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Nonparametric Interaction Selection

Yushen Dong and Yichao Wu

University of Illinois at Chicago

Abstract:

We consider the nonparametric two-way interaction model and propose a

method to select important main effect and interaction effect terms simultane-

ously. Our method is based on backfitting local constant smoothing. Interaction

selection is achieved by solving a constrained optimization problem to identify

which main effect and interaction effect terms favor an infinity smoothing band-

width. We establish selection consistency for the proposed method. Simulation

examples and a real data example are used to illustrate its competitive finite-

sample performance.

Key words and phrases: Additive model, backfitting, local constant smoothing,

variable selection.

1. Introduction

The readily available high dimensional data due to technology advance has

motivated the extremely active research area of variable selection. There

have been a lot of methods proposed in the literature for variable selection.
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1. INTRODUCTION2

In this paper, we will target at a special kind of variable selection, namely

interaction selection. More explicitly, we study how predictor variables con-

tribute to the response via pairwise interaction and how to select important

pairwise interaction.

We consider the nonparametric regression of a univariate response Y

on multivariate predictors X = (X1, X2, . . . , Xd)
T with Xj ∈ Ωj ⊂ R,

j = 1, 2, . . . , d. The additive model Y = α +
∑d

j=1mj(Xj) + ε is a sim-

plification of the fully nonparametric regression model Y = m(X) + ε by

assuming predictors’ effects to be additive. Yet this additivity assump-

tion may not be reasonable in many real applications. Note that the

fully nonparametric regression model can be decomposed as Y = α +∑d
j=1mj(Xj)+

∑
1≤j<k≤dmjk(Xj, Xk)+

∑
1≤j<k<l≤dmjkl(Xj, Xk, Xl)+. . .+

m12...d(X1, X2, . . . , Xd) + ε by separating interaction effects at different or-

ders. In this sense, the additive model is essentially an approximation of

the fully nonparametric regression model by ignoring all interaction effects.

In this paper, we focus on the nonparametric two-way interaction model

Y = α +
d∑
j=1

mj(Xj) +
∑

1≤j<k≤d

mjk(Xj, Xk) + ε (1.1)

and propose a new method to select important main effect and interac-

tion effect terms simultaneously. However the main idea can be easily ex-

tended to more general cases with higher-order interactions. Model (1.1)
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1. INTRODUCTION3

is not identifiable itself. Additional identifiability conditions are required.

There are different ways to formulate its identifiability conditions. To fa-

cilitate the implementation of our proposed nonparametric interaction se-

lection method, we adopt the following fixed-point identifiability conditions

(Gustafson 2000):

mj(xj,0) = 0, j = 1, . . . , d; (1.2)

mjk(xj,0, ·) = 0,mjk(·, xk,0) = 0 and mjk(xj,0, xk,0) = 0, 1 ≤ j < k ≤ d,

(1.3)

where xj,0 is any fixed point in the domain Ωj of Xj, j = 1, 2, . . . , d. Our

goal is to estimate the sets of important main and interaction effects denoted

by M = {j : mj(·) 6= 0} and I = {(j, k) : mjk(·, ·) 6= 0}, respectively.

In the literature, there are many attempts to perform parametric in-

teraction selection. Parametric two-way interaction model essentially as-

sumes further mj(Xj) = βjXj and mjk(Xj, XK) = βjkXjXk in the above

nonparametric two-way interaction model model (1.1). This parametric

two-way interaction model is also called quadratic regression model. Zhao

et al. (2009) proposed a composite absolute penalties family and demon-

srated that their method can perform parametric interaction selection for

the parametric two-way interaction model. Yuan et al. (2009) proposed a

structured variable selection and estimation procedure for the parametric
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1. INTRODUCTION4

two-way interaction model. Choi et al. (2010) propose a parametric interac-

tion selection method under strong heredity assumption. Here strong hered-

ity requires j ∈ M and k ∈ M as long as (j, k) ∈ I. In comparison, weak

heredity requires j ∈ M or k ∈ M or both if (j, k) ∈ I. Bien et al. (2013)

proposed a lasso for hierarchical interactions. Hao and Zhang (2014) and

Niu et al. (2018) studied interaction screening. Hao et al. (2018) proposed

a new regularization method, regularization algorithm under marginality

principle (RAMP), to perform parametric interaction selection. Other re-

lated methods include Kong et al. (2017) and Wang et al. (2020) among

many others.

Our focus is on nonparametric interaction selection. Lin and Zhang

(2006) proposed a component selection and smoothing operator based on

smoothing spline ANOVA and can be used to fit the above nonparametric

two-way interaction model and perform interaction selection. Radchenko

and James (2010) proposed a method, variable selection using adaptive

non-linear interaction structures in high dimension (VANISH), for model

(1.1). Radchenko and James (2010)’s method represents each main ef-

fect and interaction effect term using a preselected set of univariate and

bivariate, respectively, orthonormal basis functions. In particular, the bi-

variate orthonormal basis functions is chosen to be the tensor products of
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1. INTRODUCTION5

the univariate basis functions in their implementation. This leads to some

challenges in approximating complex interaction effect component function.

