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Abstract
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The pandemic caused by the SARS-CoV-2 virus, the agent responsible for the COVID-19 disease,
has affected millions of people worldwide. There is constant search for new therapies to either
prevent or mitigate the disease. Fortunately, we have observed the successful development of
multiple vaccines. Most of them are focused on one viral envelope protein, the spike protein.
However, such focused approaches may contribute for the rise of new variants, fueled by the
constant selection pressure on envelope proteins, and the widespread dispersion of coronaviruses
in nature. Therefore, it is important to examine other proteins, preferentially those that are less
susceptible to selection pressure, such as the nucleocapsid (N) protein. Even though the N

protein is less accessible to humoral response, peptides from its conserved regions can be
presented by class | Human Leukocyte Antigen (HLA) molecules, eliciting an immune response
mediated by T-cells. Given the increased number of protein sequences deposited in biological
databases daily and the N protein conservation among viral strains, computational methods

can be leveraged to discover potential new targets for SARS-CoV-2 and SARS-CoV-related

viruses. Here we developed SARS-Arena, a user-friendly computational pipeline that can be

used by practitioners of different levels of expertise for novel vaccine development. SARS-

Arena combines sequence-based methods and structure-based analyses to (i) perform multiple
sequence alignment (MSA) of SARS-CoV-related N protein sequences, (ii) recover candidate
peptides of different lengths from conserved protein regions, and (iii) model the 3D structure of
the conserved peptides in the context of different HLAs. We present two main Jupyter Notebook
workflows that can help in the identification of new T-cell targets against SARS-CoV viruses.

In fact, in a cross-reactive case study, our workflows identified a conserved N protein peptide
(SPRWYFYYL) recognized by CD8 + T-cells in the context of HLA-B7+. SARS-Arena is available

at https://github.com/KavrakiLab/SARS-Arena.

Contribution to the field

The pandemic caused by the SARS-CoV-2 virus has affected millions of people worldwide. Although we have observed the successful
development of vaccines, most of them are focused on one viral envelope protein, which can contribute to the rise of new
variants. Therefore, we highlight the importance to utilize other proteins in future vaccine developments. One of these proteins
is the N protein. Even though the N protein is less accessible to humoral response, peptides from its conserved regions can be
presented by class | Human Leukocyte Antigen (HLA) molecules, eliciting an immune response mediated by T-cells. Given the
increased number of protein sequences deposited in biological databases daily and the N protein conservation among viral strains,
computational methods can be leveraged to discover potential new targets for SARS-CoV-2 and SARS-CoV-related viruses. Here we
present SARS-Arena, a user-friendly computational pipeline that can be used by practitioners of different levels of expertise for
novel vaccine development. SARS-Arena combines sequence-based methods and structure-based analyses to (i) perform multiple
sequence alignment of SARS-CoV-related N protein sequences, (ii) recover candidate peptides of different lengths from conserved
protein regions, and (iii) model the 3D structure of the conserved peptides in the context of different HLAs.
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ABSTRACT

The pandemic caused by the SARS-CoV-2 virus, the agent responsible for the COVID-19 disease,
has affected millions of people worldwide. There is constant search for new therapies to either
prevent or mitigate the disease. Fortunately, we have observed the successful development of
multiple vaccines. Most of them are focused on one viral envelope protein, the spike protein.
However, such focused approaches may contribute for the rise of new variants, fueled by the
constant selection pressure on envelope proteins, and the widespread dispersion of coronaviruses
in nature. Therefore, it is important to examine other proteins, preferentially those that are less
susceptible to selection pressure, such as the nucleocapsid (N) protein. Even though the N
protein is less accessible to humoral response, peptides from its conserved regions can be
presented by class | Human Leukocyte Antigen (HLA) molecules, eliciting an immune response
mediated by T-cells. Given the increased number of protein sequences deposited in biological
databases daily and the N protein conservation among viral strains, computational methods
can be leveraged to discover potential new targets for SARS-CoV-2 and SARS-CoV-related
viruses. Here we developed SARS-Arena, a user-friendly computational pipeline that can be
used by practitioners of different levels of expertise for novel vaccine development. SARS-
Arena combines sequence-based methods and structure-based analyses to (i) perform multiple
sequence alignment (MSA) of SARS-CoV-related N protein sequences, (ii) recover candidate
peptides of different lengths from conserved protein regions, and (iii) model the 3D structure of
the conserved peptides in the context of different HLAs. We present two main Jupyter Notebook
workflows that can help in the identification of new T-cell targets against SARS-CoV viruses.
In fact, in a cross-reactive case study, our workflows identified a conserved N protein peptide
(SPRWYFYYL) recognized by CD8* T-cells in the context of HLA-B7+. SARS-Arena is available
at https://github.com/KavrakiLab/SARS-Arena.




