
A Survey on TCP Enhancements using P4-programmable Devices

Jose Gomeza, Elie F. Kfourya, Jorge Crichignoa, Gautam Srivastavab
aCollege of Engineering and Computing, University of South Carolina, Columbia, U.S.A

bDepartment of Mathematics and Computer Science, Brandon University, Canada

Abstract

The increasing performance requirements of today’s Internet applications demand a reliable mechanism to transfer
data. Many applications rely on the Transmission Control Protocol (TCP) as the transport protocol, due to its ability
to adapt to properties of the network and to be robust in the face of many kinds of failures. However, improving the
performance of applications that rely on TCP has been limited by the closed nature of legacy switches, which do not
provide accurate visibility of network events. With the emergence of P4-programmable devices, developers can rapidly
implement and test customized solutions that use fine-grained telemetry, provide sub round-trip time feedback to end
devices to enhance congestion control, precisely isolate traffic to offer better Quality of Service (QoS), quickly detect
congestion and re-route traffic via alternate paths, and optimize server resources by offloading protocols.

This paper first surveys recent works on P4-programmable devices, focusing on schemes aimed at enhancing
TCP performance. It provides a taxonomy classifying the aspects that impact TCP’s behavior, such as congestion
control, Active Queue Management (AQM) algorithms, TCP offloading, and network measurement schemes. Then,
it compares the P4-based solutions, and contrasts those solutions with legacy implementations. Lastly, the paper
presents challenges and future trends.

Keywords: TCP, P4, Programmable Data Plane, Congestion Control, AQM, SmartNICs, Network Diagnosis.

1. Introduction

The Transmission Control Protocol (TCP) [1] has
been adopted as the standard transport protocol used
by most Internet applications to transfer data. Efforts to
enhance the performance and efficiency of TCP and other
transport protocols [2–5] focus on improving congestion
control algorithms, performing fine-grained network mea-
surements, and offloading transport protocol functions to
specialized network hardware.

With the advent of programmable data planes, de-
veloping custom protocols is performed in a top-down
approach, facilitating the experimentation of novel ideas,
diverging from the development process that the network-
ing industry traditionally follows. The Programming
Protocol-independent Packet Processor (P4) [6] language
is widely adopted to describe the forwarding behavior of
programmable data planes. P4 is a domain-specific lan-
guage, which provides a standardized way to describe how
packets are processed independently of the target’s archi-
tecture. TCP congestion control and Active Queue Man-
agement (AQM) algorithms can benefit from the P4’s lan-
guage packet manipulation features to have more control
and a better view of network events. Moreover, P4 is
supported by various network components such as pro-
grammable Network Interface Cards (NICs). They can

Email addresses: gomezgaj@email.sc.edu (Jose Gomez), ek-
foury@email.sc.edu (Elie F. Kfoury), jcrichigno@cec.sc.edu (Jorge
Crichigno∗), srivastavag@brandonu.ca (Gautam Srivastava).
∗ Corresponding author

offload network stack operations and server workloads by
executing them locally and reducing the communication
overhead via bypassing the Operating System (OS) ker-
nel.

Emerging technologies such as 5G, cloud computing
services, big data analysis, and the Internet of Things
(IoT) demand high utilization, low latency, and dynamic
management of computer networks. Nevertheless, em-
ploying legacy networking devices to implement such
technologies increases the complexity of the underlying
network and provides less flexibility to apply changes or
add new features. The management and maintenance of
the legacy network devices depend on the features that
the vendor included in the device, which constrains opera-
tors to define the forwarding behavior and customize traf-
fic monitoring. Furthermore, legacy devices suffer from
the network ossification problem [7], which is a significant
barrier to implementing new protocols.

This paper surveys and discusses schemes that en-
hance TCP performance using P4-programmable data
planes, focusing on four main categories: congestion con-
trol, AQM algorithms, TCP offloading using programma-
ble NICs, and network diagnosis schemes that leverage
P4-programmable data planes to detect, report, and trou-
bleshoot TCP performance degradation.

Traditionally, congestion control is achieved using
end-to-end mechanisms with little support from the
network, relying on packet losses to share resources
fairly. AQM algorithms complement congestion control
schemes by taking actions in the intermediate nodes (i.e.,
switches) rather than waiting for the end host to react. In
such a way, AQMs prevent network congestion from esca-
lating. This survey covers RFC-standardized and custom

• TCP performance issues and
 programmable data planes
• Congestion control and AQMs
• P4-programmable NICs
• Network diagnosis
• Paper contributions

Section I:
Introduction

• TCP performance issues and
 programmable data planes
• Congestion control and AQMs
• P4-programmable NICs
• Network diagnosis
• Paper contributions

Section I:
Introduction

• Comparison with related
 surveys
• Analysis of how this survey
 differs from the others
• Surveyed paper statistics

Section II:
Related Survey

• Comparison with related
 surveys
• Analysis of how this survey
 differs from the others
• Surveyed paper statistics

Section II:
Related Survey

Section III:
Background in Programmable

Data Planes

• Background on P4 and
 programmable data planes
• Characteristics of
 P4 contributing to TCP
 performance

• Comparison with legacy
 devices

Section III:
Background in Programmable

Data Planes

• Background on P4 and
 programmable data planes
• Characteristics of
 P4 contributing to TCP
 performance

• Comparison with legacy
 devices

Section IV:
Methodology and Taxonomy

• Description of the survey
 methodology
• Proposed taxonomy
• Distribution of the surveyed
 works

Section IV:
Methodology and Taxonomy

• Description of the survey
 methodology
• Proposed taxonomy
• Distribution of the surveyed
 works

• Arithmetic computation
• Fast loss detection
• Enhancing TCP congestion
 feedback
• TCP state synchronization

Section IX:
Challenges and
 Future Trends

• Arithmetic computation
• Fast loss detection
• Enhancing TCP congestion
 feedback
• TCP state synchronization

Section IX:
Challenges and
 Future Trends

A Survey on TCP Enhancements using P4-Programmable DevicesA Survey on TCP Enhancements using P4-Programmable Devices

Section V-VIII:
Surveyed Works

• Background
• Literature review
• Intra-category
 comparison
• Comparison with legacy
• Summary and lessons
 learned

Section V-VIII:
Surveyed Works

• Background
• Literature review
• Intra-category
 comparison
• Comparison with legacy
• Summary and lessons
 learned

Figure 1: Paper roadmap.

AQM algorithms implemented in P4, showing how P4-
programmable data planes are employed to realize proto-
cols such as Random Early Detection (RED) [8], Propor-
tional-Integral controller Enhanced (PIE) [9], CoDel [10],
Common Application Kept Enhanced (CAKE) [11] and
Fair Queueing (FQ) [12, 13]. Additionally, this paper cov-
ers custom AQMs designed to solve performance issues by
implementing a solution based on theoretical approaches.

Another critical limitation that affects TCP perfor-
mance is produced by the processing time that packets
spend in the end host. TCP and other transport protocols
are implemented in the end hosts, which use the general-
purpose CPU to encapsulate, verify and fragment TCP
segments. P4-programmable NICs can offload TCP and
part of the kernel networking processes, making packet
processing closer to the network, reducing the processing
overhead, and releasing the server’s resources. This sur-
vey covers works related to P4-programmable NICs that
extend, offload and optimize the resources used by proto-
cols such as TCP and applications entirely implemented
in the NIC.

This paper also presents relevant works on network
monitoring and diagnosis. Programmable data planes
have more granularity to detect, report, and react to net-
work issues at a line rate. Compared to legacy flow ex-
port protocols such as NetFlow [23] and IPFIX [24], pro-
grammable data planes can be employed to detect net-
work flaws and mitigate them in an early stage. More-
over, either the control or data plane can take actions
(e.g., marking, dropping, prioritizing packets, precom-
puting arithmetic operations, and rerouting traffic) to
mitigate a failure and provide an accurate report of net-

work events.

1.1. Contributions

To the best of the authors’ knowledge, the literature
has been missing a survey on TCP enhancement lever-
aged on P4-programmable data planes. Programmable
data planes reduce the complexity of forwarding devices,
facilitate adding new features, and supports fine-grained
telemetry. This paper also discusses the usage of P4-
programmable NICs to offload the server’s resources.
Performing part of the computation in the NIC, offloads
servers from handling network stack processing. Fur-
thermore, it also describes P4-based network diagnosis
schemes used to report and mitigate performance issues.
The granularity offered by programmable data planes is
essential to identify and minimize performance degrada-
tion issues in an early stage.

This paper also provides a comparison between P4
schemes in the same category and with legacy approaches.
Additionally, the challenges and future trends are also
discussed. The main contributions of this survey can be
framed as follows:

• Discussing the key aspects that make pro-
grammable data planes good candidates for improv-
ing network performance.

• Surveying the most relevant works that leverage
data plane programmability to improve TCP per-
formance and efficiency.

• Proposing a taxonomy that categorizes the works
that enhance network and TCP performance.

• Describing the common challenges and considera-
tions and listing current and future initiatives that
can advance the state-of-the-art systems.

• Discussing challenges and limitations of the sur-
veyed works.

1.2. Paper Organization

Figure 1 illustrates the paper roadmap. Section 2 de-
scribes the related surveys. Section 3 provides a back-
ground congestion control algorithms, AQMs and P4.
Section 4 described the proposed taxonomy, section 5
surveys the P4-assisted congestion control, section 6 de-
scribes the P4-based AQMs, section 7 covers the improve-
ments that P4 programmable NICs provide to offload net-
work operations, section 8 explains how P4 devices are
employed to detect, prevent and mitigate network per-
formance issues. Section 9 discusses the challenges and
future work and, section 10 concludes the paper.

1.3. Routers and Switches

Traditionally, a switch refers to a layer-2 device, and
a router refers to a layer-3 device. However, with pro-
grammable data planes, the programmer decides what
layers and protocols to parse and process. Thus, in this
article, the terms switch and router will be used inter-
changeably, noting that a switch can process not only
layer-2 protocols but also upper-layer protocols.

2

Table 1: Comparison with Related Surveys.

Survey
Programmable data
planes and P4 language

Taxonomy Discussions

Evolution Description Features Background Literature
Intra-category

comparison
Comparison
with legacy

Challenges
Future

directions

Focus
of the
survey

[14] t dq dq dq dq d d d dq SDN
[15] t d d dq dq d d dq dq General
[16] dq dq dq d d d d d d SDN
[17] t d dq d dq d d d d SDN
[18] dq dq d dq dq dq d dq dq Measurements
[19] dq t dq t dq d d dq dq General
[20] t t dq t dq d dq t t SDN
[21] t dq dq dq dq dq dq dq dq General
[22] d dq dq dq dq d dq dq t 5G/SDN
This

survey
dq t t t t t t t t TCPtCovered in this survey dNot covered in this survey dq Partially covered in this survey

2. Related Surveys

Dargahi et al. [14] surveyed the security applications
enabled by Software-Defined Networking (SDN). They
provide a background on stateful SDN data planes, dis-
sect the relevant security issues and present an analysis
of concrete use case applications such as the port knock-
ing application, the UDP flooding mitigation application,
and the failure recovery. They conclude the paper by dis-
cussing significant vulnerabilities and possible attacks to
the stateful SDN data plane. This survey does not cover
any topic related to TCP and how P4-programmable data
planes can improve aspects of such protocol.

Bifulco and Retvari, [15] presented a survey on pro-
grammable data planes that focuses on the recent trends
and issues in the design and implementation of progra-
mmable network devices. They cover the abstractions
and architectures proposed, debated, realized, and de-
ployed during the last decade. The authors discuss fu-
ture research direction, providing a list of open problems
based on abstractions, simplified operations, data plane
optimization, and verification frameworks. The survey
does not describe current works that aim at solving the
issues covered in the paper.

Satapathy [16] presented a survey on SDN and P4.
The author analyses the issues of traditional networks
and how programmable data planes can be employed to
support and improve cloud services and big data appli-
cations. The author presents two use-cases consisting of
advanced network telemetry and DDoS attack mitigation
using programmable data planes. The survey also collects
and compares P4 related work. The study concludes by
focusing on future works related to the evolution of pro-
grammable data planes, P4 language, and defining high-
level policies that can be implemented using P4.

Kaljic et al. [17] provides a comprehensive survey on
programmable data planes architectures with a particular
emphasis on the problem of programmability and flexi-
bility. The authors provide an overview of software and
hardware technologies that enable SDN data plane im-
plementations, identifying key factors that deviate from
the original data plane architectures related to Forward-
ing and Control Element Separation-based (ForCES) and
OpenFlow specifications. The paper categorizes and de-
scribes works that include performance improvements,
energy consumption, quality of service, measurement and
monitoring, security, and integration with other network

technologies. Finally, they discuss and propose future
research directions that should be considered to develop
data plane architectures. This survey does not provide
any comparison between related schemes and legacy de-
vices.

Tan et al. [18] presented a survey about the lat-
est applications leveraged on In-band Network Teleme-
try (INT). The authors analyze the development history,
research situation, and application results of INT technol-
ogy. The work covers INT applications such as congestion
control algorithms, network troubleshooting, microburst
detection, and traffic engineering. Although the survey
discusses key technologies in the field, it does not com-
pare the works within the same category and with legacy
devices.

Hauser et al. [19] present a survey covering P4 and
its applied research domains. The paper starts by intro-
ducing the concept of data plane programming and the
relationship with adjacent concepts. They describe the
P4 programming language, architecture, compilers, tar-
gets, and data plane APIs. They also include works in
areas such as optimization of development and deploy-
ment, research on P4 targets, and P4-specific approaches
for control plane operations. This survey contains brief
descriptions of P4-related works but lacks an in-depth
analysis and comparison between each category’s results.

Kaur et al. [20] present a survey in programmable
data planes in the context of SDN. The authors provide a
comparison of the related works, background on P4 lan-
guage, and the most relevant data plane architectures.
They summarize and discuss works related to network
monitoring, security, load balancing, and packet aggre-
gation. The paper lacks inter and intra-category com-
parison and does not explore aspects that involve TCP
performance. The paper concludes by providing a discus-
sion about research gaps in programmable data planes.

Kfoury et al. [21] presented an exhaustive survey re-
lated to P4 programmable data planes. It includes a gen-
eral overview of the P4 language and its applications. The
authors thoroughly reviewed the literature to provide a
taxonomy of applications developed with P4 language,
surveying, classifying, and discussing challenges collected
from more than 200 articles. It also presents future per-
spectives and open research issues. However, the survey
provides a general description of each topic and does not
cover TCP-related aspects.

Paolucci et al. [22] surveyed P4-programmable data

3

Programmable match-action
pipeline

...

Programmable
parser

ALU

Packets

Memory (tables, registers)

Programmable
deparser

Stage 1 Stage N

State

Packets

Target
switch
Target
switch

Figure 2: The PISA architecture.

planes use cases in the context of 5G SDN and Net-
work Function Virtualization (NFV) edge. The authors
present the benefits of P4-programmable devices for edge
networks. Then, they present use cases and discuss re-
search directions related to traffic engineering, in-band
telemetry, network slicing and multi-tenancy, cybersecu-
rity, and 5G VNF offloading. The authors conclude by
highlighting the benefits of P4 in edge/fog and indus-
trial applications and sustain that the flexibility of pro-
grammable data planes paves the way for massive adop-
tion.

2.1. Scope of this Survey

To the best of the authors’ knowledge, this is the first
survey that focuses on the TCP enhancements using P4-
programmable data planes. This survey compels works
that employ P4-programmable data planes to improve or
solve current issues that involve congestion control algo-
rithms, AQMs, and P4-programmable NICs. Addition-
ally, it presents schemes that aim at diagnosing and mit-
igating performance issues in the network. Each section
of this survey provides an overview of P4-based schemes,
highlighting key features and comparing them with legacy
approaches (i.e., inter-category comparison). Moreover,
this paper also discusses the limitations that result from
comparing the works in the same category (i.e., intra-
category comparison). Finally, this survey analyzes the
most relevant aspects of current P4-based schemes and
presents the challenges and future trends.

3. Background in Programmable Data Planes

The emergence of programmable data planes results
from the technology evolution of SDN, which provides
flexibility, enables programmability, and facilitates net-
work automation by centralizing the network intelligence
into a controller. An SDN controller keeps a global view
of network topology, making network management more
efficient than legacy approaches. However, SDN devices
do not allow data plane programmability. They only rec-
ognize a fixed set of header fields defined by a communi-
cation protocol such as OpenFlow [26].

With P4, the programmer defines the packet headers
and the forwarding behavior. Furthermore, P4 programs
can run on different platforms without modifying the run-
time application (i.e., the control plane and the interface

between control and data planes are target agnostic). Al-
though the technology maturity and support for P4 de-
vices can still be considered low compared to legacy and
SDN devices, programmable data planes enable operators
to gain more control over the network.

3.1. P4 Architectures

Data plane architectures have been proposed to map
P4 programs onto high-speed network ASICs. Exam-
ples of P4 architectures include the Protocol Indepen-
dent Switching Architecture (PISA), the Portable Switch
Architecture (PSA), and the Tofino Native Architecture
(TNA). These architectures represent a forwarding model
that can be implemented in various target devices such
as software switches, hardware switches, and Network In-
terface Cards (NICs). The goal of a P4 architecture is
to define a programming model to describe how packets
are being processed. Although data plane algorithms can
be characterized using programming languages such as
Python or C++, they do not map well into high-speed
ASICs. Thus, P4 has been proposed as a tool to describe
the packet processing behavior.

3.1.1. The PISA Architecture

Figure 2 illustrates the PISA architecture. PISA is an
abstraction of a packet processing model comprising the
following elements:

• Programmable parser: extracts the packet header
information for further processing and can be rep-
resented as a state machine.

• Programmable match-action pipeline: performs ac-
tions over the packet headers and intermediate re-
sults. A match-action stage includes multiple mem-
ory (e.g., tables, registers) and Arithmetic Logic
Units (ALUs) to enable multiple lookups and ac-
tions simultaneously.

• Programmable deparser: recomposes the modified
packet headers to emit them with the corresponding
payload.

The relevance of using a multi-stage pipeline to pro-
cess packets rather than a general-purpose single stage
CPU is that processing network packets involves looking
up into multiple header fields. Although a multi-stage
pipeline could add processing latency, it can process mul-
tiple packets simultaneously. For instance, if a packet
is being modified in stage 2 of the pipeline, a lookup is
taking place in stage 1, thus enabling high-speed packet
processing.

3.1.2. The PSA Architecture

P4-programmable data plane devices solve many of
the SDN limitations. Over the last few years, a group of
researchers developed a machine model for networking.
The model is known as the Portable Switch Architecture
(PSA) [27, 28] and describes the standard capabilities of a
network switch. The PSA was designed with instruction
sets optimized for network operations, and P4 is the high-
level language for programming PSA devices.

The PSA is a P4 architecture created and developed
by the P4 consortium, more specifically the P4 working
group [25]. Figure 3 depicts the processing pipeline.

4

Programmable Match-
action Pipeline

...

Programmable
Parser

State ALU

PacketsPackets

Packet
buffer and
replication

engine

Programmable
Deparser

Memory

Programmable Match-
action Pipeline

...

Programmable
Parser

Programmable
Deparser

Buffer
queueing

engine

Configurable
Component

Packet Resubmission Clone to Egress

Packet Recirculation

Ingress Pipeline Egress Pipeline

Stage 1 Stage N Stage 1 Stage N

Configurable
Component

Figure 3: Scheme of the Portable Switch Architecture (PSA) [25].

The PSA also provides P4 libraries known as ex-
terns, which extend data plane features by supporting
functional constructs, namely counters, meters, registers,
and a set of “packet paths” that enable P4 programs to
control the flow of packets in a forwarding plane. The
PSA processing model comprises the following elements:
parser, control blocks, and deparser. The architecture
also defines configurable fixed-function components and
packet primitives such as:

• Sending a packet to a unicast port: It is involved
in regular forwarding operations.

• Dropping a packet: It is used to respond to events
that demand regulating congestion or queue length.
P4 programs might induce packet drops to regu-
late TCP’s sending rate, avoid TCP synchroniza-
tion, and improve fairness, link utilization and other
metrics.

• Sending a packet to a multicast group: It can be
used to efficiently send packets to a group of hosts,
which can facilitate the implementation of stream-
ing applications, multicast VPN, Content-Delivery
Networks (CDN), and other data broadcasting op-
erations.

• Cloning: It creates a copy of the packet. The origi-
nal packet is independent of the cloning operation.
For example, packet cloning can ensure that all
packets arrive at their destination over lossy links
[29].

• Resubmission: It permits reprocessing the current
packet by moving it from the end of the ingress
pipeline to its beginning. Resubmission is typically
applied for packet re-parsing purposes. A scheme
might need to parse a header field multiple times
before moving it to the packet buffer and replication
engine.

• Recirculation: It restarts the ingress processing of
a packet after finishing the egress pipeline. It is
used when packets headers contain a large number
of fields that cannot be parsed at once. This primi-
tive can also be used to reprocess queuing statistics
(e.g., in approaches that implement AQMs).

Currently, vendors do not provide the compiler back-
end that maps the PSA architecture onto their respec-
tive ASICs. Therefore, the PSA architecture remains

as a theoretical model. However, other packet process-
ing architecture presents variations of the arrangement
of the blocks present in the PSA architecture. Examples
of such variation are the V1model, the Simple SUME ar-
chitecture, and the Tofino Native Architecture (TNA).
The latter was developed to describe Intel Tofino packet
processing pipelines and presents similarities to the PSA
architecture.

3.1.3. The Tofino Native Architecture (TNA)

TNA is an architecture model [30] defined by In-
tel for their family of Tofino switching ASICs. TNA
consists of an ingress parser, an ingress match-action
control block, an ingress deparser, an egress parser, an
egress match-action control block, and an egress deparser.
The TNA architecture model is implemented in the Intel
Tofino ASIC, which processes packets at a line rate inde-
pendently of the complexity of the P4 program. This
increased performance is enabled by a high degree of
pipelining and parallelization. Recently, Intel released
the second generation of Tofino ASICs that offers more
flexibility, more performance (up to 12.9Tbps), more P4
resources, and less energy consumption [31]. The perfor-
mance and programmability of Tofino 2 aim at fulfilling
the needs of large data centers and cloud service provider
networks.

3.2. P4-programmable Devices

P4-programmable devices (i.e., P4 targets) are packet
processing devices in which their behavior is described by
the P4-language [6]. That means that P4-programmable
devices execute an externally defined processing algo-
rithm that differentiates them from configurable or flexi-
ble approaches [32]. P4-programmable devices allow pro-
grammers to determine the processing algorithm imple-
mented in a network and individual packet processing
nodes (e.g., hardware and software switches, NICs, and
network appliances).

Depending on the purpose of these devices, they
usually present variations of the PSA, which includes
switches, NICs, NetFPGAs, and virtualized data planes
such as P4-OVS [33] and P4rt-OVS [34] compatible hard-
ware and virtual targets.

3.3. P4-language

P4 is a language for programming protocol-
indepenent packet processors. It provides an abstract
model and constructs for programming the data plane

5

Table 2: Comparison between P4-programmable and Non-
programmable Targets [37].

Feature P4-programmable
Legacy/
Non-programmable

Microburst Detection Possible Not possible

Network Feedback Standard/Custom Standard (e.g., ECN)
Reaction Time
to Congestion

Faster Slower

Flexibility Higher Lower

Telemetry and
Analytics

Fine-grained Sampled

TCP Offloading Fully supported Limited

Traffic Isolation Custom
Predefined
(e.g., ACL/CoS)

optimized to describe the forwarding behavior. A P4-
enabled device is protocol-independent, which means that
it is not tied to any specific network protocol. P4 pro-
grams allow the definition of packet headers and specify-
ing packet parsing and processing. The P4 language is
developed and standardized by the P4 language consor-
tium [36], it is supported by various software-based and
hardware-based target platforms, and it is widely applied
in academia and industry.

3.4. P4-programmable Devices and TCP performance

P4 allows the programmer to define custom packet
processing schemes to improve TCP and other protocols’
performance. Such features allow more granular control
over the network by monitoring and mitigating issues that
impact TCP performance, such as congestion, low link
utilization, and unfairness. P4 is also used to describe the
behavior of network elements, such as hardware and soft-
ware switches, NICs, and FPGA-based prototypes. P4-
programmable devices have several unique features that
differentiate them from legacy devices (i.e., fixed-function
switches, non-programmable NICs). Table 2 compares
some features of P4-programmable devices and legacy/
non-programmable devices.

3.4.1. Fine-grained Telemetry

Network telemetry is necessary for troubleshooting
TCP performance problems. Programmable data planes
supports In-band Network Telemetry, which allows the
development of novel schemes that benefit from fine-
grained telemetry data to report and take actions in the
presence of network flaws. On the other hand, in legacy
networks, important information is often missed due to
the coarse nature of traditional monitoring schemes (e.g.,
NetFlow [23], sFlow [38] and IPFIX [39]). Programmable
data planes can also add telemetry data to packet head-
ers and use the metadata to infer queue latency and de-
tect microburst. P4-programmable devices enable cus-
tom packet processing. Each packet in the pipeline is
accompanied by its metadata (e.g., queue length, times-
tamps from different processing stages) which can be used
as inputs to determine the actions taken. Moreover, pro-
grammable data planes can calculate per-flow statistics
at line rate and metrics such as packet loss, RTT, and
queueing delay.

The P4 language consortium became part of the Open Net-
working Foundation [35] since 2019.

3.4.2. Traffic Isolation

Using P4 common constructs, programmers can es-
tablish traffic isolation by slicing the network according
to policies (e.g., latency, drop, bandwidth allocation, etc.)
and QoS requirements. P4-targets can handle this op-
eration with little or no performance penalty. For in-
stance, TCP congestion control algorithms presents dif-
ferent variants (e.g., CUBIC, Reno, BBR, DCTCP), lead-
ing to unfairness issues when several flows share a link.
The flexibility provided by match-action tables permits
the allocation of TCP flows in different queues. For in-
stance, flows can be classified according to the type of
congestion control, the duration of the flow (i.e., sepa-
rating elephants and mice flows), or according to user-
defined policies such as prioritizing flows of an applica-
tion.

3.4.3. Fast Reaction Time upon Congestion

Both programmable data planes and legacy devices
process packets at line rate. With programmable data
planes, developers can specify the precise actions to mit-
igate issues such as congestion, high latency, or poor link
utilization. For instance, data planes can avoid conges-
tion by applying fast rerouting. This approach consists
of having a primary and multiple backup routes if the
primary link cannot fulfill the QoS requirements imposed
by the application. Rerouting can quickly adapt if the
network condition changes or the operator wants to ap-
ply policy changes. On the other hand, operators must
adapt predefined functions with legacy devices to miti-
gate the previously mentioned issues.

3.4.4. Protocol and Application Offloading

P4 targets can handle protocol mechanisms previously
managed by the server’s CPU. For example, the three-
way handshake can be handled by a P4-programmable
NIC to offload the server’s CPU. Additionally, cloud ap-
plications such as microservices, can be entirely imple-
mented in a P4-programmable NIC. TCP is a transport
protocol that is implemented in the end host. Therefore,
offloading some operations to a Network Processor Unit
(NPU) can distribute the workloads and improve perfor-
mance.