In this paper we propose a new nonparametric interaction selection

method in the framework of coupling backfitting with local constant smooth-

ing. The essential idea is that if an infinity smoothing bandwidth is used in

the local constant smoothing for each main effect or interaction effect com-

ponent function, the corresponding component function estimate will be a

constant function implying that it is unimportant for the prediction of the

response variable. Since we are backfitting local constant smoothing, our

method is much more flexible in fitting any complex interaction component

function and can overcome the aforementioned limitation of using tensor

products of univariate basis functions to approximate bivariate interaction

component functions. In addition, our algorithm does not need strong or

weak heredity assumption. Yet it is possible to incorporate strong or weak

heredity if such an information is available as discussed as the end of the

paper.

For nonparametric variable selection, Wu and Stefanski (2015) studied

the additive model

Y = α +
d∑
j=1

mj(Xj) + ε

without interaction and proposed a structure recovery scheme towards poly-
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1. INTRODUCTION6

nomial modeling. It is capable of identifying unimportant predictors, linear

predictors, quadratic predictors, etc. White et al. (2017) proposed a vari-

able selection method for the fully nonparametric model

Y = m(X1, X2, . . . , Xd) + ε.

The nonparametric two-way interaction model (1.1), which sits between the

additive model and the fully nonparametric model, is the focus of the cur-

rent paper. The proposed method can estimate the sets of important main

effects and two-way interaction effects. In addition, it can be readily ex-

tended to models with high-order interactions. With this new contribution,

we now have a full spectrum of nonparametric variable selection methods.

The rest of the paper is organized as follows. Section 2 presents the

basic backfitting local constant smoothing procedure for the two-way in-

teraction model. Our new nonparametric interaction selection method is

introduced in Section 3. Some implementation issues are discussed in Sec-

tion 4 with a toy example to illustrate how it works. Selection consistency is

established in Section 5. Simulation examples in Section 6 and a real data

example in Section 7 are used to demonstrate of the proposed method’s

competitive finite-sample performance. Section 8 gives some discusion on

how to incorporate strong or weak heredity information and possible future

extensions.
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2. BACKFITTING ESTIMATION OF THE TWO-WAY
INTERACTION MODEL7

2. Backfitting estimation of the two-way interaction model

Backfitting is a commonly-used technique for the estimation of the additive

model (Hastie and Tibshirani 1990). It can also be used to fit the two-way

interaction model (1.1) with both main and interaction effect terms. Back-

fitting algorithm is an iterative algorithm. In each iteration, it sequentially

updates the estimate of one model component at a time. Each updating

requires a univariate or bivariate smoothing, depending on whether we are

updating a main effect or an interaction effect term. For the purpose of

selecting important main and interaction effect terms, we will couple back-

fitting with local constant smoothing (Fan and Gijbels 1996).

2.1 Univariate local constant smoothing

Univariate local constant smoothing is used to update the estimate of the

main effect terms. To estimate a univariate regression function g(t) =

E(Z|T = t) from a random sample {(Ti, Zi) : i = 1, . . . , n}, the univariate

local constant smoothing approximates g(t) by a constant a. A weighted

least squares approach is used to estimate a with weights specified by a

kernel function K(·) and a smoothing bandwidth h > 0. More specifically,

the univariate local constant smoothing estimate ĝ(t) of g(t) at any t is given

by â, the optimizer of â = arg mina
∑n

i=1{Zi− a}2K(Ti−t
h

). We denote such
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a univariate local constant smoothing by SK,h.

2.2 Bivariate local constant smoothing

Bivariate local constant smoothing is used to estimate the interaction effect

terms. It is based on exactly the same idea as the univariate local constant

smoothing but is used for the case with two predictors. Suppose we estimate

a bivariate regression function g(s, t) = E(Z|S = s, T = t) from a random

sample {(Si, Ti, Zi) : i = 1, . . . , n}. The bivariate local constant smoothing

estimate ĝ(s, t) of g(s, t) at any s and t is given by ĉ, the optimizer of

ĉ = arg min
c

n∑
i=1

{Zi − c}2K(
Si − s
h

)K(
Ti − t
h

).

Note that potentially different smoothing bandwidths can be used for S and

T . Yet for simplicity, we will use a same smoothing bandwidth. Denote

this bivariate local constant smoothing by S2K,h.

2.3 Backfitting algorithm

With the above univariate and bivariate local constant smoothings in place,

we are ready to present the backfitting algorithm for the two-way inter-

action model (1.1). The backfitting algorithm is an iterative algorithm.

