Enabling P4 Hands-on Training
in an Academic Cloud

Jose Gomez, Elie F. Kfoury, Jorge Crichigno
College of Engineering and Computing, University of South Carolina, Columbia, SC, USA.
{gomezgaj, ekfoury} @email.sc.edu, jerichigno@cec.sc.edu

Abstract—This paper describes a cloud infrastructure and
virtual laboratories on P4 programmable data plane switches. P4
programmable data planes emerged as a technology that enables
innovation in networking. P4 is a programming language used to
describe how network packets are processed. This paper explains
an entry-level training library on P4. The virtual laboratories
introduce the learner to P4 and data plane concepts by providing
step-by-step guides and exercises. The virtual laboratories are
hosted in the Academic Cloud, a distributed platform that
manages and orchestrates computing resources. Additionally, the
paper describes a work in progress of P4 virtual laboratories that
uses Intel Tofino switches. Lastly, the paper discusses the use of
the Academic Cloud as a network testbed.

Keywords—P4; programmable data planes; virtual laborato-
ries; academic cloud; virtual machines; network emulator.

I. INTRODUCTION

The networking industry has been dominated by closed
and proprietary solutions. This lack of flexibility caused by
standardized requirements makes it difficult to create, modify,
or change protocols, thus slowing down innovation [1]. In
recent years, data plane programmability has attracted the
attention of operators, engineers, and researchers due to its
flexibility. In this context, programmable data planes surge as
a natural evolution of Software-Defined Networking (SDN),
where the software describes the packet processing behav-
ior. Programming Protocol-independent Packet Processor (P4)
[2] is the de facto programming language for data plane
programming. P4 programmable switches have removed the
entry barrier to network design, previously reserved to network
vendors. With P4, the user can test and deploy novel protocols
and applications in a much shorter time span [3]. Although
P4 facilitates the design of customized protocols and appli-
cations, learning P4 can be challenging. The available open
P4 training [4-6] requires the learner to have a background in
virtualization (e.g., hypervisors), Linux, and emulation tools.
Such requirements limit the audience to graduate students,
researchers, and experienced developers.

This paper describes an entry-level training on P4 hosted
in the Academic Cloud. The Academic Cloud is a virtual
platform that manages and orchestrates computing resources
to support virtual laboratories designed for teaching, training,
and research. Virtual laboratories on P4 provide the learner
with the computing resources and documentation that guide

This work was supported by the National Science Foundation under award
numbers 1925484 and 2118311.

Host 1 Host 2 Host n Mgmt
—mé [Pod 1][Pod 1] - [|[Pod 1|[Pod 1] . [([Pod1][Pod 1] ..
£ 51 [Pod 2|[Pod 2] ... |Pod2||Pod2|... |Pod2||Pod2|..4
" [Pod 3|[Pod 3] - |Pod3“Pod3|--- |Pod3||Pod3|m
%ag &: H \: H \: H ‘
1N N T s N
52 &7 &7

! ! ! {

| Orchestration system + front-end (portal system or LMS (Canvas, Blackboard)) |

~ T
&
O ,S Internet

vLabs libraries Hardware

[1PaBMv2 \> Tofino-based switch
[_]P4 Tofino y cpu
@] soN RAM
8 [Jovs &> Storage
[ser

Fig. 1. Academic Cloud.

through the basic concepts of programmable data planes and
P4. The learner interacts with P4 switches through hands-
on experiences and acquires expertise to create, test, and
deploy P4 applications. This paper also describes a work
in progress consisting of virtual laboratories using physical
switches (i.e., Intel Tofino). Finally, it discusses the future use
of the Academic Cloud as a network testbed for research.

II. ACADEMIC CLOUD AND VIRTUAL LABORATORIES
A. Academic Cloud Platform

The Academic Cloud is a distributed platform that provides
the computing resources to support virtual laboratories. These
computing resources are distributed across four data centers
in the United States. The platform dynamically provides the
resources that maximize the learner’s experience in running
a virtual laboratory. Hands-on experience is crucial when
learning networking topics. The Academic Cloud platform has
been deployed by the University of South Carolina, Stanly
Community College, and the Network Development Group
(NDG) [7] since January 2020. As of January 2022, it has
served over 100,000 learners. Fig. 1 illustrates the Academic
Cloud architecture at one of the four data centers. Servers are
provisioned with a large number of resources: CPUs (32 to
40 cores per server), RAM (~1TB), and storage (~2.5 TB).
On average, each data center has approximately 10 servers
used to host virtual pods. A pod is a collection of resources

TABLE 1. FEATURES OF VIRTUAL LABORATORIES.