3.4.5. Microburst Detection

Switch’s buffers aim to absorb the surge of pack-
ets, and thus minimize packet losses. However, legacy
network devices usually do not provide good visibility
of the queue dynamics, making it harder to detect, di-
agnose and fix network issues. Furthermore, in high-
speed network environments (e.g., data centers), short-
lived spikes in network traffic can lead to periods of high
queue utilization. These network spikes are known as mi-
crobursts. Microbursts produce a sudden increase in the
queue length within a sub-millisecond time scale exhaust-
ing the egress buffer. Microbursts detection is a func-
tionality that is not available in legacy network devices
but can be implemented using P4-programmable devices.
P4 enables the development of fine-grained measurements
schemes that can help to monitor the queue, detect mi-
crobursts and perform actions to counter them. The cor-
rect handling of microbursts in the network reduces the
packet loss rate and contains congestion at prudent levels.

6

A Survey on TCP Enhancements

using P4-programmable Devices

Congestion Control
Active Queue

Management
TCP Offloading Network Measurements

End-host Im-
plementation

[40–46]

In-network Im-
plementation

[47–52]

RFC-
standardized
Algorithms

[53–58]

Custom
Algorithms

[59–64]

Protocol
Offloading

[65–69]

Application
Offloading

[70–74]

Network
Diagnosis

[75–81]

Figure 4: Taxonomy of TCP enhancements using P4-programmable devices.

4. Methodology and Taxonomy

Figure 4 depicts the proposed taxonomy. The tax-
onomy was designed to cover relevant works on P4-
programmable data planes where the scheme aims to
improve TCP performance. This work aims to catego-
rize the surveyed works based on various high-level disci-
plines.

The taxonomy provides a separation of categories so
that a reader interested in a specific topic can move to the
corresponding section and find the necessary background
to understand the section’s content. Each high-level cat-
egory is further divided into sub-categories. For instance,
works related to “End host Implementation” correspond
under the “Congestion Control” category.

Each section has a table that summarizes relevant
characteristics of each work discussed in that section. Fol-
lowing the literature review, each section presents an in-
ter and intra-category comparison. At the end of each
section, relevant outcomes are discussed, highlighting the
surveyed schemes’ strengths and weaknesses. Figure 5
shows the distributions of the surveyed papers per year
and category.

5. Congestion Control

Applications need a reliable rate control mechanism
to send data with high performance and fully utilize the

2021 (Q2)

2020

2019

2018

Ye
ar

Number of papers

5 100 15

(a) (b)

31%
Congestion
Control

28%
AQM

24%
TCP

Offloading

17%
Network
Diagnosis

31%
Congestion
Control

28%
AQM

24%
TCP

Offloading

17%
Network
Diagnosis

Figure 5: (a) Distribution of surveyed data plane research works per
year. (b) Distribution of the surveyed paper based on the taxonomy
subcategories.

bandwidth while avoiding congestion. The TCP conges-
tion control aims to fulfill those demands by maximizing
the rate and managing how many packets to inject into
the network. Congestion control algorithms aim at effi-
ciently using network resources and minimizing conges-
tion escalation, thus preventing the network from collaps-
ing. P4-programmable data planes provide the means to
enhance and create new congestion control algorithms.
Methods such as isolating the flows’ dynamic by allocat-
ing them in different queues, using telemetry information
to have a better view of network events, and enhanc-
ing current TCP schemes that rely on congestion signals
such as ECN, can be implemented and enhanced using
P4-programmable data planes.

5.1. Understanding TCP Issues

5.1.1. Unfair Resource Allocation

Allocating resources to match the demand of appli-
cations implies that the network takes an active role in
controlling the congestion. The distributed nature of the
network components (i.e., senders, middleboxes, and re-
ceivers) makes designing a resource allocation mechanism
challenging. Thus, developers opted to implement the
congestion control mechanism in the end host. This ap-
proach allows end hosts to decide the amount of data sent
into the network and use a control mechanism to manage
the congestion. However, some applications could expe-
rience an unfair resource allocation.

Congestion control mechanisms aim to ensure high
throughput and low latency by controlling the sending
rate. For instance, a congestion control mechanism that
injects packets into the network to keep network links
busy also increases the number of packets in routers’
queues, resulting in an increased queuing delay. With
programmable data planes, developers can implement
schemes that accurately report to end hosts queueing
metrics without incurring excessive overhead.

5.1.2. Unfairness among Competing TCP Flows

Congestion is an undesirable event for the network,
and preventing it can be achieved by reducing some nodes

7

Client

1

.

.

.

2

N

Servers Data Blocks

Service
Request

Unit (SRU)

.

.

.

Switch

Bottleneck

Figure 6: A cluster-based storage environment. A client request
data from multiple servers through synchronized reads. Then, the
incoming packets cannot be handled by the switch. Thus, TCP
suffers performance degradation [82].

from sending data, thus releasing resources that other
nodes can use. Another method to mitigate congestion
consists of reducing the sending rate of end hosts to al-
low a fair resource allocation among competing partici-
pants. TCP congestion control algorithms attempt to en-
sure fairness. However, enforcing fairness among compet-
ing flows might require explicit information from the net-
work, such as the number of flows using a congested link.
A possible solution is implementing a reservation-based
resource allocation scheme that can enforce rate policies
based on the information obtained from the network. P4-
programmable data planes can support schemes that col-
lect and process network metrics in a custom manner.

5.1.3. Inaccurate Congestion Feedback

Receiving precise and timely feedback information is
essential for TCP to make a good decision in controlling
the sending rate. Schemes that focus on improving feed-
back information are usually modeled as an observation
control loop (i.e., they react after observing events such
as packet losses or failures). Legacy networks are limited
to what they observe and what is needed to make the
right control decision [83]. For example, delay-based con-
gestion control algorithms consider delay as a congestion
signal, which can be a poor indicator and produce an un-
correlated number of retransmissions. P4-programmable
data planes can feed congestion control algorithms with
the precise information to perform more specific actions
such as reducing the sending rate based on metrics not
implemented in standard protocols.

5.1.4. TCP Incast

TCP incast occurs when multiple servers concurrently
send packets to a single client, blocking another server
from transmitting data (see Figure 6) [84]. In such sce-
nario, the bottleneck switch cannot handle all the incom-
ing flows resulting in the client experiencing much lower
throughput than the link capacity. TCP incast events
increase flows’ queuing delay and reduce application-
level throughput below the link bandwidth. With P4-
programmable data planes, data center operators have
a granular resolution of the events occurring in the net-
work, thus facilitating the tools to mitigate or reduce the
impact of TCP incast events.

Se
n

d
in

g
ra

te

Time

Congestion event

(a)

Se
n

d
er

’s
 2

 b
an

d
w

id
th

Sender’s 1 bandwidth

B(0,R)

Optimal point
(R/2, R/2)

A(R,0)

AIMD

p1

(b)

Figure 7: (a) AIMD function. The rate increases in a constant
rate (i.e., additive increase) upon a loss event, which decreases the
rate exponentially (i.e., multiplicative decrease). (b) Bandwidth
allocation region realized by two competing TCP flows.

5.2. End host Implementations

This section describes TCP congestion control imple-
mentations that require the end hosts to participate in
regulating the sending rate.

Traditional TCP congestion control algorithms are
mainly end host implementations. The basic strategy of
TCP congestion control consists of sending packets into
the network and reacting to congestion events. This ap-
proach allows sending hosts to determine how many pack-
ets can safely traverse the network. TCP regulates the
sending rate by changing the size of its congestion win-
dows according to a function. This function dictates the
variation of the congestion window size in the presence of
congestion. The most popular mechanism that governs
the congestion window size is called Additive Increase-
Multiplicative Decrease (AIMD). Figure 7(a) shows the
AIMD function used to regulate the sending rate.

Figure 7(b) explains how the AIMD mechanism helps
competing flows to converge to fairness. The bandwidth
allocation to flow one is on the x-axis, and flow two is
on the y-axis. Suppose that TCP shares the bottleneck
bandwidth equally between the two flows. In that case,
the bandwidth will fall along the fairness line that starts
from the origin. When the sum of the allocation is equal
to 100% of the bottleneck capacity, the allocation is effi-
cient. On point A, flow 1 receives 100% of the capacity,
and on point B, flow two receives 100% of the capacity.
These solutions are not desirable, as they lead to starva-
tion and unfairness. Assume that point p1 depicts the
sending rates of senders one and two at a given time.
The dynamics governed by the AIMD rule will eventu-
ally guide the two bandwidths to converge at the optimal
point at (R/2, R/2). Chiu et al. [85] describe the reasons
why TCP converges to a fair and efficient allocation. This
convergence occurs independently of the starting point
[86].

Not all the congestion control algorithms are governed
by the AIMD rule. For instance, BBRv1 [87] is a rate-
based algorithm, meaning that at any given time, it sends
data at a rate without considering packet losses. During
the probe period (1 RTT duration), the sender probes
for additional bandwidth, sending at a rate of 125% of
the bottleneck bandwidth. During the subsequent pe-
riod, drain (1 RTT duration), the sender reduces the rate
to 75% of the bottleneck bandwidth, allowing any bottle-
neck queue to drain. Figure 8 shows RTT and delivery
rate as a function of the inflight data. Loss-based con-

8

Bandwidth limitedApp limited Buffer limited

BDP BDP +bottleneck
buffer size

BtlBw

Optimal operating point Loss-based CC operates here

Amount of data inflight

R
o

u
n

d
-t

ri
p

 t
im

e
D

e
liv

er
y

ra
te

RTprop

Figure 8: BBRv1 sending rate adjustment mechanism. During the
probe period, the sender probes for additional bandwidth, sending
at a rate of 125% of the BtlBw. In the drain stage, the sender
reduces the rate to 75% of the bottleneck bandwidth, allowing any
bottleneck queue to drain.

gestion control algorithms operate at the right edge of
the bandwidth-limited region, using the full bottleneck
bandwidth at the cost of high delay and frequent packet
loss. On the left edge, it is observed Kleinrock’s operat-
ing point [88]. At this point, the delivery rate is max-
imum, and the RTT is the optimal minimum. BBRv1
operates at this point. ECN is a TCP/IP mechanism to
notify about the congestion by sending explicit feedback
to the sender before congestion escalates. Dropping a
packet certainly works as a signal of congestion for tradi-
tional congestion control algorithms (e.g., Reno, CUBIC),
which improves the performance of long-lived bulk data
transfers. However, real-time applications (e.g., video-
conference, video streaming, industrial control) are af-
fected due to delay and losses. For such low-bandwidth
delay-sensitive TCP traffic, packet drops and packet re-
transmissions can cause noticeable delays for the user.
These delays can escalate for some connections due to
the coarse-granularity of the TCP timer that delays the
source’s retransmission of the packet [89]. Therefore, no-
tifying the sender through an explicit notification signal
is more appropriate to improve such applications’ perfor-
mance. Figure 9 describes the behavior of ECN. When
the number of packets buffered in a switch exceeds a
certain threshold, the Congestion Encountered (CE) IP
header field is enabled. After the marked packets reach
the receiver, the ECN field in the TCP header can no-
tify the sender that the link is experiencing congestion.
Consequently, the sender can slow down the sending rate
before dropping packets.

5.2.1. Literature Review

Feldman et al. [40] proposed a system called Network-
assisted Congestion Feedback (NCF). It controls the rate
by sending an explicit congestion notification to the
sender using NACKs. The system ensures a fair sharing
of resources across both mice and elephant flows, requir-
ing only short queues. The authors consider that elephant
flows are responsible for congestion in the network, thus
they must be separated from mice flows. NCF separates

Sender ReceiverRouter

Threshold

Buffer
ECN marking

Figure 9: ECN mechanism. The switch enables the ECN field in the
packet header after the congestion surpasses a predefined thresh-
old. Then, it notifies the sender that the network is experiencing
congestion before the switch starts dropping packets.

them, resulting in higher throughput and reducing the
impact of TCP incast. NCF works in both data centers
and Wide Area Networks (WAN). Figure 10 shows an
overview of the NCF mechanism. The system classifies
the traffic into two main categories, elephant and mice
flow. The system applies congestion control only to ele-
phant flows. Mice flows are not subject to any congestion
control. NCF identifies elephant flows by constantly up-
dating rolling sketches (i.e., counters). Rolling sketches
are P4 data structures that, in this use case, help to dy-
namically identify elephants without keeping the state for
all flows.

Handley et al. [41] presented Novel Datacenter Proto-
col (NDP), aiming to achieve low delay and high through-
put simultaneously. NDP avoids the slow start phase
and immediately sends data at the maximum rate. The
method behind this scheme is called per-packet multipath
load balancing, which avoids core network congestion at
the expense of reordering. It also reduces the unfairness
in incast situations. Incast increases the queuing delay
of flows and decreases application-level throughput to far
below the link bandwidth. To prevent congestion, NDP
uses a per-packet multipath and trims the packet’s pay-
load in the event of queue filling when the switch’s queue
is increasing. Although the scheme produces some packet
reordering, the receiver takes advantage of the metadata
to achieve very low latency for short flows, with minimal
interference between flows intended to different destina-
tions. The authors claim that NDP improves the FCT of
short flows in comparison to DCTCP and DCQCN. Un-
der a heavily loaded network with a small switch buffer
size, NDP utilizes over 95% of the maximum network ca-

ReceiverSender

Elephant queue

Mice queue

Control queue

Elephant queue

Mice queue

Control queue

Statistics

Switch’s queue

Packets

(e.g., flow duration)

Figure 10: Overview of the NCF mechanism. The authors cate-
gorized Internet traffic into two types: 1) Elephant flows, which
involve the transfer of a large volume of data and has a long dura-
tion, and 2) Mice flows, which constitute flows with shorter duration
and smaller data transfer sizes.

9

Clients
(Long Flows)

.

.

.

h1

h2

hn

P4 Switch

(4)

(1)
Initiate TCP
connection

(3)
Broadcast

New State S’
Server

(2)
Store

State (S)

(2)

Legacy
Switch

(4)
Update

Rate

(4)

(2)

Legacy
Switch

Figure 11: High-level architecture of P4-enabled pacing system.
The P4 switch identifies the number of TCP flows traversing it to
notify the senders how to adjust the sending rate.

pacity and lowers the delay during TCP incast.
Kfoury et al. [42] proposed a novel scheme based on

programmable data plane switches. In this scheme, the
programmable switch notifies the sender of the right TCP
pacing rate, resulting in a fair share of the bandwidth.
The programmable switch embeds the pacing rate in the
IP options header, making it compatible with legacy de-
vices. Figure 11 shows the high-level architecture of the
system. 1) An end host inserts a custom header replac-
ing the IP-Options header field to initiate a TCP con-
nection. The custom header is inserted during the 3-way
handshake. On the other hand, the switches parse the
received packets’ headers and check if the end host re-
quests a new flow. 2) Each switch stores the latest state
S of the network and inserts its bottleneck link capacity
and the current total number of hosts in the SYN-ACK
message. 3) Then, the switches broadcast S’ to all previ-
ously connected hosts. Finally, when the hosts receive the
SYN-ACK message, they adjust their transmission rates
according to the IP options header information. 4) Upon
receiving a TCP packet on the port used for initiating its
TCP connection, the end host parses the custom header
and adjusts its transmission rate by applying pacing with
a rate derived from the custom header fields values. Ad-
ditionally, the processing overhead is minimal, as custom
packets are only generated when a flow joins or leaves the
network. With input from switches, end devices are dy-
namically notified to adjust the pacing rate. The scheme
increases throughput and enhances fairness.

Li et al. [43] presented a congestion control algorithm
called High-Precision Congestion Control (HPCC). The
congestion control is based on Multiplicative-Increase
Multiplicative-Decrease (MIMD), which makes it fast,
stable and responsive in the presence of packet losses.
It achieves three principal goals: ultra-low latency, high
bandwidth, and increased stability simultaneously in
large-scale high-speed networks. It is easy to deploy and
integrate with legacy networks, requiring only the activa-
tion of standard INT features. Results show a reduction
of the FCT at least four times. The congestion is reduced
compared to similar congestion control algorithms used
in data centers such as DCTCP [92], TIMELY [93], and
DCQCN [94]. Figure 12 illustrates how HPCC works.
When a packet arrives at the switch’s ingress interface,

ReceiverSender

Adjust rate
per ACK INT INT

Packet

ACK

Figure 12: HPCC: INT-based High Precision Congestion Control.
Each switch adds telemetry data to the packets and piggybacked
to the sender within the ACKs.

the switch adds an INT header to the packet. When the
TCP packet that contains data reaches the egress port of
an edge switch, the INT information is piggybacked into
the TCP packet that carries the ACK. The end hosts then
use this information to adjust the sending rate in every
ACK.

Shahzan et al. [44] optimized traditional ECN-based
congestion notification systems, which rely on the receiver
to indicate congestion. Usually, ECN-based systems wait
for an RTT before the sender reacts to the congestion.
The authors state that this could be an issue in networks
with a high BDP. Therefore, they propose an enhanced
ECN mechanism for the early detection of congestion
using P4 devices. The system is called Enhanced Ex-
plicit Congestion Notification (EECN). In this approach,
the sender does not have to wait for the receiver to in-
dicate congestion. Instead, the switches notify the end
hosts. Experimental results show that their system does
not generate any additional traffic in the network, thus
reducing the notification time compared to traditional
ECN-based schemes.

Kang et al. [90] presented Proactive Congestion No-
tification (PCN), which uses Distributed Deep Learning
(DDL) techniques to avoid congestion. The authors lever-
age DDL to collect training data from distributed workers
(i.e., end hosts), thus reducing the total training time.
However, experiments demonstrated that the DDL ar-
chitecture induces bursty traffic. Therefore, the authors
proposed PCN to prevent congestion. PCN proactively
regulates the switch’s queue length to prepare it when
bursty traffic arrives. Results show that PCN improves
the throughput of DDL traffic by 72% on average.

Laraba et al. [91] presented an approach for detect-
ing and mitigating the impact of TCP misbehaviors. The
scheme leverages programmable data planes to mitigate
optimistic ACK attacks [95] and ECN abuses [96]. The
authors propose a security monitoring system based on
an Extended Finite State Machine (EFSM) to monitor
stateful protocols in the data plane. Results show that
the system can detect and discard optimistic ACKs at
the switch without reaching the server. Consequently, a
legit TCP connection does not experience performance
degradation. With respect to ECN abuses, the authors
reported that the scheme achieves a fair bandwidth share
during an attack. They evaluated their approach in sce-
narios when ECN reaction is not enabled and when RED
with ECN is configured in the switch.

5.2.2. End hosts Implementations Comparison, Discus-
sions, and Limitations

Table 3 compares the schemes described in the previ-
ous section. In low latency environments, HPCC presents

10

Table 3: End-host Congestion Control Comparison.
H

o
s
t
-c

e
n
t
r
ic

Ref Name Strategy
Traffic
Isolation

Congestion
Feedback

Custom
Congestion
Control

Convergence
End host
Modification

Tuning
Parameters

Target

[40] NCF
Uses NACKs to control
elephant flows

NACKs × Fast
Thresholds,
queue sizes,
data structures

N/A

[41] NDP
Trim packet headers
and priority forward

NACKs Fast ×
Switch buffers
and
Initial window

NetFPGA
SUME

[42] N/A
Calculates the pacing
rate as a function of
the number of flows

× Number of
TCP flows

× Medium
Link
capacity

BMv2

E
n
h
a
n
c
e
d

F
e
e
d
b
a
c
k

Ref Name Strategy
Rate
Increment
Mechanism

Congestion
Feedback

Congestion
Avoidance
Mechanism

Integrates
with
Legacy

Reduces
Packet
Overhead

Tuning
Parameters

Target

[43] HPCC
Computes INT metadata
to set the sending rate

Multiplicative
Increase (MI)

INT
Multiplicative
Decrease (MD)

× ×
η,
maxStage,
WAI · η

Tofino

[44] EECN
The switch notifies the
sender instead of waiting
for the receiver

Def. by the
End host CC

Custom
ECN

Congestion
Control
+ ECN

ECN
threshold

N/A

[90] PCN
Reduces the impact of
bursty DDL traffic

Def. by the
End host CC

ECN
Congestion
Control
+ ECN

ECN
threshold

BMv2

[91] N/A
Mitigates TCP Optimisc
ACK attack and ECN
abuses

Def. by the
End host CC

ECN + ACKs
Stateful
processing
EFSM

N/A BMv2

rate dynamics dominated by the MIMD rule. It provides
good link utilization and good throughput. HPCC and
EECN use a feedback-based mechanism to regulate their
sending rate. However, HPCC could incur overhead as
each switch inserts its INT metadata. This overhead in-
creases linearly with the path length. INT solves the
overhead issue at the cost of losing accuracy but achiev-
ing better FCT. Basat et al. [45] presented Probabilistic
In-band Network Telemetry (PINT), which bound the
amount of telemetry information added to each packet.
PINT handles concurrent queries while bounding the per-
packet bit overhead using each packet for a query subset
with cumulative overhead according to predefined poli-
cies. PINT mitigates the high bit overhead produced in
schemes such as HPCC resulting in similar performance
while getting good visibility. The works described in the
previous section report the FCT as a metric that eval-
uates the performance of the schemes. The FCT is a
key metric that describes how long it takes to complete
a data transfer. Dukkipati and McKeown [97] demon-
strated that high throughput does not lead to a better
FCT. On the contrary, it could increase due to several
factors (e.g., high RTT, bloated buffers, flows take differ-
ent paths).

Schemes such as EECN do not require any change
in the end host. Thus it can be easily integrated with
current deployments. Although ECN does not provide
better visibility than INT (i.e., it only notifies whether
there is congestion), enabling explicit network feedback
improves metrics such as the FCT, reduces packet losses,
and ensures better fairness among competing flows.

NDP and NCF use NACKs as congestion feedback
but with different purposes. NDP avoids congestion by
applying per packet multihop load balancing. NCF dy-
namically tracks elephant flows and restricts them from
using NACKs to notify the sender. Another difference is
that NCF can be used either in data centers and Internet-
wide deployments, although there are no implementation
results to evaluate the solution’s effectiveness. More-
over, NCF solves the incast problem by separating the
elephants from mice flows. NDP’s principal limitation

is the high retransmission rate and the moderately ex-
pensive resources allocated to implement the protocol.
NCF sends network congestion information through the
NACKs. The latter might produce unnecessary overhead,
thus making it less attractive to operators. NDP and
NCF require operators to manually tune predefined pa-
rameters such as thresholds, queue size, maximum la-
tency, etc. Also NCF and NDP perform traffic isolation.
The difference is that NDP requires end host modifica-
tion to interact with a custom header, while NCF does
not. NDP presents hardware implementations on differ-
ent targets and customization, such as in [74]. On the
other hand, NCF is a proposal that requires further test-
ing in P4 targets.

The method in [42] uses TCP pacing. Pacing smooths
throughput variations and traffic burstiness, maximizing
the link utilization and minimizing queuing delays. A
drawback of this method is that it produces unnecessary
overhead when the number of flows is high. Also, the
pacing approach by itself often has significantly worse
performance than regular TCP due to the synchroniza-
tion with packet losses [98]. Therefore it can only be
suitable for deployments that involve a small number of
large flows (e.g., in Science Demilitarized Zone (Science
DMZ) networks [99]).

Table 4: Comparison between P4-based End host Implementations
and Traditional Congestion Control Implementations.

Characteristic
P4-based
Implementation

Traditional
Implementation

Accuracy
High; operating at
sub-millisecond scale

Medium; control plane
intervention adds a
processing penalty

Convergence
Fast; MIMD and
custom protocols

Slow; Traditionally AIMD

Queue
monitoring

Fine-grained Coarse-grained

Fairness
High; several scheme aim
at improving fairness and
other metrics

Low; limited options to
ensure fairness

End host
Modification

Required in
many schemes

Not Required; Traditional
protocols are usually
present in the end host

Congestion
information

Many; ECN, INT standard
and, custom metadata

Few; ECN

11

EgressIngress
Packet queueing and

scheduling (Round-robin)

PacketsPacketsPacketsPackets

Reallocating

Apply actions

Reallocating

Apply actions

Sch
e

d
u

le
r

Loss-based

Loss-delay

Delay-based

Hybrid

Sch
e

d
u

le
r

Loss-based

Loss-delay

Delay-based

Hybrid

Sch
e

d
u

le
r

Loss-based

Loss-delay

Delay-based

Hybrid

Fingerprinting

Reallocating

Apply actions

Fingerprinting

Reallocating

Apply actions

Reallocating flows in a different queue

Figure 13: The system comprises three modules: The fingerprinting module groups the flows according to their congestion control algorithm.
The reallocation module redistributes the queues between groups when it is required, and the apply actions module applies custom policies
to ensure fairness among flows [47].

5.2.3. Comparison with Legacy Approaches

Table 4 compares the main characteristics between
end hosts implementation congestion control schemes
with legacy. P4 helps developers to improve TCP feed-
back by including standard (e.g., INT, ECN) and custom
(e.g., pacing rate in the IP options) information into pack-
ets. On the other hand, legacy schemes only work with
standard headers, which makes them less flexible.

ECN approaches experience moderate convergence
times as they rely on a single bit to notify congestion
without providing any information about the level of con-
gestion or the congested link location. On the other hand,
programmable switches can give better feedback to indi-
cate congestion (e.g., INT metadata in HPCC), which
results in higher detection accuracy, near-zero queueing
delays, and faster convergence time. However, traditional
congestion control algorithms’ distributed nature allows
them to operate without modifying the network infras-
tructure or the end hosts.

5.3. In-network Implementations

This category describes the implementations where
P4 switches are used to modify the dynamics of the traf-
fic and perform actions to reduce congestion (e.g., rerout-
ing).

Many authors proposed schemes to reduce conges-
tion as a response to the continuously increasing demand
for higher bandwidth, lower latency, and higher reliabil-
ity. P4 switches facilitate the implementation of such
schemes, providing the programmer the complete control
of the scheme’s design. With high-speed networks, de-
veloping a good congestion control algorithm depends on
how timely and accurate the actions to control congestion
are. Therefore, a precise observation loop must com-
plement the control loop [83]. P4 switches provide the
tools to extend congestion control algorithms and better
understand the events in the network. Traditional con-
gestion control identifies losses as a signal of congestion.
However, other feedback signals contribute to improving
the description of the congestion event (e.g., ECN, INT
header, custom headers). With P4-programmable data
planes, developers can define and manage how these sig-
nals are interpreted and create custom mechanisms to
react against a broader range of congestion events. ed to

lower delays, maximize throughput, and the incast prob-
lem (e.g., [92, 100]).

5.3.1. Literature Review

Turkovic and Kuipers [47] proposed P4air, a method
that classifies the traffic based on their congestion con-
trol algorithm. The flows are allocated in different
queues to isolate them from the dynamic of the other
congestion control algorithms, therefore improving inter-
protocol fairness and the network resources utilization in
the presence of a large number of flows. Based on a previ-
ous study, Turkovic et al. [101] observed the interaction
among different congestion control, dividing them into
categories, namely loss-based algorithms, delay-based al-
gorithms, and hybrid algorithms. Results remark that
a good TCP congestion control algorithm is not enough
to achieve low latency, high performance and optimize
the link utilization. The authors recommend grouping
the flows according to their congestion control algorithm
to ensure the expected resource optimization. The sys-
tem actively monitors the characteristics of the flows that
pass through a switch. Then, the switch groups the flows
based on the type of congestion control (e.g., Loss-based,
Delay-based, Loss-delay, Hybrid). Figure 13 illustrates
the components of the scheme, which is divided into two
subsystems: 1) A fingerprinting or identification process
that identifies the congestion control algorithm consid-
ering the metadata of every packet, such as timestamps
from different stages of processing, queue depth. 2) A
stateful processing that tracks the reactions of the flows
in the occurrence of certain events, such as loss or an in-
crease in queue size. The scheme aims at enforcing fair-
ness by combining these two subsystems. P4air identifies
the congestion control algorithm by analyzing packets’
metadata and performing actions (i.e., dropping pack-
ets, delaying a packet, changing the advertised congestion
window in the TCP header) and observing the reaction
of TCP flows. The system uses recirculation to reallocate
packets after being enqueued to put them in a different
queue if needed.