The essential idea is to update the estimate of a single main or interac-

tion effect term at every step while keeping estimates of all other terms
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fixed. The detailed backfitting algorithm for the two-way interaction model

(1.1) is given in Algorithm 1 with given smoothing bandwidths hj > 0 and

h̃jk > 0 for main and interaction effect terms, respectively. Denote the es-

timates at the convergence by α̂BF (h, h̃), m̂BF
j (·; h, h̃), and m̂BF

jk (·, ·; h, h̃)

with h = (h1, h2, . . . , hd)
T and h̃ = (h̃1,2, h̃1,3, . . . , h̃(d−1),d)

T . Note here that

we use two notations h̃jk and h̃j,k interchangeably to avoid potential confu-

sion. Similarly mjk(·, ·) (resp. λ̃jk and ̂̃λjk to be defined) is same as mj,k(·, ·)

(resp. λ̃j,k and ̂̃λj,k).
In Algorithm 1, it is important to update interaction effect terms before

updating main effect terms in each iteration for the following reason. After

applying a bivariate local constant smoothing to update the estimate of an

interaction effect term in Step 2(a), the updated estimate of the interaction

effect term may not satisfy the identifiability condition (1.3). To ensure the

identifiability condition, a follow-up updating Step 2(b) is necessary and this

follow-up updating in the interaction effect term will change the estimates

of the corresponding two main effect terms. This changing may lead to

suboptimal estimates of the main effect terms. It can be automatically

fixed by the upcoming updating of the mean effect terms in Step 3.
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Algorithm 1: Backfitting algorithm for the two-way interaction

model (1.1)

Step 1: Initialize by setting α̂ = n−1
∑n

i=1 Yi, m̂j(·) ≡ 0 for j = 1, . . . , d

and m̂jk(·) ≡ 0 for 1 ≤ j < k ≤ d.

Step 2: For j = 1, . . . , d− 1; k = j + 1, . . . , d:

(a) apply the bivariate local constant smoother S2K,h̃jk to(Xij , Xik), Yi − α̂−
d∑

l=1

m̂l(Xil)−
∑

s<t : (s,t) 6=(j,k)

m̂st(Xis, Xit)

 ; i = 1, . . . , n


and set the estimated function to be the updated estimate

m̂jk(·, ·) of mjk(·, ·).

(b) update α̂← α̂ + m̂jk(xj,0, xk,0),

m̂j(·)← m̂j(·) + m̂jk(·, xk,0)− m̂jk(xj,0, xk,0),

m̂k(·)← m̂k(·) + m̂jk(xj,0, ·)− m̂jk(xj,0, xk,0) and

m̂jk(·, ·)← m̂jk(·, ·)−m̂jk(xj,0, ·)−m̂jk(·, xk,0)+m̂jk(xj,0, xk,0)

to implement the identifiability conditions (1.2) and (1.3).

Step 3: for j = 1, . . . , d:

(a) apply the univariate local constant smoother SK,hj toXij , Yi − α̂−
∑
l6=j

m̂l(Xil)−
∑

1≤s<t≤d

m̂st(Xis, Xit)

 ; i = 1, . . . , n

 and set

the estimated function to be the updated estimate m̂j(·) of

mj(·).

(b) update α̂← α̂ + m̂j(xj,0), m̂j(·)← m̂j(·)− m̂j(xj,0) to

implement the identifiability conditions (1.3).

Step 4: Update α̂←
1

n

n∑
i=1

Yi − d∑
j=1

m̂j(Xij)−
∑

1≤s<t≤d

m̂st(Xis, Xit)

 .

Step 5: Repeat Steps 2, 3, and 4 until the change in all m̂j(·) for

j = 1, . . . , d and m̂jk(·) for 1 ≤ j < k ≤ d between successive

iterations are less than a specified tolerance.
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3. MAIN AND INTERACTION EFFECT SELECTION11

3. Main and interaction effect selection

It was noted in Wu and Stefanski (2015) that when hj =∞, the univariate

local constant smoothing in Step 3(a) approximates mj(·) by a constant

leading to a constant function estimate. The follow-up updating Step 3(b)

will shift the constant function estimate to a zero function m̂j(·) = 0 to

satisfy the identifiability condition (1.2). As a result, an infinity smoothing

bandwidth in the backfitting algorithm leads to the corresponding predic-

tor’s main effect being estimated to be unimportant. Based on this finding,

Wu and Stefanski (2015) proposed a variable selection method for the ad-

ditive model.

By the same token, if h̃jk = ∞ in Algorithm 1, the bivariate local

constant smoothing in Step 2(a) leads to a bivariate constant function esti-

mate. The follow-up updating Step 2(b) shifts it to zero function estimate

m̂jk(·, ·) = 0 exactly in the same way. Corresponding interpretation is that

the interaction effect between Xj and Xk is estimated to be unimportant.