26
27

28
29
30
31
32
33
34
35
36
37
38
39
40

41
42
43
44
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59
60
61

62
63
64
65
66
67

Rigo et al. SARS-Arena

Keywords: SARS-CoV-2, SARS-CoV, protein sequence alignment, structural modeling, HLA-Arena, nucleocapsid protein, pHLA

scoring

1 INTRODUCTION

In 2003, the Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) caused a pandemic that resulted
in more than 8,096 cases and 774 deaths (1). This was not the first time coronaviruses cause epidemics in
humans, and multiple strains of coronaviruses have been identified in bats and other organisms, serving as
a warning about the risks for a new epidemic (2). Unfortunately, acknowledging the presence of circulating
coronaviruses was not sufficient to avoid the current pandemic, caused by a novel strain of coronavirus
called SARS-CoV-2 (3). SARS-CoV-2 is the etiologic agent responsible for the COVID-19 disease in
humans. This new variant was identified at the end of 2019 and quickly spread to a pandemic level during
the first months of 2020. The consequences of COVID-19 have been disastrous, both to individual health
as well as to the economy (4). Massive vaccination campaigns across different countries have been crucial
to helping the mitigation of COVID-19. However, the large reservoir of SARS-type viruses in the wild, and
the well-known capacity of coronaviruses to undergo genetic recombination, highlights the continued risk
for new pandemics in the future (5, 2, 6). Therefore, there is a need for effective vaccination strategies that
would protect individuals against a broad range of SARS-like coronaviruses.

Because of the inverse correlation of protection between neutralizing antibodies and SARS-CoV-2 viral
load (7, 8), envelope proteins - such as the spike (S) protein, have been used as the main target on currently
approved human vaccines. However, envelope proteins are known to be more susceptible to selection
pressure in comparison to inner viral proteins, and therefore more prone to mutations that can lead to
resistance to treatment and decreased vaccine efficacy. During the SARS-CoV-2 pandemic, we did observe
cases that led to an increase of infectiousness (e.g., D614G mutation) or transmissibility (e.g., B.1.1.7
variant, also called Alpha variant) (9, 10) driven mainly by mutations in envelope proteins. The variant
B.1.617 (also called Delta variant), containing pivotal mutations on the S protein, rapidly became the
dominant strain in several countries during 2021. The B.1.1.529 variant, named the Omicron variant, has
more than 30 new mutations in the S protein and these mutations may contribute to improved infectiousness
of SARS-CoV-2 (11). In other words, even with successful vaccines developed for SARS-CoV-2, it is
unclear for how long the efficacy will persist. This is highlighted by a recent WHO statement on the need
of updating current vaccines (https://www.who.int/news/).

Apart from the development of a strong humoral response (e.g., neutralizing antibodies), vaccination
strategies also have to induce a protective, long-term, cell-mediated immunity (i.e., based on T-cell
lymphocytes). Reports on SARS-related coronaviruses have shown that SARS-CoV-specific antibodies can
significantly drop in the first 2 to 3 years after infection (12), while the SARS-CoV-specific T-cells can
persist for more than a decade (13). T-cells recognize peptides displayed at the surface of infected cells by
class I Human Leukocyte Antigens (HLAs). Therefore, peptide-based vaccines aiming at triggering T-cells
can target any viral protein, and proteins with lower mutation rates in respect to envelope proteins would
represent promising targets for broad-spectrum vaccine development (14).