Apostolaki et al. [49] presented a dynamic buffer siz-
ing technique called Flow-Aware Buffer (FAB) sharing.
The system addresses the problem of having multiple
flows allocated in different egress ports. The algorithm

12

Sender

Receiver

S1 S3

S5

S2 S4

Primary path Backup path

Congested Link

Figure 14: Simplified Fast-TCP mechanism overview. The scheme
has a primary path and many backup paths. Upon the failure, it
evaluates the weight of the backup paths to reroute the traffic.

assigns the flows according to their destination IP ad-
dresses to make more efficient use of the ASIC’s mem-
ory. Moreover, it dynamically adjusts the buffer size for
each output queue, which shows a considerable reduc-
tion of the packet loss and latency and improved FCT.
The authors remark that allocating buffers across ports
is not trivial. Therefore, choosing the resource sharing
algorithm can alter metrics such as the throughput (e.g.,
when TCP incast occurs). Traditionally, routing devices
allocate buffer space considering the available memory,
but they do not consider the traffic type. Results show
improved FCT using Tail-Drop (TD) by order of magni-
tude compared to conventional buffer management tech-
niques.

In another work, Turkovic et al. [50] developed a con-
gestion avoidance method that uses packets’ metadata to
track processing and queuing delays of latency-sensitive
flows. The system is called Fast-TCP, and the main idea
is rerouting traffic across a backup path when congestion
occurs. Figure 14 depicts a scenario when the link be-
tween S1 and S3 is congested. S1 already has a backup
path to reroute all the traffic to the same destination in
such a situation. The authors created a P4 program to
detect the congestion using digests to notify the partici-
pants when the delay surpasses a certain threshold. Ex-
periments conducted on real hardware show decreased av-
erage and maximum delay and jitter compared to legacy
approaches. This system aims to improve the QoS of
time-sensitive applications such as audio, video, and hap-
tic. The last one consists of transporting the sense of
touch over the Internet. Such applications require very
low latency (∼ 1ms), low jitter, high bandwidth, and
high reliability.

Benet et al. [46], presented a scheme to load-balance
Multi-Protocol TCP (MPTCP) sublfows. The scheme
is called MP-HULA and associates MPTCP subflows to
MPTCP connections by parsing MPTCP header fields.
MP-HULA solves the particular case of load-balancing
MP-TCP traffic by using the HULA data plane algorithm
[102]. MP-HULA comprises an adaptive probing mecha-
nism that keeps congestion state for the best-k next hops
per destination. The system then uses the congestion
state to route different MPTCP subflowlets towards dif-
ferent paths. Flowlets are packet bursts used to split
TCP paths without causing packet reordering. Results

S1 S2

S3

S4

PFC_PAUSE

h1

h2

h3

h4

ReceiverSenders

Figure 15: Priority Flow Control (PFC) head-of-line blocking. An
excessive queue length in switch S3 produce a PFC PAUSE signal
that will hold all the traffic passing through switch S2. P4QCN
mitigates this issue by implementing an improved version of the
QCN standard using P4 switches.

show the effectiveness of MP-HULA to reduce the FCT
1.7× to HULA with MPTCP and uncoupled congestion
control. In comparison to TCP, MPTCP combined with
MP-HULA obtain from 2.9× to 3.4× reduced FCT.

Geng et al. [51] proposed a congestion control proto-
col that can alleviate the problems caused by the Priority-
based Flow Control (PFC) mechanism. PFC is a link-
level flow control mechanism that allows operators to
selectively pause traffic according to their class, aiming
at preventing packet losses. The mechanism consists of
pausing the transmission when a queue exceeds a thresh-
old. Once the queue length is restored, the transmis-
sion resumes. Figure 15 explain the Head-of-Line (HOL)
blocking issue. Consider switch S3. When congestion
occurs (i.e., the queue size of the ingress port exceeds a
threshold), the PFC algorithm will pause the transmis-
sion by sending a pause notification to switch S2 and
consequently to switch S1 producing a cascading effect.
Because PFC will stop all traffic from host h1 to host h3,
traffic from host h2 to host h4 is also paused, even if the
destination port that connects switch S3 to host h4 is not
congested. Thus, the cascade effect of the pause frame
can also escalate the congestion.

This problem usually occurs in data centers when ap-
plications that involve large-scale online data-intensive
services use PFC and Remote Direct Memory Access
(RDMA). Therefore, the overhead produced by the PFC
can lead to performance degradation, the spread of con-
gestion, and even a permanent loss of communication.
The authors proposed a system called P4QCN to miti-
gate the HOL blocking issue produced by PFC. P4QCN
is a congestion control scheme that uses programmable
switches to implement an improved version of Quan-
tized Congestion Notification (QCN), a flow-level, rate-
based congestion control mechanism. The authors imple-
mented the QCN standard in P4 to make it compatible
with the IP-routed network. Results show that P4QCN
achieves the expected performance in terms of latency
and throughput while mitigating the cascade effect pro-
duced by the HOL blocking issue. Results show that
P4QCN reduces the packet loss rate and latency when
congestion occurs. P4QCN also achieves a better band-
width utilization than PFC under the same conditions
(e.g., same thresholds, packet losses).

Jinhao and Yue [52] proposed a novel mechanism to
regulate the size of the advertised TCP congestion win-
dows. The authors argue that the current calculation of

13

Table 5: In-network Congestion Control Comparison.
T

r
a
ffi

c
Is

o
la

t
io

n

Ref Name Strategy
Uses
Approx.

Traffic
Information

Shared
Buffer

Header
Modification

Convergence
Tuning
Parameters

Target

[47] P4air
Classifies flows according
to their congestion
control algorithm

Congestion
Control

Variable None Tofino

[48] N/A
Classifies traffic
according to their
QoS requirements

× App ID N/A Fast None Tofino

[49] FAB
Allocates buffer space
as a function of
the traffic

Flow
Duration

× Fast
Dynamic
threshold

N/A

[46] MP-HULA
Determines the best
load-balancing strategy to
distribute MPTCP flows

× Number of
MPTCP subflows

× Variable None ns2

F
a
s
t

R
e
r
o
u
t
in

g

Ref Name Strategy
Control Plane
Intervention

Congestion
Event

Custom
Header

Header
Modification

Convergence
Tuning
Parameters

Target

[50] FastTCP
Reroutes traffic reacting
to latency degradation

Packet
loss

× × Fast
Detection
threshold
(tp + tq)

Tofino

[51] P4QCN
Extends the QCN
protocol to IP-routed
networks

× Head-of-line
blocking event

× Fast
QPFC ,
QP4QCN

BMv2

[52] AAW

Adjusts the advertised TCP
congestion window using
INT data to calculate the
network capacity

× Packet
loss

× Medium
ECN
threshold

N/A

[103] PL2

Achieves low latency
and high utilization
by scheduling the
transmission time in the
switch

× Packet
loss

× Medium
ECN
threshold

Tofino

the advertised window in the TCP header is inaccurate
because the source node does not know the actual ca-
pacity of the network. The system is called Adjusting
Advertised Window (AAW), and it dynamically updates
ACK packets’ advertised window to feedback the net-
work capacity indirectly to the source nodes. Each P4
switch calculates the new AAW value and writes it into
the packet header. AAW only requires the intermediate
node to modify the advertised window size. Therefore,
the scheme is compatible with existing congestion con-
trol implementations.

Le et al. [103] presented Predictable Low Latency or

Sender

Timeslots

Sender
Input
Port

Receiver
Output

Port

Receiver
Output

Port

Sender
Input
Port

Timeslots

ReceiverSwitch

(2) The switch reserves the
earliest available timeslot for
Sender’s input (T=4) and
Receiver’s output ports (T=5)

Reserved Timeslots Available Timeslots

Update

11 11
22 22
33 33
44 44
55 55

1 1
2 2
3 3
4 4
5 5

11 11
22 22
33 33
44 44
55 55

1 1
2 2
3 3
4 4
5 5

Figure 16: PL2 algorithm [103]. The switch manages the reserva-
tions to avoid collisions. PL2 reduces end-to-end latency by proac-
tively avoiding losses by implementing a protocol where the end
host schedule a timeslot to start a data transfer.

PL2, a rack-scale lossless scheme that achieves low la-
tency and high throughput, which is independent of the
workload and the transport protocol. PL2 reduces end-
to-end latency by proactively avoiding losses by imple-
menting a protocol where the end host schedule a timeslot
to start a data transfer. PL2 is transport-agnostic and ca-
pable of accommodating flows at 100Gbps line rates. Ad-
ditionally, the scheme does not require any prior knowl-
edge regarding the workload characteristics, given that it
is hard to anticipate traffic and workload patterns. Fig-
ure 16 illustrates PL2’s behavior. In this example, the
sender is sending a packet burst to the receiver. 1) The
sender starts sending an RSV (i.e., reserve) message to
the switch to schedule a reservation. 2) The switch keeps
time slot reservations for every host’s input and output
ports. It reserves the earliest available timeslot on the
input port of the sender (i.e., T=4) and the receiver’s
output port (T=5). 3) The switch notifies the available
timeslots to the sender with GRT (i.e., Grant) message.
4) The sender then transmits at the maximum of the two
timeslots indicated in the GRT, T=5. The authors evalu-
ated PL2 using several transport protocols. Results show
that TCP flows experience low latency (i.e., <25us) and
high throughput even in noisy scenarios which involve
background traffic.

5.3.2. In-network Implementation Comparison, Discus-
sions, and Limitations

Table 5 compares the schemes described in the pre-
vious section. P4air achieves significant improvements
in fairness by applying traffic separation in comparison
to current solutions. However, it requires allocating a
queue for each congestion control algorithm group (e.g.,
loss-based (CUBIC), delay-based (TCP-Vegas), Hybrid
(BBR), etc.). The latter might pose an issue due to the
limited number of queues in switches, mainly used for
QoS applications. A similar solution presented in [49].
FAB separates the traffic into multiple queues according
to the destination IP. In this way, the system performs a

14

Table 6: Comparison between In-network Implementation Conges-
tion Control and Traditional Approaches.

Characteristic
P4-based In-network
Implementations

Legacy
Implementations

Per-port Buffer
Allocation

Dynamic; the user defines
the way to load and
write the buffer [49]

Fixed; a port cannot
access the remaining
buffer of another port

Traffic
Isolation

Flexible; P4 enables the
precise identification of
flow characteristics

Restricted; vendors define
traffic processing [104]

Flexibility
High; custom
packet processing

Low; the close nature of
legacy hardware restrict
several functionalities

Security

Medium; attackers can
exploit bugs or
unintentional behaviors
defined in
the P4 program

Medium; operators
follow vendor-defined
security guidelines

Resource
Utilization

Flexible; programmers can
determine resource
allocation

Predefined; vendors define
the resources
allocated to
each protocol

better usage of the ASIC’s memory. Another difference
is that FAB dynamically adjusts the queue size resulting
in a significant reduction of packet losses.

The method proposed in [48] classifies the traffic ac-
cording to its QoS requirements. Experimental results
show that the proposed design effectively limits the max-
imum allowed rate and guarantees each flow’s minimum
bandwidth. However, this approach does not consider
more than three traffic categories (i.e., guaranteed, best
effort, drop), limiting flexibility as network traffic be-
comes more heterogeneous.

P4QCN presents a congestion feedback mechanism
that enables switches to check the egress port for con-
gestion before forwarding packets. Fast-TCP reacts in
the presence of congestion by rerouting traffic through a
backup path. In comparison to Fast-TCP, P4QCN re-
acts faster before congestion escalates. Both schemes re-
quire establishing predefined parameters such as thresh-
olds, maximum queue length, congestion sensitivity, etc.
However, Fast-TCP suffers from some performance penal-
ties due to disabled caching and the lack of information
about the queueing delay.

5.3.3. Comparison with Legacy Approaches

Table 6 compares the main characteristics between
P4-based and legacy in-network implementation conges-
tion control schemes. P4-programmable data planes pro-
vide the tools to implement schemes that use various net-
work metrics (e.g., queue length, packet losses, sequence,
and acknowledgment numbers pairs and the metrics that
can be inferred from the packet’s header). Such inputs al-
low the programmer to have a better view of the network
and perform more accurate actions to reduce congestion.
Legacy devices are restricted to fixed-function, making
it difficult to arbitrarily parse and modify TCP headers
(e.g., AAW) or implementing custom congestion control
mechanisms. Legacy devices can perform traffic separa-
tion using QoS features defined by the vendor. However,
it requires configuring the QoS policies, which are limited
to few categories. For example, separating real-time traf-
fic such as video streaming from bulk data transfers can
be performed using legacy devices. On the other hand,
separating traffic according to its duration (e.g., splitting
elephant from mice flows) or according to its congestion
control is a more challenging task using legacy devices.

Moreover, the per-port buffer allocation observed in
legacy devices does not consider the type of traffic.
Therefore, this behavior resembles a dynamic buffer man-
agement technique limiting the buffer each queue can use
to a fraction of the unused buffer size. Employing pro-
grammable data planes, the user can create a program
that splits buffer cells among ports of a device while con-
sidering all ports’ utilization and the expected benefit of
buffering for each flow.

5.4. Summary and Lessons Learned

According to Li [83], a well-designed congestion con-
trol mechanism must guarantee adequate link utilization,
including low-latency, near to zero-queue, robustness, and
fast convergence. The capability of P4-programmable de-
vices to perform packet processing at a line rate enables
the design, test, and evaluation of precise congestion con-
trol algorithms. Moreover, programmable switches allow
the development of custom congestion control algorithms
that meet specific requirements such as isolating the dy-
namics of TCP flows, reducing latency, achieving better
link utilization, and improving FCT. Congestion control
schemes that use telemetry information to regulate the
sending rate demonstrated reacting a the sub-millisecond
level, making them suitable high-speed network environ-
ments such as science DMZ and data centers.

A limitation of INT-based schemes is that appending
telemetry information reduces the payload size. There
are new schemes that aim at reducing such overhead
[45]. Future work should focus on incremental deploy-
ment (i.e., inter-networking with legacy schemes) to al-
low more experimentation and mitigate current network
issues. Schemes that perform traffic isolation present fa-
vorable results in managing the congestion. Such schemes
assume that competing flows have different congestion
control algorithms, which leads to unfairness problems.
For instance, if a flow releases throughput (e.g., due to
a congestion signal) then, another flow with a conges-
tion control with faster adaptation can occupy the freed
resource, leading to an unfair resource allocation.

6. Active Queue Management (AQM)

The standard TCP strategy consists of regulating
the sending rate once congestion occurs. Most of the
traditional TCP congestion control mechanisms consider
packet loss as a signal of congestion. A practical approach
consists of avoiding congestion by informing the sending
host that the network is close to experiencing congestion.
This approach is implemented by AQMs, which consider
that network switches are in a key position to detect and
manage congestion (i.e., they know how much congestion
the network is experiencing [105]). Although incorporat-
ing new features to the switch was not the preferred way
to introduce improvements, programmable data planes
can change this paradigm.

AQM algorithms cooperate with end host protocols
such as TCP to manage congestion by increasing network
utilization and limiting packet loss and delay. Nadas et al.
[106] demonstrated that delegating all the management of
the congestion to the congestion control algorithm is not
suitable for heterogeneous networks. Therefore, conges-
tion control algorithms are modeled by default without

15

considering feedback from the routers. Moreover, TCP
congestion control algorithms assume that the switch im-
plements a FIFO queueing discipline and TD as the drop-
ping policy. AQM algorithms operate within the routers
along the path by taking action such as dropping packets,
allocating flows into different queues, and managing the
buffer spaces used to store packets. Therefore, the coop-
eration between TCP and AQM is the best treatment for
congestion. However, despite such a relationship, TCP
congestion control must understand the feedback infor-
mation provided by switches.

6.1. Challenges on Designing AQM schemes

6.1.1. Understanding Queues

Understanding the cause and meaning of queues is
an important step to develop an effective AQM. The rea-
son why network buffers should be employed is to smooth
packet bursts. In other words, they act as shock absorbers
that convert bursty packet arrivals into smooth, steady
departures. Queues appear in buffers due to short-term
mismatches in traffic arrival and departure rates, produc-
ing standing queues that cannot dissipate. The persistent
problem of having a long-standing queue is also known as
the bufferbloat problem. Standing queues creates consid-
erable delays without improving the throughput. Usually,
such an event is interpreted as congestion by traditional
congestion control algorithms. BBRv1 and BBRv2 main-
tain a low queueing delay. However, in a recent study,
Mishra et al. [107], measured that the Internet traffic is
dominated by CUBIC (i.e., 36%), which is being known
to produce bufferbloat [108].

6.1.2. Dropping the Right Packets

Undersized buffers do not solve the bufferbloat is-
sue, [109, 110] instead, they increase the packet loss
rate. AQM algorithms solve the issue by discriminating
which packets are suitable to be dropped thus, making
a more efficient use of the switch’s buffer. According to
Nichols and Jacobson [111], high RTTs (i.e., ∼1 second)
are caused by bloated buffers and are not related to the
path characteristics. Therefore, designers should consider
these variations to design a robust algorithm that can
dynamically manage switch buffers. For example, the
TD queueing discipline drops packets as a consequence
of a full queue. AQMs such as RED [8], ARED [112],
WRED [113] require constantly adjusting tuning param-
eters as the network condition changes. Novel AQMs
such as CoDel [111], and CAKE [11] do not require
tuning any parameters and were designed to adapt to
changing network conditions. For instance, CoDel AQM
drops packets that exceeded the standing queue interval
(default value target=∼ 5ms). P4-programmable data
planes comprise primitives and constructs to implement
schemes that identify which packets are more suitable for
dropping.

6.2. RFC-standardized Algorithms

The following sections discuss the RFC-standardized
AQM algorithms, which consist of implementing schemes
that are standards defined by the Internet Engineering
Task Force (IETF) (e.g., RED, CoDel, PI, PIE).

Traditional TCP congestion control presents a prob-
lem of adjusting the transmission rate only after a packet

Sender ReceiverRouter

Processing Queueing

PropagationTransmission

Bottleneck bandwidth link (BtlBw)

ASIC

Figure 17: Delay components: processing, queueing, transmission,
and propagation delays. The queueing delay is the one that has a
significant impact on TCP performance.

loss event. Therefore, there is a long time between a
packet loss event and when the sender is notified about
the loss [114]. During this period, the end host continues
transmitting at the same rate that the network cannot
support thus, producing even more packet losses. AQMs
aim at alleviating packet losses by notifying the sender
about the incipient congestion. Therefore, end hosts can
reduce their sending rate before the switch’s queue over-
flows.

When a packet traverses the network, it might en-
counter four types of network delay, Figure 17 illustrates
the types of network delays and where they occur.

• Processing delay : the time taken by the router to
process a packet as it traverses through the parser,
ingress and egress pipelines, and deparser.

• Queuing delay : the amount of time a packet is wait-
ing in a queue until it can be transmitted.

• Transmission delay : the time required to put all
the bits of a packet in the wire.

• Propagation delay : it is given as a function of the
physical distance and propagation speed of a link.

The processing and transmission delay has little im-
pact on the network delay. On the other hand, the propa-
gation delay depends on the type of network (e.g., LANs,
WANs). The queueing delay is a component that can
significantly increase the delay that a packet experience
across the network. Gettys and Nichols [108] reported
the presence of unnecessarily large buffers on the Inter-
net that contribute to the queuing delay. Moreover, they
also mention that routers that have an AQM enabled are
rare.

The buffer size directly impacts the queueing delay.
The buffer size directly impacts the queueing delay [115–
117]. The rule of thumb proposed by Villamizar and Song
[116] suggest that the amount of buffering (in bits) in a
router’s port should be greater or equal than the average
Round-Trip Time (RTT) (in seconds) multiplied by the
capacity C (in bits per seconds) of the port (i.e., B ≥
C × RTT). The resulting buffer size will ensure that
the link is fully utilized with a small number of TCP
flows. However, Appenzeller et al. [117] demonstrated
that large static buffer sizes produce unnecessary high
latency leading to a problem known as bufferbloat. They
claimed that the buffer size could be reduced by a factor
of the square root of the number of flows N (i.e., B ≥ C×
RTT/

√
(N) when the number of TCP flows is large. In

this way, the link is fully utilized and the latency reduced.

16

Sender Receiver

CoDel
Algorithm

Timestamp

Dropping
State

Departure
Time

Packets

Buffer

Figure 18: CoDel scheme and algorithm. 1) CoDel uses timestamps
to determine when a packet should be dropped. 2) The algorithm
actively measures the queueing delay to determine if a packet will
be dropped.

The AQM algorithm adopted in many routers is TD,
in which the maximum length of each queue is a fixed
value. The packets from all sender are enqueued until
the queue is full. All other incoming packets that found
the queues full will drop. However, this approach presents
several problems. For instance, TCP can rapidly fill the
queue, causing a high loss rate to other flows.

Additionally, TD increases the delay since the queue
can be persistently full. RED [8] has been an improve-
ment of TD. RED drops packets according to predefined
thresholds. With the increase of the queue length, the
probability of dropping packets also increases. However,
RED only considers the queue length as an indication of
congestion. It does not infer the number of flows shar-
ing the bottleneck link, and it requires constant parame-
ter tuning to achieve good performance. The latter is a
problem when the network condition changes.

CoDel [118] was proposed as an improvement of the
existing AQMs. CoDel aims to control the queue length
by dropping packets as a function of the sojourn time.
If the queue length exceeds a threshold value (i.e., tar-
get) for some time (i.e., interval), CoDel starts dropping
packets until the queue length settles below the thresh-
old value. CoDel has been designed to work across a wide
range of network conditions requiring little to no tuning.

Fair-queueing Codel (FQ-CoDel), [119] mitigates the
unfairness problem resulting from having multiple flows
sharing a single queue. FQ-CoDel uses a hybrid approach
that consists of two queueing disciplines: Fair-queueing
and CoDel. This approach separates the dynamic of com-
peting flows by allocating them in different queues. PIE
AQM [9] is a mechanism that controls the reference queue
latency to a reference value based on the Proportional-
integral (PI) controller. It aims at providing low latency
control, high link utilization, simple implementation, sta-
bility, and fast responsiveness. PIE does not require
any tuning parameter, making it robust and optimized
for various network scenarios. The recently proposed
CAKE [11] AQM controls the queue latency by using a
rate-based shaper. This mechanism schedules the packet
transmission at a precise interval using a virtual transmis-
sion clock. Similarly, CAKE does not require any tuning
parameter.

6.2.1. Literature Review

Kundel et al. [53] implemented CoDel queueing dis-
cipline on a programmable switch. CoDel significantly
reduces the latency of TCP connections and mitigates
the bufferbloat problem. They also demonstrated that
it is possible to implement AQMs in programmable data
planes using approximation techniques. Figure 18 depicts
the CoDel scheme that computes each packet’s timestamp
to establish the dropping policy. The algorithm consid-
ers three situations: 1) If the queueing delay is below
a threshold, a packet is never dropped. 2) If the queu-
ing delay exceeds the threshold for more than a prede-
fined interval, packets will be dropped. 3) Packets will be
discarded until the queueing delay is below a threshold.
The same authors extended this work by implementing
the CoDel algorithm in different P4-programmable data
plane hardware targets [54]. They also discuss the chal-
lenges of implementing CoDel in different targets, usually
limited by hardware constraints. Evaluations compare
the performance of the CoDel algorithm running in the
Linux Kernel, Intel Tofino ASIC, and Netronome NPU-
based SamrtNIC.

Kunze et al. [55], recently implemented and tested
three versions of the PIE AQM in a P4 Tofino target.
They show the inherent trade-offs of all the implemen-
tations and the impact on the performance. Precisely,
the mismatch between AQM design and the capabili-
ties of the Intel Tofino switch. The authors argue that
conceptual challenges make it impossible to implement
a fully RFC-compliant PIE version on Tofino. Also, the
authors found that transferring RFC schemes to resource-
constrained P4 targets is a non-trivial task.

Papagianni and De Scheppe [56] implemented Propor-
tional Integral PI2 AQM in a programmable data plane.
PI2 is an extension of PIE AQM described in [120] that
smoothes the non-linearities of the original PI controller.
The main goal is to support the coexistence between clas-
sic and scalable congestion controls algorithms. The au-
thors implemented the system in a P4 software switch
(BMv2) and verified the design through a proof of con-
cept implementation. Experimental evaluations report
when the link capacity decreases, the queue latency is
10x slower, resulting in the TD case in a 10x higher delay
(e.g., up to 200ms). On the other hand, the PI2 controller
keeps the queueing delay at the target levels. Further-
more, the authors argue that there is no need to tune the
AQM parameters if the network condition changes.

Toresson [57] presented a packet value-based AQM us-
ing programmable data planes. It uses a combination of
the PIE AQM scheme, and the Per-Packet Value (PPV)
[121] concept to determine the dropping policy to re-
duce the queuing delay. PPV establishes the resources
sharing policies by marking packets with packet values.
This value determines the relative importance of one flow
over another (e.g., different flows might have different
throughput or delay requirements). The system was im-
plemented using the Barefoot Tofino ASIC. Packet value
statistics are collected through the P4 programmable
data plane to maintain knowledge about pack- et value
distribution. With the dropping probability calculated
through the PIE AQM scheme, a decision can be made
about which packets should be dropped. An evaluation
shows that with the implemented PPV AQM, a low queu-

17

Table 7: Comparison of RFC-Standardized AQMs Schemes.

Ref Name Strategy Thresholds
Dropping
Policy

Multiple
Queues

Approach
Queueing
Discipline

Tuning
Parameters

Target

[53, 54] P4-CoDel
Implementation of RFC-
standardized CoDel

3 Timeout × Heuristics FIFO
Default
Thresholds

Tofino

[55] P4-PIE
Implements three variants of
PIE AQM

5 Probability × Control
Theory

FIFO
Default
Thresholds,
Sampling Rate

Tofino

[56] PI2
Implements PI2 algorithm
using bit manipulation

2 Probability × Control
Theory

FIFO α, β BMv2

[57] P4-PPV
Employs PPV to make drop
decisions when queueing
delay increases

2
Packet
Value

× Heuristics FIFO CTV Tofino

[58] AFQ
Approximates fair queueing
using data plane
constructs

1
Tail
Drop

Control
Theory

Fair
Queueing

None
Cavium
Octeon

ing delay can be achieved by dropping an appropriate
amount of packets. It also shows that the PPV AQM con-
trols the resource-sharing between different traffic flows
according to a predefined marking policy.

Sharma et al. [122] implemented a queueing discipline
called Approximate Fair Queueing (AFQ) entirely in the
data plane. The algorithm is based on the Fair Queue-
ing discipline that ensures a fair bandwidth allocation for
each flow. The implementation leverages programmable
data planes’ ability to maintain the switch state on a
per-packet basis, perform limited computations, and dy-
namically select the egress port. Results show that AFQ
allows incoming flows to achieve a fair share immediately
and isolates them from other concurrent flows, leading to
significantly more predictable performance. The authors
report that the average FCT is improved for short TCP
flows. Also, AFQ enhances the performance of DCTCP
by 2x and TCP performance by 10x for both average and
tail FCT in scenarios with high loads.