[Feature | Description |

Performance | Virtual laboratories precisely emulate high-performance
systems (e.g., high-speed networks running at 50 Gbps).

Functional Virtual laboratories have the same functionality as real

realism hardware in a real deployment, and execute the same
code [9].

Traffic real- | Devices within the virtual environment are capable of

ism generating and receiving real, interactive network traffic

to and from the Internet, or from other devices within the
virtual environment [9].
Navigating through an experiment is easy for an inex-

Presentation

layer perience learner. Devices within the virtual environment
must be accessible by simply clicking on them.

Topology It must be easy to create an experiment with any topology,

flexibility including inter-connecting heterogeneous VMs.

(virtual machines (VMs), virtual switches, virtual links, phys-
ical Tofino-based switches, and others) orchestrated by the
Academic Cloud platform to deliver the virtual laboratory
experiments. Some virtual laboratories require more than one
virtual machine to recreate an experiment. The Academic
Cloud is implemented with the server virtualization software
VMware vSphere [8]. The vSphere components include a
collection of bare-metal hypervisors (ESXi), a management
server (vCenter), and a VM running NETLAB, a customized
management application developed by NDG. The Academic
Cloud functions include aggregating resources from the four
data centers, implementing a calendar interface for scheduled
access to equipment pods, and routing pod reservations to the
nearest data center containing the requested pod type.

B. Virtual Laboratories

A virtual laboratory comprises a pod of equipment allocated
transparently to the learner. The learner interacts with the
virtual laboratory using a web browser. Thus, the learner is
not required to install additional software nor possess the
computing resources to run the virtual laboratory. During the
experiment, the initial configuration of the pod is provided
so that the learner only focuses on the content. The main
features of the virtual laboratories are summarized in Table I.
The learner has access to self-paced training material in net-
working, virtualization, cybersecurity, Linux, SDN, FRRouting
[10], P4 programmable switches, and others.

C. Access to the Academic Cloud from a Learner’s Perspective

The system’s primary goal is to facilitate the learning expe-
rience by providing a user-friendly environment. Fig. 2 shows
the steps to reserve a virtual lab in the Academic Cloud. In step
(a), the learner accesses the Academic Cloud through a web
browser using his/her credentials to login into the platform. In
step (b), the learner selects a lab from the library (e.g., Lab 5
from the Introduction to P4 Programmable Switches library).
In step (c), the learner enters the lab and has access to the
devices in the topology. Then, the learner clicks on a device
(e.g., Client) to access the graphical user interface (GUI). In
step (d), the learner interacts with the device by issuing the
set of commands described in the laboratory manual.

Introduction to P4
Programmable Switches

Part1

(a)
Introduction to P4
Programmable Switches

Labs (c)

(b) (d)

Fig. 2. Accessing the Academic Cloud. (a) A learner enters the system. (b)
The learner reserves a virtual laboratory to conduct an experiment. (c) The
learner enters the lab, and a scenario is recreated. The scenario consists of
a pod of virtual devices. In this example, the user clicked on the “Client”
device, which opened a window. (d) The user operates the device via a GUL

III. VIRTUAL LABORATORIES ON P4 PROGRAMMABLE
DATA PLANE SWITCHES

A. P4 Library

The P4 virtual laboratory library developed at the Uni-
versity of South Carolina covers the basic principles of P4
programmable data planes using the Behavioral Model version
2 (BMv2) software switch [11]. The library has eight guided
laboratories and six exercises summarized in Table II. The
goal is to introduce the learner to programmable data plane
switches and the P4 language. The pod uses Containernet
[12], a Mininet [13] fork that uses Docker containers [14]
and can integrate tools such as Open vSwitch (OvS) [15],
SDN controllers, FRR [10], and others. Within the virtual
environment, the learner can create complex topologies using
MiniEdit, a GUI that facilitates the configuration of elements
(routers, switches, containers, and other appliances), save
topologies, and run emulations.