According to these findings, the selection of important main effect and

interaction effect terms for the two-way interaction model (1.1) boils down

to the identification of which main effect and interaction effect terms favor

an infinity smoothing bandwidth in Algorithm 1. Based on this, we now

propose a new method to perform main effect and interaction effect selection
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3. MAIN AND INTERACTION EFFECT SELECTION12

simultaneously for the two-way interaction model (1.1).

It is not easy to estimate an infinity. We convert the estimation of

an infinity to the estimation of a zero by reparemetrizing λj = 1/hj and

λ̃jk = 1/h̃jk as in Wu and Stefanski (2015) and White et al. (2017). Denote

λ = (λ1, λ2, . . . , λd)
T and λ̃ = (λ̃12, λ̃13, . . . , λ̃(d−1)d)

T to be the vectors

of inverse smoothing bandwidths for main and interaction effect terms,

respectively. For a vector λ, we denote λ−1 = (1/λ1, 1/λ2, . . . , 1/λd)
T .

Following Wu and Stefanski (2015) and White et al. (2017), we pro-

pose to estimate the favored smoothing bandwidth for each main effect or

interaction effect term by solving a constrained optimization problem

min
λ,λ̃

n∑
i=1

{
Yi − α̂BF (λ−1, λ̃−1)−

d∑
j=1

m̂BF
j (Xij;λ

−1, λ̃−1)

−
d−1∑
j=1

d∑
k=j+1

m̂BF
jk (Xij, Xik;λ

−1, λ̃−1)

}2

(3.4)

subject to λj ≥ 0, j = 1, . . . , d;

λ̃jk ≥ 0, 1 ≤ j < k ≤ d;

d∑
j=1

λj +
d−1∑
j=1

d∑
k=j+1

λ̃jk = τ,

where τ ≥ 0 is a regularization parameter to be tuned. Denote the optimizer

by λ̂ ≡ λ̂(τ) = (λ̂1(τ), λ̂2(τ), . . . , λ̂d(τ))T and

̂̃λ ≡ ̂̃λ(τ) = (̂̃λ1,2(τ), ̂̃λ1,3(τ), . . . , ̂̃λ(d−1)d(τ))T .
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4. IMPLEMENTATION ISSUES AND A TOY EXAMPLE13

For an appropriately tuned τ , some components of λ̂ and ̂̃λ will be exactly

zero. Then the estimated set of important main and interaction effects

are given by M̂(τ) = {j : λ̂j(τ) > 0} and Î(τ) = {(j, k) : ̂̃λjk(τ) >

0}, respectively. To match our asymptotic consistency to be developed in

Section 5, we can possibly use alternative definition M̂(τ) = {j : λ̂j(τ) > ε}

and Î(τ) = {(j, k) : ̂̃λjk(τ) > ε}, respectively, for some small ε > 0. For

example, ε can be chosen to be twice the convergence tolerance adopted in

the forthcoming modified coordinate descent algorithm. Yet based on our

limited numerical experience, we have observed that these two definitions

are always giving us the same selection result. This is due to the lasso-type

constraint.

4. Implementation issues and a toy example

4.1 Modified coordinate descent algorithm

Convexity is a highly desired property in optimization. However due to the

complicated backfitting algorithm coupled with univariate and bivariate lo-

cal constant smoothing, the objective function of the optimization problem

(3.4) is not convex. We borrow the modified coordinate descent algorithm

(Wu and Stefanski 2015) to solve (3.4) for any given τ > 0. We skip the

details to save space.
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4.2 Tuning

AIC, BIC, and cross validation can be used to tune the hyperparameter

τ in the constrained optimization problem (3.4). For AIC and BIC, sum

of squared errors and degrees of freedom are needed. The sum of squared

errors can be simply calculated by

n∑
i=1

Yi − α̂BF (λ̂−1,
̂̃
λ
−1

)−
d∑

j=1

m̂BF
j (Xij ; λ̂

−1,
̂̃
λ
−1

)−
d−1∑
j=1

d∑
k=j+1

m̂BF
jk (Xij , Xik; λ̂

−1,
̂̃
λ
−1

)


2

.

Note that the univariate and bivariate local constant smoothings are

linear smoothers (Fan and Gijbels 1996). The trace of the corresponding

smoothing matrix can be used to gauge the degrees of freedom for the

backfitting estimate of each model component of the two-way interaction

model (1.1).

In particular, the degrees of freedom for main effect estimate m̂BF
j (·; h, h̃)

is given by tr
(
Sj − 1 (sj(xj,0))

T
)

. Here 1 is a column vector of ones

of an appropriate length and in the current context is of length n, and

Sj = (sj(x1j), sj(x2j), . . . , sj(xnj))
T is the smoothing matrix of the local

constant smoothing with

sj(xj) =

(
K(

X1j − xj
hj

), K(
X2j − xj

hj
), . . . , K(

Xnj − xj
hj

)

)T
/

n∑
i=1

K(
Xij − xj

hj
).

