
Software Impacts 13 (2022) 100347

B

Contents lists available at ScienceDirect

Software Impacts

journal homepage: www.journals.elsevier.com/software-impacts

Original software publication

Towards robust, interpretable neural networks via Hebbian/anti-Hebbian
learning: A software framework for training with feature-based costs
Metehan Cekic ∗, Can Bakiskan, Upamanyu Madhow
Department of Electrical and Computer Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America

A R T I C L E I N F O

Keywords:
Interpretable ML
Hebbian learning
Neuro inspired
Machine learning

A B S T R A C T

Conventional deep neural network (DNN) training with an end-to-end cost function is unable to exert control
on, or to provide guarantees regarding the features extracted by the layers of a DNN. Thus, despite the pervasive
impact of DNNs, there remain significant concerns regarding their (lack of) interpretability and robustness. In
this work, we develop a software framework in which end-to-end costs can be supplemented with costs which
depend on layer-wise activations, permitting more fine-grained control of features. We apply this framework
to include Hebbian/anti-Hebbian (HaH) learning in a discriminative setting, demonstrating promising gains in
robustness for CIFAR10 image classification.

Code metadata

Current code version v0.0.5
Permanent link to code/repository used for this code version https://github.com/SoftwareImpacts/SIMPAC-2022-68
Permanent link to Reproducible Capsule https://codeocean.com/capsule/0731065/tree/v1
Legal Code License MIT License
Code versioning system used Git
Software code languages, tools, and services used Python
Compilation requirements, operating environments & dependencies Python >= 3.8.2 with the following dependencies PyTorch 1.10.2; Numpy 1.19.2
If available Link to developer documentation/manual https://github.com/metehancekic/HaH
Support email for questions metehancekic@ucsb.edu

1. Introduction

Deep neural networks (DNNs) have gone well beyond their image
classification roots to impact an increasing variety of applications [1–
4]. Conventional top-down training employs a cost function based on
the DNN output, thus providing little insight and no guarantees on the
features extracted by the layers of the DNN. The use of the resulting
‘‘black box’’ DNNs in many safety- and security-critical applications is
blocked by concerns about their lack of interpretability and robustness.
While data augmentation has been shown to enhance robustness to
some extent (e.g., the use of adversarial examples generated on the fly
during adversarial training), it is only a partial solution.

In this paper, we develop and open-source a training framework
aimed at shaping the features generated by a DNN layer, by supple-
menting end-to-end costs with costs that depend on the activations at

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
adge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author.
E-mail addresses: metehancekic@ucsb.edu (M. Cekic), canbakiskan@ucsb.edu (C. Bakiskan), madhow@ucsb.edu (U. Madhow).

each layer. We apply this framework to neuro-inspired Hebbian/anti-
Hebbian (HaH) learning, seeking to generate sparse activation patterns
with a small fraction of large activations, instead of the large proportion
of small activations produced by a standard DNN. With HaH costs,
neurons which are strongly activated by an input take a step in the
direction of the input, while the remaining neurons take a step in
the direction opposite to the input. We also introduce changes in the
inference framework, replacing a standard DNN layer with a HaH
block which includes implicit weight normalization for each neuron,
allowing us to interpret its output as a projection, and divisive output
normalization, allowing us to suppress weak activations using strong
ones. These result in invariance to input and weight scaling.

We implement our ideas via a publicly available extension module
to PyTorch [5] called HaH (Hebbian/Anti-Hebbian): a neuro-inspired
https://doi.org/10.1016/j.simpa.2022.100347
Received 17 May 2022; Received in revised form 22 June 2022; Accepted 28 June 2022

2665-9638/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.simpa.2022.100347
http://www.journals.elsevier.com/software-impacts
http://www.journals.elsevier.com/software-impacts
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpa.2022.100347&domain=pdf
https://github.com/SoftwareImpacts/SIMPAC-2022-68
https://codeocean.com/capsule/0731065/tree/v1
https://github.com/metehancekic/HaH
mailto:metehancekic@ucsb.edu
https://codeocean.com/
https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals
mailto:metehancekic@ucsb.edu
mailto:canbakiskan@ucsb.edu
mailto:madhow@ucsb.edu
https://doi.org/10.1016/j.simpa.2022.100347
http://creativecommons.org/licenses/by/4.0/


