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Abstract
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The pandemic caused by the SARS-CoV-2 virus, the agent responsible for the COVID-19 disease,
has affected millions of people worldwide. There is constant search for new therapies to either
prevent or mitigate the disease. Fortunately, we have observed the successful development of
multiple vaccines. Most of them are focused on one viral envelope protein, the spike protein.
However, such focused approaches may contribute for the rise of new variants, fueled by the
constant selection pressure on envelope proteins, and the widespread dispersion of coronaviruses
in nature. Therefore, it is important to examine other proteins, preferentially those that are less
susceptible to selection pressure, such as the nucleocapsid (N) protein. Even though the N
protein is less accessible to humoral response, peptides from its conserved regions can be
presented by class I Human Leukocyte Antigen (HLA) molecules, eliciting an immune response
mediated by T-cells. Given the increased number of protein sequences deposited in biological
databases daily and the N protein conservation among viral strains, computational methods
can be leveraged to discover potential new targets for SARS-CoV-2 and SARS-CoV-related
viruses. Here we developed SARS-Arena, a user-friendly computational pipeline that can be
used by practitioners of different levels of expertise for novel vaccine development. SARS-
Arena combines sequence-based methods and structure-based analyses to (i) perform multiple
sequence alignment (MSA) of SARS-CoV-related N protein sequences, (ii) recover candidate
peptides of different lengths from conserved protein regions, and (iii) model the 3D structure of
the conserved peptides in the context of different HLAs. We present two main Jupyter Notebook
workflows that can help in the identification of new T-cell targets against SARS-CoV viruses.
In fact, in a cross-reactive case study, our workflows identified a conserved N protein peptide
(SPRWYFYYL) recognized by CD8 + T-cells in the context of HLA-B7+. SARS-Arena is available
at https://github.com/KavrakiLab/SARS-Arena.
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The pandemic caused by the SARS-CoV-2 virus has affected millions of people worldwide. Although we have observed the successful
development of vaccines, most of them are focused on one viral envelope protein, which can contribute to the rise of new
variants. Therefore, we highlight the importance to utilize other proteins in future vaccine developments. One of these proteins
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sequence alignment of SARS-CoV-related N protein sequences, (ii) recover candidate peptides of different lengths from conserved
protein regions, and (iii) model the 3D structure of the conserved peptides in the context of different HLAs.
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ABSTRACT2

The pandemic caused by the SARS-CoV-2 virus, the agent responsible for the COVID-19 disease,3
has affected millions of people worldwide. There is constant search for new therapies to either4
prevent or mitigate the disease. Fortunately, we have observed the successful development of5
multiple vaccines. Most of them are focused on one viral envelope protein, the spike protein.6
However, such focused approaches may contribute for the rise of new variants, fueled by the7
constant selection pressure on envelope proteins, and the widespread dispersion of coronaviruses8
in nature. Therefore, it is important to examine other proteins, preferentially those that are less9
susceptible to selection pressure, such as the nucleocapsid (N) protein. Even though the N10
protein is less accessible to humoral response, peptides from its conserved regions can be11
presented by class I Human Leukocyte Antigen (HLA) molecules, eliciting an immune response12
mediated by T-cells. Given the increased number of protein sequences deposited in biological13
databases daily and the N protein conservation among viral strains, computational methods14
can be leveraged to discover potential new targets for SARS-CoV-2 and SARS-CoV-related15
viruses. Here we developed SARS-Arena, a user-friendly computational pipeline that can be16
used by practitioners of different levels of expertise for novel vaccine development. SARS-17
Arena combines sequence-based methods and structure-based analyses to (i) perform multiple18
sequence alignment (MSA) of SARS-CoV-related N protein sequences, (ii) recover candidate19
peptides of different lengths from conserved protein regions, and (iii) model the 3D structure of20
the conserved peptides in the context of different HLAs. We present two main Jupyter Notebook21
workflows that can help in the identification of new T-cell targets against SARS-CoV viruses.22
In fact, in a cross-reactive case study, our workflows identified a conserved N protein peptide23
(SPRWYFYYL) recognized by CD8+ T-cells in the context of HLA-B7+. SARS-Arena is available24
at https://github.com/KavrakiLab/SARS-Arena.25
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1 INTRODUCTION
In 2003, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) caused a pandemic that resulted28
in more than 8,096 cases and 774 deaths (1). This was not the first time coronaviruses cause epidemics in29
humans, and multiple strains of coronaviruses have been identified in bats and other organisms, serving as30
a warning about the risks for a new epidemic (2). Unfortunately, acknowledging the presence of circulating31
coronaviruses was not sufficient to avoid the current pandemic, caused by a novel strain of coronavirus32
called SARS-CoV-2 (3). SARS-CoV-2 is the etiologic agent responsible for the COVID-19 disease in33
humans. This new variant was identified at the end of 2019 and quickly spread to a pandemic level during34
the first months of 2020. The consequences of COVID-19 have been disastrous, both to individual health35
as well as to the economy (4). Massive vaccination campaigns across different countries have been crucial36
to helping the mitigation of COVID-19. However, the large reservoir of SARS-type viruses in the wild, and37
the well-known capacity of coronaviruses to undergo genetic recombination, highlights the continued risk38
for new pandemics in the future (5, 2, 6). Therefore, there is a need for effective vaccination strategies that39
would protect individuals against a broad range of SARS-like coronaviruses.40