One of these proteins is the nucleocapsid (N) protein. The N protein is a promising target for a multitude
of reasons. Firstly, this protein is highly conserved even across different coronaviruses (15) and is highly
immunogenic and expressed during the infection course (16). Moreover, it presents a low mutation rate
compared to envelope proteins, mainly because this protein is not exposed on the surface of the virus and
hence is less impacted by the antibody-mediated selective pressure (17). Additionally, studies have shown
that SARS-recovered patients can present CD4" and CD8* T-cells that recognize multiple regions of the N
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protein; and long-lasting T-cell memory against N protein targets can persist for decades (18). Thus, the
identification of peptide targets from the N protein can support the design of new vaccines and treatments
focused on T-cell immune response.

The state-of-the-art for identifying peptide targets involves the use of computational methods to predict
the binding of viral peptides to different HLA receptors. In this sense, sequence-based methods are widely
used for this task (19, 20, 21). However, recent studies have highlighted that the accuracy and sensitivity of
sequence-based methods vary widely across HLA alleles (22, 23). One way to improve accuracy/sensitivity
would be including peptide-HLA (pHLA) structural features to complement sequence analysis. This was the
basis that led to the development of HLA-Arena, a platform that combines sequence- and structure-based
analysis of pHLA complexes (24). The addition of structural information from models obtained using
HLA-Arena produced a higher rate of true positive and true negative HLA-binding predictions. HLA-Arena
provided a proof-of-concept that both sequence-based and structure-based analyses can be combined
into a single, user-friendly computational pipeline, complementing each other into a more reliable and
more general consensus prediction. Since different datasets of SARS-CoV-2-peptides have already been
identified using sequence-based methods for HLA binding prediction (25, 26), we expect that a combined
approach using sequence and structural methods could be applied for the identification of peptide targets
for novel vaccine development.

Here, we develop SARS-Arena, a pipeline comprised of two workflows that leverages the HLA-Arena
environments. Using the first workflow (hereafter called Workflow 1) the user can perform multiple
sequence alignment (MSA) of N protein sequences to identify and extract possible peptide targets from
conserved regions. Using the second workflow (hereafter called Workflow 2) peptide targets are filtered
based on a sequence-based HLA-binding prediction tool. Finally, following the structural modeling of
the peptide-HLA complex, we apply a filtering step using well-known scoring functions for structural
assessment (Fig. 1). The output of Workflow 1 is a list of peptides found in conserved regions of N protein
from SARS-CoV-2 or SARS-related coronaviruses. In Workflow 2, the output is the three-dimensional
model of these peptides sorted according to different scoring functions in the context of different HLAs.
We show the advantage of SARS-Arena through a case study to retrieve a well-known immunogenic N
peptide and its variants from a set of protein sequences deposited at NCBI.

Frontiers 3
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Figure 1. In Workflow 1, the input is a set of K protein sequences and the output is a list of peptides found
in conserved regions (peptides.list). In Workflow 2, the input is the peptides.list from the previous workflow
along with a list of HLA alleles (hlas.list) provided by the user. After using a sequence-based HLA binding
affinity prediction tool, the peptides are modeled in the context of the chosen HLA molecules. At the end
of Workflow 2 the peptide-HLA structures can be scored according to different scoring functions and the
best choices can be presented to the user.

2 MATERIALS AND METHODS

We used Jupyter Notebook to create two workflows for SARS-Arena. The first workflow (Workflow 1)
is designed to allow users to select conserved peptides from N protein MSA. Because the origin of the
sequences and the alignment approach can differ, we subdivided Workflow 1 accordingly (see Fig. 2). The
second workflow (Workflow 2) is related to the modeling of conserved peptides in the context of different
HLA molecules. To facilitate user experience we created a set of functions that can be accessed from the
GitHub repository at https://github.com/KavrakiLab/SARS-Arena. SARS-Arena is also made available
in a Docker image, which can be downloaded directly from Docker Hub (e.g., using the command line
docker pull kavrakilab/hla-arena:sars-arena). The following subsections (2.1 to 2.5) will describe the
methodologies we use in Workflow 1 and Workflow 2. Then Section 3 concentrates on the results we can
obtain using the workflows.

This is a provisional file, not the final typeset article 4
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Figure 2. Overview of Workflows 1 and 2 in SARS-Arena. Workflow 1 is focused on sequence analysis
and is organized in three parts: Workflow 1A, 1B, and 1C. Each workflow differs in the way the information
is obtained for MSA. At the end of Workflow 1, a list of peptides is generated and can be used in the
Workflow 2. Workflow 2 is focused on structural analysis and will return the 3D structure of each peptide
in the context of a specific HLA.