M. Cekic, C. Bakiskan and U. Madhow Software Impacts 13 (2022) 100347
DNN toolbox, with new components such as Cost, Regularizer, Divisive
normalizer, and Threshold. Experiments on CIFAR10 [6] image clas-
sification, including HaH Blocks into VGG16, show that training with
HaH costs is more robust to noise and adversarial perturbations than
the baseline, even without data augmentation.

1.1. Related work

Since the neocognitron proposed about four decades ago [7], there
have been sporadic attempts to introduce Hebbian learning in artificial
neural networks, including recent work on deep architectures [8]. Divi-
sive normalization is also a well-known concept in neuroscience [9,10],
and was shown to be competitive with standard batch norm in [11].
However, as far as we know, ours is the first work to show how to
employ a combination of these concepts to obtain sparser activations
and demonstrable gains in DNN robustness. We use neuro-inspiration
for extracting high-level design principles to guide software architec-
tures for DNN training and inference, in contrast to recent work which
attempts to directly apply known features from mammalian vision, such
as [12] (Gabor filters and stochasticity) and [13] (DNN regularization
based on neural activity measurements from mice). Our HaH-based
approach to sparse activations can be realized with standard stochastic
gradient training, unlike the iterative computations required for sparse
coding with a reconstruction-based objective [14]. A recent study [15]
shows the promise of weight and activation sparsity in the context
of adversarial robustness. While our HaH-based framework enhances
robustness via large, sparse activations, it is of interest to explore
potential enhancements to its robustness by imposing weight sparsity.

2. Description

HaH training is governed by the HaH cost, which is incorporated
into standard backpropagation based training. The HaH block is de-
signed to take advantage of the features shaped by the HaH cost, intro-
ducing competition between neurons and enforcing scale-invariance.

2.1. HaH cost

We design the HaH cost to reward large elements of a given tensor
along a dimension while penalizing the remainder of the tensor. While
any DNN tensor, including weight tensors, layer outputs, and layer
inputs, can be fed to the HaH cost to promote sparsity, we use it on
convolutional layer outputs, since we wish to promote sparse, strong
activations. After sorting the activations along the channel dimension
for a given layer output, we define HaH cost as follows:

𝐿𝑏𝑙𝑜𝑐𝑘(𝑙𝑜𝑐) =
1
𝐾

𝐾
∑

𝑘=1
𝑦(𝑘)(𝑙𝑜𝑐) − 𝜆 1

𝑁 −𝐾

𝑁
∑

𝑘=𝐾+1
𝑦(𝑘)(𝑙𝑜𝑐) (1)

where 𝑦 corresponds to the activations of 𝑘’th layer for a single image,
𝑙𝑜𝑐 corresponds to the spatial location of the activation, 𝑏𝑙𝑜𝑐𝑘 is the
layer we want to have layer-wise HaH cost, and 𝜆 is a hyperparameter
determining how much to emphasize the anti-Hebbian component.

2.2. HaH block

We design the HaH block such that it can replace a standard block in
popular DNNs (e.g., VGG, ResNet, EfficientNet). The key components,
shown in Fig. 1, are described in the following.

Implicit weight normalization: If we represent a given activation
as a vector product of a filter weight 𝐰 and input patch 𝐱, then the
output of a convolutional layer after implicit normalization is given by

𝑦 =
⟨𝐰, 𝐱⟩ (2)

which implicitly normalizes each filter’s weight tensor to unit 𝓁2 norm
without requiring weight decay, 𝓁2 regularization or explicitly setting
each filter to unit norm ‖.‖2 = 1 after backpropagation.