Because of the inverse correlation of protection between neutralizing antibodies and SARS-CoV-2 viral41
load (7, 8), envelope proteins - such as the spike (S) protein, have been used as the main target on currently42
approved human vaccines. However, envelope proteins are known to be more susceptible to selection43
pressure in comparison to inner viral proteins, and therefore more prone to mutations that can lead to44
resistance to treatment and decreased vaccine efficacy. During the SARS-CoV-2 pandemic, we did observe45
cases that led to an increase of infectiousness (e.g., D614G mutation) or transmissibility (e.g., B.1.1.746
variant, also called Alpha variant) (9, 10) driven mainly by mutations in envelope proteins. The variant47
B.1.617 (also called Delta variant), containing pivotal mutations on the S protein, rapidly became the48
dominant strain in several countries during 2021. The B.1.1.529 variant, named the Omicron variant, has49
more than 30 new mutations in the S protein and these mutations may contribute to improved infectiousness50
of SARS-CoV-2 (11). In other words, even with successful vaccines developed for SARS-CoV-2, it is51
unclear for how long the efficacy will persist. This is highlighted by a recent WHO statement on the need52
of updating current vaccines (https://www.who.int/news/).53

Apart from the development of a strong humoral response (e.g., neutralizing antibodies), vaccination54
strategies also have to induce a protective, long-term, cell-mediated immunity (i.e., based on T-cell55
lymphocytes). Reports on SARS-related coronaviruses have shown that SARS-CoV-specific antibodies can56
significantly drop in the first 2 to 3 years after infection (12), while the SARS-CoV-specific T-cells can57
persist for more than a decade (13). T-cells recognize peptides displayed at the surface of infected cells by58
class I Human Leukocyte Antigens (HLAs). Therefore, peptide-based vaccines aiming at triggering T-cells59
can target any viral protein, and proteins with lower mutation rates in respect to envelope proteins would60
represent promising targets for broad-spectrum vaccine development (14).61

One of these proteins is the nucleocapsid (N) protein. The N protein is a promising target for a multitude62
of reasons. Firstly, this protein is highly conserved even across different coronaviruses (15) and is highly63
immunogenic and expressed during the infection course (16). Moreover, it presents a low mutation rate64
compared to envelope proteins, mainly because this protein is not exposed on the surface of the virus and65
hence is less impacted by the antibody-mediated selective pressure (17). Additionally, studies have shown66
that SARS-recovered patients can present CD4+ and CD8+ T-cells that recognize multiple regions of the N67
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protein; and long-lasting T-cell memory against N protein targets can persist for decades (18). Thus, the68
identification of peptide targets from the N protein can support the design of new vaccines and treatments69
focused on T-cell immune response.70

