A Large-Scale Longitudinal Analysis of Missing Label
Accessibility Failures in Android Apps

Raymond Fok
rayfok@cs.washington.edu
University of Washington
Seattle, Washington, USA

James Fogarty
jfogarty@cs.washington.edu
University of Washington
Seattle, Washington, USA

ABSTRACT

We present the first large-scale longitudinal analysis of missing label
accessibility failures in Android apps. We developed a crawler and
collected monthly snapshots of 312 apps over 16 months. We use
this unique dataset in empirical examinations of accessibility not
possible in prior datasets. Key large-scale findings include missing
label failures in 55.6% of unique image-based elements, longitudinal
improvement in ImageButton elements but not in more prevalent
ImageView elements, that 8.8% of unique screens are unreachable
without navigating at least one missing label failure, that app failure
rate does not improve with number of downloads, and that effective
labeling is neither limited to nor guaranteed by large software or-
ganizations. We then examine longitudinal data in individual apps,
presenting illustrative examples of accessibility impacts of system-
atic improvements, incomplete improvements, interface redesigns,
and accessibility regressions. We discuss these findings and poten-
tial opportunities for tools and practices to improve label-based
accessibility.

CCS CONCEPTS

+ Human-centered computing — Accessibility systems and
tools; Empirical studies in accessibility.

KEYWORDS

mobile app accessibility; large-scale longitudinal analysis

ACM Reference Format:

Raymond Fok, Mingyuan Zhong, Anne Spencer Ross, James Fogarty, and Ja-
cob O. Wobbrock. 2022. A Large-Scale Longitudinal Analysis of Missing
Label Accessibility Failures in Android Apps. In CHI Conference on Hu-
man Factors in Computing Systems (CHI °22), April 29-May 5, 2022, New
Orleans, LA, USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.
1145/3491102.3502143

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9157-3/22/04...$15.00
https://doi.org/10.1145/3491102.3502143

Mingyuan Zhong
myzhong@cs.washington.edu
University of Washington
Seattle, Washington, USA

Anne Spencer Ross
ansross@cs.washington.edu
Bucknell University
Lewisburg, Pennsylvania, USA

Jacob O. Wobbrock
wobbrock@uw.edu
University of Washington
Seattle, Washington, USA

1 INTRODUCTION

Mobile applications (apps) have become indispensable tools for
access and participation across a wide variety of contexts (e.g., en-
tertainment, financial services, food and groceries, transportation).
However, the frequent failure of app developers to implement acces-
sibility standards means that many app capabilities are inaccessible
to people with disabilities. Recent analyses of the Android ecosys-
tem have found many apps do not properly expose data required by
platform accessibility services [39, 40, 50], undermining the func-
tionality of these services and the accessibility of affected apps.
For example, a person using a screen reader (e.g., Android Talk-
Back, iOS VoiceOver) who encounters an image button will expect
a useful description (e.g., “Login, Button”), but a developer failure
to provide a label will instead result in an unhelpful description
(e.g., “Unlabeled, Button”).

Many factors can contribute to the prevalence of app accessibility
failures [38]. For example, an organization may not prioritize acces-
sibility, a developer may lack accessibility awareness or expertise,
or platform resources and tools may be inconsistent in their support.
Accessibility efforts target such factors, including improvements to
platform developer guidelines [6, 19, 20], scanners to support de-
velopers in inspecting app accessibility [5, 18], and organizational
statements promising more accessible apps [3, 16, 43, 49]. Given
the many factors that can contribute to an app’s accessibility, it is
generally difficult to gain an understanding of the impact of such
accessibility efforts.