Custom Divisive Normalization: We normalize each activation by
the activity of a pool of neighboring neurons in the spatial dimension
as suggested by [11]. However, we also suppress (or promote) the
activation depending on the activity along the channel dimension.
Specifically, the output of the 𝑘th divisive normalization block is given
by

𝑧𝑘(𝑙𝑜𝑐) =
𝑦𝑘(𝑙𝑜𝑐)

𝜎𝑀𝑚𝑎𝑥 + (1 − 𝜎)𝑀(𝑙𝑜𝑐)
, 𝑘 = 1,… , 𝑁 (3)

where 𝑀(𝑙𝑜𝑐) = 1
𝑁

∑𝑁
𝑘=1 𝑦𝑘(𝑙𝑜𝑐) is the local suppression field, and

𝑀𝑚𝑎𝑥 = max𝑙𝑜𝑐 𝑀(𝑙𝑜𝑐) is the maximum of this suppression field across
the layer. The hyperparameter 0 ≤ 𝜎 ≤ 1 can be separately tuned for
each HaH block. For 𝜎 > 0, the use of 𝑀𝑚𝑎𝑥 in the denominator helps
us suppress weak ‘‘noise’’ blocks for which 𝑀(𝑙𝑜𝑐) and 𝑧𝑘(𝑙𝑜𝑐) are both
small. Since all of these quantities scale with the layer input, the output
remains scale-invariant.

Fractional Thresholding: We apply neuron-specific thresholding
after divisive normalization, in order to keep only the significant out-
puts. The output of the 𝑘th neuron at location 𝑙𝑜𝑐 is given by

𝑜𝑘(𝑙𝑜𝑐) =
{ 𝑧𝑘(𝑙𝑜𝑐) if𝑧𝑘(𝑙𝑜𝑐) ≥ 𝜏𝑘

0, otherwise
(4)

where the channel-specific threshold 𝜏𝑘 is also input-dependent. For
example, if we wish to limit the activation rate of each channel to 10%,
we may set 𝜏𝑘 to the 90th percentile of the statistics of 𝑧𝑘.

2.3. Insight into HaH updates

In this section, we provide quick analytical and geometric insight
into the HaH framework. By rewarding large activations 𝑦, the HaH
cost targets learning weight tensors more aligned with input tensors.
To see this, consider an activation 𝑦 = ⟨𝐰, 𝐱⟩∕‖𝐰‖2 which among the
top 𝐾, and is therefore receiving a Hebbian update. The gradient along
which 𝐰 is to be updated can be computed as

𝜕𝑦
𝜕𝐰

=
⟨𝐰,𝐰⟩𝐱 − ⟨𝐰, 𝐱⟩𝐰

‖𝐰‖32
=

⟂
𝐰𝐱

‖𝐰‖2
(5)

where ⟂
𝐰𝐱 denotes the projection of the input 𝐱 orthogonal to the

one-dimensional subspace spanned by 𝐰. The update 𝛥𝐰 = 𝜂 𝜕𝑦
𝜕𝐰 is

therefore proportional to this orthogonal component, and moving in
this direction reduces the angle between 𝐰 and 𝐱, provided that 𝜂
is small enough. We skip details due to lack of space, but note the
following geometric interpretation. Because of implicit normalization,
the original activation can be written as

𝑦 = ⟨𝐰, 𝐱⟩∕‖𝐰‖2 = ‖𝐱‖2 cos 𝜃 (6)

where 𝜃 is the angle between 𝐰 and 𝐱. By reducing 𝜃 via the weight
update, we increase the implicitly normalized activation. Thus,

𝑦𝑛𝑒𝑤 = ⟨𝐰 + 𝛥𝐰, 𝐱⟩∕‖𝐰 + 𝛥𝐰‖2 > 𝑦𝑜𝑙𝑑 = ⟨𝐰, 𝐱⟩∕‖𝐰‖2 (7)

Note that exactly the opposite phenomenon occurs for an anti-Hebbian
update: those weight vectors become less aligned with the input.