6.2.2. RFC-standardized AQM Algorithms Comparison,
Discussions, and Limitations

Table 7 compares the surveyed schemes. RFC stan-
dardized AQMs can be described in P4, although some
are not very precise due to the approximations techniques
they use. For instance, in [53, 54] the CoDel algorithm
uses simple arithmetic and packet counting to approxi-
mate the square root operation. However, results show
that these limitations do not significantly impact the per-
formance. Kunze et al. [55] demonstrated that imple-
menting an RFC-standardized AQM in a programmable
switch is constrained due to the resource limitation (i.e.,
the number of bytes allocated to queues) and the com-
plexity of arithmetic operations such as multiplication
and square root. They also described general implica-
tions for AQM design in hardware ASICs. First, gath-
ering queueing information at the ingress facilitates the
implementation of AQMs such as RED and PIE in the
ingress pipeline. Second, reducing the complexity of data
plane calculation makes the AQM control-law simple, so
there is no need to rely on the complex operation. Flexi-
ble memory access allows early read access, and then one
later write access enables the calculation of more com-
plex control rules. Third, when designing an AQM, an
AQM that is tunning-free or has concise and price ways
to adopt parameters to new settings is preferred. Fourth,
AQM algorithms should avoid underutilizing ASIC re-
sources so that you fully leverage the capabilities of the
switch. Finally, the authors conclude by remarking on

a need for a general framework to directly manage the
queue with P4.

Sharma et al., [58] proposes a solution based on build-
ing blocks that mask arithmetic operations in the data
plane. The goal is to provide the functional blocks (e.g.,
extern components) to perform complex arithmetic oper-
ations (e.g., division, multiplication, square root.) with-
out using approximations or lookup tables (e.g., approxi-
mating the square root function can be achieved by count-
ing the number of leading zeros through longest prefix
match). These features can enable the development of
more complex AQMs in the data plane.

With P4, programmers have access to packet meta-
data such as the queue depth, queueing time variations,
ingress and egress timestamps, and packet length to im-
plement AQM schemes. Although some packet metadata
are only available at the egress control block (see Fig-
ure 2), the programmer can use cloning and recircula-
tion primitives to reprocess packets that already include
queueing information. Another challenge when imple-
menting AQMs is that The use of complex arithmetic
operations is constrained in P4 hardware targets.

6.2.3. Comparison with Legacy Approaches

Table 8 presents the limitations of the surveyed RFC-
standardized AQMs. Several RFC-standardized algo-
rithms were proposed since the first implementation of
RED [8]. Many of the RFC-standardized AQMs are im-
plemented in Linux as queueing disciplines. However,
they can only be used with software switches. RFC-
standardized can be implemented in P4 programmable
data planes to complement and improve existing deploy-
ments.

On the other hand, legacy devices implement out-

Table 8: RFC-standardized Algorithms, Limitations and P4-
Implementations.

Name Limitations P4-Implementation

Tail-Drop

- It does not provide traffic
separation

- Not suitable for providing
QoS

- High queue latency

Default

RED
WRED
ARED

- It requires adjusting
tuning parameters

- The queue length
determines the dropping
probability

[55, 63, 123]

CoDel
FQ-CoDel

- It computes
√
n [53, 54, 63]

PIE
- It requires adjusting

tuning parameters (e.g., α, β)
- It uses approximations

[55, 57, 123]

18

Senders ReceiversABC Domain

Core node with activity AQM

Edge node with activity meter
and marker

S1 S2R1 R2

Figure 19: Activity metering and marking are performed only by
ingress nodes. Both ingress and core nodes apply activity AQM
during packet forwarding.

dated schemes based on RED (e.g., ARED, WRED),
which require constant tuning of their parameters (e.g.,
thresholds). More recent AQMs such as FQ-CoDel and
CAKE have already solved this issue of being parameter-
less by default. However, legacy devices do not adopt
them due to the non-programmable nature of legacy
routers, and the lack of adoption of AQM schemes in pro-
duction deployments [108]. P4 can facilitate the adoption
of AQMs to fulfill the requirements of a network by al-
lowing the operator to update the data plane program.

6.3. Custom AQM Algorithms

Researchers have focused on improving TCP and the
overall network performance by proposing novel AQM
schemes to mitigate congestion and bufferbloat. With
the advent of P4, the description, validation, and eval-
uation of custom AQM algorithms became faster. Al-
though P4 was not designed to manage buffers and packet
scheduling, developers can combine queueing disciplines
and dropping policies to create AQMs that are more flex-
ible compared to RFC-standardized AQMs. However,
the match-action pipeline constraints, such as hard limits
on multiplications and memory accesses or access to the
queue state, can limit some schemes’ implementation.

6.3.1. Literature Review

Mushtaq et al., [59], argue that the traditional ap-
proach where end host-based congestion control algo-
rithms respond to simple congestion signals from the
network has a negative impact if the goal is to reduce
the FCT. Therefore, they propose Approximate and De-
ployable SRPT (ADS), which uses approximations tech-
niques to implement the Shortest Remaining Process-
ing Time (SRPT). SRPT [124] is a queueing discipline
that prioritizes flows with fewer outstanding bytes in the
queue (i.e., with less remaining time). The authors claim
that to minimize the average FCT in data centers, ADS
can manage congestion. Their evaluations demonstrated
that ADS achieves a performance close to SRPT, which
has an advantage over the simple FIFO scheduling pol-
icy. Their approach leverage a small number of priority
queues that require only software changes in the host and
the switches.

Menth et al. [60] proposed a system called Activity-
Based Congestion (ABC), based on a domain-based QoS
mechanism. This scheme aims at providing more fair-
ness among customers on bottleneck links using scalable

Packets already
enqueued

[1-3]

[4-5]

[3-5]

[1-2]

Sub-optimal output

Optimal output

SP-PIFO queue (Approximations)

PIFO queue (Theoretical)

Strategy A

Strategy B

34145 34145

3 34145 34145

3

312 3123

445 445

3 12 12

3445 3445

3445 123445 12

2445 312445 31

3445 123445 12

Figure 20: SP-PIFO approximates the behavior of PIFO queues by
adapting how packet ranks are mapped to priority queues. Strategy
A presents a sub-optimal solution. By re-assigning the ranks, the
system produces an optimal solution (e.g., Strategy B) [61].

bandwidth-sharing mechanisms for congestion manage-
ment. Figure 19 depicts the system overview. Ingress
nodes work as activity meters to measure the traffic rate
that enters the ABC domain. They set an activity value
for each packet and mark that value in its header. Such
an aggregate may be, e.g., the traffic of a single user or
a user group. Thus, ingress nodes require traffic descrip-
tors for any aggregate that should be tracked. Ingress
nodes and core nodes of an ABC domain are forward-
ing nodes. They use an activity AQM on each of their
egress interfaces within the ABC domain to perform an
acceptance decision for every packet. That means they
decide whether to forward or drop a packet depending on
its activity, enforcing fair resource sharing among traffic
aggregates within an ABC domain. Egress nodes remove
the activity information from packets leaving the ABC
domain.

Alcoz et al. [61] tried to approximate the behav-
ior of PIFO (Push-In First-Out) using programmable
data planes. PIFO is a queueing discipline that al-
lows enqueued packets to be pushed in arbitrary posi-
tions according to the packet’s rank. However, PIFO
implementation in hardware is challenging because sort-
ing packets at line rate arbitrarily is not a trivial task.
The authors leveraged the capabilities provided by pro-
grammable data planes to implement PIFO using approx-
imations. The system is called SP-PIFO (Strict Priority
PIFO). It consists of mapping between packet ranks and
Strict Priority (SP) queues to minimize scheduling mis-
takes relative to the ideal PIFO implementation. Fig-
ure 20 depicts how PIFO works and its approximation
scheme (SP-PIFO) where the number inside the boxes
specifies the priority of the packets. PIFO schedules in-
coming packets serving them in a sorted way. Results
show that SP-PIFO minimizes the FCT while enforcing
fairness among competing flows. Although the scheme
approximates PIFO behavior and matching it in many
cases, the system cannot guarantee to perfectly emulate
the behavior of a theoretical PIFO queue for all ranks.

Cascone et al. [62] proposed a P4-based system to
mitigate the problem of a network switch enforcing fair
bandwidth sharing of the same link among TCP and non-
TCP senders. The scheme is called FDPA (Fair Dynamic
Priority Assignment), based on the Fair Queuing (FQ)

19

Classification

Rate estimation
.
.
.

a < w1

w1 ≤ a ≤ w2

wq-1 ≤ a ≤ wq

wQ-1 ≤ a

[pkt]

[pkt, n]

[pkt, a]

Sch
ed

u
le

r [pkt]

...

pkt: Packet n: User ID a: Arrival rate wq: Rate threshold

Figure 21: FDPA forwarding pipeline scheme. Packets are classified
on a per-user basis then, a rate estimator which measures the arrival
bit-rate processes each packet according to a specific user. Packets
are then stored in one of the Q priority queues. Finally, a strict
priority (SP) scheduler serves queues in priority order (i.e., the
lowest bandwidth first) [62].

scheduling algorithm. The mechanism of FDPA consists
of giving priority to the packets belonging to a user whose
arrival bit-rate is equal to or less than its fair share over
those users generating traffic at higher rates. However,
FDPA does not provide precise bit-level or packet-level
fairness. Instead, it approximates a fair share over longer
timescales (e.g., in the order of few RTTs). Figure 21
shows the system’s pipeline. Packets are first classified
per user and then processed by a rate estimator, which
measures the specific user’s arrival bit rate. Then, pack-
ets are allocated in a priority queue Qn, such that the
higher is the arrival rate, the lower the priority will be.
A strict priority (SP) scheduler serves queues in priority
order: packets of priority are dequeued only if all other
queues with higher priority are empty, where q = 1 is
the highest priority. Experiments conducted at 10Gbps
show that the performance of FDPA approximates the
ideal Deficit Round-Robin (DRR) with dedicated per-
user queues. However, FDPA doe not require implement-
ing per-user queues.

Harkous et al. [63] propose a scheme that uses the
target’s match-action tables to implement virtual queues
in P4-programmable data planes. The scheme aims to
provide customizable traffic management by establishing
how packets are served to the non-programmable traffic
manager. The system works by allocating different net-
work slices into virtual queues (vQueues) depending on
the rules defined in the control plane (e.g., limiting the
rate, controlling the delay, prioritizing flows). A slice is
a unique logical, virtualized network built on top of a
shared network. The scheme employs match-action ta-
bles to perform traffic management such as rate limiting
and queue management. The system assumes that slice
priorities are calculated and pushed top-down from the
control plane to the data plane. Results show that polic-
ing approaches implemented in vQueues are effective in
controlling TCP throughput per slice.

In recent work, Turkovic et al. [64] presented a scheme
that implements a QoS-based forwarding called P4QoS. It
allows applications to establish the QoS requirements by
appending its condition to the packet header. The system
combines information added by the application and the
Link Latency Estimation Protocol (LLEP), which miti-
gates the lack of coordination among the clocks of the
switches that add timestamps to the packet. Figure 22

shows how LLEP works. In step 1, the ingress switch
S1 appends an LLEP header, containing an egress times-
tamp representing the time the packet left the switch,
tsend. In step 2, switch S2 saves its ingress timestamp,
representing the time the packet was received. Then, it
clones the packet, and forwards the original application
data packet further along the path, and calculates the
processing plus queueing delay (tp + tq), which is the dif-
ference between the current egress and the saved ingress
timestamp. Next, the information is added to the LLEP
header. In step 3, the information produced in step 2 is
sent back to the previous switch. Finally, in step 4, switch
S1 uses the new information when the cloned packets are
received to calculate the estimated link latency LLest.
With this new value, the switch updates the latency reg-
ister at the ingress switch to estimate the latency register
at the ingress switch is updated and used to estimate the
packet deadlines for all the flows on the same output link.
All the process is repeated periodically. Additionally, the
authors developed a custom mechanism to determine the
maximum allowed queuing delay satisfying the deadlines
of all flows processed at the switch. Results show that
P4QoS can significantly improve the performance in the
network, particularly for low-latency traffic, by signifi-
cantly reducing the number of marked packets without
affecting the throughput.

Chen et al. [125] proposed QoSTCP, a P4-based
scheme that enforces QoS policies on TCP flows. The sys-
tem uses meters and Rate-Limiting Notification (RLN) to
smoothly adjust the TCP congestion window. QoSTCP
requires modifying the end-host congestion control to
understand the RLN notification, which indicates the
growth rate of the congestion window before reaching a
threshold. In the switch, QoSTCP implements a Two
Rate Three Color Marker meter (trTCM) and ECN us-
ing P4. Results show that QoSTCP prevents high varia-
tions in the throughput and reduces the average number
of packet losses.

6.3.2. Custom AQM Algorithms Comparison, Discus-
sions, and Limitations

Table 9 compares the schemes described in the pre-
vious section. FDPA and SP-PIFO use approximations
in the data plane to implement a theoretical queueing
model. Both schemes enforce fairness while minimizing
the FCT. Although using approximations in the data
plane can be inaccurate depending on the demands of
the theoretical model, both schemes obtain good results.
P4QoS and [63] leverage on multiple queues to implement
custom policies. P4QoS requires tuning at least four pa-
rameters (i.e.,) to define the slices. In contrast, [63] does
not require any tuning. Both schemes separate traffic,
however, P4QoS enables applications to request specific
QoS to the network (i.e., latency deadlines). On the other
hand, the scheme in [63] overcomes a data plane architec-
tural limitation by implementing virtual queues in the P4
pipeline. This solution is portable to other architectures.

6.3.3. Comparison with Legacy Approaches

P4 provides flexibility in the creation of custom
AQMs. Therefore, more features can be added to pro-
grammable data planes compared to legacy devices. For
instance, the behavior of schemes such as RED (includ-

20

Table 9: Comparison of Custom AQMs Schemes.

Ref Name Strategy Thresholds
Multiple
Queues

Dropping
Signal

Integration
with
Legacy

Scheduling
Algorithm

Tuning
Parameters

Target

[59] P4-SRPT
Approximate of SRPT
using priority queues

2 ×
minTCP
SACKs
ECN

×
FIFO
FQ
SJF

IW
minRTT

ns2

[60] P4-ABC
Implements ABC management
in the data plane

1 × Queue
Length

× ABC None BMv2

[61] SP-PIFO
Approximates PIFO behavior
using multiple queues

1 N/A PIFO None Tofino

[62] FDPA
Prioritizes traffic to
enforce convergence

BW/a
Packet
losses

Strict
Priority

Number
of
Priorities

N/A

[63] N/A
Establishes per slice traffic
policing using vQeueus

>4 TCM Multiple
Policy-
based

Netronome
Smart NIC
and
BMv2

[64] P4QoS
Implements a custom QoS-
based forwarding scheme

2 × Timeout None None
Tofino
and
BMv2

[125] QoSTCP
Limits the rate of TCP
flows using custom policier

2 × Peak
threshold

× Max/min
rate

None BMv2

ing its variant ARED, and WRED) depends on tuning
some parameters. Those parameters require adjustment
depending on the network conditions. Therefore, the
scheme becomes hard to manage and less autonomous.
Operators continue using just the simple TD (i.e., no
AQM). More recent AQMs such as FQ-CoDel and CAKE
present fewer parameters, making them easier to man-
age. P4 approaches address many of the shortcomings
observed in legacy AQMs. P4-based AQMs can dynam-
ically adjust their parameters based on the data plane’s
measurements. With improved feedback, the switches
and end hosts have a better view of the events in the
network. Thus, they can perform more precise actions to
network events.

6.4. Summary and Lessons Learned

The surveyed works agree that packet losses are an in-
accurate indicator of congestion, suggesting that AQMs
should complement congestion control schemes. Improv-
ing TCP congestion feedback via custom AQM schemes
provides an efficient solution to the bufferbloat issue and
other TCP performance metrics such as link utilization,
fairness, and FCT. Most of the AQM summarized in pre-
vious sections consider packet loss or ECN as a congestion
signal, making them TCP-oriented AQMs.

AQMs such as CAKE and FQ-CoDel, do not require
an active adjustment of any parameters. Instead, they

S1 S2

Eth tsend IP

LLEP

Eth tsend tp+tq
Port Latency

1 LLest,1 LLEP

Table with estimated
link latencies

Step 1
Step 2

Step 3

Step 4

... ...

tp:

tq:

Processing time

Queueing time

tsend: Egress timestamp

LLest: Estimated link latency

Figure 22: Overview of the Link latency estimation protocol
(LLEP) [64]. LLEP mitigates the lack of coordination among the
clocks of the switches.

have an integrated dynamic feedback mechanism to en-
sure a low queueing delay. With P4, developers can
implement RFC-standardized AQMs in a top-down ap-
proach and control the system’s behavior under different
network conditions on a per-packet basis. The use of
approximations in the data plane demonstrated to be a
feasible solution to match with theoretical models. Ad-
ditionally, P4 facilitates measuring the queue metrics via
the standard metadata and allows reprocessing packets
invoking primitives such as resubmission and recircula-
tion. These features enable programmers to find alterna-
tives to using complex arithmetic operations.

7. TCP Offloading

The Network Interface Card (NIC) plays a vital role
in network performance. Currently, network process-
ing from low to medium speeds (<10Gbps) is possible
through standard Operating System (OS) drivers and
multicore processors available in the market. However,
to process speed rates around 100Gbps, servers must by-
pass the kernel to save CPU cycles. Offloading process-
ing and network functions to the NICs (e.g., SSL and
TCP segmentation offloading), [126], can release the CPU
from some network stack processes. Thus, improving the
overall performance on the server. However, offloading
operations come with some constraints, such as appli-
cation data availability usually served by the general-
purpose CPU. Table 10 compares programmable and
non-programmable NICs. P4-programmable NICs of-
fer great flexibility to perform custom packet processing.

Table 10: Comparison between P4-programmable and Non-
programmable NICs.

Feature P4-programmable Non-programmable

Flexibility High Low
TCP
Offloading

Full Protocol
e.g., TCP Fragmentation;
TSO/GSO

Latency
Scale

<1ms [1ms-100ms]

General-purpose
CPU Intervention

Low High

Supports DPDK
QoS and
ACL acceleration

×
CPU
bridging

Flexible Limited

21

Such a feature enables the development of novel schemes
that operate and scale faster than non-programmable ap-
proaches. Moreover, P4-programmable NICs can offload
the server’s operations by bypassing the OS kernel and
communicating directly with the CPU.

7.1. TCP Offloading Limitations

7.1.1. Reducing TCP Overheads in Servers

The increasing gap between CPU capacity and net-
work bandwidth makes it challenging to ensure TCP’s
desirable properties and save CPU cycles in the server. In
[127], Mogul identified the complexities that legacy NIC
faces to offload TCP in practice. A persistent problem
described in his work is currently observed in short-lived
TCP connections, which are prevalent in data centers and
WANs [128–131]. Short-lived TCP connections produce
significant overhead because the TCP stack must main-
tain the correct protocol behavior independently of the
application implemented over it. Jacobson [132] proposed
using header prediction to process common TCP scenar-
ios using few instructions. Offloading TCP operations
using P4-programmable NICs obtained more relevance
in the last few years as they can be used for custom
packet processing and offload server operations. Based
on the flexibility provided by P4, many authors imple-
mented schemes that offload transport protocols such as
TCP.

7.1.2. Implementing Transparent Application Offloading
Schemes

Offloading an application to the NIC without signif-
icantly modifying the original code is a challenging task
that requires the development of compilation tools. Fully
offloaded application schemes are constrained due to the
intrinsic requirements of each application. Therefore, de-
velopers can decide which features are more suitable to
be handled by the NIC. Sapio et al. [133] argue that
a transparent in-network computation must be imple-
mented with caution. Programmers have to identify what
type of computation can be performed in the network to
reduce communication overhead.

Several works propose using P4-programmable NICs
to support and run microservices. The microservice ar-
chitecture consists of an application comprising smaller
components coupled independently over well-defined
APIs. Although modern non-programmable NICs par-
tially support TCP offloading operations (e.g., check-
sum calculation, TCP Segmentation Offload (TSO), and
Large Receive Offload (LRO)), they mainly benefit large
data transfers. P4-programmable NICs allow program-
mers to define whether an operation can be fully or par-
tially offloaded to reduce the timescale of a process. P4-
programmable NICs can perform computation closer to
the network edge, offering a better bandwidth/cost effi-
ciency than legacy approaches.

7.2. Protocol Offloading

According to [136], TCP protocol processing becomes
the dominant overhead comparable to application pro-
cessing and other systems overhead. Therefore, to reduce
this trend, the network nodes’ hardware must handle this
issue to fulfill the speed requirements. The origin of this

Application

Libraries

Socket API

TCP Processing

OS kernel

Ethernet

NIC

NIC Driver

Application

Libraries

Socket API

TCP Processing

OS kernel

Ethernet

NIC

NIC Driver

U
se

r
Sp

ac
e

K
e

rn
el

Sp
ac

e
H

ar
d

w
ar

e

U
se

r
Sp

ac
e

K
e

rn
el

 S
p

ac
e

H
ar

d
w

ar
e

(a) (b)

Target-specific
Application

Ethernet

NIC

U
se

r
Sp

ac
e

K
e

rn
el

Sp

ac
e

H
ar

d
w

ar
e

(c)

NIC
Driver

Figure 23: Conventional and kernel bypassing OS architectures. (a)
Conventional operating systems implement all network processing
in the kernel space. (b) Kernel bypass architectures avoid overheads
for kernel crossings by moving the protocol implementation into the
application and providing applications with direct access to the NIC
for sending and receiving packets [134]. (c) Hardware accelerated
data-path architecture requires a target-specific application [135].

issue resides in the TCP stack design, which is imple-
mented in the end devices and traditionally handled by
the OS kernel. Consequently, allocating a considerable
amount of computing resources results in a reduced net-
work packet processing efficiency. Therefore, a software
approach for handling packet processing cannot satisfy
the increasing network transmission speed.

Several efforts have been made to optimize TCP
packet handling by improving what is known as TCP Of-
fload Engines (TOEs) adapters. A TOE refers to a ded-
icated network function that handles a significant part
of the TCP protocol in hardware to offload a general-
purpose CPU from TCP processing. TOE devices can
parse and remove TCP headers from incoming packets
before transferring the data to the host, which reduces the
burden of processing data in the kernel memory. A TOE
device can buffer incoming packets and transfer them di-
rectly to the application’s buffer bypassing the kernel.
Similarly, the application can directly transmit data via
the TOE’s buffer instead of being held in the kernel’s
buffer.

Figure 23 illustrates the differences among a commod-
ity, a kernel bypassing OS architecture, and a hardware
accelerated data-path architecture. Traditionally, the OS
handles all network operations (e.g., implementing TCP
congestion control, encapsulating packets, and checking
protocol correctness) to facilitate data exchange between
applications. On the other hand, bypassing the kernel
significantly reduces overheads and permits applications
to define how network processing is performed. There-
fore, the processing time is shorter and more determinis-
tic, which enables applications to get better performance.
However, developers should implement all the network
protocols in the user space, which is not scalable. P4-
programmable NICs can facilitate the implementation of
TCP functionalities such a congestion control algorithms
and permit transparent application development in the
userspace. The hardware-accelerated data-path archi-

22

tecture enables target-specific applications that run with
high performance. One of the most popular accelerated
data-path architecture is the Data Plane Development
Kit (DPDK) [137]. DPDK is based on a run to comple-
tion model for packet processing. A run to completion
model refers to a scheduling model that runs a task un-
til it finishes. In DPDK, execution units such as CPU
cores and memory are reserved before calling data plane
applications. However, the latter implies that DPDK ap-
plications require a dedicated CPU core to poll packets,
limiting the number of programs running on the architec-
ture. architecture.

The DPDK implements a run to completion model
for packet processing, where all resources must be allo-
cated prior to calling Data Plane applications, running
as execution units on logical processing cores.

NICs rapid evolution enabled the chances to support
new features to offload the general-purpose CPU from
network processing. NICs’ role in modern server systems
became more relevant than merely transferring data be-
tween the server’s CPUs and the network link. Mod-
ern NICs comprise advanced features, namely protocol
offloading, packet classification, rate limiting, virtualiza-
tion, and cybersecurity. This type of device is referred to
as smart NICs. Han et al. [138], identified three factors
that contributed to this trend: 1) New applications whose
performance requirements cannot be achieved with legacy
networking stacks, requiring hardware augmentation, 2)
The increasing adoption of virtualization, which requires
the NICs to support switching functionalities, and 3) The
growth of multitenant data centers and cloud computing
where network isolation is necessary. However, the rapid
evolution of smartNICs presented some challenges, such
as the hardware complexity and the type of applications
supported by the platforms.

The advent of P4-programmable NICs made it pos-
sible to achieve better network and processor utiliza-
tion. P4-enabled NICs facilitate implementing schemes
involving traffic encapsulation, load balancing, and se-
curity protocols (e.g., TLS handshaking, IPSec, and
other encryption schemes) due to their flexibility and re-
duced complexity. Modern NICs such as Pensando [139],
Netronome [140], Xilinx [141] and Innovium [142] have
fully P4-programmable, energy-efficient, multi-core pro-
cessors on which many packet processing functions, in-
cluding a full-blown programmable switch, can run.

7.2.1. Literature review

Moon et al. [65] identified two scenarios where TCP
servers suffer from poor performance: when handling
short-lived flows and handling Layer 7 proxy (L7 proxy).
Short-lived flows suffer from severe overhead in processing
small control packets, and L7 proxy demands extensive
CPU usage and memory allocation for handling packets
between two connections. To solve both issues, the au-
thors presented a hardware-assisted TCP stack architec-
ture implemented using programmable NICs. The system
is called AccelTCP, and it offloads TCP complex oper-
ations by reducing the CPU cycles used by the applica-
tion’s processes. Results show that short-lived connec-
tions perform similarly to persistent connections. It also
significantly improves the performance of Redis [143], and
HAProxy [144] which are L7 load balancers.

Yan et al. [66] used P4-enabled NICs to provide a
solution designed and implemented to meet the 5G net-
working requirements. The authors described the design,
implementation, and experimental results of P4-enabled
smart NICs, and it is used to perform network slicing.
Network slicing is a 5G terminology used to describe the
sub-components of a network. These sub-components are
referred to as the IP and optical network and their way
of transport. The authors implemented a SmartNIC, a
P4 program that inserts Segment Routing Multi-Protocol
Labe Switching (SR-MPLS) header in ingress and deletes
in egress. The system presented results showing that the
SmartNIC can achieve a maximum of 84.8Gbps utiliz-
ing only one CPU core. With P4 SR-MPLS SmartNIC
header insertion, the bandwidth performance can be up
to 30% higher than legacy approaches.

Harkous et al. [67] present P8, a method to estimate
the packet forwarding latency using P4 programmable
NICs and DPDK-based software switch. The authors
analyze the impact of different P4 constructs on packet
processing latency for three state-of-the-art P4 devices:
Netronome SmartNIC, SUME NetFPGA, T4P4S DPDK-
based software switch. Results reveal that the forwarding
latency varies depending on the P4 constructs that are
adopted.

Qiu et al. [68] developed a tool called Clara, which
aims to help developers evaluate the performance of a
Network Function (NF) before offloading it to a Smart-
NIC. Clara takes as an input the original unsupported
NF and predicts its performance after offloading it. Also,
it can determine whether to offload an NF or not and
how to perform an effective port. The system facili-
tates the developer to evaluate offloading strategies, ob-
tain performance insights, and identify suitable Smart-
NIC models for specific workloads. The downside is that
the validation was limited to a particular SmartNIC (i.e.,
Netronome Agilio CX).