2.1 SARS-CoV Sequences and Multiple Sequence Alignment

Workflow 1 can be used to select peptides contained in conserved regions of N protein sequences
from SARS-CoV-2 (Workflow 1A and 1B) or SARS-related coronaviruses (Workflow 1C). In Workflow
1A, SARS-CoV-2 protein sequences are retrieved directly from NCBI Virus (27). In Workflow 1B and
1C, the N protein alignment is already pre-computed. In Workflow 1C, apart from the SARS-CoV-2
sequences, we also used a file with a total of 64 pre-defined N protein sequences from SARS-related
coronaviruses. This file was created from information deposited at GenBank and can be augmented with
more sequences depending on user needs. For the MSA, we used the MAFFT program (28) because of its
capacity to parallelize jobs during sequence alignment. The time to finalize the alignment task depends
on a set of variables, such as the number of sequences to be analyzed, the hardware available to run the
alignment, and the number of available cores to be used for the parallel jobs. For this reason, we provide
pre-computed MSAs in Workflow 1B and 1C. These MSAs were performed at the NOTS cluster (CRC Rice
University) and stored at the Owl Research Infrastructure Open Nebula (ORION) Virtual Machines. The
alignments are updated every week so that the users can work with the latest sequences released from NCBI.

2.2 Conservation Threshold

In Workflow 1 the user needs to define a scoring method and a scoring matrix so that the level of
conservation in the different parts of the aligned K protein sequences is calculated. We provide four

Frontiers 5
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different scoring methods - Jensen-Shannon divergence score (29), Shannon entropy (30), Property entropy
(31), and Von Neumann entropy (32). We choose these scoring methods based on a previous publication
by Capra and Singh (33). For scoring matrices, we used the well-known BLOSUM matrices (35, 40, 45,
50, 62, 80, and 100). The conservation cutoff can be modified using a interactive plot at the end of the
workflow (Fig. 3). As conservation values are different and not homogeneous for each position, we provide
a Rolling Median Window Length cutoff variable. Alternatively, the user can set the cutoff variable value
to 1 to take conservation as it is.

2.3 Sequence-based HLA Binding Prediction

It is known that peptide-HLA binding is mainly driven by sequence features. For this reason, we used
MHCAlurry 2.0 (34) to perform a sequence-based HLA binding prediction. We used default parameters to
run MHCflurry with a threshold set to 500nM. This value was chosen to recover strong and intermediate
HLA peptide binders (35). Before proceeding, the user can use a interactive plot to modify the 500 nM
threshold according to their needs.

2.4 HLA and peptide-HLA modeling

The sequence to structure conversion occurs in two phases. First, the user needs to input the HLAs
of interest in order to pair the peptides obtained from Workflow 1. The name of the HLAs should be
contained in a file called hlas.list file. We pull the sequences of the user-selected HLA alleles from the
EBI database (36). After that, we use Modeller (37) to transform the sequence into a three-dimensional
structure. We use a homology modeling approach and functions retrieved from HLA-Arena (24). Since
HLAs are highly conserved molecules in terms of sequence and structure, we expect a high accuracy on the
generated models. After that, we use APE-Gen (38) to build the peptide-HLA complex. APE-Gen is a tool
that models peptide-HLA complexes using an iterative modeling approach where each iteration contains
three key steps. First, the peptide backbone is anchored to HLA pockets (anchor positions) using backbone
termini templates. Next, the backbone is completed using a Random Coordinate Descent loop modeling
tool (39) to generate a set of possible backbone conformations. Finally, side chains are added and a local
optimization is performed to correct steric clashes. APE-Gen generates an ensemble of conformations,
which are all stored for further analysis if desired. By default, however, only the pHLA structure with the
lowest energy (i.e., best binding) is selected for subsequent analysis.