The state-of-the-art for identifying peptide targets involves the use of computational methods to predict71
the binding of viral peptides to different HLA receptors. In this sense, sequence-based methods are widely72
used for this task (19, 20, 21). However, recent studies have highlighted that the accuracy and sensitivity of73
sequence-based methods vary widely across HLA alleles (22, 23). One way to improve accuracy/sensitivity74
would be including peptide-HLA (pHLA) structural features to complement sequence analysis. This was the75
basis that led to the development of HLA-Arena, a platform that combines sequence- and structure-based76
analysis of pHLA complexes (24). The addition of structural information from models obtained using77
HLA-Arena produced a higher rate of true positive and true negative HLA-binding predictions. HLA-Arena78
provided a proof-of-concept that both sequence-based and structure-based analyses can be combined79
into a single, user-friendly computational pipeline, complementing each other into a more reliable and80
more general consensus prediction. Since different datasets of SARS-CoV-2-peptides have already been81
identified using sequence-based methods for HLA binding prediction (25, 26), we expect that a combined82
approach using sequence and structural methods could be applied for the identification of peptide targets83
for novel vaccine development.84

Here, we develop SARS-Arena, a pipeline comprised of two workflows that leverages the HLA-Arena85
environments. Using the first workflow (hereafter called Workflow 1) the user can perform multiple86
sequence alignment (MSA) of N protein sequences to identify and extract possible peptide targets from87
conserved regions. Using the second workflow (hereafter called Workflow 2) peptide targets are filtered88
based on a sequence-based HLA-binding prediction tool. Finally, following the structural modeling of89
the peptide-HLA complex, we apply a filtering step using well-known scoring functions for structural90
assessment (Fig. 1). The output of Workflow 1 is a list of peptides found in conserved regions of N protein91
from SARS-CoV-2 or SARS-related coronaviruses. In Workflow 2, the output is the three-dimensional92
model of these peptides sorted according to different scoring functions in the context of different HLAs.93
We show the advantage of SARS-Arena through a case study to retrieve a well-known immunogenic N94
peptide and its variants from a set of protein sequences deposited at NCBI.95
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Figure 1. In Workflow 1, the input is a set of K protein sequences and the output is a list of peptides found
in conserved regions (peptides.list). In Workflow 2, the input is the peptides.list from the previous workflow
along with a list of HLA alleles (hlas.list) provided by the user. After using a sequence-based HLA binding
affinity prediction tool, the peptides are modeled in the context of the chosen HLA molecules. At the end
of Workflow 2 the peptide-HLA structures can be scored according to different scoring functions and the
best choices can be presented to the user.

2 MATERIALS AND METHODS
We used Jupyter Notebook to create two workflows for SARS-Arena. The first workflow (Workflow 1)96
is designed to allow users to select conserved peptides from N protein MSA. Because the origin of the97
sequences and the alignment approach can differ, we subdivided Workflow 1 accordingly (see Fig. 2). The98
second workflow (Workflow 2) is related to the modeling of conserved peptides in the context of different99
HLA molecules. To facilitate user experience we created a set of functions that can be accessed from the100
GitHub repository at https://github.com/KavrakiLab/SARS-Arena. SARS-Arena is also made available101
in a Docker image, which can be downloaded directly from Docker Hub (e.g., using the command line102
docker pull kavrakilab/hla-arena:sars-arena). The following subsections (2.1 to 2.5) will describe the103
methodologies we use in Workflow 1 and Workflow 2. Then Section 3 concentrates on the results we can104
obtain using the workflows.105
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Figure 2. Overview of Workflows 1 and 2 in SARS-Arena. Workflow 1 is focused on sequence analysis
and is organized in three parts: Workflow 1A, 1B, and 1C. Each workflow differs in the way the information
is obtained for MSA. At the end of Workflow 1, a list of peptides is generated and can be used in the
Workflow 2. Workflow 2 is focused on structural analysis and will return the 3D structure of each peptide
in the context of a specific HLA.