The first laboratory introduces the learner to network ele-
ments available in Mininet (e.g., hosts, links, legacy switches,
P4 switches, and routers) to run an experiment. Lab 2 covers
writing, compiling, and loading a P4 program into a switch.
Lab 3 introduces the P4 building blocks, which represent
the P4 programming abstraction implemented in the software
switch [11]. In lab 4, the learner explores the parser’s function-
alities by defining and processing packet headers. Labs 5 and 6
cover match-action tables using exact and longest prefix match
(LPM). Lab 7 navigates through the control plane interface
that provides functions to interact with the data plane. Lab 8
explains how to recompute the packet’s checksum and emit a
modified header using the deparser. Additionally, the library
includes exercises to test the learner’s knowledge. The learner

TABLE II. DESCRIPTION OF THE VIRTUAL LABORATORIES

Labs. and Exercises

Description

Lab 1: Introduction to Mininet

This lab provides an introduction to Mininet, a network emulator for testing network tools and protocols. It
demonstrates how to emulate network topologies using the CLI and GUI.

Exercise 1: Building a Basic Topol-

In this exercise the user will build a topology in Mininet and perform a connectivity test.

ogy
Lab 2: Introduction to P4 and | The lab introduces the P4 language and provides a high-level overview of the general lifecycle of programming,
BMv2 compiling, and running a P4 program on a software switch.

Exercise 2: Compiling and Run-
ning a P4 Program

This exercise requires the learner to navigate through the P4 programming lifecycle.

Lab 3: P4 Program Building
Blocks

This lab describes the building blocks and the general structure of a P4 program. The lab demonstrates how to
track an incoming packet as it traverses the switch’s pipeline using the switch’s logs.

Lab 4: Parser Implementation

This exercise describes how to define custom headers in a P4 program. Then, it explains how to implement a
simple parser and shows how to track the parsing states of a packet inside the switch.

Exercise 3: Parsing UDP and RTP

In this exercise, the learner will define and parse UDP and RTP headers. Then, the user will verify the switch’s
logs to develop debugging skills.

Lab 5: Introduction to Match-
action Tables (Part 1)

This lab describes match-action tables and how to define them in P4. Then, the lab explains how to implement a
table using exact match.

Lab 6: Introduction to Match-
action Tables (Part 2)

This lab describes match-action tables and how to define them in a P4 program. Then, the lab explains how to
implement a table using longest prefix match (LPM).

Exercise 4: Implementing NAT us-
ing Match-action Tables

This exercise requires the learner to implement Network Address Translation (NAT) with match-action tables.

Lab 7: Populating and Managing
Match-action Tables at Runtime

This lab describes how to populate and manage match-action tables at runtime. Then, it explains how to use the
simple_switch_CLI tool to interact with the data plane.

Exercise 5: Configuring Match-
action Tables at Runtime

In this exercise, the learner will populate the entries of the match-action tables at runtime using the switch’s
simple_switch_CLI tool.

Lab 8: Checksum Recalculation
and Packet Deparsing

This lab describes how to recompute the checksum of an IPv4 header. The lab also explains how a P4 program
performs deparsing.

Exercise 6: Building a Packet Re-
flector

This exercise requires the learner to implement a packet reflector by programming all the P4 pipeline components
(i.e., headers, parser, ingress block, egress block, deparser, and checksum computation).

can request access to the P4 library by filling out the form
available on the website of the Cyberinfrastructure lab [16].

B. Future Virtual Laboratories with P4 and BMv2

Currently, more advanced virtual laboratories are being
developed, covering topics such as advanced P4 constructs,
advanced parsing, stateful processing, and data plane/control
plane communication protocols. Examples of future virtual
laboratories on P4 include monitoring queue statistics using
standard metadata, header stacks to implement a custom
protocol, and sending digests to notify the control plane about
custom events.

IV. WORK IN PROGRESS: TOFINO VIRTUAL
LABORATORIES
A. Tofino Pod Description

The Tofino pod is a work in progress that is currently in
the testing stage. This pod aims to expose the learner to a
production-grade P4 programmable switch, which otherwise
can be expensive to deploy. The Tofino pod is hosted in the
Academic Cloud and allows the learner to interact with the
pod through the web interface.

Fig. 3 shows the components of the Tofino pod: three VMs
(PC1, PC2, and Tofino model), an Intel Tofino switch, Network
Interface Controllers (NICs), physical fiber links, and virtual
links. PC1 and PC2 can communicate through the Tofino
model or the Tofino switch. The former runs on a Linux
Debian 10 VM, and the latter is a Edgecore Wedge 100BF-32X
[17] that runs an Intel Tofino ASIC [18]. The Tofino model
has logging enabled, which is unavailable in the hardware
switch. This feature allows the programmer to track the packet
as it propagates through the data plane pipeline, facilitating
debugging and troubleshooting the P4 program.