With a goal to better understand and ultimately improve the
ecosystem of apps, research has examined large-scale analyses of
app accessibility [39, 40, 50]. As a complement to analyses of individ-
ual apps, large-scale analyses offer the potential to reveal patterns
across many apps. For example, prior large-scale analyses of app
accessibility have measured the prevalence of specific accessibility
failures and identified patterns that suggest contributors to those
failures (e.g., inconsistent documentation and tooling across differ-
ent classes of image-based elements) [39, 40, 50]. A limitation of
these prior analyses has been that they are largely based on a single
snapshot of each app (i.e., analysis of each app is limited to data
collected from that app at a single point in time). In contrast, large-
scale analyses of web accessibility have highlighted the potential
for additional insight through longitudinal analyses (e.g., evolution
of web accessibility over time, factors that have contributed to that
evolution) [22, 34, 48]. We see a similar opportunity to examine

https://doi.org/10.1145/3491102.3502143
https://doi.org/10.1145/3491102.3502143
https://doi.org/10.1145/3491102.3502143
mailto:wobbrock@uw.edu
mailto:permissions@acm.org
mailto:jfogarty@cs.washington.edu

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Raymond Fok, Mingyuan Zhong, Anne Spencer Ross, James Fogarty, and Jacob O. Wobbrock

Missing Labels in Zillow

bottom_sheet_header_close o] o] m]] ° ° ° ° ° ° ° Sort by:Bathrooms . g
chip_arrow o O o u} m} O ° ° ° ° ° ° °
close_button u] O o O m} O ° ° ° ° ° ° °
current_location u} m]] O] O ° ° ° ° ° ° ° oL
o delete_favorite_button O u]] m]] m] . ° ° ° ° ° °
g favorite_button o O o O ° ° ° ° ° ° °
% hoa_filter_more_info m] u] m] 0 m]) m] u) m] [m] m] 0 m]
I~
>
ﬁ Missing Labels in Zillow Rentals
5 back_button . . o O o O o O m} . . . m} S
.ai bottom_sheet_header_close o O o O o O ° ° ° °
> chip_action O
chip_arrow O o O m} O ° ° ° ° ° ° °
current_location o m] o] o] ° ° ° ° ° ° °
delete_favorite_button =] O =]] m]] ° ° ° ° ° ° ° /
0)"\'/\/ Q‘Q\l QQ Q'éb ng Q‘éo leo Q'Q% Q"\P Q"\'/\/ QQ '\/'Q’\/ '\/&
I I A R R

Figure 1: Two failure plots enabled by our unique longitudinal dataset, each visualizing a 16-month period of missing label
failures in an app published by Zillow (i.e., a home buying app (top), and an apartment rental app (bottom)). An empty orange
square indicates a unique element observed to have a missing label failure, a solid blue circle indicates a unique element
observed as labeled, and a black point indicates the element was not observed in that snapshot. The June 2020 snapshot clearly
shows repairs to longstanding missing label accessibility failures. The two apps also share four ViewldResourceName values,
suggesting these repairs may have been the result of a systematic accessibility improvement in shared code.

the evolution of app accessibility to gain new understanding of
accessibility failures and to inform opportunities for improving the
accessibility of the app ecosystem.

This research therefore presents a large-scale longitudinal analy-
sis of the accessibility of Android apps, based in data crawled from
312 popular Android apps over the course of 16 months. Focusing
on the prevalent and well-understood need to provide labels for
image-based elements, we ask the following large-scale quantitative
research questions:

RQ1: How prevalent are missing label failures in unique image-
based elements?

RQ2: How frequently do changes in image-based elements intro-
duce or repair missing label failures?

RQ3: How do changes in image-based elements impact the overall
prevalence of missing label failures over time?

RQ4: How do changes in image-based elements impact per-app
missing label failure rates over time?

RQ5: How do missing label failures impact navigation within apps?
RQ6: Do apps become more accessible as they become more popu-
lar?

RQ7: Are large and mature software organizations more effective
at labeling image-based elements?

Key large-scale findings include missing label failures in 55.6%
of unique image-based elements, longitudinal improvement in Im-
ageButton elements but not in more prevalent ImageView elements,
that 8.8% of unique screens are unreachable without navigating at
least one missing label failure, that app failure rate does not improve
with number of downloads, and that effective labeling is neither
limited to nor guaranteed by large software organizations. We com-
plement our large-scale quantitative findings with an examination

of longitudinal failure plots in individual apps, presenting illustra-
tive real-world examples of the accessibility impacts of systematic
improvements, incomplete improvements, interface redesigns, and
accessibility regressions. Finally, we discuss these findings and po-
tential opportunities for tools and practices to improve label-based
accessibility.

