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Abstract

According to Feeding America, prior to the pandemic, 1 in 5 African-American/Black, 1 in 6 Hispanic,
and 1 in 4 Native American households were food insecure compared to 1 in 11 White households. The
pandemic is expected to exacerbate these disparities given its disproportionate economic and health impact
on historically marginalized racial and ethnic populations. Food banks are non-profit organizations that
work to alleviate food insecurity within their service regions by distributing donated food to households in
need. Equitable distribution of donated food is an important criteria for food banks. Existing food banking
operations literature primarily focus on geographic equity, i.e., where each geographic block of a food bank’s
service region receives food in proportion to its demand. However, hunger-relief organizations such as food
banks are gradually incorporating demography-based equity in their distribution of donated food in light
of the disparities that exist within different demographic groups, such as race, age, and religion. However,
the notion of demographic equity has not received attention in the food banking operations literature. This
study aims to fill in the gap by developing a multi-criteria optimization model to identify optimal distribution
policies for a food bank considering a two-dimensional equity criterion, geographic and demographic, in the
presence of effectiveness (undistributed food minimization) and efficiency (distribution cost minimization)
criteria. We apply the model to our partner food bank’s data to (i) explore the trade-off between geographic

and demographic equity as a function of effectiveness, and efficiency, and (ii) identify policy insights.
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1 Introduction

Food insecurity, defined by a household’s inability to access sufficient food to ensure normal growth and nourishment
for its members, is a significant problem in the US [1]. In 2019, [2] reported that 35 million people in the US were food
insecure (with low or very low food security), which was the lowest overall food insecurity level in more than twenty years.
However, the COVID-19 pandemic significantly increased food insecurity. More than 60 million people turned to food
banks and community programs to put food on the table in 2021 [2]. In addition, [1] showed that there remains a persistent
gap in the prevalence of food insecurity between people of color and White people in the US. Moreover, the pandemic
disproportionately increased food insecurity among communities of color, who were already facing hunger at much higher
rates before the pandemic. [2]projects that 21.6% of African-American households (1 in 5) may have experienced food
insecurity in 2020, compared to 12.3% (1 in 8) of White households in the US.

In the US, food banks, which work to alleviate food insecurity, are an integral part of the supply chain receiving and
distributing donated food in an equitable, effective (minimizing undistributed food), and efficient (minimizing distribu-
tion cost) manner [3]. While many studies in the food banking operations management literature consider equity, they
have focused primarily on geographic equity, where each geographic region (e.g., service planning area) receives food
proportional to their demand. However, there exists a significant gap in developing optimal distribution policies for food
banks that consider demographic equity, i.e., where each demographic group receives food proportional to their demand.
As a step toward filling this gap, we develop a multi-criteria optimization model that considers both the geographic and
demographic equity, in the presence of effectiveness (undistributed food minimization) and efficiency (distribution cost
minimization). Specifically, we develop a single-period, two-echelon, multi-criteria linear programming model that con-

siders four criteria in the objective function: geographic equity, demographic equity, effectiveness, and efficiency. We



apply the model on our partner food bank’s data to: (i) explore the trade-offs between geographic and demographic equity
as a function of effectiveness, and efficiency, and (ii) identify policy insights. We show that our model is able to improve

the efficacy of the distribution policies in terms of geographic and demographic equity.

2 Related Research

The food banking operations management literature focuses on developing tactical distribution policies for food banks
within their service regions (e.g., geographical areas such as counties). In this literature, the criteria of equity, effective-
ness, and efficiency are commonly considered criteria. [4] developed a deterministic, capacity-constrained network flow
model considering equity and effectiveness. Perfect equity is achieved when each area within a food bank’s Service Re-
gion receives food proportional to their demand. Effectiveness refers to maximizing the distributed pounds of food, i.e.,
minimizing undistributed food. [5] allow for the absolute deviation from perfectly equitable distribution for each area of
the service region to be bounded above by a user-defined value. [6] developed a two-stage stochastic model to incorporate
stochastic receiving capacity, whereas [7] developed a robust optimization model to incorporate uncertainty. [8] developed
a discrete-time discrete-state Markov Decision Process (MDP) model with stochastic supply where they define equity as
a function of the Pounds distributed Per Person in Poverty (PPIP) across the food bank’s service region. [3, 9] included
effectiveness and efficiency in the objective, while implementing equity as a constraint. They defined equity as the sum
of absolute difference in the proportion of demands fulfilled between pairs of geographical areas within the food bank’s
service region. [10] studied a similar model structure, where they defined effectiveness as nutritional service maximiza-
tion. [11] considered all three criteria simultaneously in the objective function as a weighted sum and developed a novel
algorithm to elicit food bank managers’ preference over the criteria. To the best of our knowledge, our study is unique in its
consideration of two-dimensional equity in the food banking operations literature. However, methodologies for improving
racial equity can be seen in healthcare research. For example, [12] and [13] developed machine learning and non-linear
programming-based methods to improve the equity in waiting times for the patients in hospitals. To the best of our knowl-
edge, our paper takes the first step to incorporate the notion of demography-based equity in the optimal tactical distribution