7.2.2. Protocol Offloading, Comparison, Discussion and
Limitations

Table 11 compares the schemes described previously.
Performing TCP stateful operations in the NIC requires
maintaining consistency of transmission control blocks in
the NIC and the server. This issue occurs due to tar-
get constraints. The operations on the NIC’s stack devi-
ates from the state of usually another operation, which
means that the P4 program must consider the target
hardware architecture. Moreover, stateful TCP process-
ing increases the complexity and resource consumption
of the implementation running in the NIC. For exam-
ple, TCP SYN packets require flow state initialization
and setup. Therefore, depending on the packet size, such
an operation might take a non-deterministic amount of
time. This variation in the processing time occurs due
to the packet length and/or checksum computation [68].
In [145], Grey et al. highlighted the gap between the ex-
pected and actual behavior in P4-programmable devices.
The authors discussed the consequences of only relying
on the network programming language when ignoring the
limitations imposed by the target’s hardware.

23

Table 11: Protocol Offloading Schemes Comparison.

Ref Name Strategy
Kernel
Bypassing

Mode of
Operation

Performance
Speedup

Custom
Header

General-Purpose
CPU Intervention

Latency
Scale

Target

[65] AccelTCP
Offloading TCP startup and
teardown to the NIC

Endpoint ∼12x <1ms
Netronome
Agilo
LX

[66] N/A
Reducing end hosts and
ToR switch interaction using
the NIC

× Middlebox ∼1.3x × × <400us
Xilinx
Ultrascale+
NetFPGA

[67] P8
Using latency as a metric
of performance in different
targets

× Middlebox Variable × × <50us

Netronome
SmartNIC
NetFPGA
SUME

[68] Clara
Provide performance
evaluation for SmartNIC
offloading operations

× Middlebox N/A <1ms
Netronome
SmartNIC

[69] FlowBlaze

An open abstraction for
building stateful packet
processing functions in
hardware

Endpoint N/A × <1us
NetFPGA
SUME

7.2.3. Comparison with Legacy Approaches

Legacy NICs performs TCP offloading operations
such as the TCP Segmentation Offload (TSO) [146], and
Generic Receive Offload (GRO) [147]. However, these
methods do not support complex policies such as TCP
flow state tracking and Single Root Input/Output Vir-
tualization (SR-IOV). SR-IOV leverages the NIC to by-
pass the hypervisor and send packets directly to the vir-
tual machine [148]. P4-programmable NICs can support
custom implementations, and thus deliver more sophisti-
cated features to perform advanced operations on pack-
ets. Therefore, P4-programmable NICs are appropriate
to optimize network performance in data centers. Con-
sider the example of AccelTCP [65] which aims at of-
floading TCP startup and teardown. The system is fully
implemented on a P4-programmable NIC rather than as
a server-based appliance. Traditional NICs (including
hardware and virtual NICs) do not have such flexibility,
restricting the schemes that can be implemented.

Moreover, in some cases, the NIC becomes a bottle-
neck [149] due to the physical input/output operations
that involve processes copying packets from NIC to up-
per layers. Another existing drawback present in tradi-
tional NICs that perform offloading operations is the lack
of network visibility. This issue happens because the op-
erations are performed out of the OS memory space. P4-
programmable NICs solve this issue by providing a clear
and well developed interface with the control plane that
allows programmers to query data from the data plane
without degrading the performance.

7.3. Application Offloading

In the last two decades, network speed became sig-
nificantly faster than CPU performance, forcing many
data center applications to sacrifice application cycles for
packet processing. The literature shows that there is a
gap between a general-purpose CPU and a network pro-
cessor ASIC. Exploiting SmartNICs capabilities to im-
prove TCP performance is a challenging task due to the
network protocol stack design. This means keeping the
protocol’s properties regardless of what the application
does, which is usually a significant challenge when by-
passing the kernel to send the application’s data to the
NIC directly.

As a result, developers have started to offload com-
putation to programmable NICs, dramatically improving

the performance and energy efficiency of many data cen-
ter applications, such as search engines, key-value stores,
real-time data analytics, and intrusion detection. How-
ever, implementing data center network applications in a
combined CPU-NIC environment is challenging. It often
requires many design-implement-test iterations before the
accelerated application can outperform its CPU-only ver-
sion. These iterations involve non-trivial changes: pro-
grammers may have to move portions of application code
across the CPU-NIC boundary and manually refactor the
program.

7.3.1. Literature Review

Choi et al. [70] present λ-NIC, a system that aims at
offloading serverless workloads (i.e., λs) to SmartNICs.
Serverless workloads are referred to as fine-grained func-
tions with short service times and memory usage. If cor-
rectly balanced and distributed, serverless applications
can be more efficient and cost-saving than buying or rent-
ing a fixed quantity of servers, which generally involves
significant periods of underutilization or idle time. De-
velopers can take advantage of the flexibility provided by
serverless computation, focusing solely on creating cus-
tom programs (i.e., λs) without worrying about the in-
frastructure they use. However, many of these workloads,
which are small functions, run on virtual machines. Vir-
tualization technology becomes inefficient (i.e., process-
ing delays and memory overheads)in these cases where
the service’s cost depends on the usage. The architec-
ture of a typical server CPU cannot handle thousands of
simultaneous threads. Therefore, when a function inter-
rupts the CPU, it has to store the current process’s state

Parse Match Deparse

RDMA Memory

Data in Data out
.
.
.

Host OS Lambdas

Figure 24: λ-NIC’s abstract machine model. λs are independent
programs that only a matching rule can invoke. The matching
stage forwards the packets to the corresponding λ or the OS. The
deparser associates the result of each λ to its corresponding header.

24

Ethernet MAC
+ Serial IO

Programmable NIC

PISA
Pipeline

Packet
Message

HW JBSQ
Core Sel.

Global
RX/TXQs

HW NDP Transport

Local
RX/TXQs

netRX
netTX
netRX
netTX

Registers

netRX
netTX

Registers

ALU L1
C

L2
C

M
a

in
 M

e
m

o
ry

HW Priority Thread Scheduler

Rocket Cores 0 to 3

26ns

26ns

5.3ns

0.6ns

2.2ns

0.9ns

3.1ns

0.9ns

App reads a message

App writes a message
Loopback Latency=13ns

Wire-to-Wire Latency=65ns

RISC-V CPU

Figure 25: The nanoPU design. The NIC includes ingress and egress PISA pipelines, a hardware-terminated transport, and a core selector
with global RX queues; each CPU core is augmented with a hardware thread scheduler and local RX/TX queues connected directly to the
register file. Total wire-to-wire latency is 65ns [74].

and retrieve it back, wasting tens of milliseconds of CPU
cycles. The authors used SmartNICs, or more specifically
ASIC-based NICs, to run these lambdas more efficiently.
ASIC-based NICs consist of hundreds of Reduced Instruc-
tion Set Computer (RISC) processors (i.e., NPU) with in-
dependent local instruction storage and memory. Conse-
quently, these SmartNICs-unlike GPUs and FPGAs, op-
timized to accelerate specific workloads, are more suitable
for running many discrete functions in parallel at high
speed and low latency. Consider Figure 24, λ-NIC imple-
ments a Match-Lambda programming abstraction similar
to the Match-Action Table (MAT) abstraction but, in
this case, the λs performs more complicated operations.

In this model, λs are completely independent pro-
grams that do not share states and are isolated from each
other. The matching stage operates as a scheduler that
forwards packets to the matching lambdas or the host
OS. In the last stage, a parser handles packet operations
(e.g., header identification), and lambdas operate directly
on the parsed headers. Therefore, the abstract machine
model provides developers with an optimal way to run
serverless workloads in parallel without any other inter-
ference. The authors developed an open-source imple-
mentation of λ-NIC using P4-enabled SmartNICs. They
also implemented the methodologies to optimize λs to
utilize the SmartNIC resources efficiently. Results show
that λ-NIC achieves a maximum of 880x in workloads’
response latency and 736x more throughput reducing the
main CPU and memory usage.

Ibanez et al. [74] presented a scheme called nanoPU,
which minimizes the tail-latency for Remote Procedure
Calls (RPC). The system mitigates the causes of high
RPC tail latency by bypassing the cache and memory hi-
erarchy. The nanoPU directly places arriving messages
into the CPU register file. Figure 25 shows the block di-
agram of the nanoPU. Notice that all the elements are
implemented in hardware. The system implements NDP
[41] due to its low-latency performance. A message buffer
serves packets at line rate and a core selection algorithm
responsible for allocating incoming processes to idle cores.
The system supports a priority thread scheduling algo-

rithm that supports up to four threads and a register file
interface. Finally, the scheme has a hardware/software
interface to debug and test custom programs. Results
show that the wire-to-wire latency through the applica-
tion is just 65ns, about 13× faster than the current state-
of-the-art approaches. The proposed hardware transport
layer responds faster than software, leading to a tighter
congestion control loop between end-points. Addition-
ally, nanoPU can handle many simultaneous RPC com-
munications that scale linearly with the number of out-
standing messages rather than hosts in a data center.

Gao et al. [71] proposed a system called OVS-CAB
that applies an efficient rule-caching to offload an Open
Virtual Switch (OVS) to a SmartNIC. The system can
handle traffic at a high line rate and offload rule lookup
functions SmartNIC keeping a low CPU usage. Figure
26 depicts the scheme behavior. Moreover, by caching

Bucket caching daemon

Digest listener

Userspace interface

Metadata
table

Bucket
table

Flow
table

Buffer

Server
Userspace

Netronome
SmartNIC

Figure 26: System overview. OVS-CAB hardware offloading system
consists of three principal components: 1) A P4-based hardware ta-
ble pipeline that serves as the hardware data plane, 2) A userspace
control plane module that implements OVS-CAB rule-caching logic,
and 3) An RPC-based message system that communicates between
the data plane and the control plane.

25

Update TCP
Context

Raise Flow
Events

Update TCP
Context

Payload
Reasembly

Raise Flow
Events

Sender TCP Stack

Receiver TCP Stack

Incoming
Packets

Outgoing
Packets

Figure 27: Packet processing steps in mOS. Upon packets’ arrival,
mOS first updates its TCP context for the packet sender. Then, it
sends the records of all flow events that must be triggered [150].

selected rules, the system achieves a high data plane hit
rate while using low memory. Results show that OVS-
CAB improves the throughput of OVS and significantly
reduces the host CPU utilization.

Kohler et al. [72] developed an in-network computing
system for Complex Event Processing (CEP). CEP is a
method that consists of tracking and analyzing streams of
information about events to infer conclusions from them.
This method requires real-time processing to extract the
data from events such as text messages, social media
posts, stock market feeds, traffic reports, weather reports,
or other data types. The authors demonstrate that it is
feasible to express CEP operations in P4 and develop a
tool to compile CEP operations. Furthermore, they iden-
tified challenges and problems to suggest future research
directions for implementing full-fledged in-network CEP
systems.

Mohammadkhan et al. [73] offloaded NFVs by using
P4-programmable NICs. NFVs are widely adopted in
large-scale enterprise and data center networks to deliver
more complex and diverse in-network processing. The
scheme is called P4NFV and aims at determining the
partitioning of the P4 tables and optimal placement of
NFs to minimize the overall delay and reduce resource
utilization. P4NFV offers a unified host and NIC data
plane environment to the SDN controller.

P4NFV’s framework considers both host and NIC ca-
pabilities to provide a unified view of a P4-capable NFV
processing engine. For example, in [151], the authors de-
scribe how NFs can use high-performance userspace TCP
stacks to simplify operations such as TCP byte stream
reconstruction. This relatively heavyweight function in-
volves copying packet data into a buffer, incurring un-
necessary latency. This latency is due to the processing
delay of NFs chain that perform TCP byte stream recon-
struction using mOS [150]. mOS is a reusable networking
stack for stateful flow processing in middlebox applica-
tions. Figure 27 shows the packet processing steps of
mOS. Upon packets’ arrival, mOS first updates its TCP
context for the packet sender. Then, it sends the records
of all flow events that must be triggered. Results with
P4NFV demonstrate that as the chain length increases,
the latency for the NFs performing TCP processing in-
creases significantly compared to layer-2 NFs. This ad-
ditional latency can be avoided by performing TCP pro-
cessing only once and then exposing the resulting stream
to the sequence of NFs.

Pontarelli et al. [69] presents FlowBlaze, an abstrac-
tion that extends match-action languages such as P4,

to simplify the description of a large set of layer 2 to
layer 4 stateful functions, making them available for im-
plementations on FPGA-based SmartNICs. FlowBlaze
adapts match-action tables to describe the evolution of
a network flow’s state using Extended Finite State Ma-
chines (EFSM). The framework aims to provide a system
that allows a program with little hardware design exper-
tise to implement quickly, update, stateless, and state-
ful packet processing functions at high speed on FPGA-
based SmartNICs.

7.3.2. Application Offloading Comparison, Discussions,
and Limitations

Table 12 compares the schemes described in previous
sections. P4-based NICs are continually evolving to sup-
port new features. The role of NICs in modern server
systems has changed. NICs can now host advanced fea-
tures, such as protocol offloading, packet classification,
rate limiting, cryptographic functions, and virtualization.
Jang et al. [138] identified three factors that contributed
to this trend: 1) The development of new applications
whose performance requirements cannot be met by legacy
networking stacks, demanding hardware augmentation,
and 2) The increasing popularity of virtualization, where
NICs should support switching functionality, and 3) the
rise of multi-tenant data centers and cloud computing for
which NICs must provide isolation mechanisms. How-
ever, a drawback of P4-based NICs is the complexity of
the platforms. High-level programmable platforms sup-
port limited network functions. Existing NICs do not
offer a systematic methodology for chaining multiple of-
fload capabilities. According to Le et al. [152], they can-
not fully implement complex network functions required
by some encryption schemes or deep packet inspection.
P4-programmable NICs present a higher level of flexibil-
ity and programmability. These programmable NICs can
offload almost any packet processing function from the
server. Moreover, they employ energy-efficient proces-
sors compared to x86-based server processors, achieving
higher energy efficiency in packet processing.

7.3.3. Comparison with Legacy Approaches

P4-programmable NICs offer more flexibility in of-
floading TCP functionalities than traditional NICs,
which have hardwired offloading modules (e.g., TSO,
GSO, checksums). P4-programmable NICs present spe-
cialized packet engines that allow the implementation
of a variety of protocol accelerators. Therefore, P4-
programmable NICs can be considered as a general-
purpose offloading platform to develop key/value store
applications, microservices, and other types of network
functions. P4-programmable NICs can be considered net-
work accelerators capable of offloading communication
routines and computational kernels from the CPU. On
the other hand, programmable NICs that do not use
P4 language (e.g., Mellanox BlueField SmartNICs [153])
present a lower degree of flexibility, making the develop-
ment process more difficult and closed to a vendor tech-
nology. P4-programmable NICs offer similar performance
and a scalable solution for large and diverse deployments.
Moreover, with P4, the NIC’s functionalities can be ex-
tended to support applications, thus minimizing CPU in-
tervention.

26

Table 12: Application Offloading Schemes Comparison.

Ref Name Strategy
Kernel
Bypassing

Mode of
Operation

Number of
Threads

Performance
Speedup

Custom
Header

GP-CPU
Intervention

Latency
Scale

Target

[70] λ-NIC
Offloading serverless
operations to the NIC

Endpoint >4000 ∼880× × × <1us
Netronome
SmartNIC

[71] OVS-CAB
Offloading an OVS to
the NIC

N/A Endpoint ∼1.9× × <1ms
Netronome
SmartNIC

[72] P4-CEP
Offloading rule lookup
functions to the NIC

× Middlebox N/A N/A N/A <600us
Netronome
SmartNIC

[73] P4-NFV

Providing a unified P4
switch abstraction
framework to simplify
the SDN control plane

× Middlebox ≥8 ∼2.5× <1ms
Netronome
SmartNIC

[74] nanoPU

Minimizing tail latency
for RPCs by bypassing
the cache and memory
hierarchy

Endpoint ≤4 N/A × × <70us

Netronome
SmartNIC
+
RISC-V

7.4. Summary and Lessons Learned

P4-programmable NICs complement server opera-
tions by not just simple forwarding packets. Instead, they
can perform complex operations and speed up the deliv-
ery of services that otherwise are affected due to the us-
age of the general-purpose CPU. Offloading computation
from a server’s CPU to a programmable NIC releases a
substantial amount of the server’s CPU resources, mak-
ing programmable NICs attractive for cloud operators to
save costs. Firestone [154], considers that programmable
data planes improve cloud computation due to their high
performance and low overhead. These are two essen-
tial characteristics for data centers to reduce costs and
increase performance. In the last decade, the network
speed increased around 100Gbps and included new ser-
vices and applications. This increase demands an efficient
solution that reduces CPU cycles raises the customer’s
overall cost, and reduces the available processing power.
To this extent, ensuring desirable TCP behavior usually
entails performance issues, which increases the gap be-
tween CPU capacity and network bandwidth. McKeown
[155] remarked this difference. Future work should con-
sider the security implications of bypassing kernel func-
tionalities that involve checksum computation and fire-
walls policies.

8. Network Measurements

Applications that use TCP as their transport proto-
col demand high throughput and low latency. Eventually,
these applications can experience performance problems
that are hard to diagnose due to the complexity of the
TCP stack. Such complexity implies using heuristics to
understand network conditions and application behavior.
Therefore, there is no optimal setting to deal with and
optimize TCP traffic which usually depends on applica-
tion requirements.

Events that affect TCP performance are getting
harder to diagnose because of the increasing link speed
used in environments such as data centers. Moreover,
the tools used to diagnose TCP performance are still the
same as ten years (e.g., capturing packet traces and cap-
turing TCP executions). It has been shown that these
tools [156–158] are effective to diagnose individual TCP
connections. However, they are not scalable to diagnose
problems in large data centers, where the number of flows
can easily surpass one million.

8.1. Challenges on TCP Performance Monitoring

A TCP connection might encounter performance is-
sues at the sender, receiver, or network. Table 13 sum-
marizes some examples of performance problems corre-
sponding to each element of the network. Considering
the significant amount of applications that use TCP, it is
hard to select the right metrics to identify TCP perfor-
mance issues.

8.1.1. Identifying Issues in the Sender

TCP performance problems at the sender may occur
due to limited resources. For example, a slow disk, slow
CPU produce data at a lower rate than the maximum
capacity the network can handle. This limitation is also
known as the application is non-backlogged. To identify
this issue, measurement schemes can count sent packets
and compare them to the estimated sending rate, which is
defined by receive and congestion windows. Notice that
the resource’s limitation on the receiver side can affect
the performance too.

8.1.2. Inferring Network Statistics

Network problems degrade TCP’s performance. For
example, TCP reduces its sending rate as a result of
packet losses and high latency. The sender determines its
sending rate based on its congestion control algorithm,
which comes in different flavors. That means that the
dynamics of a TCP flow vary depending on the conges-
tion control algorithm. Identifying the TCP congestion
control and the number of TCP flows using a specific
congestion control provide relevant information to no-
tify network elements (i.e., sender, receiver, router, and
switches) about the performance. Experimental evalua-
tions [159, 160] reported that BBRv1 present poor coex-
istence with algorithms such as CUBIC. However, legacy

Table 13: Elements of a TCP Connection and its Point of Failure
[75].
Element Performance Problem Proposed Solution

Sender

- Data rate limited by
resource constraints

- Not enough data to
send (non-backlogged)

- Bottleneck produced by
the server’s processing speed

Estimating the right
sending rate

Network

- Congestion (high loss and latency)
- Queueing delay
- Routing changes
- Limited bandwidth

Providing enhanced
feedback

Receiver
- Delayed ACK
- Small receive buffer

Ensure the
receiver is not
the bottleneck

27

TCP flows

AS3 (backup #2)

AS2 (backup #1)

AS1 (primary)

AS4

Path before
rerouting

Path after
rerouting

Failure AS2 AS3

Time

TCP flows progression

TCP flows

Primary path Backup path

AS1

Th
ro

u
gp

u
t

Blink

Failure

Receiver

Figure 28: Blink mechanism. Before the failure, the primary path is through AS1. Blink identifies the failure in AS4 measuring the
retransmissions. Blink immediately reroutes TCP flows to both AS2 and AS3. The Blink switch determines that AS2 is not working and
forwards all the traffic through AS3 [77].

devices are unable to provide such information. With pro-
grammable data planes, developers can create schemes to
infer the congestion control [47] as well as many other
metrics such as RTT, retransmission rate, link utiliza-
tion, etc. Programmable data plane can provide real-
time monitoring by extracting packet header information
(i.e., packet parsing), observing the information carried
by packets across multiple stages (i.e., P4 metadata), and
track the state of TCP flows using registers.

8.1.3. Tuning Receiver’s Parameters

The receiving TCP window determines the amount
of data the receiver can hold. The larger the buffer, the
more data can be in flight between two hosts. If the TCP
receiving buffer is smaller than the BDP, the sender waits
longer for the receiver to acknowledge the data, resulting
in degraded performance. Identifying the limitations of a
TCP connection on the receiver side is essential to tuning
the buffers correctly.

8.1.4. Network Diagnosis

Network operators need to know how well their net-
work performs to determine what services they can offer
their customers. However, visualizing the network be-
havior is not an easy task. Legacy measurement schemes
rely on polling and sampling methods. Thus, they can-
not provide a granular view of the events that affect the
performance. As the volume of TCP traffic keeps in-
creasing, reporting network performance and detecting
failures requires efficient schemes capable of processing,
characterizing, and modifying TCP dynamics.

According to [161], the global IP traffic was 1.2 Zetta-
bytes (ZB) per year (i.e., 1.2 billion Gigabytes (GB)) per
month in 2016. They estimated that by 2021, the global
IP traffic would reach 3.3 ZB per month, which means
that the global IP traffic in 2021 is × 127 larger than
in 2005. Recently, during the COVID-19 pandemic, the
Internet traffic increased between 25% and 35% in march
2020. This is due to the worldwide lockdowns and the
shift to remote working policies [162].

The abrupt increase of Internet traffic demands an ef-
ficient way to measure network performance and detect

failures. P4-programmable devices emerge as a promis-
ing solution to implement novel measurement schemes by
addressing the inherent shortcomings of legacy networks.
P4-based schemes can accurately report network issues
and take countermeasures oriented to mitigate network
problems. The source of such failures might have dif-
ferent and diverse sources (e.g., traffic bursts, resource
allocation, protocol limitations, malicious or misconfigu-
rations) being a challenge to implement an efficient net-
work diagnosis scheme.

Sampling and polling methods do not have the res-
olution to detect events in the order of microseconds
(e.g., typically, 1/30,000 packets), which provides coarse-
grained visibility. The inherent high sampling and polling
rate thwarts the development of measurement applica-
tions. For instance, it is impossible to measure the
dynamics of TCP parameters such as congestion win-
dow, receive window, sending rate, and others. P4 Pro-
grammable data planes enable the possibility to perform
fine-grained measurements in the data plane at a line rate
(e.g., ∼100Gbps). P4 Programmable switches provide
flexibility to inspect traffic with high accuracy. They also
allow programmers to take actions almost in real-time
(e.g., dropping a packet after a threshold is surpassed, as
done in AQMs).

8.1.5. Literature Review

Holterbach et al. [163] designed a system that recog-
nizes a disruption in the TCP behavior, facilitating its
tracking. The system is called Blink, and it is based
on the predictable behavior of a TCP connection upon
a packet loss. Figure 28 shows a scenario where a
Blink switch redirects the traffic upon detecting a failure.
Whenever Blink detects a failure, backup paths that are
pre-populated by the control-plane, are immediately ac-
tivated. Blink also permits policy-based rerouting. Thus,
network operators can adapt the system according to
their needs. The authors also considered security aspects.
For instance, if an attacker generates significant traffic to
redirect all the traffic through a malicious path, Blink can
differentiate whether the traffic is legitimate and decide

28

Data plane (Monitoring on edge)

Control plane
(Dapper’s diagnoser)

Sender Receiver

Packets

Figure 29: Dapper’s architecture : 1) Data plane monitoring on
edge, 2) Control plane diagnosis techniques.

accordingly. The authors evaluated Blink’s performance
considering a large number of flows. Results indicate that
the system achieves a fast reaction time to redirect Inter-
net traffic. It prevents unnecessary traffic shifts even in
noisy scenarios.

Ghasemi et al. [75] presented a system to diagnose
cloud performance using programmable data planes. The
system is called Dapper, and it analyzes TCP perfor-
mance in real-time at the hypervisor, NIC, or top-of-rack
switch. The system identifies when a connection is lim-
ited by the sender, the network, or the receiver. For in-
stance, when a slow server competes for shared resources
or the network experiences congestion, the receiver has
a small receive TCP buffer. The authors evaluate the
accuracy of the system emulating three scenarios: 1)
The sender presents a low performance (e.g., slow disk
or busy CPU), 2) The receiver has limited resources such
as small TCP receiving buffer size, 3) The network ex-
perience congestion. Figure 29 depicts the system’s ar-
chitecture. Dapper measures the metrics produced by
the sender, network, and receiver to detect end-to-end
performance issues. It helps to identify which entity is
responsible for poor performance. Such procedure is usu-
ally the most challenging part of failure detection and can
take from an hour to days in data centers [164]. Once the
system identifies the bottleneck, specialized tools within
that component can pinpoint the root cause. Dapper in-
fers key TCP metrics such as counting the number of
bytes, packets sent or received, congestion, and receive
windows. Dapper achieves an average accuracy of 94%
detecting problems regardless of their nature. The au-
thors also mention that the accuracy is proportional to
the severity of the problem. However, Dapper provides
an average accuracy of around 94%. Liu et al. [165] pro-
pose a sketch-based performance monitoring scheme that
allocates sublinear memory as a function of the number
of flows. A sketch is a reduced data structure that com-
prises the main characteristics of a more extensive set of
data. Typically, performance monitoring requires com-
bining information across pairs of packets (e.g., matching
a packet with its acknowledgment to compute the RTT).
The authors tested the system in six platforms (e.g., P4,
FPGA, GPU, multi-core CPU, and OVS), being the one
implemented in P4 the fastest. Results show that the
system detects ∼82% of top 100 problematic flows among
real-world packet traces using just 40KB memory in the
Tofino ASIC.

Wang et al. [79] proposed a P4-based TCP-friendly
meter that does not degrade TCP performance. They

Packet size
B

Mark tag
as red

Drop

Bucket
level -= B

Pass

B > bucket level
Mark tag
as green

Yes

No

Tokens

Bucket level
Bucket size

(1)

(2)
(3)

(4)

Figure 30: Scheme of a single rate two color meter algorithm. The
meter uses a bucket to accumulate tokens that are generated at the
speed of the meter. The meter marks incoming packets on red or
green depending on the packet’s size. If the size of a packet exceeds
the current level of tokens in the bucket, it is marked red and then
dropped. Otherwise, the packet is marked green and passes the
meter.

found that meters in legacy switches interact with TCP
flows so that these flows can only reach about 10% of
the target rate. Based on their study, the authors found
that the TCP performance degradation problem is caused
due to the harmful interaction between the metering al-
gorithm and the TCP congestion control. The system
integrates a single rate two color meter algorithm, ECN,
RED [8], and an adaptive control scheme [166]. Figure 30
describes the flow chart of a single rate two color meter
algorithm used in the scheme. The meter uses a token
bucket to accumulate tokens that are generated at the
rate of the meter. The meter marks incoming packets on
red or green depending on the packet’s size. If the size of
a packet exceeds the current level of tokens in the bucket,
it is marked red and then dropped. Otherwise, the packet
is marked green and passes the meter. Experimental eval-
uations show that the proposed system achieves rates of
up to 85% of the target rate.