2.1 SARS-CoV Sequences and Multiple Sequence Alignment106

Workflow 1 can be used to select peptides contained in conserved regions of N protein sequences107
from SARS-CoV-2 (Workflow 1A and 1B) or SARS-related coronaviruses (Workflow 1C). In Workflow108
1A, SARS-CoV-2 protein sequences are retrieved directly from NCBI Virus (27). In Workflow 1B and109
1C, the N protein alignment is already pre-computed. In Workflow 1C, apart from the SARS-CoV-2110
sequences, we also used a file with a total of 64 pre-defined N protein sequences from SARS-related111
coronaviruses. This file was created from information deposited at GenBank and can be augmented with112
more sequences depending on user needs. For the MSA, we used the MAFFT program (28) because of its113
capacity to parallelize jobs during sequence alignment. The time to finalize the alignment task depends114
on a set of variables, such as the number of sequences to be analyzed, the hardware available to run the115
alignment, and the number of available cores to be used for the parallel jobs. For this reason, we provide116
pre-computed MSAs in Workflow 1B and 1C. These MSAs were performed at the NOTS cluster (CRC Rice117
University) and stored at the Owl Research Infrastructure Open Nebula (ORION) Virtual Machines. The118
alignments are updated every week so that the users can work with the latest sequences released from NCBI.119

120 2.2 Conservation Threshold121

In Workflow 1 the user needs to define a scoring method and a scoring matrix so that the level of122
conservation in the different parts of the aligned K protein sequences is calculated. We provide four123
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different scoring methods - Jensen-Shannon divergence score (29), Shannon entropy (30), Property entropy124
(31), and Von Neumann entropy (32). We choose these scoring methods based on a previous publication125
by Capra and Singh (33). For scoring matrices, we used the well-known BLOSUM matrices (35, 40, 45,126
50, 62, 80, and 100). The conservation cutoff can be modified using a interactive plot at the end of the127
workflow (Fig. 3). As conservation values are different and not homogeneous for each position, we provide128
a Rolling Median Window Length cutoff variable. Alternatively, the user can set the cutoff variable value129
to 1 to take conservation as it is.130

2.3 Sequence-based HLA Binding Prediction131

It is known that peptide-HLA binding is mainly driven by sequence features. For this reason, we used132
MHCflurry 2.0 (34) to perform a sequence-based HLA binding prediction. We used default parameters to133
run MHCflurry with a threshold set to 500nM. This value was chosen to recover strong and intermediate134
HLA peptide binders (35). Before proceeding, the user can use a interactive plot to modify the 500 nM135
threshold according to their needs.136

2.4 HLA and peptide-HLA modeling137

The sequence to structure conversion occurs in two phases. First, the user needs to input the HLAs138
of interest in order to pair the peptides obtained from Workflow 1. The name of the HLAs should be139
contained in a file called hlas.list file. We pull the sequences of the user-selected HLA alleles from the140
EBI database (36). After that, we use Modeller (37) to transform the sequence into a three-dimensional141
structure. We use a homology modeling approach and functions retrieved from HLA-Arena (24). Since142
HLAs are highly conserved molecules in terms of sequence and structure, we expect a high accuracy on the143
generated models. After that, we use APE-Gen (38) to build the peptide-HLA complex. APE-Gen is a tool144
that models peptide-HLA complexes using an iterative modeling approach where each iteration contains145
three key steps. First, the peptide backbone is anchored to HLA pockets (anchor positions) using backbone146
termini templates. Next, the backbone is completed using a Random Coordinate Descent loop modeling147
tool (39) to generate a set of possible backbone conformations. Finally, side chains are added and a local148
optimization is performed to correct steric clashes. APE-Gen generates an ensemble of conformations,149
which are all stored for further analysis if desired. By default, however, only the pHLA structure with the150
lowest energy (i.e., best binding) is selected for subsequent analysis.151

2.5 Scoring Functions152

Binding energy of modeled peptide-HLA structures can be evaluated within Workflow 2 using four153
integrated scoring functions: AutoDock4 (40), Vina (41), Vinardo (42) and 3pHLA-score (43). AutoDock4154
score is based on an empirical free energy forcefield and is a part of a widely used protein-ligand docking155
tool. Vina and Vinardo scores are empirical scoring functions. They both originate from the Vina docking156
tool. The 3pHLA-score is a recently developed scoring function tailored for pHLA structures produced by157
APE-Gen and based on Rosetta’s ref2015 score (44). It uses a novel per-peptide-position training approach158
and consists of per-allele trained modules. It currently supports 28 HLA alleles. The binding energies159
estimated with the proposed functions are then used to rank the peptides and further refine the list of160
selected targets. An interactive plot is provided to visualize the scores and allow for dynamic thresholding.161