This procedure trains the neurons such that, during inference, the
highly activated neurons at a given location tend to be better aligned
with the input. Not only does this make these top activations more
resilient to the impact of noise or perturbations, but larger activations
also help attenuate the impact of noise on smaller activations by
virtue of divisive normalization. In fact, many of these smaller noisy
activations get eliminated via the thresholding applied after divisive
normalization.
‖𝐰‖2

2



M. Cekic, C. Bakiskan and U. Madhow Software Impacts 13 (2022) 100347
Fig. 1. HaH block consists of a convolutional layer, implicit 𝓁2 normalization, ReLU activation, divisive normalization, and a thresholding layer.

Table 1
CIFAR10 classification: Performance comparison between a HaH trained network and a standard network
for different input corruptions on the test set. Clean corresponds to the test set without any corruption,
Noisy corresponds to Gaussian noise injection on the test set with a standard deviation of 0.1, Adv(𝓁∞)
corresponds to adversarial attack on inputs bounded by the 𝓁∞ norm with budget 𝜖 = 2∕255, and Adv(𝓁2)
corresponds to the adversarial attack on inputs bounded by the 𝓁2 norm with budget 𝜖 = 0.25. For all of
the adversarial attacks, we use AutoAttack [16] which is an ensemble of parameter-free attacks.

Clean Noisy
(𝜎 = 0.1)

Adv (𝓁∞)
(𝜖 = 2∕255)

Adv (𝓁2)
(𝜖 = 0.25)

Standard VGG16 92.5% 26.6% 10.4% 13.9%
HaH VGG16 87.3% 64.0% 21.5% 27.6%

2.4. Additional utilities

We provide additional utility functions to extract and use the layer
outputs. We provide a wrapper class for torch.nn.Module which utilizes
forward hooks from PyTorch to extract all the outputs and inputs of
a specific layer type from a DNN while training. The wrapper expects
a model and the layer type and makes the layer outputs and inputs
accessible whenever an input is fed to the neural network.

3. Impact

Given the shortcomings of standard DNNs in terms of both inter-
pretability and robustness, we believe it is time to explore how to
better control the features generated within a DNN. We present our
HaH framework as a first step in this direction. Our proposed approach
plugs seamlessly into standard end-to-end training with the addition
of HaH costs. The HaH blocks are defined so as to directly replace
standard DNN blocks consisting of filters, ReLU and batch norm. Given
the importance of understanding the features generated by each layer,
the HaH module also includes several utilities for feature analysis.

Our initial results show promising gains in robustness. Table 1
compares baseline VGG16 against VGG16 with HaH layers for CIFAR10
image classification. These results show that a model armed with the
HaH module (HaH blocks and HaH regularizer) performs significantly
better against corruptions such as Gaussian noise and 𝓁𝑝 norm bounded
adversarial attacks, while incurring a small decrease in accuracy for
clean inputs. See [17] for more detail.

We hope that these promising initial results, and the release of
our software, motivates the community to explore these ideas further.
Although our experiments are limited to an image classification task,
the HaH module, with small modifications, can be incorporated into
any DNN.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work was supported in part by the Army Research Office,
United States of America under grant W911NF-19-1-0053, and by the
National Science Foundation, United States of America under grants

References

[1] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A.
Paino, M. Plappert, G. Powell, R. Ribas, et al., Solving rubik’s cube with a robot
hand, 2019, arXiv preprint arXiv:1910.07113.

[2] T.B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., Language models are few-shot
learners, 2020, arXiv preprint arXiv:2005.14165.

[3] A.W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A.
Žídek, A.W. Nelson, A. Bridgland, et al., Improved protein structure prediction
using potentials from deep learning, Nature 577 (7792) (2020) 706–710.

[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al., A general reinforcement learning
algorithm that masters chess, shogi, and go through self-play, Science 362 (6419)
(2018) 1140–1144.

[5] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al., PyTorch: An imperative style, high-performance
deep learning library, in: Advances in Neural Information Processing Systems,
2019, pp. 8024–8035.

[6] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features from tiny
images, 2009.

[7] K. Fukushima, S. Miyake, T. Ito, Neocognitron: A neural network model for a
mechanism of visual pattern recognition, IEEE Trans. Syst. Man Cybern. SMC-13
(5) (1983) 826–834, http://dx.doi.org/10.1109/TSMC.1983.6313076.