2.5 Scoring Functions

Binding energy of modeled peptide-HLA structures can be evaluated within Workflow 2 using four
integrated scoring functions: AutoDock4 (40), Vina (41), Vinardo (42) and 3pHLA-score (43). AutoDock4
score is based on an empirical free energy forcefield and is a part of a widely used protein-ligand docking
tool. Vina and Vinardo scores are empirical scoring functions. They both originate from the Vina docking
tool. The 3pHLA-score is a recently developed scoring function tailored for pHLA structures produced by
APE-Gen and based on Rosetta’s ref2015 score (44). It uses a novel per-peptide-position training approach
and consists of per-allele trained modules. It currently supports 28 HLA alleles. The binding energies
estimated with the proposed functions are then used to rank the peptides and further refine the list of
selected targets. An interactive plot is provided to visualize the scores and allow for dynamic thresholding.

3 RESULTS

We created two independent workflows that automatically retrieve peptides located in conserved regions
of N protein from SARS-CoV-2 and SARS-related coronaviruses (Workflow 1), and model the three-
dimensional structure of these peptides in the context of specific HLAs (Workflow 2) (Fig. 2). The results
we obtain from each workflow are explained in the next sessions.

This is a provisional file, not the final typeset article 6
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3.1 Workflow 1: Sequence Alignment and Peptide Selection

The first part of SARS-Arena is the sequence alignment and peptide selection, which is coded inside
Workflow 1. As described above, we organized this first workflow into three independent parts: Workflow
1A, Workflow 1B, and Workflow 1C. The output of each workflow is the same: a list of peptides obtained
from conserved protein regions (Fig. 2). The different workflows were created to accomodate different
inputs.
3.1.1  Workflow 1A

Workflow 1A allows users to run the MSA of SARS-CoV-2 proteins in loco. The maximum limit of
sequences to be analyzed will depend on the user’s system hardware. For this reason, we recommend
using this workflow when the number of total protein sequences to be analyzed is small (approximately
50,000 sequences). Workflow 1A consists of the following steps. As a preliminary step, the necessary
python packages are imported, and the working directories where intermediate files are sotred are also
defined. After that, the protein sequences from NCBI Virus are extracted based on a set of parameters.
These parameters include choosing (i) the virus strain, (ii) the protein (N protein is the default option),
(iii) the completeness of genomes, (iv) the host, (v) the use of only reference sequences or all sequences
available, (vi) the geographic region, (vii) the isolation source, (viii) the Pangolin lineage, and (ix) the
date of release of sequences. In the second step, the number of protein sequences is shown. In the third
step, the program will run the MSA using MAFFT (28), allowing the use of multiple cores to perform the
alignment, optimizing the processing time. Then, a conservation score will be computed based on a scoring
method and a BLOSUM matrix. We provide different options in regards to conservation scoring methods
and give recommendations of which one to use inside the workflow. The final step of this workflow allows
the user to compute and select peptides that belong to conserved regions of the protein alignment. Here
SARS-Arena allows the selection of peptides with different lenghts using the “min_len” and “max_len’
variables. To guide the selection of peptides, we offer an interactive plot interface (Fig. 3) where the
user can set the conservation threshold, the rolling median window length, and the peptide length. The
conservation threshold step, the selection of peptides, and the interactive plot interface are the same for
Workflows 1A, 1B, and 1C; ergo they are described only in this subsection.

3.1.2 Workflow 1B

Workflow 1B allows users to recover information from a pre-computed multiple sequence alignment. We
recommend the use of this workflow for cases where there is a need to analyze a large number of protein
sequences (e.g., more than 50,000 sequences). This workflow consists of three steps. In the first step, after
importing the necessary libraries and setting a working directory, the user should set a month and a year to
recover the pre-computed alignment. This option is given because there can be differences in the alignments
obtained from N protein sequences released on different dates. This pre-computed alignment for each
month/year combination is performed every week and stored at Owl Research Infrastructure Open Nebula
(ORION) Virtual Machines Pool at Rice University. The Workflow 1B proceeds with the computation of
the conservation score and the rest of the steps outlined in Workflow 1A.