3 RESULTS
We created two independent workflows that automatically retrieve peptides located in conserved regions162
of N protein from SARS-CoV-2 and SARS-related coronaviruses (Workflow 1), and model the three-163
dimensional structure of these peptides in the context of specific HLAs (Workflow 2) (Fig. 2). The results164
we obtain from each workflow are explained in the next sessions.165
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3.1 Workflow 1: Sequence Alignment and Peptide Selection166

The first part of SARS-Arena is the sequence alignment and peptide selection, which is coded inside167
Workflow 1. As described above, we organized this first workflow into three independent parts: Workflow168
1A, Workflow 1B, and Workflow 1C. The output of each workflow is the same: a list of peptides obtained169
from conserved protein regions (Fig. 2). The different workflows were created to accomodate different170
inputs.171

3.1.1 Workflow 1A172

Workflow 1A allows users to run the MSA of SARS-CoV-2 proteins in loco. The maximum limit of173
sequences to be analyzed will depend on the user’s system hardware. For this reason, we recommend174
using this workflow when the number of total protein sequences to be analyzed is small (approximately175
50,000 sequences). Workflow 1A consists of the following steps. As a preliminary step, the necessary176
python packages are imported, and the working directories where intermediate files are sotred are also177
defined. After that, the protein sequences from NCBI Virus are extracted based on a set of parameters.178
These parameters include choosing (i) the virus strain, (ii) the protein (N protein is the default option),179
(iii) the completeness of genomes, (iv) the host, (v) the use of only reference sequences or all sequences180
available, (vi) the geographic region, (vii) the isolation source, (viii) the Pangolin lineage, and (ix) the181
date of release of sequences. In the second step, the number of protein sequences is shown. In the third182
step, the program will run the MSA using MAFFT (28), allowing the use of multiple cores to perform the183
alignment, optimizing the processing time. Then, a conservation score will be computed based on a scoring184
method and a BLOSUM matrix. We provide different options in regards to conservation scoring methods185
and give recommendations of which one to use inside the workflow. The final step of this workflow allows186
the user to compute and select peptides that belong to conserved regions of the protein alignment. Here187
SARS-Arena allows the selection of peptides with different lenghts using the “min len” and “max len”188
variables. To guide the selection of peptides, we offer an interactive plot interface (Fig. 3) where the189
user can set the conservation threshold, the rolling median window length, and the peptide length. The190
conservation threshold step, the selection of peptides, and the interactive plot interface are the same for191
Workflows 1A, 1B, and 1C; ergo they are described only in this subsection.192

3.1.2 Workflow 1B193

Workflow 1B allows users to recover information from a pre-computed multiple sequence alignment. We194
recommend the use of this workflow for cases where there is a need to analyze a large number of protein195
sequences (e.g., more than 50,000 sequences). This workflow consists of three steps. In the first step, after196
importing the necessary libraries and setting a working directory, the user should set a month and a year to197
recover the pre-computed alignment. This option is given because there can be differences in the alignments198
obtained from N protein sequences released on different dates. This pre-computed alignment for each199
month/year combination is performed every week and stored at Owl Research Infrastructure Open Nebula200
(ORION) Virtual Machines Pool at Rice University.The Workflow 1B proceeds with the computation of201
the conservation score and the rest of the steps outlined in Workflow 1A.202

3.1.3 Workflow 1C203

Workflow 1C allows the user to analyze the N protein sequences from SARS-related coronaviruses, not204
only SARS-CoV-2. In the first step, after the initial settings, the user is required to fetch a precomputed205
MSA alignment, similar to Workflow 1B. After the alignment, a consensus sequence will be printed on206
the screen and used as input for the next step. In the second step, a new MSA will be performed using as207
input the consensus sequence from SARS-CoV-2 N protein alignment and a set of predefined N protein208
sequences (64 in total) from SARS-related coronaviruses obtained from NCBI Protein databank. After209
the alignment completion, the workflow follows the same final steps of previous workflows, generating a210
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Figure 3. Interactive plot interface at the end of Workflows 1A, 1B, and 1C. The horizontal line in (A)
defines a conservation threshold of 80% and in (B) a threshold of 85%. The x-axis represents the protein
length. The number of peptides will vary according to this threshold, as exemplified by the small tables on
the lower right corner of the graph.