policy for food banks.

3 Model

In this study, we consider a food bank that has a single warehouse where donations are received. The food bank is
assumed to serve a "Service Region" which is composed of a set of "Service Areas" (SA), i.e., geographic regions. The
Los Angeles Regional Food Bank (LARFB) is an example of a food bank with this structure. LARFB’s Service Region is
Los Angeles (LA) county which is divided into eight Service Areas, referred to as Service Planning Areas (SPA). The food
bank distributes donated food to the service areas. Within the food bank’s service region, the food insecure population can
be divided into multiple demographic groups based on the social identities of the population, such as race, age, or religion.
A food bank’s objective is to distribute the available food donation equitably across the service areas (geo-equity) and
demographic groups (demo-equity) while minimizing the undistributed food (effectiveness) and the cost of distribution
(efficiency). We develop a single-period, multi-criteria linear programming model named "M4". Model M4 considers the
sum of four scalarized criteria in the objective function - geo-equity, demo-equity, effectiveness, and efficiency - subject to

a supply constraint at the food bank. Table 1 contains the notation for Model M4. The model is formulated as follows.

Model M4
Min  fi+ o+ fi+ /s )]
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Here, f; represents the scalarized criterion i, where i = 1,2, 3,4 represents geo-equity, demo-equity, effectiveness, and



Table 1: Notations

Field Description Unit
Sets
I Set of Service Areas (SA), where I = {1,...,i,...,|l|}
J Set of demographic groups (DG), where J = {1,...,j,...,|J|}
Parameters
d; Distance between the hub and SA i € I (miles)
0ij Demand of DG je JinSAiel (lbs)
geod; Total demand of SA i € I, (=2 jcj 6ij) (Ibs)
demos;  Total demand of DG j € J, (=51 61)) _ (Ibs)
geop; Geo-Demand Proportion of SAi eI, (=%)
demop; Demo-Demand Proportion of DG j € J, (=%)

JE
S Total available supply at the hub (Ibs)
Cs Per-mile cost of distribution for one pound of food (ﬁ)
Ch Holding cost per pound of food (%
Decision variable(s)
Vij Pounds of food to be distributed from hub to DG j € JinSAiel (Ibs)

efficiency, respectively. Constraint 2 ensures that the food bank cannot distribute more than its available supply. Here,

Y = Yia1 X jey Vij- In the following section, each criterion is introduced and formulated.

3.1 Non-scalarized Criteria for Distribution

Before we present the non-scalarized formulations for each of the criteria, we define the collective attributes for the decision
variables: Y; = ¥ ey vijs ¥ = Yiar Vij-

Geographic and Demographic Equity (7, and 7,): Geographic equity, Equation 4, is defined as the absolute dif-
ference between the amount of food distributed to SA i and their proportion of the total supply based on the SA’s relative
proportion of the total demand (geo-fairshare). Similarly, demographic equity, Equation 5, is defined as the absolute dif-
ference between the amount of food distributed to demographic group i and their proportion of the total supply based on

their DG’s relative proportion of the total demand (demo-fairshare).

m =Z|Y,~—ge0p,~-Y| 4)
iel

= Y |¥; = demop; - Y| (5)
i€]

A distribution policy is defined as perfectly geographically equitable if each SA receives food in proportion to the demand
associated with their geographic region (geo-demand), i.e., geo-fairshare. A distribution policy is defined as perfectly
demographically equitable if each demographic group receives food in proportion to the demand associated with their
particular demographic group, i.e., demo-fairshare. The non-scalarized formulations of the geo-equity and demo-equity
criteria are defined by the minimization of the sum of absolute deviations between the pounds received by each SA and
DG, and their geo-fairshare for all SAs and demo-fairshare for all DGs, respectively.