3.1.3 Workflow 1C

Workflow 1C allows the user to analyze the N protein sequences from SARS-related coronaviruses, not
only SARS-CoV-2. In the first step, after the initial settings, the user is required to fetch a precomputed
MSA alignment, similar to Workflow 1B. After the alignment, a consensus sequence will be printed on
the screen and used as input for the next step. In the second step, a new MSA will be performed using as
input the consensus sequence from SARS-CoV-2 N protein alignment and a set of predefined N protein
sequences (64 in total) from SARS-related coronaviruses obtained from NCBI Protein databank. After
the alignment completion, the workflow follows the same final steps of previous workflows, generating a

2
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Figure 3. Interactive plot interface at the end of Workflows 1A, 1B, and 1C. The horizontal line in (A)
defines a conservation threshold of 80% and in (B) a threshold of 85%. The x-axis represents the protein
length. The number of peptides will vary according to this threshold, as exemplified by the small tables on
the lower right corner of the graph.

peptide list that can be used in Workflow 2.

3.2 Workflow 2: Peptide-HLA Prediction for Conserved SARS-CoV-2 Peptides

Workflow 2 provides a way to model the three-dimensional structure of selected peptides in the context
of different HLAs. In the first step the user should provide two files. The first one contains the list of
peptides derived from Workflow 1; and the second one with the name of the HLAs written in the format
“Gene*Allele group:HLA protein” (e.g., A*02:01 for HLA-A*02:01; C*11:07 for HLA*C-11:07). Since
HLA binding depends to some extent on peptide sequence features (45), in the second step we use
MHCAlurry to perform initial filtering aiming to keep only good binders for further structural modeling. In
this way, we avoid the unnecessary modeling of peptide-HLA that would probably not represent a good
target for T-Cell Receptors (TCRs). We set the default cutoff to 500 nM, but this value can be modified

This is a provisional file, not the final typeset article 8
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Table 1. Peptides above the conservation threshold of 85% selected from Workflow 1A and 1C.

Workflow 1A Workflow 1C
PQCLPNNTA DYKYWPQIA PQNQRNAPR
PQGLPNNTA EYKHWPQIA QRRPQGLPN
PQGLSNNTA NYKHWPQIA RRPQGLPNN
PQVLPNNTA DYKHWPQVA RPQGLPNNT
PQGVPNNTA AYKHWPQIA PQGLPNNTA
PQGLPNNTV DYKDWPQIA QGLPNNTAS
PEGLPNNTA DYKRWPQIA GLPNNTASW
QCLPNNTAS HYKHWPQIA SPRWYFYYL
QGVPNNTAS DYKHWSQIA TDYKHWPQI
QGLPNNTVS DYKHWPQIA DYKHWPQIA
QGLSNNTAS YKHWPQIAR YKHWPQIAQ
EGLPNNTAS YKHWPQIAL KHWPQIAQF
QVLPNNTAS YKQWPQIAQ DAYKTFPPT
QGLPNNTAS YKHWPQVAQ AYKTFPPTE
SPRWYFYYI YKHWPQIAQ YKTFPPTEP

SPRWYFYYL YKLWPQIAQ LPQRQKKQQ
SPRWFFYYL YKRWPQIAQ PQRQKKQQT
SPKWYFYYL YKDWPQIAQ

YYKHWPQIA YKYWPQIAQ

DYKLWPQIA YKHWSQIAQ

DYKQWPQIA

according to user needs. In the third step, the three-dimensional HLA structure is created through homology
modeling. As the HLA sequence is retrieved from EBI, any HLA can be modeled by our method. In the
fourth step, the peptides selected from step 2 are modeled in the context of the chosen HLAs using a pHLA
modeling tool called APE-Gen (38). We know that peptide-binding scoring functions are not completely
accurate, but the use of multiple scoring functions can help to overcome this issue (46). For this reason,
in the fifth and final step, we offer the opportunity to rescore the pHLAs generated by APE-Gen using
different scoring functions. We added well-known scoring functions - Vina, Vinardo, and AD4 scoring - as
well as a new machine learning-based scoring function recently developed, called 3pHLA (43).
3.3 Workflow usage: a case study

A recent study revealed that HLA-B7" individuals that recovered from COVID-19 disease triggered
a cellular immune response against peptides from SARS-CoV-2 N protein (47). They identified one
immunodominant epitope (SPRWYFY YL, hereafter referred to as SPR) that is conserved across different
circulating coronaviruses. To assess if this epitope could be identified and selected by SARS-Arena, we
start executing workflows 1A and 1C. The rationale was to generate two different lists of peptides, one from
a direct comparison of N protein sequences from SARS-CoV-2 (Workflow 1A) and another one from the
comparison of N protein sequences from SARS-related coronaviruses (Workflow 1C). For both workflows,
we set an arbitrary conservation threshold of 85%. We were able to retrieve 41 and 17 peptide sequences
from workflow 1A and 1C, respectively. In the output, the SPR epitope was present in both lists (Table 1).