[8] G. Amato, F. Carrara, F. Falchi, C. Gennaro, G. Lagani, Hebbian learning meets
deep convolutional neural networks, in: E. Ricci, S. Rota Bulò, C. Snoek, O.
Lanz, S. Messelodi, N. Sebe (Eds.), Image Analysis and Processing – ICIAP 2019,
Springer International Publishing, Cham, ISBN: 978-3-030-30642-7, 2019, pp.
324–334.

[9] M. Carandini, D.J. Heeger, Normalization as a canonical neural computation,
Nat. Rev. Neurosci. 13 (1) (2012) 51–62.

[10] M.F. Burg, S.A. Cadena, G.H. Denfield, E.Y. Walker, A.S. Tolias, M. Bethge, A.S.
Ecker, Learning divisive normalization in primary visual cortex, PLoS Comput.
Biol. 17 (6) (2021) e1009028.

[11] M. Ren, R. Liao, R. Urtasun, F.H. Sinz, R.S. Zemel, Normalizing the normalizers:
Comparing and extending network normalization schemes, 2016, arXiv preprint
arXiv:1611.04520.

[12] J. Dapello, T. Marques, M. Schrimpf, F. Geiger, D. Cox, J. DiCarlo, Simulating
a primary visual cortex at the front of CNNs improves robustness to image per-
turbations, 2020, http://dx.doi.org/10.1101/2020.06.16.154542, BioRxiv, URL
https://www.biorxiv.org/content/early/2020/06/17/2020.06.16.154542.

[13] Z. Li, W. Brendel, E. Walker, E. Cobos, T. Muhammad, J. Reimer, M. Bethge,
F. Sinz, Z. Pitkow, A. Tolias, Learning from brains how to regularize machines,
Adv. Neural Inf. Process. Syst. 32 (2019).

[14] B.A. Olshausen, D.J. Field, Sparse coding with an overcomplete basis set: A
strategy employed by V1? Vis. Res. 37 (23) (1997).

[15] Y. Guo, C. Zhang, C. Zhang, Y. Chen, Sparse dnns with improved adversarial
robustness, Adv. Neural Inf. Process. Syst. 31 (2018).

[16] F. Croce, M. Hein, Reliable evaluation of adversarial robustness with an ensemble
of diverse parameter-free attacks, in: International Conference on Machine
Learning, PMLR, 2020, pp. 2206–2216.

[17] M. Cekic, C. Bakiskan, U. Madhow, Neuro-inspired deep neural networks with
sparse, strong activations, 2022, in press, ICIP 2022, arXiv:2202.13074.
CIF-1909320 and CIF-2224263.

3

http://arxiv.org/abs/1910.07113
http://arxiv.org/abs/2005.14165
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb3
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb3
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb3
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb3
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb3
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb4
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb4
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb4
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb4
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb4
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb4
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb4
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb5
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb5
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb5
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb5
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb5
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb5
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb5
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb6
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb6
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb6
http://dx.doi.org/10.1109/TSMC.1983.6313076
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb8
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb8
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb8
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb8
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb8
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb8
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb8
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb8
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb8
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb9
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb9
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb9
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb10
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb10
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb10
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb10
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb10
http://arxiv.org/abs/1611.04520
http://dx.doi.org/10.1101/2020.06.16.154542
https://www.biorxiv.org/content/early/2020/06/17/2020.06.16.154542
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb13
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb13
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb13
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb13
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb13
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb14
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb14
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb14
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb15
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb15
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb15
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb16
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb16
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb16
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb16
http://refhub.elsevier.com/S2665-9638(22)00066-5/sb16
http://arxiv.org/abs/2202.13074

	Towards robust, interpretable neural networks via Hebbian/anti-Hebbian learning: A software framework for training with feature-based costs
	Introduction
	Related work

	Description
	HaH cost
	HaH block
	Insight into HaH updates
	Additional utilities

	Impact
	Declaration of competing interest
	Acknowledgments
	References


