQ3).

5. The success of those methods for technical debt suggests that there could
be many more domains in software analytics that could benefit from un-
supervised learning. As mentioned above, those benefits include the ability
to commission new models, faster, with much less time consuming and less
error-prone labeling of examples.

6. Overall, our proposed super learning method with DebtFree is the most
effective and efficient in identifying SATDs.

That said, DebtFree still suffers from the validity threats discussed in §6.
To further reduce those threats and to move forward with this research, we
propose the following future work:

– Apply hyper-parameter tuning on data preprocessing and model configu-
ration to see if our current conclusions still hold and whether tuning can
further improve the performance.

– Explore more complex patterns (other than just single word patterns Easy
has explored).

– Survey more advanced feature engineering in the active learning strategy
for finding the rest of SATDs. For example, explore N-gram patterns [72]
and word embeddings with deep neural networks [19].

– Explore other sampling techniques to help with unbalanced class data (one
of the key characteristics for SATDs [55]).

– Test whether replacing the random forest model in DebtFree with a deep
learning model (i.e., CNN [55]) will further improve its performance.

– Try different settings of labeling and filtering (via unsupervised learning)
combine with a deep learning model (i.e., CNN [55]) to automatically iden-
tify the SATDs.

– Survey other unsupervised learning methods for frugally pseudo-labeling
and filtering data.

– Extend the work to label debt in other artifacts where technical debt may
be presented (e.g. issue trackers, documentation) and other software engi-
neering domains (e.g., security, issue close times, static warning analysis,
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etc) and compare it with other state-of-the-art methods which continue to
appear.
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