We also wanted to assess if the SPR epitope would be selected at the end of Workflow 2. Since this is
an immunodominant epitope, we wanted to be sure SARS-Arena would filter this peptide out and rank
it as one of the best peptide targets. For that, we used the peptide list from Workflow 1A and 1C as
input to Workflow 2 along with a list of 10 prevalent HLAs (including the HLA-B*(07:02 allele). Again,
SARS-Arena identified the same epitope SPRWYFY YL described by Lineburg et al. (Table 2, in bold).
Finally, one of the goals of SARS-Arena is also to identify peptide variants from conserved regions that

Frontiers 9
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Table 2. Identification of an immunodominant epitope in the context of HLA-B*07:02 and its variants.
The lower the value the better.

Workflow HLA Alelle Peptide Sequence- Vina Vinardo AD4 score p3HLA
based (kcal/mol) (kcal/mol) (kcal/mol) (nM)
prediction
(nM)

SPRWYFYYL 11.37 -10.88 -15.11 -76.67 101.61
B*07:00 SPRWFFYYL 14.89 -9.21 -12.34 -75.78 194.29
Workflow 1A ’ SPRWYFYYI 25.11 -10.95 -14.90 -85.76 106.00
SPKWYFYYL 68.47 -11.23 -15.69 -85.54 100.00
B*40:01 YKHWPQIAL 181.24 -8.42 -11.42 -75.21 24428.89
B*07:02 SPRWYFYYL 11.37 -10.03 -14.42 -91.57 100.00
Workflow 1C
A*24:02 KHWPQIAQF 258.11 -8.81 -12.33 -74.05 1112.68

*Immunodominant epitope is highlighted in bold.

can be used as possible targets in vaccine research. We noted similar sequences to SPRWYFY YL using
the list of peptides from Workflow 1A (Table 2). The similarity of sequences, associated with the good
HLA sequence-binding prediction and structural binding energy values of these epitopes, could indicate a
possible cross-reactive response between these variants and the wild-type SPR epitope. To evaluate this
possibility, we decided to use the three-dimensional models generated at the end of Workflow 2 to assess
the probability of cross-reactivity based on electrostatic potential patterns from the pHLA surface, as
previously described at (48, 49). We included in our analysis an SPR cross-reactive peptide (LPRWYFYYL,
hereafter referred to as LPR) and two SPR non-cross-reactive peptides (PPKVHFYYL and SPKLHFYYL,
hereafter referred to as PPK and SPK, respectively). Hierarchical clustering analysis revealed that the SPR
epitope is more similar to the variants we have found than the known cross-reactive LPR peptide (Fig. 4).
Also, our analysis correctly separated non-cross-reactive epitopes PPK and SPK in different branches. The
strong sequence and structure similarity set these variants as putative new targets to be tested towards the
development of broad-spectrum T-cell vaccines.

4 DISCUSSION

The SARS-CoV-2 pandemic highlighted the need for immunoinformatics approaches towards the
identification of immunogenic protein targets. At first, the focus was on the humoral immune response.
However, as it was recognized that cellular immunity plays an important role complementing or even
filling the gap of humoral response, computational methods and databases focused on the prediction
and analysis of SARS-CoV-2 T-cell epitopes have been developed (50, 51, 52, 53, 54, 55, 56). Here we
presented SARS-Arena, a user-friendly environment for structure-guided epitope discovery targetting
conserved regions of N protein from SARS-CoV-related viruses. SARS-Arena includes two customized
workflows. Workflow 1 is focused on (i) fetching protein sequences from NCBI Virus and (ii) selecting
of peptides found in conserved regions. Workflow 2 is focused on the three-dimensional modeling of
peptides in the context of any HLA molecule. We run Workflow 1 and 2 to evaluate the capacity of
SARS-Arena to identify and select epitopes in conserved regions. This analysis returned an immunogenic
epitope (SPRWYFYYL) and possible cross-reactive variants. SARS-Arena goes beyond previous efforts
by providing an easy-to-use environment for epitope discovery while integrating sequence and structure
analysis and targetting conserved regions of SARS-CoV-related proteins.