The PCs communicate via a dual-port NVIDIA Mellanox
ConnectX 5 NIC with the Tofino switch using a 100Gbps
multi-mode fiber link. The PCs also use the DirectPathl/O
functionality available in VMware vSphere [19]. This feature
allows VMs to communicate with the hardware directly. On
the other hand, the PCs use a virtual Ethernet link to the Tofino
Model. Both switches are managed from PC1 using an out-
of-band connection.

B. Virtual Laboratories in the Tofino Pod

The Tofino virtual laboratories will cover most of the topics
described in Table II. The first lab will cover the design
workflow in the Tofino pod, which consists of creating a P4
program in the Tofino model. Once the P4 program is ready,
the user loads the P4 program into the Tofino switch. The fol-
lowing labs will explain the Tofino Native Architecture (TNA)
[20] blocks, parser implementation, match-action tables, the

Tofino Model
(Debian 10 Virtual Machine)

Tofino Switch
(Edgecore Wedge 100BF-32Q)

------ Virtual Ethernet Link (up
to 10Gbps)

Dual-port 100GbE NVIDIA
Mellanox ConnectX 5

100GbE Multi-Mode
Fiber (QSFP28)

Lubuntu 20.04 Virtual Machine (8
vCPUs, 16 GB Memory)

Fig. 3. Topology used for the Tofino virtual laboratories.

—— Out-of-Band Link

runtime environment, checksum calculation, and deparser. The
TNA is a programmable switch architecture defined by Intel
for their family of Tofino switching ASICs. In contrast to the
V1Model, TNA provides its architecture definitions that ex-
pose the distinctive capabilities of the ASICs. More advanced
labs will include stateful processing, advanced parsing, and
the usage of TNA externs such as low-pass filters, packet
generators, and hash computation.

The proposed workflow for the Tofino pod starts with
creating a P4 program using the Tofino model, then loading the
P4 program in the Tofino ASIC to achieve high performance.
The learner interacts with the switches using SSH sessions
launched from Visual Studio Code, which contains the text
editor and the CLI to compile and load a P4 program from
the Tofino model to the Tofino switch.

C. The Academic Cloud as a Testbed for Research

Although the Academic Cloud has been used for research
purposes already [21-25], its primary purpose has been for
teaching and training. The Academic Cloud can support a wide
range of equipment (virtual machines, legacy routers, passive
taps, mmWave Access Points, smartNICs, firewalls, and other
appliances) to conduct research. Moreover, pods in the Aca-
demic Cloud can interact with network testbeds, computing
facilities, and scientific instruments via an external link. This
feature could enable researchers to test their experiments in a
research infrastructure such as FABRIC [26].

Preliminary tests in the Tofino pod of Fig. 3 show that a
throughput test between PC1 and PC2 achieves up to ~80Gbps
via the Tofino switch. Note that the throughput is limited by the
traffic generator rather than by the switch. This performance
indicates that the Tofino pod has potential as a network testbed
for high performance. The Academic Cloud also allows testing
applications on a wide area network (WAN) by conducting
experiments among its four data centers in South Carolina,
North Carolina, Idaho, and Illinois. The authors believe that
connecting the data centers to FABRIC may open new research
possibilities on programmable data plane applications.

V. CONCLUSION

This paper describes the implementation of P4 virtual lab-
oratories in the Academic Cloud. The P4 library introduces
the learner to data plane concepts and P4 via hands-on
experiences. The Academic Cloud is a distributed platform that
manages and orchestrates computing resources to enable vir-
tual laboratories. It supports complex network topologies that
include real and virtualized hardware. Additionally, this paper
presents the Tofino pod, a work in progress that uses Intel
Tofino switches. Finally, the paper discusses the potential use
of the Academic Cloud to conduct research experiments over
WANS. Future virtual libraries will cover network operating
systems (NOS) (SONiC, ONL, Stratum) and P4 programmable
smartNICs.

REFERENCES
[1]1 G. Papastergiou, G. Fairhurst, D. Ros, A. Brunstrom, K.-J. Grinnemo,
P. Hurtig, N. Khademi, M. Tiixen, M. Welzl, D. Damjanovic, et al., “De-
ossifying the internet transport layer: A survey and future perspectives,”
IEEE Communications Surveys & Tutorials, 2016.