Chen et al. [78] leverage on programmable data plane
to implement a passive tool to measure the RTT. The
proposed algorithm calculates the RTT by matching the
sequence number Seq of each packet with its correspond-
ing acknowledgment ACK. Compared to traditional mea-
surement systems, which are mainly based on active prob-
ing, the proposed system produces many samples for long
TCP connections. Due to the memory limitations, the
authors implemented the records in a multi-stage hash ta-
ble that assigns an expiration time for each connection.
Therefore, the entries matching with incoming packets
produce RTT samples and consequently are deleted. On
the other hand, those packets that never matched with
their corresponding ACK are tagged as expired based on
their timestamps and are overwritten when hash colli-
sions occur. Results report over 99% of all RTT samples
obtained in a campus network. The evaluation also re-
ports that the data structure employed to store the se-
quence numbers achieves the best performance for RTT
monitoring. Future works consider including anomaly de-

29

Data plane

Control plane

Audit request
agent

Audit request
agent

Audit request
agent

Audit request
agent

Audit request
agent

(1)

(1) (1)

(1)

(2)

(2)

(3)

Normal traffic Audit request Multicast audit request(1) (2) (3)Normal traffic Audit request Multicast audit request(1) (2) (3)

Report

Figure 31: System architecture. SpiderMon keeps track of the most
recent contention information. The telemetry data structure pre-
serves the most recent packet-level information in a logically circu-
lar buffer.

tection.
Wang et al. [76] contributed with a similar work that

addresses a limitation of the previous system, detecting
the root cause of performance degradation in data cen-
ter networks. The authors analyzed similar solutions and
pointed out weaknesses such as the overhead produced by
the data collection, the difficulties in locating the point
of failure, and the tuning requirements of query-driven
solutions. The proposed solution is called SpiderMon,
and it is composed of two phases. The first phase keeps
track of the performance of every flow until it detects
a problem. When this happens, the system passes to
the second phase and triggers a debugging process that
uses a causality analyzer to find the root cause of the
performance degradation. Figure 31 shows the system
architecture. SpiderMon precisely collects diagnostic in-
formation without producing excessive overhead, i.e., it
can accurately find the root cause with a limited number
of telemetry data.

Chen et al. [80] presented ConQuest, a compact data
structure implemented in the data plane that identifies
the flows making a significant contribution to the queue.
Excessive queueing leads to higher delay and eventually
to packet drops. This problem escalates in the presence
of microbursts, which is a phenomenon that increases the
queue abruptly in a short period (i.e., in a sub-millisecond
scale), exhausting the egress buffer. ConQuest can iden-
tify contributing flows with 90% precision on a 1 ms
timescale, using less than 65 KB of memory. The sys-
tem is implemented using a measurement data structure
that operates at line rate to detect and reduce even short-
lived queue buildup as it forms. The authors determined
the optimal queue length to allow a single TCP connec-
tion to reach line rate based on the minimum congestion
window size required based on the RTT.

Kim et al. [81] introduce Meta4, a framework used to
implement network monitoring by the domain name in
the data plane by collecting and organizing information
from the DNS response into match action tables. The sys-
tem aims at reporting statistics such as the traffic volume
based on a user-defined policy. Figure 32, the system is
divided into three levels, the management plane, the con-
trol plane, and the data plane. In the management plane,
the network operator defines high-level policies that the
control plane converts into match-action rules that will

Domain IP
Mapper

Parser

Control
Plane

Data Plane

Packets

Match-Action
Rules

Traffic
Count

Management
Plane

Policy
Traffic

Volume
Report

Traffic Count
by Domain

Traffic Count
by Domain

Figure 32: Meta4 architecture. The system comprises three levels:
the network operator, the control plane, and the data plane. The
network operator defines high-level policies that the control plane
converts into match-action rules for the data plane [81].

run in the data plane. Therefore, the network opera-
tor can measure policy-based metrics such as the traffic
volume per domain. Additionally, the scheme ensures
privacy by not exposing individual IP addresses. The
scheme can be expanded to cover other applications that
include implementing custom traffic monitoring policies,
firewalls, limiting the rate, and rerouting.

In another work, Chen et al. [167] developed a sys-
tem that uses programmable data planes to monitor the
queue latency in a legacy switch. The programmable data
plane taps both ingress and egress ports and computes
the time difference between incoming and outgoing pack-
ets to infer the queue length. Results collected in a cam-
pus network demonstrated the heterogeneous nature of
the events that lead to high queueing delay. Such events
result from 1) Steady-state congestion, which consists of
high queueing delays for a long time. 2) Bursty traf-
fic makes the queueing delay oscillate due to concurrent
large flows competing for bandwidth. Notice that bursty
events diminish the capacity of TCP congestion control
algorithms to probe the bottleneck bandwidth correctly.
Therefore, also affecting other TCP flows and leading to
poor link utilization. 3) Outlier high-delay packets, the
authors detected link underutilization and packets with a
low queuing delay caused by a full queueing buffer. The
latter requires further research.

In a recent work, Kfoury et al. [168] designed a P4-
based scheme that dynamically adjusts the buffer size of
legacy routers. The programmable switch is employed as
a passive tool that measures the RTT and the number
of flows to set the buffer size of a legacy router and re-
duce unnecessary delays. Figure 33 shows a high-level
overview of the proposed system. The dynamic buffer
adjusting process consists of three steps: (1) A copy of
the traffic is received by the P4 switch. (2) The RTT
of individual TCP flows is computed at the P4 switch’s
data plane. (3) The P4 switch modifies the routers buffer
size according to the equation RTT/

√
N [117]. Results

show an improvement in metrics such as the RTT, fair-
ness, and the loss rate. Moreover, the FCT of short flows
is also improved compared to a scenario where the buffer
size remains fixed.

8.1.6. Network Performance Measurements Schemes
Comparison, Discussions, and Limitations

Table 8.1.5 compares the schemes described in the
previous section. Considering that TCP is the most

30

Table 14: Network Measurement Schemes Comparison.
D

ia
g
n
o
s
is

Ref. Name Strategy
Measured
Information

Introduces
Overhead

Reactive
Processing

Network
Wide

Integration
with Legacy

Analysis Target

[78] N/A
Passively monitors the
RTT in the data
plane

RTT × N/A
Data
Plane

Tofino

[75] Dapper
Analyzes TCP performance
in real time near the
end hosts

RTT × N/A × × Control
Plane

N/A

[81] Meta4
Implements network
monitoring by domain
name

DNS
response

×
Collecting
packet
size

Control
Plane

Tofino

[79] N/A
Implementing a TCP-
friendly meter in the
data plane

Traffic
rate

N/A × × Data
Plane

Ivantec

P
e
r
fo

r
m

a
n
c
e

D
e
g
r
a
d
a
t
io

n
H

a
n
d
li
n
g

Ref. Name Strategy
Measured
Information

Passive
Measurement

Mitigation
Strategy

Network
Wide

Failure
Detection
Method

Analysis Target

[163] Blink
Using TCP induced signals
to detect failures directly
in the data plane

Flow size
and duration,
packet size,
RTT

× Rerouting × Heuristics
Control
Plane

Tofino

[76] SpiderMon

Identifies the root
cause of performance
degradation problems
with minimal overhead

Queue
latency

× Reporting
Flow ID

Provenance
Graph
Model

Control
Plane

SUME
Switch

[80] ConQuest
Identifies the flows making
a significant contribution
to the queue

Queue
length

Adjusting
the Rate

Data
Structure

Data
Plane

Tofino

[168] N/A

Uses a P4 switch as a
measurement tool to
dynamically modify the
buffer size

RTT,
Number of
flows

Adjusting
the buffer
size

N/A
Control &
Data Planes

Tofino

widely adopted transport protocol, many performance di-
agnosis schemes track TCP behavior to infer performance
issues. Table 8.1.5 compares the approaches presented in
the previous section. For instance, to identify the point
of failure, Dapper consider variables such as the sending
rate, Maximum Segment Size (MSS), sender’s reaction
time (time between received ACK and new transmission),
loss rate, latency, congestion window (CWND), receiver
window (RWND), and delayed ACKs. Dapper infers
sending rate, Maximum Segment Size (MSS), sender’s re-
action time (time between received ACK and new trans-
mission), loss rate, latency, congestion window (CWND),
receiver window (RWND), and delayed ACKs. Based on
the inferred variables, Dapper can identify the root cause
of the bottleneck. However, Dapper does not provide
information about the root cause or location of the fail-
ure. The work presented by [76] (SpiderMon) incorpo-
rates such capability and reports the root cause and the
location of the failure. Moreover, SpiderMon collects di-
agnosis information without causing any overhead, which

not accurate enough and often lose measuring information
(§III-B). Programmable switches have lately emerged as a
promising approach to customize data plane behavior [10].
Due to their high precision, low cost, and compute power,
recent work [11], [12] has investigated using these switches
as instruments to process traffic measurements at terabits per
second rates.

A. Contributions

This paper proposes a cost-efficient scheme that dynam-
ically modifies the router’s buffer size based on current
network conditions. The conditions are passively measured
by tapping on the router’s ports and forwarding the traffic to
a programmable switch. The programmable switch tracks the
number of long flows and computes their RTTs, which are
used to modify the router’s buffer to the newly determined
size. The contributions are:

• Devising a scheme that relies on passive measurements,
which can process traffic at terabits per second rates.

• Identifying long flows, tracking their counts, and mea-
suring their RTTs entirely in the data plane.

• Using network measurements to modify the buffer size
of the router on-the-fly, to improve performance.

• Reducing queuing delays and improving the fairness of
flows, regardless of the CCA.

• Improving the flow completion time of short flows shar-
ing the bottleneck link with long flows.

The rest of this paper is organized as follows. Section
II describes the related work. Section III describes the pro-
posed system. Section IV presents the experimental setup and
compares the performance of the proposed system against a
network where the buffer size is fixed. Section V concludes
the paper and describes future work.

II. RELATED WORK

A. Sizing router buffers

Static buffer tuning. Villamizar et al. [6] established the
initial rule-of-thumb, which states that the buffer size is equal
to the BDP. Appenzeller et al. [7] demonstrated that the buffer
size can be reduced to BDP/

√
N , which has been extensively

evaluated using static buffer sizes [4, 5, 13, 14]. Dhamdhere
et al. [15] considered packet loss rates in their formula, and
argued that to limit the maximum loss rate, the buffer should
be proportional to the number of long flows. Spang et al. [3]
reported on measurement of Netflix video traffic to understand
how the buffer size affects the quality of the videos. The au-
thors statically configured different buffer sizes and observed
that buffers that are too small and too large worsen quality.
Beheshti et al. [16] presented buffer sizing experiments at
Facebook. The authors manually modified buffer sizes and
noted that small buffers produce tolerable degradation in some
metrics (e.g., packet drop rates) and significant enhancements
in others (e.g., latency). No conclusive adequate buffer size is
provided.

Dynamic buffer tuning. The idea of dynamically modifying
the buffer started with Flow Proportional Queuing (FPQ)
[17] which adjusts the amount of buffering according to
the number of TCP flows. Further schemes [18–20] also
considered modifying the buffer size based on network traffic.
However, such schemes have a main limitation; they assume
that their methods will be implemented on contemporary
routers. Such process is length and costly and most likely,
router manufacturers will not modify their existing devices
[21]. In fact, such schemes and other Active Queue Manage-
ment (AQM) algorithms have been proposed more than ten
years ago, and are still not implemented on contemporary
routers in the market today, though the problem of buffer
sizing is still being thoroughly researched [5].

B. Measurements using programmable data planes

Ghasemi et al. [11] proposed Dapper, a system that uses
programmable switches to diagnose the cause of congestion.
Metrics estimated in Dapper include the Round-trip Time
(RTT), in-flight bytes, and loss rate. Chen et al. [22] proposed
a system that leverages programmable switches to passively
compute the RTT of TCP traffic. Kagami et al. [12] pro-
posed CAPEST, a method that collects timing information to
estimate the network capacity and the available bandwidth.
Kfoury et al. [23] proposed a P4-based method to automate
end-hosts’ TCP pacing.

III. PROPOSED SYSTEM

Fig. 1 illustrates an overview of the proposed system. The
scheme can be used in both access and core networks. The
steps to dynamically modify the router’s buffer size are: 1)
a copy of the traffic is forwarded to a programmable switch
by passively tapping on routers’ ports; 2) the programmable
switch identifies, tracks, and computes the RTT of long
flows. Afterwards, the computed statistics are pushed to the
control plane where the buffer size is calculated; and 3) the
programmable switch modifies the legacy router’s buffer size.

It is worth noting that programmable switches are signifi-
cantly cheaper than contemporary switching/routing devices.
This is because they are whiteboxes, and are equipped with

Fig. 1. High-level system overview. Step (1): a copy of the traffic is forwarded
by the TAP to the P4 switch. Step (2): the RTT of individual flows is computed
at the P4 switch’s data plane. Step (3): The P4 switch’s control plane modifies
the router’s buffer size according to the equation BDP/

√
N .

Figure 33: High-level system overview. The P4 switch collects traf-
fic and calculates the RTT per flow. Then, the P4 switch sets the
buffer size of a legacy router [168].

makes the system more scalable.
Similarly, Blink considers metrics such as the retrans-

missions rate, packet loss rate, round-trip-time, and out-
of-order packets to identify the top-k problematic flows.
Moreover, Blink identifies failures considering the pre-
dictable behavior of TCP, which retransmits packets at
epochs exponentially spaced in time in the presence of
failure. For instance, Blink promptly reroutes traffic
whenever failure signals are generated by the data plane,
while SpiderMon limits the root cause of hosts’ sending
rate. Schemes such as SpiderMon base the failure identifi-
cation considering latency increase. Other schemes (e.g.,
Dapper) leverage reactive processing to identify and mit-
igate failures. Finally, it is worth mentioning that some
systems (e. g., Blink, Dapper) used real-world data, such
as the ones provided by CAIDA, to evaluate their sys-
tems. Using real-world traces helps to adjust the pro-
posed solution in production network scenarios.

8.1.7. Comparison with Legacy Approaches

The principal difference in network diagnosis schemes
between P4-programmable and legacy approaches is the
granularity provided by the data plane. Such features
enable the implementation of diagnosis schemes that can
detect and execute actions at a line rate. Moreover, P4-
programmable data planes can process failure events be-
fore informing the control plane, such as in [163]. The
drawback of P4 schemes against legacy devices is the
lack of a protocol that defines the interaction between
the control and management planes. Vendors have de-
fined solutions such as NetFlow, JFlow, or Internet stan-
dards such as the Simple Network Management Proto-
col (SMNP). However, these schemes lack granularity.
Lastly, P4-based diagnosis schemes can take custom ac-
tions (e.g., rerouting) to react to failure events. In legacy
devices, packet manipulation is restricted, limiting the
control plane’s capacity to perform actions.

31

TCP Enhancements
Challenges and
Future Trends

Arithmetic
Computation

Expanding
Memory
Capacity

Reducing
Control Plane
Intervention

Fast Loss
Detection

Enhancing TCP
Congestion
Feedback

TCP State
Synchronization

Improving the QoS
of TCP-based Apps.

Improving TCP
Monitoring

Schemes

Expanding In-
network

Computation

Arithmetic
Computation

Expanding
Memory
Capacity

Reducing
Control Plane
Intervention

Fast Loss
Detection

Enhancing TCP
Congestion
Feedback

TCP State
Synchronization

Improving the QoS
of TCP-based Apps.

Improving TCP
Monitoring

Schemes

Expanding In-
network

Computation

Approximations,
Pre-computation

Integrating
Remote Memory

Code
Optimization

Traffic Digests

Telemetry-based
Schemes

Broadcasting State
Information

Implementing TCP-
friendly Meters

Reducing Telemetry
Overhead

Improving Serverless
Framework

Approximations,
Pre-computation

Integrating
Remote Memory

Code
Optimization

Traffic Digests

Telemetry-based
Schemes

Broadcasting State
Information

Implementing TCP-
friendly Meters

Reducing Telemetry
Overhead

Improving Serverless
Framework

Challenges Future Trends

[53, 169]

[170]

[43–45]

[171–173]

[174–176]

[177]

[178]

[79]

[65, 134]

Figure 34: Challenges and future trends. The references represent
examples of existing works that tackle the corresponding future
trends.

8.2. Summary and Lessons Learned

Network monitoring and measurements are a valuable
tool for diagnosing TCP performance degradation and lo-
cating the point of failure. The measurements work pre-
sented and discussed in previous sections try to minimize
overheads, evaluate the severity of the problem, and iden-
tify where the failure occurs. Future works should con-
sider integrating with legacy networks, reducing storage
requirements, improving the accuracy of the issue evalu-
ation, extending monitoring primitives, and minimizing
controller intervention. Some schemes focus on provid-
ing a response mechanism upon failure detection to im-
prove QoS by applying traffic policing and management.
Techniques adopted include application-layer inspection,
traffic metering, traffic separation, and bandwidth man-
agement.

9. Challenges and Future Trends

This section presents the challenges and future trends
of P4-based schemes that improve TCP performance.
The challenges are inferred from the limitations of the
surveyed works. The trends include the initiatives that
aim at solving those challenges. Figure 34 shows the chal-
lenges and their corresponding future trends.

9.1. Arithmetic Computation

Programmable data planes are limited in arithmetic
computation, such as floating-point operations, which
consume more hardware resources than integer opera-
tions and process the inputs in a highly sequential and
multistage manner. Therefore, programmers recur to ap-
proximation techniques that involve integers, which pro-
duce an output at a predictable pace. Furthermore, there
are data plane architectures that use approximations to
implement filters [179]. For instance, a scheme can use a
low-pass filter to smooth the queue occupancy. However,
approximating arithmetic operations in the data plane
consume significant hardware resources and restricts con-
current execution of data plane programs. Operations
demanded by AQMs (e.g., square root function in the
CoDel algorithm) are challenging to be implemented with
P4 [11, 53, 54]. Extending the supported arithmetic op-
erations will lead to a more accurate estimation of the
traffic entropy and computation of TCP statistics (e.g.,
RTT calculation, CWND’s size estimation, and conges-
tion control inference).

Current and Future Initiatives. Approximation
and pre-computation methods have been implemented to
overcome such limitations. Schemes that use approxima-
tions rely on a small set of supported operations to ap-
proximate the desired value with a precision penalty. For
instance, approximating the square root function can be
achieved by counting the number of leading zeros through
the longest prefix match [53]. The pre-computation
method involves the participation of the control plane
to provide the set of values. The results are stored in
registers and match action tables, which present limited
storage and incurs additional processing time when the
control plane intervenes to update them.

Current initiatives such as the one proposed by
Swamy et al. [169] exploits parallelism based on a
map-reduce abstraction. This approach will help pro-
grammable network devices, such as switches and NICs,
identify and offload complex computations that can be
pre-evaluated in the control plane, reducing computation
and communication overhead simultaneously. Ding et al.
[180] implemented in P4 the logarithmic and exponential
function entirely in the data plane without using TCAMs,
which are scarce resources. Both functions aim at calcu-
lating the entropy, which measures the traffic distribution
[181]. The entropy calculation contributes to determine
performance issues derived from TCP congestion con-
trol algorithms [182], load-balancing [183] and network
anomalies detection [184, 185].

9.2. Fast Loss Detection

Packet losses are expected in the network, and they
can happen for several reasons. In [186], the author
quantifies the impact of packet losses in data center en-
vironments. Packet losses significantly affect TCP per-
formance, and consequently, operators are interested in
identifying the root cause of losses to recover from them.
Therefore, it is essential to detect losses fast and indepen-
dently of their origin to diagnose the network and miti-
gate the issue. However, legacy monitoring schemes often
fail to capture losses quickly, with enough details and low
overhead. Current P4 implementations [43, 44, 187] do

32

not infer the root cause of packet losses, and only react
to congestion.

Current and Future Initiatives. P4-programmable
data planes provide the flexibility to use custom data
structures, enabling the possibility of implementing loss
detection schemes. Li et al. [170] implemented Loss-
radar, a fast packet loss detection scheme implemented
using programmable data planes that identifies the loca-
tion of the packet losses. The system is based on traffic
digests resulting from comparing traffic meters. If a di-
gest corresponds to the same packet, it cancels each other.
Otherwise, it will persist and indicate that a loss has oc-
curred. The system presents low overhead, which is pro-
portional to the number of packet losses. Additionally,
the digest includes flow-level information and a packet
identifier, which contributes to identifying the source of
packet losses. Future works should focus on improving
the root case inference algorithm. An option is adding
machine learning techniques instead of threshold-based
approaches. In this way, the mechanism will classify the
type of losses with more accuracy. Furthermore, it could
also categorize the type of losses and react according to
the event. A future work, should consider a scheme that
tolerates losses induced by non-loss based congestion con-
trol algorithm (e.g., BBR) since it does not affect the
throughput significantly.

9.3. Enhancing TCP Congestion Feedback

Traditional TCP congestion control algorithms do not
differentiate the cause of packet drops. The sender con-
siders timeouts of a retransmit timer or receiving three
duplicate ACKs as a signal of congestion and reacts by
reducing the rate usually according to a multiplicative
decrease function. However, packet drops can have dif-
ferent causes such as packet corruption, excessive delay
due to the bufferbloat, small TCP receive buffer, and
other misconfigurations. Therefore, an improper reac-
tion to losses can lead to the underutilization of net-
work resources. Moreover, with the advent of 5G de-
ployments, there is a need for enhanced mechanisms that
reduce packet losses to fulfill the QoS requirements. Al-
though P4-programmable switches enable the possibility
of enhancing TCP congestion feedback, the sender must
cooperate by understanding the congestion signals. How-
ever, the literature reports that even RFC-standardized
congestion feedback such as ECN is rarely enabled in pro-
duction networks [83].

Current and Future Initiatives. Many authors lever-
aged on P4-programmable data planes aim at enhancing
TCP congestion feedback [43–45]. They propose novel
schemes that use, for example, INT, EECN, and custom
headers to notify the sender about the cause of the con-
gestion promptly. The main goal of such schemes con-
sists of making congestion control algorithms to take agile
control decisions and improve robustness. Moreover, P4-
based schemes are not restricted to observe local failure.
Rather, they can provide a global view of the congestion
event.

Schemes that aim at enhancing TCP congestion feed-
back demonstrated a better performance than legacy ap-
proaches. However, many of these schemes are designed

and implemented on data center networks, where delays
are lower than WANs. Recently, Chen and Nagaoka [188]
reported that ECN is not widely adopted in the Inter-
net. They highlight the need to incentivize ISP providers
to enable ECN in their deployments. Therefore, future
works can explore how P4-based schemes that imple-
ment an enhanced feedback mechanism affect TCP per-
formance in a WAN, where the conditions (e.g., delay,
loss rate, number of flows, type of traffic) differ from
data center environments. Moreover, implementing in P4
congestion controls mechanisms such as eXplicit Control
Protocol (XCP) [189] and Rate Control Protocol (RCP)
[190], could evidence how enhanced feedback impacts in
networks with large BDP.

9.4. TCP State Synchronization

The processing speed mismatch and communication
overheads between data and control plane establish a
challenge to achieve TCP state synchronization. The
data plane operates at line rate and constantly updates
the state of packets in the switch. On the other hand,
the control plane executes operations to read and manip-
ulate data plane states. Therefore, applications requiring
state synchronization to work demand a mechanism that
provides a better view of the network. Nevertheless, it is
challenging to reach an accurate state synchronization in
programmable networks because legacy implementations
usually cannot take actions at line rate. For example,
tracking the dynamics of TCP flow characteristics is an
application that requires accurate state synchronization
[191]. Another practical example involves ensuring per-
flow consistency, which occurs when load balancers ensure
that all TCP packets are delivered to the receiver before
changing the route. Such action can only be achieved
if the switches along the path have precise information
about the state of a TCP connection.

Current and Future Initiatives. Luo [171] et al. pro-
posed Swing State, a data plane framework to consis-
tently move/replicate states among devices. The system
uses each packet to record state values and pass them to
the next P4 switch. Once the states are synchronized,
flows can be migrated using any existing network update
technique such as [172, 173]. State synchronization con-
tributes to the accurate detection of events such as mi-
crobursts and TCP incast. Synchronized measurements
facilitate applications to find issues, especially when TCP
incast and microburst are present in the network. Yaseen
et al. [172] highlighted that current schemes that detect
such kinds of events are empirical (e.g., packet count-
ing, TCP timeouts, and packet drops detection). Con-
sequently, with an accurate TCP state synchronization,
operators can have a global view of the dynamics of the
network.

9.5. Expanding Memory Capacity

P4 allows the programmers to store and retrieve data
of packets using registers, counters, and meters. This
feature enables stateful processing to implement features
such as queueing algorithms, classifiers, and policiers,
which are essential to implement programs in the data
plane. Future works aim to expand the memory capacity
to handle a more significant number of flows. However,

33

RDMA Channel ControllerRDMA Channel Controller

Control Plane

Data Plane

On-chip RegistersOn-chip Registers

PortPort

DRAM

RDMA NICRDMA NIC

Action PacketAction Packet

Action PacketAction Packet

Action PacketAction Packet

Action Packet

Action Packet

Action Packet

Incoming/outgoing Packets

...

Memory Access Req./resp. RDMA Initialization

Figure 35: External memory for data plane scheme. The data plane
can utilize remote memory region registered RNICs by servers that
are connected to the switch. The system comprises a remote lookup
table, as an example. Other data structures can also be used [174].

stateful processing is limited by the memory capacity of
the switch. For example, schemes like Dapper [75] can
not scale to handle more than 10,000 flows because each
flow consumes 67 bytes (i.e., sixteen four-byte registers
to keep the flow state, a two-byte register to track MSS,
and a one-byte register for scale), in addition of 40 bytes
of metadata used to carry packet’s information. There-
fore, to scale a scheme like Dapper, additional fast ac-
cess memory is required to reduce collisions in the table.
Expanding the switch’s memory capacity will allow inte-
grating more features in the device.

Another example is BurstRadar [192], that with 300
table entries can handle up to ten simultaneous mi-
crobursts with a packet loss rate below 1%. The au-
thors mention that 1000 entries are required to reduce
the miss rate to absolute 0%. Microbursts are events
in the network that lasts from 10us to 100us and pro-
duce intermittent congestion. That congestion increases
latency, cause jitter and packet losses in data center net-
works [193]. Events that produce microbursts include
TCP incast and TCP segment offloading. To conclude,
the authors remark that microburst is becoming more
common as the link speeds are increasing over 10G, while
switch buffers sizes do not change.

Current and Future Initiatives. Kim et al. [174, 175]
proposed expanding the memory capacity of the switch
by accessing Dynamic Random Access Memory (DRAM)
installed on data center servers directly from the data
plane. This approach is flexible since it uses existing re-
sources available in commodity hardware without adding
additional costs. The approach presented in Figure 35,
is implemented using RoCE, and it only suffers a latency
penalty of an extra 1-2 us. Tierney et al. [176], tested
TCP performance using a similar infrastructure. The ex-
periment consisted of using a dedicated path for RoCE
traffic and simultaneously generating TCP traffic. The
authors concluded that the ability of RoCE to provide
low latency and system overhead makes TCP a com-
pelling technology for high-resolution data transfers. Fu-
ture works should also consider supporting common data
structure in the remote memory. The scheme discussed in
this section only implements address-based memory ac-
cess, meaning they do not support ternary matching and
other data layouts in remote memory.