The specific contributions of this work include:

o A crawler to collect a unique large-scale longitudinal dataset
on the accessibility of Android apps. This dataset contains a
total of 3,775 crawls capturing the evolution of accessibility
in 312 Android apps over 16 months. !

o Definitions of screen equivalence and element equivalence
for analyses of large-scale longitudinal data, developed to
support longitudinal tracking of the accessibility of elements
across multiple crawls.

e An examination of missing-label accessibility failures in our
large-scale longitudinal dataset. Labeling of image-based
elements is a prevalent and well-understood accessibility
need that focuses our 7 quantitative research questions while
revealing broader implications.

e An examination of longitudinal failure plots, presenting il-
lustrative real-world examples of the accessibility impacts
of systematic improvements, incomplete improvements, in-
terface redesigns, and accessibility regressions.

e The identification of opportunities for developer tools to
improve support for systematic accessibility improvements,
to reduce failures introduced through code duplication, and
to support adoption of accessibility practices.

1Code and dataset available at https://github.com/appaccess/LAMA-CHI2022.

https://github.com/appaccess/LAMA-CHI2022

Missing Label Accessibility Failures in Android Apps

2 RELATED WORK

Our large-scale longitudinal research is primarily situated within
prior work on mobile app accessibility, including analyses of factors
impacting mobile app accessibility. Our motivation for pursuing
large-scale longitudinal analyses is then based in part on prior
examples of longitudinal analyses in web accessibility.

2.1 Analyses of App Accessibility

As mobile apps have become integrated into more aspects of every-
day life, research has examined accessibility within specific classes
of mobile apps, such as health apps [31, 51], smart city apps [8],
and government services apps [42]. Other research has analyzed
mobile apps generally to evaluate and extend existing accessibil-
ity guidelines for mobile form factors [11, 33]. These studies have
been conducted through manual inspection of a small number of
apps, generally finding those apps fail to implement effective ac-
cessibility. Such results have helped motivate large-scale studies
that seek to understand the state of accessibility in the Android
ecosystem [2, 39, 40, 50]. For example, an accessibility analysis of
the Rico dataset [13] found more than 45% of evaluated apps had
missing label accessibility failures in more than 90% of their image-
based elements [39]. Additional large-scale analyses have similarly
found high prevalence of various accessibility failures (e.g., missing
labels, insufficient text or image contrast, insufficient touch target
size) [2, 40, 50].

However, prior large-scale studies have largely focused on ex-
amining a single snapshot of each app (i.e., the accessibility of each
app at a single moment in time). In the only known example of ex-
amining the accessibility of apps over time, Alshayban et al. present
a small component of their overall analysis that considers a total
of 181 crawls from 60 apps [2]. They do not report when analyzed
versions were released, they note their methods cannot differentiate
true accessibility improvements from other changes to apps, and
the only reported result of their analysis is a high-level claim that
accessibility improved in 47% of app updates. Our research there-
fore improves upon prior large-scale studies by collecting a unique
large-scale longitudinal dataset to allow us to examine mobile app
accessibility over time. Our design of data collection explicitly for
the purpose of longitudinal analyses provides a larger-scale dataset
of much greater fidelity than that examined by Alshayban et al. [2],
and our findings are correspondingly more thorough (e.g., including
a lack of support for overall improvement in missing label failures
for image-based elements over the 16 months of our data collection).

2.2 Improving App Accessibility

Many efforts in research and practice aim to improve developer
implementation of accessible apps. As part of promoting developer
awareness and education, leading technology and accessibility or-
ganizations publish guidelines on best practices [6, 19, 20, 30, 47].
Major mobile platforms provide accessibility tests in their devel-
opment environments and interactive scanners for inspecting app
accessibility (e.g., Google’s Accessibility Scanner [18], Apple’s Ac-
cessibility Inspector [5]). Third-party accessibility organizations
also offer products with similar goals (e.g., axe [15]). Research in
related tools and platforms has explored higher-fidelity accessibil-
ity testing [41], the accessibility of mobile design and prototyping