(2]

(3]

[4]
[5]

(6]
[7

—

(8]
9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]
[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, 2014.

E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “An exhaustive survey
on P4 programmable data plane switches: Taxonomy, applications,
challenges, and future trends,” IEEE Access, 2021.

The P4 Language Consortium, “P4 Tutorial.” [Online]. Available: https:
//github.com/p4lang/tutorials, Accessed on 03-22-2022.

ETH Ziirich - Networked Systems Group (NSG), “P4-Learning.” [On-
line]. Available: https://github.com/nsg-ethz/p4-learning, Accessed on
03-22-2022.

Open Network Foundation (ONF), “Getting Started with P4.” [Online].
Available: https://tinyurl.com/2p89237n, Accessed on 03-22-2022.
“Network development group (NDG).” [Online]. Available: https://www.
netdevgroup.com/, Accessed on 03-21-2022.

VMware, “vSphere.” [Online]. Available: https://www.vmware.com/
products/vsphere.html, Accessed on 03-21-2022.

N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proceedings of the 8th international conference on Emerging net-
working experiments and technologies, 2012.

Linux Foundation, “FRRouting Project.” [Online]. Available: https://
frrouting.org/, Accessed on 03-22-2022.

The P4 Language Consortium, “Behavioral Model version 2 (BMv2).”
[Online]. Available: https://github.com/p4lang/behavioral-model, Ac-
cessed on 03-21-2022.

M. Peuster, J. Kampmeyer, and H. Karl, “Containernet 2.0: A rapid
prototyping platform for hybrid service function chains,” in 2018 4th
IEEE Conference on Network Softwarization and Workshops (NetSoft),
2018.

B. Lantz and B. O’Connor, “A mininet-based virtual testbed for dis-
tributed SDN development,” ACM SIGCOMM Computer Communica-
tion Review, 2015.

C. Boettiger, “An introduction to docker for reproducible research,” ACM
SIGOPS Operating Systems Review, 2015.

B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, et al., “The design and
implementation of Open vSwitch,” in /2th USENIX symposium on
networked systems design and implementation (NSDI 15), 2015.
Cyberinfrastructure Lab, “Access request form.” [Online]. Available:
http://ce.sc.edu/cyberinfra/cybertraining.html, Accessed on 04-24-2022.
Edgecore Networks, “Wedge 100BF-32X.” [Online]. Available: https:
/Mtinyurl.com/sy2jkqe, Accessed on 03-21-2022.

Intel, “Intel Tofino Ethernet switch ASIC.” [Online]. Available: https:
/Mtinyurl.com/mry8a8c4, Accessed on 03-21-2022.

VMware, “Direct path I/O.” [Online]. Available: https://tinyurl.com/
Spvejwbe, Accessed on 03-21-2022.

Barefoot Networks, “P4 Intel Tofino native architecture - public version.”
[Online]. Available: https://tinyurl.com/5d7nznwd, Accessed on 03-22-
2022.

E. F. Kfoury, J. Crichigno, E. Bou-Harb, D. Khoury, and G. Srivastava,
“Enabling TCP pacing using programmable data plane switches,” in
2019 42nd International Conference on Telecommunications and Signal
Processing (TSP), 2019.

E. F. Kfoury, J. Crichigno, and E. Bou-Harb, “Offloading media traffic
to programmable data plane switches,” in ICC 2020-2020 IEEE Inter-
national Conference on Communications (ICC), 2020.

E. F. Kfoury, J. Gomez, J. Crichigno, and E. Bou-Harb, “An emulation-
based evaluation of TCP BBRv2 alpha for wired broadband,” Computer
Communications, 2020.

E. Kfoury, J. Crichigno, E. Bou-Harb, and G. Srivastava, “Dynamic
router’s buffer sizing using passive measurements and P4 programmable
switches,” in 2021 IEEE Global Communications Conference (GLOBE-
COM), 2021.

K. Friday, E. Kfoury, E. Bou-Harb, and J. Crichigno, “Towards a unified
in-network DDoS detection and mitigation strategy,” in 2020 6th IEEE
Conference on Network Softwarization (NetSoft), 2020.

I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang,
T. Lehman, and P. Ruth, “FABRIC: A national-scale programmable
experimental network infrastructure,” IEEE Internet Computing, 2019.