peptide list that can be used in Workflow 2.211
212 3.2 Workflow 2: Peptide-HLA Prediction for Conserved SARS-CoV-2 Peptides213

Workflow 2 provides a way to model the three-dimensional structure of selected peptides in the context214
of different HLAs. In the first step the user should provide two files. The first one contains the list of215
peptides derived from Workflow 1; and the second one with the name of the HLAs written in the format216
“Gene*Allele group:HLA protein” (e.g., A*02:01 for HLA-A*02:01; C*11:07 for HLA*C-11:07). Since217
HLA binding depends to some extent on peptide sequence features (45), in the second step we use218
MHCflurry to perform initial filtering aiming to keep only good binders for further structural modeling. In219
this way, we avoid the unnecessary modeling of peptide-HLA that would probably not represent a good220
target for T-Cell Receptors (TCRs). We set the default cutoff to 500 nM, but this value can be modified221
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Table 1. Peptides above the conservation threshold of 85% selected from Workflow 1A and 1C.
Workflow 1A Workflow 1C

PQCLPNNTA DYKYWPQIA PQNQRNAPR
PQGLPNNTA EYKHWPQIA QRRPQGLPN
PQGLSNNTA NYKHWPQIA RRPQGLPNN
PQVLPNNTA DYKHWPQVA RPQGLPNNT
PQGVPNNTA AYKHWPQIA PQGLPNNTA
PQGLPNNTV DYKDWPQIA QGLPNNTAS
PEGLPNNTA DYKRWPQIA GLPNNTASW
QCLPNNTAS HYKHWPQIA SPRWYFYYL
QGVPNNTAS DYKHWSQIA TDYKHWPQI
QGLPNNTVS DYKHWPQIA DYKHWPQIA
QGLSNNTAS YKHWPQIAR YKHWPQIAQ
EGLPNNTAS YKHWPQIAL KHWPQIAQF
QVLPNNTAS YKQWPQIAQ DAYKTFPPT
QGLPNNTAS YKHWPQVAQ AYKTFPPTE
SPRWYFYYI YKHWPQIAQ YKTFPPTEP

SPRWYFYYL YKLWPQIAQ LPQRQKKQQ
SPRWFFYYL YKRWPQIAQ PQRQKKQQT
SPKWYFYYL YKDWPQIAQ
YYKHWPQIA YKYWPQIAQ
DYKLWPQIA YKHWSQIAQ
DYKQWPQIA

according to user needs. In the third step, the three-dimensional HLA structure is created through homology222
modeling. As the HLA sequence is retrieved from EBI, any HLA can be modeled by our method. In the223
fourth step, the peptides selected from step 2 are modeled in the context of the chosen HLAs using a pHLA224
modeling tool called APE-Gen (38). We know that peptide-binding scoring functions are not completely225
accurate, but the use of multiple scoring functions can help to overcome this issue (46). For this reason,226
in the fifth and final step, we offer the opportunity to rescore the pHLAs generated by APE-Gen using227
different scoring functions. We added well-known scoring functions - Vina, Vinardo, and AD4 scoring - as228
well as a new machine learning-based scoring function recently developed, called 3pHLA (43).229
3.3 Workflow usage: a case study230

A recent study revealed that HLA-B7+ individuals that recovered from COVID-19 disease triggered231
a cellular immune response against peptides from SARS-CoV-2 N protein (47). They identified one232
immunodominant epitope (SPRWYFYYL, hereafter referred to as SPR) that is conserved across different233
circulating coronaviruses. To assess if this epitope could be identified and selected by SARS-Arena, we234
start executing workflows 1A and 1C. The rationale was to generate two different lists of peptides, one from235
a direct comparison of N protein sequences from SARS-CoV-2 (Workflow 1A) and another one from the236
comparison of N protein sequences from SARS-related coronaviruses (Workflow 1C). For both workflows,237
we set an arbitrary conservation threshold of 85%. We were able to retrieve 41 and 17 peptide sequences238
from workflow 1A and 1C, respectively. In the output, the SPR epitope was present in both lists (Table 1).239