Note that the first and second terms of tr(Sj − 1 (sj(xj,0))
T ) correspond to

Step 3(a) and 3(b), respectively. Since tr(1 (sj(xj,0))
T ) = tr((sj(xj,0))

T 1) =

1, we have tr(Sj−1 (sj(xj,0))
T ) = tr(Sj)−1 as in Wu and Stefanski (2015).
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4. IMPLEMENTATION ISSUES AND A TOY EXAMPLE15

It becomes more involved for the interaction effect term estimate m̂jk(·, ·; h, h̃).

Here are the details. Denote

s̃jk(xj, xk) =
1

n∑
i=1

K(
Xij − xj
h̃jk

)K(
Xik − xk
h̃jk

)



K(
X1j−xj
h̃jk

)K(X1k−xk
h̃jk

)

K(
X2j−xj
h̃jk

)K(X2k−xk
h̃jk

)

...

K(
Xnj−xj
h̃jk

)K(Xnk−xk
h̃jk

)


.

Then S̃jk = (s̃jk(x1j, x1k), s̃jk(x2j, x2k), . . . , s̃jk(xnj, xnk))
T is the smoothing

matrix for the bivariate local constant smoothing in Step 2(a) of Algorithm

(1). For the follow-up updating Step 2(b), we similarly denote S̃j0k =

(s̃jk(xj,0, x1k), s̃jk(xj,0, x2k), . . . , s̃jk(xj,0, xnk))
T and

S̃jk0 = (s̃jk(x1j, xk,0), s̃jk(x2j, xk,0), . . . , s̃jk(xnj, xk,0))
T .

Then the degrees of freedom of the interaction effect estimate m̂jk(·, ·; h, h̃)

is given by

tr
{

S̃jk − S̃j0k − S̃jk0 + 1 (s̃jk(xj,0, xk,0))
T
}
,

where the last three terms are due to the follow-up updating Step 2(b) to

make the interaction effect estimate m̂jk(·, ·; h, h̃) satisfy the identifiability

condition (1.3).

Following Buja et al. (1989) and putting all these together, the total

degrees of freedom for the backfitting estimate for the two-way interaction
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4. IMPLEMENTATION ISSUES AND A TOY EXAMPLE16

model (1.1) is given by

1 +
d∑
j=1

(tr(Sj)− 1) +
∑

1≤j<k≤d

[
tr
{

S̃jk − S̃j0k − S̃jk0

}
+ 1
]

by noting similarly that tr(1 (s̃jk(xj,0, xk,0))
T ) = tr((s̃jk(xj,0, xk,0))

T 1) = 1.

Here the very first term 1 is the degrees of freedom to account for the

intercept term estimated in Step 4 of Algorithm (1).

In our forthcoming numerical examples, we will use a BIC criterion to

tune the regularization parameter τ .

4.3 Refitting

With the tuned optimal τ̂ , the final estimated set of main and interaction

effects are given by M̂(τ̂) and Î(τ̂), respectively. If we want to estimate the

overall regression function m(x) = α+
∑d

j=1mj(xj)+
∑

1≤j<k≤dmjk(xj, xk)

as well, a refitting step may be necessary to improve performance. Note

that in the nonparametric main and interaction effect estimation method

proposed above, we need to couple the backfitting algorithm with local

constant smoothing to perform selection. But it is well known that the

local constant smoothing is suboptimal if one cares about estimating the

regression function (Fan and Gijbels 1996). In particular, Fan and Gijbels

(1996) showed theoretically that the local linear smoothing can do much

better than the local constant smoothing in terms of reducing smoothing
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4. IMPLEMENTATION ISSUES AND A TOY EXAMPLE17

bias while estimating the regression function. Consequently a refitting step

can be adopted to improve performance in terms of estimating the overall

regression function m(x).

For the selected final model

Y = α +
∑

j∈M̂(τ̂)

mj(Xj) +
∑

(j,k)∈Î(τ̂)

mjk(Xj, Xk) + ε,

we couple the backfitting algorithm with univariate (resp. bivariate) lo-

cal linear smoothing for updating the main (resp. interaction) effect terms

to obtain a final estimate of the overall regression function. An optimiza-

tion problem similar to (3.4) can be used to determine optimal smoothing

bandwidths for each term in conjunction with AIC to tune the correspond-

ing regularization parameter since local linear smoothing is also a linear

smoother (Fan and Gijbels 1996).

4.4 A toy example

To get a better idea how our proposed selection method works, we now

illustrate with a toy example. A random sample of size n = 200 is generated

from the following model with five predictors in total, two important main

effect terms and three important interaction effect terms

Y = m1(X1) +m2(X2) +m1,2(X1, X2) +m1,3(X1, X3) +m4,5(X4, X5) + ε,
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where m1(t) = m2(t) = 2 sin(πt), m1,2(s, t) = m1,3(s, t) = m4,5(s, t) =

2 sin(πst), X1, . . . , X5
iid∼ Unif(−1, 1), and independent ε ∼ N(0, 1). The

identifiability conditions (1.2) and (1.3) are satisfied with xj,0 = 0, j =

1, 2, . . . , 5. Note that there are 5 main effect terms and 10 interaction effect

terms in total. We apply our proposed main and interaction effect selection

algorithm. The solution path in Figure 1 plots λ̂j(τ) and ̂̃λjk(τ) versus the

tuning parameter τ for main and interaction effects. Note that we only plot

up to τ = 30 for best visual effect.