9.6. Improving TCP Monitoring Schemes

Monitoring and diagnosing TCP performance issues
is essential for an efficient network operation. Current
monitoring system are mainly query [194–196] or sam-
ple based [23, 38, 39]. However, such schemes lack from
accuracy to correctly track the dynamics of TCP flows
(e.g., microburst detection). Network telemetry pro-
vides the fundamentals for network management appli-
cations, for example, network performance monitoring,
debugging, failure localization, load balancing, and secu-
rity. INT is a network monitoring framework available
in programmable data planes that enhances network vis-
ibility making it attractive for production networks [43].
However, a major drawback is the telemetry overhead
produced on packets due to each switch adds teleme-
try information to packets which reduces the MSS lin-
early. Consequently, there could be the case where there
is more telemetry information added to the packet than
the packet payload, resulting in the application fragment-
ing a payload into multiple packets and consequently ex-
perience reduced performance.

Current and Future Initiatives. Future initiatives
should focus on reducing telemetry overhead. A solu-
tion could be limiting the telemetry information that
each packet can afford. Therefore, developers establish
the trade-off between the MSS and the telemetry head-
ers. This is supported by the fact that applications can
have good network visibility with approximated teleme-
try information. For instance, checking a flow’s path con-
formance is possible by analyzing a collection of pack-
ets. Another consideration regarding TCP congestion
control algorithms is that they can achieve their goal if
packets convey information about the path’s bottleneck
without requiring knowledge about all hops. Lin et al.
[177] tacked this problem differently by proposing a fine-
grained real-time telemetry scheme. The scheme relies
on the observation and recording (O&R) of the states
of the packet being forwarded by the data plane. The
scheme does not measure conventional performance pa-
rameters (i.e., end-to-end delay, jitter throughput, and
packet loss rate). However, it has a clock offset elimina-
tion algorithm to reduce the time synchronization of two
adjacent switches. Future works could integrate various
monitoring features (e.g., RTT, packet loss, link utiliza-
tion, failures, etc.) implemented in P4 to monitor if the
traffic meets the Service Level Agreements (SLA).

9.7. Reducing Control Plane Intervention

Control-plane operations are essential to support and
complement network protocols. However, control plane
intervention can result in additional latency and conse-
quently affect TCP performance. For example, rerouting-
based monitoring queries often need more storage or ac-
cess to complex computation. The hardware of the data
plane is limited regarding storage and, it is not designed
to perform complex operations. Therefore, the control
plane intervenes at the cost of losing performance, which
should be minimized when it is possible.

Current and Future Initiatives. Control plane inter-
vention can be reduced by optimizing the P4 program to

34

reduce the communication overhead between the control
and data plane. This task is performed by programmers
with enough background to create schemes that depend
more on the data plane for taking actions. Although
schemes that aim at improving TCP can be implemented
in the data plane, actions such as rerouting [50, 163] and
complex arithmetic operations [54] require control plane
intervention. Future initiatives should consider develop-
ing tools that detect and reduce the interaction between
control and data plane by suggesting alternative work-
flows and code optimization to minimize such interaction
[178].

9.8. Improving the QoS of TCP-based Applications

Providing QoS requires metering the traffic and arbi-
trarily dropping packets when the rate exceeds the tar-
get. Major vendors on the market offer meter functions.
Meters measure the arrival rate of a flow and determine
its priority as a function of the predefined rate. Packets
that exceed the specified rate for the flow are marked with
a lower priority and eventually discarded. Nevertheless,
meters are usually not TCP-friendly, meaning that they
do not regulate the rate properly or increase the loss rate.
As a result, the achieved rate of a TCP flow is usually
lower than the meter’s target rate.

Current and Future Initiatives. Wang et al. [79] de-
signed and implemented TCP-friendly meters using pro-
grammable data planes. The authors mitigated the bad
interaction between the metering algorithm and the TCP
congestion control in this work. The scheme ensures that
the achieved rate of a TCP flow is close to the target rate
established by the meter. The authors mention that fu-
ture works in this area should consider optimizing data
plane resource utilization and test the scheme with differ-
ent TCP variants. The author also highlighted that the
scheme’s performance could be further improved if the
data plane allows floating-point operations.

9.9. Expanding In-network Computation

With the increasing adoption of high-speed networks
and cloud-based applications, server-based processing has
become a bottleneck due to its high overhead [197–199]
(i.e., processing and management overhead). Kernel by-
passing is a solution that reduces overheads, improves
performance and flexibility by providing direct commu-
nication between the NIC and the application. In this
approach, the kernel communication overhead is reduced,
and the application performs TCP handling. In this way,
multiple applications can rapidly access the NIC. How-
ever, with this approach, each application must enforce
the correctness of the underlying protocols such as TCP.
This limitation implies that TCP congestion control al-
gorithms are implemented in the application. Moreover,
since the kernel is being bypassed, the OS cannot perform
additional packet processing. Such processing includes
demultiplexing packets, egress packet filtering, and re-
source allocation [134].

Current and Future Initiatives. P4-programmable
NICs offer the tools to offload the server’s operations,
thus performing the computation closer to the network.

With the granularity provided by P4, cloud providers
could have the ability to provide fast and reliable services.
Moreover, cloud providers can use data plane resources
to measure resource usage accurately. Current initiatives
in P4 propose a serverless framework to offload work-
loads [65, 72, 200], which includes TCP and other appli-
cations. An example of a P4 serverless implementation
is λ-NIC, which runs microservices entirely in the NIC.
Future works could consider expanding the type of ap-
plication that can be handled by the NIC, considering
that the migration from server to serverless application
increases the performance at a marginal cost [201].

Atutxa et al. [202] performed in-network computation
using P4-programmable data planes. The system aims
to reduce time-constrained applications’ response times
by performing in-network computation. The system pro-
cesses Message Queueing Telemetry Transport (MQTT)
packets originated by an IoT device and generates an
alarm when a threshold is exceeded. Results show that
response times are reduced by 74% by offloading the com-
putation to the P4 switch.

10. Conclusion

This paper presents a survey on TCP enhancement
using P4-programmable devices. It summarizes and dis-
cuss recent works on P4-programmable devices, focusing
on schemes aimed at enhancing TCP performance. A tax-
onomy classifying the aspects that affect TCP’s behav-
ior, such as congestion control, Active Queue Manage-
ment (AQM) algorithms, TCP offloading, and network
measurements schemes. Then, it compares the works
pertaining to each category and with the legacy imple-
mentations. Lastly, the challenges and future trends are
discussed.

11. Acknowledgement

This work was supported by the U.S. National Science
Foundation under grant number 2118311, funded by the
Office of Advanced Cyberinfrastructure (OAC).

Table 15: Abbreviations used in this Survey.
Abbreviation Term

5G Fifth Generation
ABC Activity-Based Congestion
ACK Acknowledgement
AFQ Approximate Fair Queueing

AIMD Additive-Increase Multiplicative-Decrease
ALU Arithmetic Logical Unit
API Application Programming Interface

AQM Active Queue Management
ASIC Application-specific Integrated Circuit
AWW Adjusting Advertised Window
BBR Bottleneck Bandwidth and Round-trip Time
BDP Bandwidth-Delay Product
BMv2 Behavioral Model Version 2

CAIDA Center for Applied Internet Data Analysis
CAKE Common Application Kept Enhanced
CDN Content Delivery Network
CLI Command-line Interface

CoDel Controlled Delay
CPU Central Processing Unit

CWND Congestion Window
DCQCN Data Center Quantified Congestion Notification
DCTCP Data Center Transmission Control Protocol

DDL Distributed Deep Learning
DMA Direct Memory Access
DMZ Demilitarized Zone

35

Abbreviation Term

DNS Domain Name Server
DPDK Data Plane Development Kit
DRAM Dynamic Random-Access Memory
DRR Deficit Round-Robin
ECN Explicit Congestion Notification

EECN Enhanced Explicit Congestion Notification
FAB Flow-Aware Buffer

FDPA Fair Dynamic Priority Assignment
FCT Flow Completion Time
FIB Forwarding Information Base

ForCES Forwarding and Control Element Separation
FPGA Field-Programmable Gate Array

FQ Fair Queueing
FQ-CoDel Fair Queueing Controlled Delay

GPU Graphics Processing Unit
GSO Generic Segmentation Offload
HOL Head-of-Line

HPCC High Precision Congestion Control
IETF Internet Engineering Task Force
INT In-band Network Telemetry
IP Internet Protocol

L4S Low-Latency Low-Loss Scalable-throughput
LRO Large Segment Offload
LLEP Link Latency Estimation Protocol
MIMD Multiplicative Increase Multiplicative Decrease
MQTT Message Queueing Telemetry Transport
MSS Maximum Segment Size
MTU Maximum Transmission Unit

NACK Negative Acknowledgement
NCF Network-assisted Congestion Feedback
NDP Novel Data center Protocol

NetFPGA Network Field Programmable Gate Array
NF Network Functions

NFV Network Functions Virtualization
NIC Network Interface Controller
NPU Network Processing Unit
NSF National Science Foundation
OAC Office of Advanced Cyberinfrastructure
OS Operating System

OVS Open Virtual Switch
P4 Programming Protocol-independent Packet Processors

PCC Performance-oriented Congestion Control
PFC Priority-based Flow Control
PIE Proportional-Integral controller Enhanced

PIFO Push-In First-Out
PINT Probabilistic In-band Network Telemetry
PISA Protocol Independent Switch Architecture
PL2 Predictable Low Latency
PPV Per-Packet Value
PS Parameter Server

QCN Quantized Congestion Notification
QoS Quality of Service

RDMA Remote Direct Memory Access
RISC Reduced Instruction Set Computer
RoCE RDMA over Converged Ethernet
RED Random Early Detection
RFC Request For Comments
RLN Rate-Limiting Notification
RPC Remote Procedure Call
RTT Round-Trip Time

RWND Receiver Window
SDE Software Development Environment
SDN Software-Defined Networking
SDL Secure Development Life-cycle
SLA Service Level Agreements

SP-PIFO Strict Priority Push-In First-Out
SPS Strict Priority Scheduler

SRAM Static Random-access Memory
SRPT Shortest Remaining Processing Time

SR-IOV Single-Root Input/Output Virtualization
SSL Secure Sockets Layer

TCM Three-Colors Marker
TCP Transmission Control Protocol
TD Tail-Drop
TLS Transport Layer Security
TM Traffic Management
TOE TCP-Offload Engine
ToR Top of Rack

trTCM Two Rate Three Color Marker meter
TSO TCP Segmentation Offloading
TTL Time to Live
WAN Wide Area Network

References

[1] J. Postel, “RFC 793: Transmission control protocol (TCP),”
September 1981.

[2] F-stack team, “Website of F-stack.” [Online]. Available:
http://www.f-stack.org/, Accessed on 07-01-2021.

[3] OpenOnload project, “Website of OpenOnload.” [Online].
Available: https://tinyurl.com/ykvc3ctc, Accessed on 07-
01-2021.

[4] E. Jeong, S. Wood, M. Jamshed, H. Jeong, S. Ihm, D. Han,
and K. Park, “MTCP: a highly scalable user-level TCP
stack for multicore systems,” in 11th USENIX Symposium
on Networked Systems Design and Implementation (NSDI
14), 2014.

[5] I. Marinos, R. N. Watson, and M. Handley, “Network stack
specialization for performance,” ACM SIGCOMM Computer
Communication Review, 2014.

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,
J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Vargh-
ese, et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Computer Communication
Review, 2014.

[7] Nick McKeown, “How we might get humans out of the
way, ONF connect 19,” 2019. [Online]. Available: https:

//tinyurl.com/y4dnxacz, Accessed on 07-01-2021.
[8] S. Floyd and V. Jacobson, “Random early detection gateways

for congestion avoidance,” IEEE/ACM Transactions on net-
working, 1993.

[9] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Sub-
ramanian, F. Baker, and B. VerSteeg, “PIE: A lightweight
control scheme to address the bufferbloat problem,” in 2013
IEEE 14th International Conference on High Performance
Switching and Routing (HPSR), 2013.

[10] T. Hoeiland-Joergensen, P. McKenney, D. Taht, J. Gettys,
and E. Dumazet, “RFC 8290: The flow queue CoDel packet
scheduler and active queue management algorithm,” 2018.

[11] T. Hoeiland-Jorgensen, D. Taht, and J. Morton, “Piece of
CAKE: a comprehensive queue management solution for
home gateways,” in 2018 IEEE International Symposium on
Local and Metropolitan Area Networks (LANMAN), 2018.

[12] S. Keshav, “On the efficient implementation of fair queueing,”
Internetworking: Research and Experience, 1991.

[13] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker, “Ap-
proximate fairness through differential dropping,” ACM SIG-
COMM Computer Communication Review, 2003.

[14] T. Dargahi, A. Caponi, M. Ambrosin, G. Bianchi, and
M. Conti, “A survey on the security of stateful SDN data
planes,” IEEE Communications Surveys & Tutorials, 2017.

[15] R. Bifulco and G. Rétvári, “A survey on the programmable
data plane: abstractions, architectures, and open problems,”
in 2018 IEEE 19th International Conference on High Per-
formance Switching and Routing (HPSR), 2018.

[16] A. Satapathy, “Comprehensive study of P4 programming lan-
guage and software-defined networks,” 2018. [Online]. Avail-
able: https://tinyurl.com/y4d4zma9, Accessed on 07-01-
2021.

[17] E. Kaljic, A. Maric, P. Njemcevic, and M. Hadzialic, “A sur-
vey on data plane flexibility and programmability in software-
defined networking,” IEEE Access, 2019.

[18] L. Tan, W. Su, W. Zhang, J. Lv, Z. Zhang, J. Miao, X. Liu,
and N. Li, “In-band network telemetry: A survey,” Computer
Networks, 2020.

[19] F. Hauser, M. Häberle, D. Merling, S. Lindner, V. Gurevich,
F. Zeiger, R. Frank, and M. Menth, “A survey on data plane
programming with P4: Fundamentals, advances, and applied
research,” arXiv preprint arXiv:2101.10632, 2021.

[20] S. Kaur, K. Kumar, and N. Aggarwal, “A review on P4-
programmable data planes: Architecture, research efforts,
and future directions,” Computer Communications, 2021.

[21] E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive
survey on P4 programmable data plane switches: Taxonomy,
applications, challenges, and future trends,” IEEE Access,
2021.

[22] F. Paolucci, F. Cugini, P. Castoldi, and T. Osiński, “Enhanc-
ing 5G SDN/NFV edge with P4 data plane programmabil-
ity,” IEEE Network, 2021.

[23] R. Sommer and A. Feldmann, “NetFlow: Information loss or
win?,” in Proceedings of the 2nd ACM SIGCOMM Workshop
on Internet measurment, 2002.

[24] B. Lee, H. Son, S. Yoon, and Y. Lee, “End-to-end flow moni-
toring with IPFIX,” in Asia-Pacific Network Operations and
Management Symposium, 2007.

[25] P. W. Group, “Charter of the P4 architecture WG.” [Online].
Available: https://tinyurl.com/4c8yt67v, Accessed on 07-
01-2021.

36

http://www.f-stack.org/
https://tinyurl.com/ykvc3ctc
https://tinyurl.com/y4dnxacz
https://tinyurl.com/y4dnxacz
https://tinyurl.com/y4d4zma9
https://tinyurl.com/4c8yt67v

[26] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “Open-
Flow: Enabling innovation in campus networks,” ACM SIG-
COMM Computer Communication Review, 2008.

[27] T. P. A. W. Group, “P416 Portable Switch Architec-
ture (PSA).” [Online]. Available: https://tinyurl.com/

tszc5d9c, Accessed on 07-01-2021.
[28] N. McKeown, “Why does the Internet need a programmable

forwarding plane.” [Online]. Available: https://tinyurl.

com/y6x7qqpm, Accessed on 07-01-2021.
[29] H. Garcia and M. Naercio, “A state consistency framework

leveraging packet cloning and piggybacking for programmable
network data planes,” in 2021 IFIP Networking Conference,
2021.

[30] Barefoot Networks, “P4 Intel Tofino native architecture -
public version.” [Online]. Available: https://tinyurl.com/

5d7nznwd, Accessed on 03-12-2022.
[31] A. Agrawal and C. Kim, “Intel Tofino2-A 12.9 Tbps P4-

Programmable Ethernet switch,” in Hot Chips Symposium,
2020.

[32] P4.org, “P4 language tutorial, slide 7.” [Online]. Available:
https://tinyurl.com/udonnx5, Accessed on 07-01-2021.

[33] Open Virtual Switch Community, “P4-OVS.” [Online]. Avail-
able: https://tinyurl.com/x45c5pfk, Accessed on 07-01-
2021.

[34] Orange Labs, “P4rt-OVS.” [Online]. Available: https://

github.com/Orange-OpenSource/p4rt-ovs, Accessed on 07-
01-2021.

[35] Open Netorking Foundation (ONF), “Website of the
open network fundation.” [Online]. Available: https://

opennetworking.org.
[36] P4 Consortium, “Website of the P4 language consortium.”

[Online]. Available: https://p4.org.
[37] C. Kim, “Evolution of Networking, Networking Field Day

21, 2:01,” 2019. [Online]. Available: https://tinyurl.com/

y9fkj7qx, Accessed on 07-01-2021.
[38] M. Wang, B. Li, and Z. Li, “sFlow: Towards resource-efficient

and agile service federation in service overlay networks,”
in 24th International Conference on Distributed Computing
Systems, 2004. Proceedings., 2004.

[39] B. Claise, M. Fullmer, P. Calato, and R. Penno, “IPFIX pro-
tocol specification,” Internet-draft, 2005.

[40] A. Feldmann, B. Chandrasekaran, S. Fathalli, and E. N.
Weyulu, “P4-enabled network-assisted congestion feedback:
A case for NACKs,” in Proceedings of the 2019 Workshop on
Buffer Sizing, 2019.

[41] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W. Moore,
G. Antichi, and M. Wójcik, “Re-architecting datacenter net-
works and stacks for low latency and high performance,” in
Proceedings of the Conference of the ACM Special Interest
Group on Data Communication, 2017.

[42] E. F. Kfoury, J. Crichigno, E. Bou-Harb, D. Khoury, and
G. Srivastava, “Enabling TCP pacing using programmable
data plane switches,” in 2019 42nd International Conference
on Telecommunications and Signal Processing (TSP), 2019.

[43] Y. Li, R. Miao, H. H. Liu, Y. Zhuang, F. Feng, L. Tang,
Z. Cao, M. Zhang, F. Kelly, M. Alizadeh, et al., “HPCC: High
precision congestion control,” in Proceedings of the ACM Spe-
cial Interest Group on Data Communication, 2019.

[44] S. Shahzad, E.-S. Jung, J. Chung, and R. Kettimuthu,
“Enhanced explicit congestion notification (EECN) in TCP
with P4 programming,” in 2020 International Conference on
Green and Human Information Technology (ICGHIT), 2020.

[45] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu,
and M. Mitzenmacher, “PINT: Probabilistic in-band network
telemetry,” in Proceedings of the Annual conference of the
ACM Special Interest Group on Data Communication on
the applications, technologies, architectures, and protocols for
computer communication, 2020.

[46] C. H. Benet, A. J. Kassler, T. Benson, and G. Pongracz,
“MP-HULA: Multipath transport aware load balancing us-
ing programmable data planes,” in Proceedings of the 2018
Morning Workshop on In-Network Computing, 2018.

[47] B. Turkovic and F. Kuipers, “P4air: Increasing fairness
among competing congestion control algorithms,” in 2020
IEEE 28th International Conference on Network Protocols
(ICNP), 2020.

[48] Y.-W. Chen, L.-H. Yen, W.-C. Wang, C.-A. Chuang, Y.-S.
Liu, and C.-C. Tseng, “P4-enabled bandwidth management,”

in 2019 20th Asia-Pacific Network Operations and Manage-
ment Symposium (APNOMS), 2019.

[49] M. Apostolaki, L. Vanbever, and M. Ghobadi, “FAB: To-
ward flow-aware buffer sharing on programmable switches,”
in Proceedings of the 2019 Workshop on Buffer Sizing, 2019.

[50] B. Turkovic, F. Kuipers, N. van Adrichem, and K. Langen-
doen, “Fast network congestion detection and avoidance us-
ing P4,” in Proceedings of the 2018 Workshop on Networking
for Emerging Applications and Technologies, 2018.

[51] J. Geng, J. Yan, and Y. Zhang, “P4QCN: Congestion control
using P4-capable device in data center networks,” Electron-
ics, 2019.

[52] J. Jiang and Y. Zhang, “An accurate congestion control
mechanism in programmable network,” in 2019 IEEE 9th
Annual Computing and Communication Workshop and Con-
ference (CCWC), 2019.

[53] R. Kundel, J. Blendin, T. Viernickel, B. Koldehofe, and
R. Steinmetz, “P4-CoDel: Active queue management in pro-
grammable data planes,” in 2018 IEEE Conference on Net-
work Function Virtualization and Software Defined Networks
(NFV-SDN), 2018.

[54] R. Kundel, A. Rizk, J. Blendin, B. Koldehofe, R. Hark,
and R. Steinmetz, “P4-CoDel: Experiences on programmable
data plane hardware,” arXiv preprint arXiv:2010.04528,
2020.

[55] I. Kunze, M. Gunz, D. Saam, K. Wehrle, and J. Rüth,
“Tofino+ P4: A strong compound for AQM on high-speed
networks?,” 2021.

[56] C. Papagianni and K. De Schepper, “PI2 for P4: An
active queue management scheme for programmable data
planes,” in Proceedings of the 15th International Confer-
ence on emerging Networking EXperiments and Technolo-
gies, 2019.

[57] L. Toresson, “Making a packet-value based aqm on a pro-
grammable switch for resource-sharing and low latency,”
Karlstad University, Master’s Thesis, 2021.

[58] N. K. Sharma, A. Kaufmann, T. Anderson, A. Krishna-
murthy, J. Nelson, and S. Peter, “Evaluating the power of
flexible packet processing for network resource allocation,”
in 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17), 2017.

[59] A. Mushtaq, R. Mittal, J. McCauley, M. Alizadeh, S. Rat-
nasamy, and S. Shenker, “Datacenter congestion control:
Identifying what is essential and making it practical,” ACM
SIGCOMM Computer Communication Review, 2019.

[60] M. Menth, H. Mostafaei, D. Merling, and M. Häberle, “Imple-
mentation and evaluation of activity-based congestion man-
agement using P4 (P4-ABC),” Future Internet, 2019.

[61] A. G. Alcoz, A. Dietmüller, and L. Vanbever, “SP-PIFO: ap-
proximating push-in first-out behaviors using strict-priority
queues,” in 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 20), 2020.

[62] C. Cascone, N. Bonelli, L. Bianchi, A. Capone, and B. Sansò,
“Towards approximate fair bandwidth sharing via dynamic
priority queuing,” in 2017 IEEE International Symposium
on Local and Metropolitan Area Networks (LANMAN), 2017.

[63] H. Harkous, C. Papagianni, K. De Schepper, M. Jarschel,
M. Dimolianis, and R. Preis, “Virtual queues for P4: A poor
man’s programmable traffic manager,” IEEE Transactions
on Network and Service Management, 2021.

[64] B. Turkovic, S. Biswal, A. Vijay, A. Hüfner, and F. Kuipers,
“P4QoS: QoS-based packet processing with P4,” in Net-
Soft 2021-IEEE International Conference on Network Soft-
warization, 2021.

[65] Y. Moon, S. Lee, M. A. Jamshed, and K. Park, “Acceltcp:
Accelerating network applications with stateful TCP offload-
ing,” in 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI20), 2020.

[66] Y. Yan, A. F. Beldachi, R. Nejabati, and D. Simeonidou,
“P4-enabled smart NIC: Enabling sliceable and service-driven
optical data centres,” Journal of Lightwave Technology, 2020.

[67] H. Harkous, M. Jarschel, M. He, R. Pries, and W. Kellerer,
“P8: P4 with predictable packet processing performance,”
IEEE Transactions on Network and Service Management,
2020.

[68] Y. Qiu, Q. Kang, M. Liu, and A. Chen, “Clara: Performance
clarity for SmartNIC offloading,” in Proceedings of the 19th
ACM Workshop on Hot Topics in Networks, 2020.

[69] S. Pontarelli, R. Bifulco, M. Bonola, C. Cascone, M. Spaziani,

37

https://tinyurl.com/tszc5d9c
https://tinyurl.com/tszc5d9c
https://tinyurl.com/y6x7qqpm
https://tinyurl.com/y6x7qqpm
https://tinyurl.com/5d7nznwd
https://tinyurl.com/5d7nznwd
https://tinyurl.com/udonnx5
https://tinyurl.com/x45c5pfk
https://github.com/Orange-OpenSource/p4rt-ovs
https://github.com/Orange-OpenSource/p4rt-ovs
https://opennetworking.org
https://opennetworking.org
https://p4.org
https://tinyurl.com/y9fkj7qx
https://tinyurl.com/y9fkj7qx

V. Bruschi, D. Sanvito, G. Siracusano, A. Capone, M. Honda,
et al., “FlowBlaze: Stateful packet processing in hardware,”
in 16th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 19), 2019.

[70] S. Choi, M. Shahbaz, B. Prabhakar, and M. Rosenblum, “λ-
NIC: Interactive serverless compute on SmartNICs,” in Pro-
ceedings of the ACM SIGCOMM 2019 Conference Posters
and Demos, 2019.

[71] P. Gao, Y. Xu, and H. J. Chao, “OVS-CAB: Efficient rule-
caching for open vswitch hardware offloading,” Computer
Networks, 2021.

[72] T. Kohler, R. Mayer, F. Dürr, M. Maaß, S. Bhowmik, and
K. Rothermel, “P4CEP: Towards in-network complex event
processing,” in Proceedings of the 2018 Morning Workshop
on In-Network Computing, pp. 33–38, 2018.

[73] A. Mohammadkhan, S. Panda, S. G. Kulkarni, K. Ramakr-
ishnan, and L. N. Bhuyan, “P4NFV: P4 enabled NFV sys-
tems with SmartNICs,” in 2019 IEEE Conference on Net-
work Function Virtualization and Software Defined Networks
(NFV-SDN), 2019.

[74] S. Ibanez, A. Mallery, S. Arslan, T. Jepsen, M. Shahbaz,
N. McKeown, and C. Kim, “The nanoPU: Redesigning the
CPU-network interface to minimize RPC tail latency,” arXiv
preprint arXiv:2010.12114, 2020.

[75] M. Ghasemi, T. Benson, and J. Rexford, “Dapper: data plane
performance diagnosis of TCP,” in Proceedings of the Sym-
posium on SDN Research, 2017.

[76] W. Wang, P. Tammana, A. Chen, and T. E. Ng, “Grasp the
root causes in the data plane: Diagnosing latency problems
with SpiderMon,” in Proceedings of the Symposium on SDN
Research, 2020.

[77] ETH Zurich, “Blink.” [Online]. Available: https://blink.

ethz.ch/, , Accessed on 07-01-2021.
[78] X. Chen, H. Kim, J. M. Aman, W. Chang, M. Lee, and

J. Rexford, “Measuring TCP round-trip time in the data
plane,” in Proceedings of the Workshop on Secure Pro-
grammable Network Infrastructure, 2020.

[79] S.-Y. Wang, H.-W. Hu, and Y.-B. Lin, “Design and im-
plementation of TCP-Friendly meters in P4 switches,”
IEEE/ACM Transactions on Networking, 2020.