We also wanted to assess if the SPR epitope would be selected at the end of Workflow 2. Since this is240
an immunodominant epitope, we wanted to be sure SARS-Arena would filter this peptide out and rank241
it as one of the best peptide targets. For that, we used the peptide list from Workflow 1A and 1C as242
input to Workflow 2 along with a list of 10 prevalent HLAs (including the HLA-B*07:02 allele). Again,243
SARS-Arena identified the same epitope SPRWYFYYL described by Lineburg et al. (Table 2, in bold).244
Finally, one of the goals of SARS-Arena is also to identify peptide variants from conserved regions that245
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Table 2. Identification of an immunodominant epitope in the context of HLA-B*07:02 and its variants.
The lower the value the better.

Workflow HLA Alelle Peptide Sequence-
based
prediction
(nM)

Vina
(kcal/mol)

Vinardo
(kcal/mol)

AD4 score
(kcal/mol)

p3HLA
(nM)

Workflow 1A
B*07:02

SPRWYFYYL 11.37 -10.88 -15.11 -76.67 101.61
SPRWFFYYL 14.89 -9.21 -12.34 -75.78 194.29
SPRWYFYYI 25.11 -10.95 -14.90 -85.76 106.00
SPKWYFYYL 68.47 -11.23 -15.69 -85.54 100.00

B*40:01 YKHWPQIAL 181.24 -8.42 -11.42 -75.21 24428.89

Workflow 1C B*07:02 SPRWYFYYL 11.37 -10.03 -14.42 -91.57 100.00
A*24:02 KHWPQIAQF 258.11 -8.81 -12.33 -74.05 1112.68

*Immunodominant epitope is highlighted in bold.

can be used as possible targets in vaccine research. We noted similar sequences to SPRWYFYYL using246
the list of peptides from Workflow 1A (Table 2). The similarity of sequences, associated with the good247
HLA sequence-binding prediction and structural binding energy values of these epitopes, could indicate a248
possible cross-reactive response between these variants and the wild-type SPR epitope. To evaluate this249
possibility, we decided to use the three-dimensional models generated at the end of Workflow 2 to assess250
the probability of cross-reactivity based on electrostatic potential patterns from the pHLA surface, as251
previously described at (48, 49). We included in our analysis an SPR cross-reactive peptide (LPRWYFYYL,252
hereafter referred to as LPR) and two SPR non-cross-reactive peptides (PPKVHFYYL and SPKLHFYYL,253
hereafter referred to as PPK and SPK, respectively). Hierarchical clustering analysis revealed that the SPR254
epitope is more similar to the variants we have found than the known cross-reactive LPR peptide (Fig. 4).255
Also, our analysis correctly separated non-cross-reactive epitopes PPK and SPK in different branches. The256
strong sequence and structure similarity set these variants as putative new targets to be tested towards the257
development of broad-spectrum T-cell vaccines.258

4 DISCUSSION
The SARS-CoV-2 pandemic highlighted the need for immunoinformatics approaches towards the259
identification of immunogenic protein targets. At first, the focus was on the humoral immune response.260
However, as it was recognized that cellular immunity plays an important role complementing or even261
filling the gap of humoral response, computational methods and databases focused on the prediction262
and analysis of SARS-CoV-2 T-cell epitopes have been developed (50, 51, 52, 53, 54, 55, 56). Here we263
presented SARS-Arena, a user-friendly environment for structure-guided epitope discovery targetting264
conserved regions of N protein from SARS-CoV-related viruses. SARS-Arena includes two customized265
workflows. Workflow 1 is focused on (i) fetching protein sequences from NCBI Virus and (ii) selecting266
of peptides found in conserved regions. Workflow 2 is focused on the three-dimensional modeling of267
peptides in the context of any HLA molecule. We run Workflow 1 and 2 to evaluate the capacity of268
SARS-Arena to identify and select epitopes in conserved regions. This analysis returned an immunogenic269
epitope (SPRWYFYYL) and possible cross-reactive variants. SARS-Arena goes beyond previous efforts270
by providing an easy-to-use environment for epitope discovery while integrating sequence and structure271
analysis and targetting conserved regions of SARS-CoV-related proteins.272