In the beginning with τ = 0, all optimal inverse smoothing bandwidths

are zero since τ is the summation of all inverse smoothing bandwidth. As τ

gradually increases, λ̂1(τ), λ̂2(τ), ̂̃λ1,3(τ), ̂̃λ1,2(τ), and ̂̃λ4,5(τ) corresponding

to important main and interaction effect terms sequentially depart from

zero before any unimportant terms component does. Note until τ = 25, the

optimal inverse smoothing bandwidth corresponding to one unimportant

term becomes nonzero. Therefore, our proposed method can perform main

and interaction effect selection perfectly as long as τ is tuned in a large

interval [9, 24]. After rescaling appropriately, we overlay the BIC in Figure

1, denoted by the thin black dotted line. It shows that the BIC tuning leads

to a perfect main and interaction effect selection.
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Figure 1: Solution path for a toy example.

5. Consistency

To establish selection consistency for the proposed nonparametric main and

interaction effect selection method, we have proved the following asymptotic

results for the optimizer of (3.4).

Theorem 1. Under Conditions 1-5 in Appendix, if τ →∞ and τ 4/n→ 0

as n → ∞, the optimizer of (3.4) satisfies ĥj(τ)
p→ ∞ and ĥj′(τ)

p→ 0
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for any j ∈ M and j′ 6∈ M, and ̂̃hjk(τ)
p→ ∞ and ̂̃hj′k′(τ)

p→ 0 for any

(j, k) ∈ I and (j ′, k′) 6∈ I.

Theorem 1 implies selection consistency straightforwardly. Namely

P (M̂ =M, Î = I)→ 1 as n→∞.

6. Simulation studies

Predictors in our simulation examples are generated in two steps. We

first generate multivariate Gaussian (Z1, Z2, . . . , Zd)
T with E(Zj) = 0 and

cov(Zj, Zk) = ρ|j−k| for 1 ≤ j, k ≤ d. Here ρ controls the correlation among

predictors and we will consider ρ = 0.6 in all of our simulation examples.

Our predictors are generated by applying transformation Xj = 2Φ(Uj)− 1

with Φ(·) being the cumulative distribution function of standard normal

distribution so that marginally Xj ∼ Unif(−1, 1) for j = 1, 2, . . . , d. In

our simulation studies, we fix xj,0 = 0 for j = 1, 2, . . . , d in the identifiabil-

ity conditions (1.2) and (1.3). The dimension of predictors d is either 10 or

20 for all simulation examples.

We compare our proposed method with two existing methods: regu-

larization algorithm under marginal principle (RAMP) method (Hao et al.

2018) and variable selection using adaptive non-linear interaction structures

in high dimensions (VANISH) method (Radchenko and James 2010). We
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evaluate performance of different methods in terms of two criteria: identi-

fication of important main and interaction effects, and integrated squared

error (ISE) of each estimate of the overall regression function m(·), defined

as ISE(m̂) = EX(m(X)−m̂(X))2, where m̂(·) denotes an estimate of m(·).

The expectation EX is replaced by an empirical expectation based on a big

independent test set.

Note that the VANISH method is designed for a nonlinear two-way

interaction model with strong heredity and it requires an extra validation set

to tune its regularization parameter. Here the strong heredity requires that

if an interaction effect term is important, the corresponding two main effect

terms must be important. The RAMP method is designed for quadratic

regression, essentially an extended linear model with interaction effect terms

added, and uses EBIC for tuning. In this sense, the RAMP is a linear

method for main and interaction effect selection. It requires either strong or

weak heredity. The weak heredity assumption requires that if an interaction

effect term is important, at least one of corresponding two main effect terms

is important. So to provide a fair comparison and a thorough investigation

of our proposed method’s finite-sample performance, we consider both linear

and nonlinear two-way interaction model with and without strong heredity.

In total we consider four simulation examples. For the models with strong
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heredity, strong heredity version of RAMP is used while for the models

without strong heredity, weak heredity version of RAMP is used. For all

these four examples, VANISH uses Fourier basis.

6.1 Models with strong heredity

First we consider models with strong heredity.

Example 1. Linear two-way interaction model with strong heredity

Data are generated from model

Y = 2.1X1 + 2.1X2 + 2.1X3 + 2.1X4 + 3.7X1X2 + 3.7X1X3 + ε,

where ε ∼ N(0, 1) is independent of predictors. In this model, there are

four important main effect terms and two important interaction effect terms.