[80] X. Chen, S. L. Feibish, Y. Koral, J. Rexford, O. Rottenstre-
ich, S. A. Monetti, and T.-Y. Wang, “Fine-grained queue
measurement in the data plane,” in Proceedings of the 15th
International Conference on Emerging Networking Experi-
ments And Technologies, 2019.

[81] J. Kim, H. Kim, and J. Rexford, “Analyzing traffic by do-
main name in the data plane,” [Online]. Available: https:

//tinyurl.com/2zyxt67k.
[82] Parallel data lab, “Incast.” [Online]. Available: https://

www.pdl.cmu.edu/Incast/, Accessed on 07-01-2021.
[83] Y. Li, Thesis: Hardware-Software Codesign for High-

Performance Cloud Networks. PhD thesis, Harvard Univer-
sity, 2020.

[84] J. Zhang, F. Ren, L. Tang, and C. Lin, “Modeling and solving
TCP incast problem in data center networks,” IEEE Trans-
actions on Parallel and Distributed systems, 2014.

[85] D. Chiu and R. Jain, “Analysis of the increase and decrease
algorithms for congestion avoidance in computer networks,”
Computer Networks and ISDN systems, 1989.

[86] R. K. Jain, D.-M. W. Chiu, W. R. Hawe, et al., “A quanti-
tative measure of fairness and discrimination,” Eastern Re-
search Laboratory, Digital Equipment Corporation, Hudson,
MA, 1984.

[87] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Ja-
cobson, “BBR: Congestion-based congestion control,” Queue,
2016.

[88] L. Kleinrock, “Power and deterministic rules of thumb for
probabilistic problems in computer communications,” in Pro-
ceedings of the International Conference on Communica-
tions, 1979.

[89] S. Floyd, “TCP and explicit congestion notification,” ACM
SIGCOMM Computer Communication Review, 1994.

[90] M. Kang, G. Yang, Y. Yoo, and C. Yoo, “Proactive conges-
tion avoidance for distributed deep learning,” Sensors, 2021.

[91] A. Laraba, J. François, S. R. Chowdhury, I. Chrisment, and
R. Boutaba, “Mitigating TCP protocol misuse with pro-
grammable data planes,” IEEE Transactions on Network and
Service Management, 2021.

[92] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,

B. Prabhakar, S. Sengupta, and M. Sridharan, “Data cen-
ter TCP (DCTCP),” in Proceedings of the ACM SIGCOMM
2010 Conference, 2010.

[93] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel,
M. Ghobadi, A. Vahdat, Y. Wang, D. Wetherall, and D. Zats,
“TIMELY: RTT-based congestion control for the datacen-
ter,” ACM SIGCOMM Computer Communication Review,
2015.

[94] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “ECN or de-
lay: Lessons Learnt from Analysis of DCQCN and TIMELY,”
in Proceedings of the 12th International on Conference on
emerging Networking Experiments and Technologies, 2016.

[95] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson,
“TCP congestion control with a misbehaving receiver,” ACM
SIGCOMM Computer Communication Review, 1999.

[96] K. Ramakrishnan, S. Floyd, D. Black, et al., “The addition
of explicit congestion notification (ECN) to IP,” 2001.

[97] N. Dukkipati and N. McKeown, “Why flow-completion time
is the right metric for congestion control,” ACM SIGCOMM
Computer Communication Review, 2006.

[98] A. Aggarwal, S. Savage, and T. Anderson, “Understanding
the performance of TCP pacing,” in Proceedings IEEE IN-
FOCOM 2000. Conference on Computer Communications.
Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies (Cat. No. 00CH37064), 2000.

[99] J. Crichigno, E. Bou-Harb, and N. Ghani, “A comprehensive
tutorial on science DMZ,” IEEE Communications Surveys &
Tutorials, 2018.

[100] Y. Chen, R. Griffith, J. Liu, R. H. Katz, and A. D. Joseph,
“Understanding TCP incast throughput collapse in datacen-
ter networks,” in Proceedings of the 1st ACM workshop on
Research on enterprise networking, 2009.

[101] B. Turkovic, F. A. Kuipers, and S. Uhlig, “Interactions be-
tween congestion control algorithms,” in 2019 Network Traf-
fic Measurement and Analysis Conference (TMA), 2019.

[102] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford,
“HULA: Scalable load balancing using programmable data
planes,” in Proceedings of the Symposium on SDN Research,
2016.

[103] Y. Le, R. N. Mysore, L. Suresh, G. Zellweger, S. Baner-
jee, A. Akella, and M. Swift, “PL2: Towards pre-
dictable low latency in rack-scale networks,” arXiv preprint
arXiv:2101.06537, 2021.

[104] J. Networks, “Junos OS CoS components.” [Online]. Avail-
able: https://tinyurl.com/Junos-CoS, Accessed on 07-01-
2021.

[105] S. Arslan and N. McKeown, “Switches know the exact
amount of congestion,” in Proceedings of the 2019 Workshop
on Buffer Sizing, 2019.

[106] S. Nádas, G. Gombos, P. Hudoba, and S. Laki, “Towards
a congestion control-independent core-stateless AQM,” in
Proceedings of the Applied Networking Research Workshop,
2018.

[107] A. Mishra, X. Sun, A. Jain, S. Pande, R. Joshi, and B. Leong,
“The great internet TCP congestion control census,” Proceed-
ings of the ACM on Measurement and Analysis of Computing
Systems, 2019.

[108] J. Gettys and K. Nichols, “Bufferbloat: Dark buffers in the
Internet,” Queue, 2011.

[109] V. Jacobson, “Congestion avoidance and control,” ACM SIG-
COMM computer communication review, 1988.

[110] G. Vu-Brugier, R. Stanojevic, D. J. Leith, and R. N. Shorten,
“A critique of recently proposed buffer-sizing strategies,”
ACM SIGCOMM Computer Communication Review, 2007.

[111] K. Nichols and V. Jacobson, “Controlling queue delay: A
modern AQM is just one piece of the solution to bufferbloat.,”
Queue, 2012.

[112] S. Floyd, R. Gummadi, S. Shenker, et al., “Adaptive RED:
An algorithm for increasing the robustness of RED’s active
queue management,” 2001.

[113] C. Press, “Cisco IP telephony flash cards: Weighted ran-
dom early detection (WRED).” [Online]. Available: https:

//tinyurl.com/2f5st8rd, Accessed on 07-01-2021.
[114] S. Ryu, C. Rump, and C. Qiao, “Advances in active

queue management (AQM) based TCP congestion control,”
Telecommunication Systems, 2004.

[115] M. Enachescu, Y. Ganjali, A. Goel, N. McKeown, and
T. Roughgarden, “Routers with very small buffers.,” in IN-
FOCOM, 2006.

38

https://blink.ethz.ch/
https://blink.ethz.ch/
https://tinyurl.com/2zyxt67k
https://tinyurl.com/2zyxt67k
https://www.pdl.cmu.edu/Incast/
https://www.pdl.cmu.edu/Incast/
https://tinyurl.com/Junos-CoS
https://tinyurl.com/2f5st8rd
https://tinyurl.com/2f5st8rd

[116] C. Villamizar and C. Song, “High performance TCP in
ANSNET,” ACM SIGCOMM Computer Communication
Review, 1994.

[117] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router
buffers,” ACM SIGCOMM Computer Communication Re-
view, 2004.

[118] K. Nichols, V. Jacobson, A. McGregor, and J. Iyengar, “RFC
8289: Controlled delay active queue management,” 2018.

[119] D. Taht, J. Gettys, and E. Dumazet, “RFC 8290: The flow
queue CoDel packet scheduler and active queue management
algorithm,” 2018.

[120] K. De Schepper, O. Bondarenko, I.-J. Tsang, and B. Briscoe,
“PI2: A linearized AQM for both classic and scalable TCP,”
in Proceedings of the 12th International on Conference on
emerging Networking Experiments and Technologies, 2016.

[121] S. Nádas, Z. R. Turányi, and S. Rácz, “Per packet value:
A practical concept for network resource sharing,” in 2016
IEEE Global Communications Conference (GLOBECOM),
2016.

[122] N. K. Sharma, M. Liu, K. Atreya, and A. Krishnamurthy,
“Approximating fair queueing on reconfigurable switches,”
in 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), 2018.

[123] S. Laki, P. Vörös, and F. Fejes, “Towards an AQM evaluation
testbed with P4 and DPDK,” in Proceedings of the ACM
SIGCOMM 2019 Conference Posters and Demos, 2019.

[124] D. R. Smith, “A new proof of the optimality of the shortest
remaining processing time discipline,” Operations Research,
1978.

[125] C. Chen, H.-C. Fang, and M. S. Iqbal, “QoSTCP: Provide
consistent rate guarantees to TCP flows in software defined
networks,” in ICC 2020-2020 IEEE International Conference
on Communications (ICC), 2020.

[126] Microsoft, “TCP/IP offload.” [Online]. Available: https:

//tinyurl.com/yedss7sn, Accessed on 07-01-2021.
[127] J. C. Mogul, “TCP offload is a dumb idea whose time has

come.,” 2003.
[128] T. Benson, A. Akella, and D. A. Maltz, “Network traffic char-

acteristics of data centers in the wild,” in Proceedings of the
10th ACM SIGCOMM conference on Internet measurement,
2010.

[129] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren,
“Inside the social network’s (datacenter) network,” in Pro-
ceedings of the 2015 ACM Conference on Special Interest
Group on Data Communication, 2015.

[130] G. Maier, A. Feldmann, V. Paxson, and M. Allman, “On
dominant characteristics of residential broadband internet
traffic,” in Proceedings of the 9th ACM SIGCOMM Confer-
ence on Internet Measurement, 2009.

[131] L. Quan and J. Heidemann, “On the characteristics and rea-
sons of long-lived internet flows,” in Proceedings of the 10th
ACM SIGCOMM conference on Internet measurement, 2010.

[132] V. Jacobson, R. Braden, and D. Borman, “RFC 1323: TCP
extensions for high performance,” tech. rep., 1992.

[133] A. Sapio, I. Abdelaziz, A. Aldilaijan, M. Canini, and P. Kal-
nis, “In-network computation is a dumb idea whose time has
come,” in Proceedings of the 16th ACM Workshop on Hot
Topics in Networks, 2017.

[134] A. Kaufmann, “Efficient, secure, and flexible high speed
packet processing for data centers,” University of Washing-
ton, Ph.D. Thesis, 2018.

[135] N. Van Tu, J.-H. Yoo, and J. W.-K. Hong, “Accelerating vir-
tual network functions with fast-slow path architecture using
express data path,” IEEE Transactions on Network and Ser-
vice Management, 2020.

[136] A. Kaufmann, T. Stamler, S. Peter, N. K. Sharma, A. Krish-
namurthy, and T. Anderson, “TAS: TCP acceleration as an
OS service,” in Proceedings of the Fourteenth EuroSys Con-
ference 2019, 2019.

[137] The Linux Foundation Projects, “Data plane development kit
(dpdk).” [Online]. Available: http://dpdk.orgd, Accessed on
03-14-2022.

[138] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S. Rat-
nasamy, “SoftNIC: A software NIC to augment hardware,”
EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2015-155, 2015.

[139] Pensando, “The Pensando distributed services platform.”
[Online]. Available: https://pensando.io/our-platform/,
Accessed on 07-01-2021.

[140] Open compute project SAI, “Programming NFP with P4
and C.” [Online]. Available: https://www.netronome.com/

products/agilio-cx/, Accessed on 07-01-2021.
[141] Xilinx, “Xilinx solutions.” [Online]. Available: https://www.

xilinx.com/products/silicon-devices.html, Accessed on
07-01-2021.

[142] Innovium, “Teralynx switch silicon.” [Online]. Available:
https://www.innovium.com/teralynx/, Accessed on 07-01-
2021.

[143] Redis Labs, “Redis.” [Online]. Available: https://redis.

io/, Accessed on 07-01-2021.
[144] HAProxys, “HAProxy: The reliable, high performance

TCP/HTTP load balancer.” [Online]. Available: http:

//www.haproxy.org/, Accessed on 07-01-2021.
[145] N. Gray, A. Grigorjew, T. Hosssfeld, A. Shukla, and T. Zin-

ner, “Highlighting the gap between expected and actual be-
havior in P4-enabled networks,” in 2019 IFIP/IEEE Sympo-
sium on Integrated Network and Service Management (IM),
2019.

[146] G. W. Connery, W. P. Sherer, G. Jaszewski, and J. S. Binder,
“Offload of TCP segmentation to a smart adapter,” 1999.

[147] J. Corbet, “JLS2009: Generic receive offload.” [Online].
Available: https://tinyurl.com/3bsvrwyk, Accessed on 07-
01-2021.

[148] D. Firestone, “VFP: A virtual switch platform for host
SDN in the public cloud,” in 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17),
2017.

[149] T. Osiński, M. Kossakowski, H. Tarasiuk, and R. Picard, “Of-
floading data plane functions to the multi-tenant cloud in-
frastructure using P4,” in 2019 ACM/IEEE Symposium on
Architectures for Networking and Communications Systems
(ANCS), 2019.

[150] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park,
“mOS: A reusable networking stack for flow monitoring mid-
dleboxes,” in 14th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 17), 2017.

[151] G. Liu, Y. Ren, M. Yurchenko, K. Ramakrishnan, and
T. Wood, “Microboxes: high performance NFV with cus-
tomizable, asynchronous TCP stacks and dynamic subscrip-
tions,” in Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, 2018.

[152] Y. Le, H. Chang, S. Mukherjee, L. Wang, A. Akella, M. M.
Swift, and T. Lakshman, “UNO: Uniflying host and smart
NIC offload for flexible packet processing,” in Proceedings of
the 2017 Symposium on Cloud Computing, 2017.

[153] Mellanox, “BlueField SmartNIC Ethernet.” [On-
line]. Available: https://www.mellanox.com/products/

BlueField-SmartNIC-Ethernet, Accessed on 07-01-2021.
[154] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh,

M. Andrewartha, H. Angepat, V. Bhanu, A. Caulfield,
E. Chung, et al., “Azure accelerated networking: Smart-
NICs in the public cloud,” in 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18),
2018.

[155] N. McKeown, “Programming the forwarding plane. Why
is there a blackbox in my whitebox?.” [Online]. Avail-
able: https://forum.stanford.edu/events/2016/slides/

plenary/Nick.pdf, Accessed on 07-01-2021.
[156] R. H. Inc., “ftrace - function tracer.” [Online]. Available:

https://tinyurl.com/2z55r78r, Accessed on 07-01-2021.
[157] T. T. Group, “Manual’s page of tcpdump.” [Online]. Avail-

able: http://www.tcpdump.org/tcpdump_man.html, Accessed
on 07-01-2021.

[158] T. linux foundation, “TCP probe.” [Online]. Available:
https://wiki.linuxfoundation.org/networking/tcpprobe,
Accessed on 07-01-2021.

[159] E. F. Kfoury, J. Gomez, J. Crichigno, and E. Bou-Harb, “An
emulation-based evaluation of TCP BBRv2 alpha for wired
broadband,” Computer Communications, 2020.

[160] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev,
P. Jha, Y. Seung, M. Mathis, and V. Jacobson, “BBRv2: a
model-based congestion control,” Presentation in the Inter-
net Congestion Control Research Group (ICCRG) at IETF
105 Update, Montreal, Canada, July, 2019.

[161] I. Cisco, “Cisco visual networking index: Forecast and
methodology, 2011–2016,” CISCO White paper, 2012.

[162] Cisco, “COVID-19 network traffic patterns: A
worldwide perspective from our customers,” URL:

39

https://tinyurl.com/yedss7sn
https://tinyurl.com/yedss7sn
http://dpdk.orgd
https://pensando.io/our-platform/
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.xilinx.com/products/silicon-devices.html
https://www.xilinx.com/products/silicon-devices.html
https://www.innovium.com/teralynx/
https://redis.io/
https://redis.io/
http://www.haproxy.org/
http://www.haproxy.org/
https://tinyurl.com/3bsvrwyk
https://www.mellanox.com/products/BlueField-SmartNIC-Ethernet
https://www.mellanox.com/products/BlueField-SmartNIC-Ethernet
https://forum.stanford.edu/events/2016/slides/plenary/Nick.pdf
https://forum.stanford.edu/events/2016/slides/plenary/Nick.pdf
https://tinyurl.com/2z55r78r
http://www.tcpdump.org/tcpdump_man.html
https://wiki.linuxfoundation.org/networking/tcpprobe

https://tinyurl.com/ytmr56ka, 2020.
[163] T. Holterbach, E. C. Molero, M. Apostolaki, A. Dainotti,

S. Vissicchio, and L. Vanbever, “Blink: Fast connectivity re-
covery entirely in the data plane,” in 16th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI 19), 2019.

[164] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred,
“Taking the blame game out of data centers operations with
netpoirot,” in Proceedings of the 2016 ACM SIGCOMM
Conference, 2016.

[165] Z. Liu, S. Zhou, O. Rottenstreich, V. Braverman, and
J. Rexford, “Memory-efficient performance monitoring on
programmable switches with lean algorithms,” in Symposium
on Algorithmic Principles of Computer Systems (APoCS),
2020.

[166] H. Unbehauen, Control systems, robotics and automation.
Eolss Publishers Company Limited Oxford, 2009.

[167] X. Chen and H. Kim, “Technical report: Measuring queues
in campus network via link tapping,” Princeton University,
2019.

[168] E. Kfoury, J. Crichigno, and G. Srivastava, “Dynamic
router’s buffer sizing using passive measurements and P4 pro-
grammable switches,” in IEEE GLOBECOM (Global Com-
munications Conference), 2021.

[169] T. Swamy, A. Rucker, M. Shahbaz, and K. Oluko-
tun, “Taurus: An intelligent data plane,” arXiv preprint
arXiv:2002.08987, 2020.

[170] Y. Li, R. Miao, C. Kim, and M. Yu, “Lossradar: Fast detec-
tion of lost packets in data center networks,” in Proceedings
of the 12th International on Conference on emerging Net-
working EXperiments and Technologies, 2016.

[171] S. Luo, H. Yu, and L. Vanbever, “Swing state: Consistent
updates for stateful and programmable data planes,” in Pro-
ceedings of the Symposium on SDN Research, 2017.

[172] N. Yaseen, J. Sonchack, and V. Liu, “Synchronized network
snapshots,” in Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication, 2018.

[173] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker, “Abstractions for network update,” ACM SIG-
COMM Computer Communication Review, 2012.

[174] D. Kim, Y. Zhu, C. Kim, J. Lee, and S. Seshan, “Generic
external memory for switch data planes,” in Proceedings of
the 17th ACM Workshop on Hot Topics in Networks, 2018.

[175] D. Kim, Z. Liu, Y. Zhu, C. Kim, J. Lee, V. Sekar, and S. Se-
shan, “Tea: Enabling state-intensive network functions on
programmable switches,” in Proceedings of the Annual con-
ference of the ACM Special Interest Group on Data Commu-
nication on the applications, technologies, architectures, and
protocols for computer communication, 2020.

[176] B. Tierney, E. Kissel, M. Swany, and E. Pouyoul, “Efficient
data transfer protocols for big data,” in 2012 IEEE 8th In-
ternational Conference on E-Science, 2012.

[177] W.-H. Lin, W.-X. Liu, G.-F. Chen, S. Wu, J.-J. Fu, X. Liang,
S. Ling, and Z.-T. Chen, “Network telemetry by observing
and recording on programmable data plane,” in 2021 IFIP
Networking Conference (IFIP Networking), 2021.

[178] E. C. Molero, S. Vissicchio, and L. Vanbever, “Hardware-
accelerated network control planes,” in Proceedings of the
17th ACM Workshop on Hot Topics in Networks, 2018.

[179] O. Foundation, “P416 programming for Intel Tofino using
Intel P4 studio.” [Online]. Available: https://tinyurl.com/

jvtvypdw, Accessed on 07-01-2021.
[180] D. Ding, M. Savi, and D. Siracusa, “Estimating logarithmic

and exponential functions to track network traffic entropy in
P4,” in NOMS 2020-2020 IEEE/IFIP Network Operations
and Management Symposium, 2020.

[181] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang, “Data
streaming algorithms for estimating entropy of network traf-
fic,” ACM SIGMETRICS Performance Evaluation Review,
2006.

[182] L. Jiang, D. Shah, J. Shin, and J. Walrand, “Distributed ran-
dom access algorithm: scheduling and congestion control,”
IEEE Transactions on Information Theory, 2010.

[183] K. Wu, L. Chen, S. Ye, and Y. Li, “A load balancing algo-
rithm based on the variation trend of entropy in homogeneous
cluster,” International journal of grid and distributed com-
puting, 2014.

[184] Y. Gu, A. McCallum, and D. Towsley, “Detecting anoma-
lies in network traffic using maximum entropy estimation,”

in Proceedings of the 5th ACM SIGCOMM conference on
Internet Measurement, 2005.

[185] J. Crichigno, E. Kfoury, E. Bou-Harb, N. Ghani, Y. Prieto,
C. Vega, J. Pezoa, C. Huang, and D. Torres, “A flow-based
entropy characterization of a NATed network and its appli-
cation on intrusion detection,” in ICC 2019-2019 IEEE In-
ternational Conference on Communications (ICC), 2019.

[186] J. Dean, “Designs, lessons and advice from building large
distributed systems,” Keynote from LADIS, 2009.

[187] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-
to-host congestion control for TCP,” IEEE Communications
surveys & tutorials, 2010.

[188] C.-X. Chen and K. Nagaoka, “Analysis of the state of ECN
on the Internet,” IEICE Transactions on Information and
Systems, 2019.

[189] D. Kitabi, M. Handley, and C. Rohrs, “Internet congestion
control for high bandwidth-delay product networks,” 2002.

[190] N. Dukkipati, Rate Control Protocol (RCP): Congestion con-
trol to make flows complete quickly. Citeseer, 2008.

[191] B. Tschaen, Y. Zhang, T. Benson, S. Banerjee, J. Lee, and
J.-M. Kang, “SFC-checker: Checking the correct forwarding
behavior of service function chaining,” in 2016 IEEE Confer-
ence on Network Function Virtualization and Software De-
fined Networks (NFV-SDN), 2016.

[192] R. Joshi, T. Qu, M. C. Chan, B. Leong, and B. T. Loo,
“BurstRadar: Practical real-time microburst monitoring for
datacenter networks,” in Proceedings of the 9th Asia-Pacific
Workshop on Systems, 2018.

[193] D. Shan, F. Ren, P. Cheng, and R. Shu, “Micro-burst in data
centers: Observations, implications, and applications,” arXiv
preprint arXiv:1604.07621, 2016.

[194] J. Sonchack, O. Michel, A. J. Aviv, E. Keller, and J. M.
Smith, “Scaling hardware accelerated network monitoring
to concurrent and dynamic queries with *Flow,” in 2018
USENIX Annual Technical Conference (USENIX ATC 18),
2018.

[195] J. Sonchack, A. J. Aviv, E. Keller, and J. M. Smith, “Tur-
boflow: Information rich flow record generation on commod-
ity switches,” in Proceedings of the Thirteenth EuroSys Con-
ference, 2018.

[196] Z. Liu, A. Manousis, G. Vorsanger, V. Sekar, and V. Braver-
man, “One sketch to rule them all: Rethinking network flow
monitoring with univmon,” in Proceedings of the 2016 ACM
SIGCOMM Conference, 2016.

[197] E. Jonas, J. Schleier-Smith, V. Sreekanti, C.-C. Tsai,
A. Khandelwal, Q. Pu, V. Shankar, J. Carreira, K. Krauth,
N. Yadwadkar, et al., “Cloud programming simplified: A
berkeley view on serverless computing,” arXiv preprint
arXiv:1902.03383, 2019.

[198] P. Castro, V. Ishakian, V. Muthusamy, and A. Slominski,
“The rise of serverless computing,” Communications of the
ACM, 2019.

[199] M. T. Arashloo, A. Lavrov, M. Ghobadi, J. Rexford,
D. Walker, and D. Wentzlaff, “Enabling programmable trans-
port protocols in high-speed NICs,” in 17th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI 20), 2020.

[200] Y. G. Moon, I. Park, S. Lee, and K. S. Park, “Accelerating
flow processing middleboxes with programmable NICs,” in
Proceedings of the 9th Asia-Pacific Workshop on Systems,
pp. 1–3, 2018.

[201] A. Goli, O. Hajihassani, H. Khazaei, O. Ardakanian,
M. Rashidi, and T. Dauphinee, “Migrating from monolithic
to serverless: A fintech case study,” in Companion of the
ACM/SPEC International Conference on Performance En-
gineering, 2020.

[202] A. Atutxa, D. Franco, J. Sasiain, J. Astorga, and E. Jacob,
“Achieving low latency communications in smart industrial
networks with programmable data planes,” 2021.

40

https://tinyurl.com/jvtvypdw
https://tinyurl.com/jvtvypdw

	Introduction
	Contributions
	Paper Organization
	Routers and Switches

	Related Surveys
	Scope of this Survey

	Background in Programmable Data Planes
	P4 Architectures
	The PISA Architecture
	The PSA Architecture
	The Tofino Native Architecture (TNA)

	P4-programmable Devices
	P4-language
	P4-programmable Devices and TCP performance
	Fine-grained Telemetry
	Traffic Isolation
	Fast Reaction Time upon Congestion
	Protocol and Application Offloading
	Microburst Detection

	Methodology and Taxonomy
	Congestion Control
	Understanding TCP Issues
	Unfair Resource Allocation
	Unfairness among Competing TCP Flows
	Inaccurate Congestion Feedback
	TCP Incast

	End host Implementations
	Literature Review
	End hosts Implementations Comparison, Discussions, and Limitations
	Comparison with Legacy Approaches

	In-network Implementations
	Literature Review
	In-network Implementation Comparison, Discussions, and Limitations
	Comparison with Legacy Approaches

	Summary and Lessons Learned

	Active Queue Management (AQM)
	Challenges on Designing AQM schemes
	Understanding Queues
	Dropping the Right Packets

	RFC-standardized Algorithms
	Literature Review
	RFC-standardized AQM Algorithms Comparison, Discussions, and Limitations
	Comparison with Legacy Approaches

	Custom AQM Algorithms
	Literature Review
	Custom AQM Algorithms Comparison, Discussions, and Limitations
	Comparison with Legacy Approaches

	Summary and Lessons Learned

	TCP Offloading
	TCP Offloading Limitations
	Reducing TCP Overheads in Servers
	Implementing Transparent Application Offloading Schemes

	Protocol Offloading
	Literature review
	Protocol Offloading, Comparison, Discussion and Limitations
	Comparison with Legacy Approaches

	Application Offloading
	Literature Review
	Application Offloading Comparison, Discussions, and Limitations
	Comparison with Legacy Approaches

	Summary and Lessons Learned

	Network Measurements
	Challenges on TCP Performance Monitoring
	Identifying Issues in the Sender
	Inferring Network Statistics
	Tuning Receiver's Parameters
	Network Diagnosis
	Literature Review
	Network Performance Measurements Schemes Comparison, Discussions, and Limitations
	Comparison with Legacy Approaches

	Summary and Lessons Learned

	Challenges and Future Trends
	Arithmetic Computation
	Fast Loss Detection
	Enhancing TCP Congestion Feedback
	TCP State Synchronization
	Expanding Memory Capacity
	Improving TCP Monitoring Schemes
	Reducing Control Plane Intervention
	Improving the QoS of TCP-based Applications
	Expanding In-network Computation

	Conclusion
	Acknowledgement