The ultimate goal of SARS-Arena was to create a straightforward computational environment to enable
epitope discovery efforts by basic, intermediate, and advanced users, while aggregating sequence- and
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Figure 4. Hierarchical clustering analysis (HCA) and structure comparison of SPR peptide, SPR variants,
LPR peptide, and SPK peptide. The TCR-interacting surface is shown in the pHLA complexes and the
colors blue, white and red represent positive, neutral, and negative charges, respectively (+3kT to -3kT
range). The SPR variants are closer to SPR peptide (wild-type), followed by the known cross-reactive
LPR epitope. The non-cross-reactives epitopes SPK and PPK are grouped in a different branch of HCA,
probably due to the central positive charge. Numbers in red and green represent the approximately unbiased
p-value and the bootstrap probability value, respectively, for each cluster in the dendogram. Here we used
the “correlation” as the distance measure and the “average” as the agglomerative method with a total of
100 bootstrap replications.

structure-based analysis. Step-by-step workflows are provided as Jupyter Notebooks to be executed
alongside tools provided in a Docker image, therefore facilitating the installation process. The workflows
and supporting functions can also be modified by the user, to accommodate different computational and
data analysis needs. Because SARS-Arena is highly modular and easy to customize, additional steps and
functions for advanced practitioners can be implemented as needed.

We decided to focus SARS-Arena on the N protein because this protein is a promising target for broad-
spectrum vaccine development. First, the N gene is more conserved and presents fewer mutations over
time (57). Second, this protein is highly expressed upon infection, increasing the chances for epitopes
to be presented to TCR scrutiny in the context of different HLAs (58). Previous studies have shown
that N protein from SARS-CoV is highly immunogenic, and T-cell responses can persist for years after
convalescence (59). Lastly, different regions of the N protein can pass through the intracellular antigen
presentation pathway and be presented by a wide range of HLAs, eliciting a dominant cellular immune
response (60). It is important to note that since we expect that some users may want to analyze other
SARS-CoV-2 proteins, we also implemented Workflow 1A in a way that any SARS-CoV-2 protein can be
analyzed. Finally, advanced users can also modify the provided functions and workflows to apply the same
methods to proteins derived from other pathogens of interest.

Frontiers 11
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Another novelty of SARS-Arena was the inclusion of 3pHLA, a scoring function that uses a per-peptide-
position protocol to predict the binding affinity of pHLA complexes. Preliminary results show that 3pHLA
outperforms widely used structural scoring functions (manuscript submitted). However, since the 3pHLA
scoring relies on machine learning models trained on available binding affinity and structural data, this
scoring function is currently restricted to a total of 28 HLA alleles.

We envision that SARS-Arena can be used as a tool to identify new targets to be used in broad-spectrum
therapies. As a proof-of-concept, we decided to run SARS-Arena with a set of predefined parameters and
compare the output with targets described in the literature. We focused our analysis on the SPRWYFYYL
epitope. This epitope was involved in a dominant T-cell response in HLA-B7" individuals, exposed or
not to SARS-CoV-2 (47). In fact, this epitope has already been previously suggested as a SARS-CoV-2
target (61, 62). SARS-Arena not only was able to recover this peptide but also highlighted the presence of
peptide variants in this region. We wonder if these variants could be cross-reactive targets. Surprisingly, in
our analysis, the variants are closer to the wild-type peptide than the known cross-reactive target LPR. The
analysis of pHLA surface in the context of electrostatic potential charges is robust, validated in previous
studies, and has already been used to identify cross-reactive targets to an HCV peptide (63). Note that the
pHLA structural modeling and analysis is crucial for this application since cross-reactivity can occur even
among peptides with low sequence similarity and identity. Future studies will be required to fully validate
novel targets identified with SARS-arena.

SARS-Arena can be used to identify and suggest new T-cell targets for SARS-CoV-2 and SARS-CoV-
related protein sequences. This environment is simple, but still robust, offering end-to-end workflows to
analyze these targets, from raw protein sequences to refined pHLA three-dimensional structures.
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