Training sets of size 200 are used. An independent test set of size 1000 is

generated to evaluate the ISE for each final estimate of the overall regres-

sion function. Strong heredity version of RAMP is used for Examples 1 and

2. Since the tuning of VANISH requires a separate tuning set, we generate

an independent tuning set of size being the same as the training sets specif-

ically for the tuning of VANISH for all simulation examples. In this sense,

VANISH uses more data than the other two methods being compared.

Results over 100 repetitions are summarized in the first block of Table

(1). For all three methods, M and NM columns are the average number of
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selected true and false main effect terms; I and NI columns are the average

number of selected true and false interaction effect terms; CM is the number

of times recovering exactly the correct model (selecting all important terms

and getting rid of all unimportant terms) among 100 repetitions; ISE is the

integrated squared error defined above. For our new method, there are two

extra columns OISE (Oracle ISE), which reports the ISE corresponding to

the oracle model with only true important main and interaction effect terms,

and PC (Path Consistency), which is the number of times the solution path

contain at least one exactly correct model. The OISE is essentially obtained

by applying the refitting step of Section 4.3 with true sets of important main

and interaction effect terms. It serves as a benchmark how good our method

can achieve. Numbers in parentheses are the corresponding standard errors.

With regards to main and interaction effect selection, our proposed

method performs perfectly: selecting all important main and interaction

effect terms perfectly and excluding all unimportant terms. RAMP also

performs well as a linear method: it selects all important main and inter-

action effect terms but mistakenly include a few unimportant interactions.

In comparison, VANISH has trouble to select all important terms, resulting

in smaller number of correct models. RAMP has the smallest ISE since

the true model is a linear two-way interaction model. ISE of our proposed
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method is much smaller than that of VANISH.

Example 2. Nonlinear two-way interaction model with strong heredity

Data are generated from the model

Y = m1(X1)+m2(X2)+m3(X3)+m4(X4)+m(1,2)(X1, X2)+m(1,3)(X1, X3)+ε,

wherem1(X1) = 2.1 exp(X1), m2(X2) = 2.1 exp(X2), m3(X3) = 1.9 cos(X3π),

m4(X4) = 1.9 cos(X4π), m(1,2)(X1, X2) = 1.9 cos((X1−X2)π) andm(1,3)(X1, X3) =

6.8|X1X3| · I{X<0}(X1X3). The sample size of training data is 250 and all

other settings are same as the linear case.

The second block of Table (1) summarizes the corresponding simulation

results exactly in the same way. In terms of main and interaction effect

selection, our proposed method still performs perfectly. RAMP misses some

important terms, especially when the shape of nonlinear function is far away

from linear, and adds some unimportant terms. VANISH also has trouble

to select some important main effect and interaction effect terms. As a

result, both RAMP and VANISH have low numbers of correct models. Our

proposed method has a significantly smaller ISE compared to the other two

methods. Overall, our proposed method outperforms RAMP and VANISH

in this nonlinear case.

Statistica Sinica: Newly accepted Paper 
(accepted author-version subject to English editing)



6. SIMULATION STUDIES25

6.2 Models without strong heredity

Although strong heredity assumption is commonly used, weak heredity and

no heredity constraints are possible in practice. Next we consider some

more general models without strong heredity.

Example 3. Linear two-way interaction model without strong heredity

Y = 2.5X1 + 2.5X2 + 4X1X2 + 4X1X3 + 4X4X5 + ε,

where ε ∼ N(0, 1). In this model, there are two important main terms

and three important interaction terms. Three different cases of important

interaction terms are considered to evaluate the performance of different

methods: interaction term (X1, X2) with both corresponding main effects

being important; interaction term (X1, X3) with one of the corresponding

main effects being important; interaction term (X4, X5) with none of the

corresponding main effects being important. Training data sets of size 150

and an independent test set of size 1000 are used. The third block of Table

(1) shows the simulation results over 100 repetitions.

In terms of main and interaction effect selection, our proposed method

still performs well: selecting important main and interaction effect terms

perfectly (except missing one interaction term for one repetition) and unim-

portant terms at very low frequency. In comparison, both RAMP and
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VANISH suffer a little. RAMP on average selects several unimportant in-

teraction terms while VANISH fails to select some important main and

interaction effects. Note that both RAMP and VANISH have either weak

or strong heredity requirement. The interaction term (X4, X5) does not

satisfy either weak or strong heredity and thus cannot be chosen. RAMP

tend to add some unimportant terms into the model to make up for it,

resulting in a smaller number of correct models. Our proposed method has

the smallest ISE. Although here is a linear model, our proposed method

has better selection performance and leads to a smaller ISE than the linear

method RAMP does.