Effectiveness and Efficiency (7; and 4): The non-scalarized formulation for the effectiveness criterion, Equation
6, is defined as the minimization of the undistributed food. The non-scalarized formulation for the criterion of efficiency,
Equation 7, is defined as the minimization of cost of distribution. The criterion value is calculated by multiplying the per

mile cost of food distributed per pound with the total distance covered and the amount of food distributed.

m=c (S -Y) (6)
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3.2 Criteria Scalarization

Model M4 is a multi-criteria optimization problem where the different criteria have different units and scales. This approach

becomes problematic when all the criteria are combined, where the model focuses on minimizing the criteria with higher



ranges and neglect the other criteria to minimize the overall objective function value. To solve this issue, we scalarize
each criterion using Linear Normalization to scale each criteria between O and 1 [11]. This technique utilizes the best and

worst-case of the criteria in the following way:

71','—71'?

ﬁ:m (8)

where ﬂ'f and 7!’ are the best and worst-case scenarios for each criteria i € {1, 2, 3, 4}, respectively. The best value for each

criteria is zero. To calculate the worst-case scenarios for the criteria, we have used the methods developed by [11].

4 Results
Case Study: The Network of Los Angeles Regional Food Bank (LARFB): We have applied Model M4 to the network

of LARFB. The network consists of eight Service Planning Areas (SPA) in Los Angeles county, i.e., eight Service Areas,
and a single hub which is located in SPA 4 (Metro), (the network is shown in Figure 1(a)). We consider six racial and
ethnic groups as our demographic groups: Latino, White, African-American, Native Alaskan, Asian, and Other. The
demographic characterization by racial and ethnic group within each SPA can be found in Figure 1(b). We consider the
year 2015 as the study period for the model, when the LARFB hub received a total of 70,314,382 pounds of food donations.
We identify the demand weighted SPA centroids and considered the hub to be on the centroid of the SPA 4 to calculate the
great-circle distances. We use 374.4 pounds per person in need as estimated by [9]. To estimate the demand of each SPA,
the pounds per person in need is multiplied by the food insecure population of each SPA. To estimate the demand by racial
or ethnic group j, we identify the LA-county food insecure population of race j and multiply it by 374.4 pounds [9]. Then,
we estimate the demand proportion of SPA i (race j) by dividing its demand in pounds with the total demand of all SPAs
(all races). The demand proportions of SPAs 1 through 8 are 0.046, 0.206, 0.133, 0.128, 0.068, 0.115, 0.144, and 0.160,
respectively. The demand proportions by racial and ethnic group are: Latino - 0.674 ; White - 0.147; African-American -
0.109; Asian - 0.066; Native Alaskan - 0.003; and Other - 0.001. From LARFB’s data, we estimate the holding and per

mile cost of distributing one pound distribution costs: ¢, as 0.27 $/Ib and ¢, as 0.20 $/Ib-mile.

Food- Population count by race
Total .
SPAs Population insecure - -
Population | | atino White Afrl&_an- Asian Indian/ Other
American Alaskan
SPA 1 397,272 136,662 | 178,772 139,045 63,564 15,891 1,589 795

SPA2 | 2,248,311 611,541 | 899,324 | 1,011,740 89,932 | 247,314 4,497 2,248
SPA3 | 1,814,459 395,552 | 834,651 381,036 72,578 | 526,193 3,629 1,814
SPA4 | 1,191,772 381,367 | 619,721 297,943 59,589 | 214,519 2,384 1,192
SPA 5 667,220 203,502 | 106,755 427,021 40,033 93,411 1,334 667
SPA6 | 1,050,698 340,426 | 714,475 21,014 294,195 21,014 1,051 2,101
SPA7 | 1,320,945 427,986 | 964,290 184,932 39,628 | 118,885 2,642 2,642
SPA8| 1,569,560 475,577 | 627,824 455,172 235,434 | 235,434 3,139 12,556

Fig: (b)
Figure 1: Los Angeles County and its constituents SPAs (Fig (a)) and their demographic details (Fig (b))