The ultimate goal of SARS-Arena was to create a straightforward computational environment to enable273
epitope discovery efforts by basic, intermediate, and advanced users, while aggregating sequence- and274
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Figure 4. Hierarchical clustering analysis (HCA) and structure comparison of SPR peptide, SPR variants,
LPR peptide, and SPK peptide. The TCR-interacting surface is shown in the pHLA complexes and the
colors blue, white and red represent positive, neutral, and negative charges, respectively (+3kT to -3kT
range). The SPR variants are closer to SPR peptide (wild-type), followed by the known cross-reactive
LPR epitope. The non-cross-reactives epitopes SPK and PPK are grouped in a different branch of HCA,
probably due to the central positive charge. Numbers in red and green represent the approximately unbiased
p-value and the bootstrap probability value, respectively, for each cluster in the dendogram. Here we used
the ”correlation” as the distance measure and the ”average” as the agglomerative method with a total of
100 bootstrap replications.

structure-based analysis. Step-by-step workflows are provided as Jupyter Notebooks to be executed275
alongside tools provided in a Docker image, therefore facilitating the installation process. The workflows276
and supporting functions can also be modified by the user, to accommodate different computational and277
data analysis needs. Because SARS-Arena is highly modular and easy to customize, additional steps and278
functions for advanced practitioners can be implemented as needed.279

We decided to focus SARS-Arena on the N protein because this protein is a promising target for broad-280
spectrum vaccine development. First, the N gene is more conserved and presents fewer mutations over281
time (57). Second, this protein is highly expressed upon infection, increasing the chances for epitopes282
to be presented to TCR scrutiny in the context of different HLAs (58). Previous studies have shown283
that N protein from SARS-CoV is highly immunogenic, and T-cell responses can persist for years after284
convalescence (59). Lastly, different regions of the N protein can pass through the intracellular antigen285
presentation pathway and be presented by a wide range of HLAs, eliciting a dominant cellular immune286
response (60). It is important to note that since we expect that some users may want to analyze other287
SARS-CoV-2 proteins, we also implemented Workflow 1A in a way that any SARS-CoV-2 protein can be288
analyzed. Finally, advanced users can also modify the provided functions and workflows to apply the same289
methods to proteins derived from other pathogens of interest.290
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Another novelty of SARS-Arena was the inclusion of 3pHLA, a scoring function that uses a per-peptide-291
position protocol to predict the binding affinity of pHLA complexes. Preliminary results show that 3pHLA292
outperforms widely used structural scoring functions (manuscript submitted). However, since the 3pHLA293
scoring relies on machine learning models trained on available binding affinity and structural data, this294
scoring function is currently restricted to a total of 28 HLA alleles.295

We envision that SARS-Arena can be used as a tool to identify new targets to be used in broad-spectrum296
therapies. As a proof-of-concept, we decided to run SARS-Arena with a set of predefined parameters and297
compare the output with targets described in the literature. We focused our analysis on the SPRWYFYYL298
epitope. This epitope was involved in a dominant T-cell response in HLA-B7+ individuals, exposed or299
not to SARS-CoV-2 (47). In fact, this epitope has already been previously suggested as a SARS-CoV-2300
target (61, 62). SARS-Arena not only was able to recover this peptide but also highlighted the presence of301
peptide variants in this region. We wonder if these variants could be cross-reactive targets. Surprisingly, in302
our analysis, the variants are closer to the wild-type peptide than the known cross-reactive target LPR. The303
analysis of pHLA surface in the context of electrostatic potential charges is robust, validated in previous304
studies, and has already been used to identify cross-reactive targets to an HCV peptide (63). Note that the305
pHLA structural modeling and analysis is crucial for this application since cross-reactivity can occur even306
among peptides with low sequence similarity and identity. Future studies will be required to fully validate307
novel targets identified with SARS-arena.308

SARS-Arena can be used to identify and suggest new T-cell targets for SARS-CoV-2 and SARS-CoV-309
related protein sequences. This environment is simple, but still robust, offering end-to-end workflows to310
analyze these targets, from raw protein sequences to refined pHLA three-dimensional structures.311
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