Example 4. Nonlinear two-way interaction model without strong heredity

Y = m1(X1)+m2(X2)+m(1,2)(X1, X2)+m(1,3)(X1, X3)+m(4,5)(X4, X5)+ε,

(6.5)

where mi(Xi) = 1.9 cos(Xiπ) and m(j,k)(Xj, Xk) = 2.1sin(XjXkπ). The

sample size of training data is 250 and all other settings are the same as in

Example 3. The fourth block of Table (1) summarizes the corresponding

simulation results over 100 repetitions.

The performance comparison is very similar to Example 3. In this case,

our method achieves perfect main effect and interaction effect selection

while RAMP and VANISH have some challenge.
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It is observed that path consistency (PC) of our new method is always

100 out of 100 repetitions for all four simulation examples, even though

the correct model (CM) is not equal to 100 for Example 3. This could be

potentially improved by looking into an alternative tuning method.

During the review process, one reviewer inquired about the computa-

tional speed. On a MacBook equipped with Intel Core i5 @2.3GHz, on

average it takes 1.37 and 23.81 minutes to solve the optimization problem

(3.4) for p = 10 and p = 20, respectively, in Example 3; it takes 3.60

and 59.81 minutes to solve the optimization problem (3.4) for p = 10 and

p = 20, respectively, in Example 4.
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7. A real data example

We apply our proposed method to analyze a real data, the Real Estate

Valuation data reported in Yeh and Hsu (2018). The data set includes

414 properties’ information during the period of June 2012 to May 2013

from Xindian districts in Taipei City. The response is the residential hous-

ing price per unit area and there are six predictors: X1=transaction date,

X2=house age, X3=distance to the nearest MRT (Taipei Mass Rapid Tran-

sit) station, X4=number of convenience stores, X5=latitude, X6=longitude.

There is no missing value in this dataset.

We randomly split data into a training set of size n = 210 and a test

set of size ñ = 204. We repeat with 30 random repetitions. We still

compare our method with RAMP and VANISH in terms of the number of

selected main and interaction term. Yet the ISE is replaced by the mean

squared prediction error (MSPE) over the corresponding test set, namely

MSPE = 1
ñ

∑ñ
i=1(Ỹi−

ˆ̃Yi)
2, where Ỹi and ˆ̃Yi are the observed response and

predicted response for the ith observation in the test set for each repetition.

RAMP uses its weak heredity version and EBIC for tuning; VANISH uses a

10-fold cross-validation for tuning; and our proposed method uses BIC for

tuning.
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Table 2: Performance comparison for the real data example.

New method RAMP VANISH

Main term size 3.1(0.2) 2.9(0.2) 1.0(0.0)

Interaction term size 0.3(0.1) 5.1(0.6) 0.0(0.0)

MSPE 76.03(2.58) 75.73(2.04) 170.85(3.71)

Table (2) summarizes the result for three methods over 30 repetitions.

VANISH only selects the third predictor in all repetitions and the MSPE

is larger than the other two methods. Our method is comparable with

RAMP in terms of MSPE. But at the same time, the model selected by

our proposed method is more parsimonious and easier to interpret since

our method in general selects a model with much fewer number of terms,

especially for the interaction. Our method has a good balance between the

model complexity and prediction performance.

For a random repetition, our proposed model selects the main effect

of X3 and the interaction effect of X2 and X3. The estimated main ef-

fect component function m̂3(X3) and interaction effect component function

m̂2,3(X2, X3) are plotted plotted in Figures 2 and 3, respectively. It ob-

viously shows that X2 (house age) and X3 (distance to the nearest MRT

station) does show interaction effect that won’t be able to be explained by
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the additive model without interaction.
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Figure 2: Plot of fitted main effect component function of X3.

8. Discussion

During the review process, one referee pointed out that it will be desirable to

provide a version to achieve strong or weak heredity. In fact, this is possible.

To achieve weak heredity, we can minimize (3.4) subject to constraints

λj ≥ 0, j = 1, 2, . . . , d
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Figure 3: Plot of fitted interaction effect component function of X2 and X3.

d∑
j=1

λj = τ

λ̃jk = λj + λk, 1 ≤ j < k ≤ d.

For strong heredity, we can minimize (3.4) subject to constraints

δj ≥ 0, j = 1, 2, . . . , d,
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λj =
∑
k 6=j

λ̃jk + δj, j = 1, 2, . . . , d,

λ̃jk ≥ 0, 1 ≤ j < k ≤ d,

d∑
j=1

δj +
d−1∑
j=1

d∑
k=j+1

λ̃jk = τ.

We admit that our algorithm is not a fast one by nature. Our algo-

rithm involves two layers of iterations: (modified) coordinate descent and

backfitting alorithms, in addition to the local constant smoothing. Yet it

is still manageable for a moderate dimensionality. For high dimensional

case, we are working on an interaction screening procedure by extending

the sure independence screening for nonparametric regression (Feng et al.

2018). The selection consistency in Section 5 was established for the case

with a fixed dimensionality. It will be of great interest to extend it to the

case with a diverging dimensionality.

Supplementary Materials

Contain the brief description of the online supplementary materials.
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