Discussion: To observe the impact of the inclusion of demo-equity criterion (f>), we take a step-by-step inclusion process.
First, we consider only geo-equity (f1) and effectiveness (f3), which results in the distribution of all food with perfect geo-
equity at the expense of high distribution cost. However, this distribution policy results in high demographic inequity, as
depicted in Table 2 which reports the absolute percentage deviation of each racial group’s demo-equity. When we include
efficiency (f4), the model distributes all available food with lower cost by distributing more food to the closest SPA and
less to the furthest. However, high demographic inequity still prevails in this policy (Table 2). In contrast, we can see a
significant improvement in demographic equity across the six racial and ethnic groups when we include f, in the objective
function as shown in bold in Table 2. We take a similar approach to observe the impact of the inclusion of geographic
equity criterion (f;). When we consider f, and f;, the model produces a perfectly demo-equitable distribution of all
available food, with high geo-inequity as shown in Table 4 which reports the absolute percentage deviation from perfect

geo-equity for each SPA. Inclusion of f; produces a similar result, but with all food being distributed to the closest SPA to



minimize distribution cost (Table 3). In contrast, a better geo-equitable solution is produced when f; is considered (Table
4). Here, six out of eight SPAs achieve perfect equity, but the SPA with shortest distance from the hub receives more than
its fairshare, whereas the SPA with maximum distance receives less. Geo-equity is associated with efficiency as achieving
geo-equity may result in distributing significant pounds to the SPA with largest distance. However, demo-equity has no
such association as food can easily be redistributed among the closest SPAs and the model can still be demo-equitable

without compromising efficiency. This is the reason, we infer, Model M4 can achieve demo-equity easier than geo-equity.

Table 2: Impact of demo-equity inclusion

Criteria Included Latino  White African-American  Asian Indian/Alaskan Others
1,3 76% 100% 95% 30% 19287% 100%
1,34 76% 100% 95% 100% 20819% 100%
1,2,34 0% 0% 0% 0% 0% 0%

Table 3: Impact of geo-equity inclusion

Criteria Included SPA 1 SPA 2 SPA 3 SPA 4 SPA 5 SPA 6 SPA 7 SPA 8
23 137% 100% 100% 15% 99% 546% 98% 100%
234 100% 100% 100% 679% 100% 100% 100% 100%
1,2,3,4 91% 0% 0% 33% 0% 0% 0% 0%

To shed more light on the impact of geo-equity and demo-equity on each other, we develop constrained versions of
Model M4. We consider either scalarized geo-equity (f;) or demo-equity (f>) as constraints, where the criterion is bound by
a value between [0,1]. We vary the bound from 0 to 1 with a step size 0.01 and observe how the other criteria values change.
Figure 2(a) and Figure 2(b) show the evolution of the criteria values as the bounds on f; and f; evolves, respectively. From
Figure 2(a), we can see that when the bound on f; is zero, the model generates perfectly demo-equitable policy with high
shipping cost. However, as the upper bound on f; increases, the shipping cost decreases by distributing more to the closer
SPAs. Once the upper bound reaches a threshold of 0.46, efficiency (f;) value converges to zero and remain unchanged as
the bound increases to 1. Furthermore, the policy remains perfectly demo-equitable as it is easier for the model to achieve.
From Figure 2(b), we can observe that the model sacrifices geographic equity to maintain lower shipping cost when the
bound on f; is zero. However, as we increase the bound, the model produces geo-equity by increasing the shipping cost a

bit. At the f> bound threshold of 2 x 107%, the distribution policy becomes perfectly geo-and-demo-equitable.
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Figure 2: Changes in the scalarized criteria values as bounds change on constraints f; (Fig (a) - left) and f> (Fig (b) -
right)

S5 Conclusion

In this paper, we have studied the impact of considering demographic equity on the distribution of donated food by a
food bank. Our research has been motivated by the existing disparity in food insecurity among different racial and ethnic
groups in the US. We have considered a food bank that distributes donated food within a service region, divided into a
set of service areas. We have developed a single-period multi-criteria linear programming model to produce geographic
and demographic equitable distribution of the donated food across the service areas for a food bank while minimizing the
undistributed food and distribution cost. We have shown that neglecting one of the equity criterion can result in inequity.

We have also numerically identified thresholds for geographic and demographic equity where significant changes occur



in the distribution policy. In future, we plan to explore additional measures of equity to achieve more equitable policies

within geographic regions and further model the interaction of geographic and demographic divisions of a food bank’s

service region.
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