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

tools [28], and automated classification of app reviews to deter-
mine which might address accessibility [1]. Research in runtime
enhancement of mobile app accessibility includes techniques for as-
sistive macros [35], for accessibility services based on system-level
content and events [36], for pointing enhancement [55], for per-
sonalizable accessibility overlays [37], and for creating accessible
screenshots by embedding accessibility data directly in images [32].
Closer to our focus on missing label accessibility failures, research
has demonstrated runtime repair of missing labels using interaction
proxies [53] together with third-party annotation [54]. Other work
has explored how search or machine learning might automatically
generate some accessibility data [10, 29, 52]. Amidst such research,
our large-scale longitudinal analyses are motivated in part by op-
portunities to inform new tools and practices for improving mobile
app accessibility.

2.3 Longitudinal Analyses of Web Accessibility

Large-scale longitudinal analysis of mobile app accessibility is moti-
vated in part by prior analyses of web accessibility. Several studies
have analyzed web archives over a period of 1 to 5 years [7, 12, 21,
26], generally finding the prevalence of web accessibility failures
increased over time. A longer-term analysis of web accessibility
between 1999 and 2012 found many violations of accessibility stan-
dards, but observed that web accessibility overall showed slight im-
provement [22], likely driven by improvements in web technologies
and tools rather than developer prioritization and implementation
of accessibility [34]. Large-scale analyses in 2019 and 2020 found
that web accessibility failures remain highly prevalent, even becom-
ing more prevalent from 2019 to 2020 [48]. Mobile app accessibility
has lacked any similar large-scale longitudinal analyses, perhaps in
part due to the greater difficulty of collecting meaningful mobile
app data over time. Our current data collection and analyses there-
fore both provide initial results and help to motivate additional
large-scale longitudinal analyses of mobile app accessibility.

3 ANDROID ACCESSIBILITY BACKGROUND

We first provide a brief technical overview of Android terminology
and screen reader functionality. This background helps support
brevity and clarity in terms used throughout our analyses.

Android apps are composed of elements for layout and for inter-
active content (e.g., buttons, images, text), with each type of element
defined in a class. For example, the android. widget.ImageView class
in the Android API provides a commonly-used implementation for
displaying images. A view hierarchy is the hierarchical representa-
tion of elements in an app at any given moment (i.e., analogous to
the DOM in a web browser). Each element has a set of attributes
defining its visual, functional, and accessibility data (e.g., its Class-
Name, whether it is clickable, its location on the screen, a Content-
Description).

Screen readers are an example of an assistive technology that
rely on access to the view hierarchy through Android’s Accessibil-
ity Service APL Screen readers such as Android’s native TalkBack
are often preferred by people who are blind, have low vision, or
otherwise prefer audio feedback when using an app. Such assistive
technologies use the view hierarchy to determine which elements
to focus (e.g., text to read, interactive buttons) and which to ignore

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

(e.g., elements used solely for layout). As further detailed in Sec-
tion 4.4, our analyses consider only focusable elements and therefore
consider only elements that would be visited by a screen reader.

If an app’s accessibility is not implemented correctly, the view hi-
erarchy fails to provide the data required by assistive technologies.
For example, if an app developer does not provide a label for an
ImageView, TalkBack will announce a generic description (e.g., “Un-
labeled, Button”). Such an accessibility failure can make it difficult
for a person to find and interact with an app’s functionality.

4 METHOD

This section presents our collection of a unique dataset for examin-
ing large-scale longitudinal mobile app accessibility. We detail the
selection criteria for apps included in data collection, our develop-
ment of a crawler for automated data collection, our development of
equivalence metrics for interpreting resulting large-scale data, and
our methods for assessing and analyzing missing label accessibility
failures.

4.1 App Inclusion and Exclusion Criteria

To define a set of apps for our analyses, we began by consider-
ing the 25 most-downloaded free Android apps from each of the
Google Play Store’s 31 app categories (i.e., an initial set of 775
apps). We chose this initial inclusion criterion to: (1) prioritize
most-downloaded apps because such apps are likely to be used or
desired by people who use screen readers or other accessibility
services, (2) select uniformly from each app category to provide
diversity of purpose in included apps. Although analyses on addi-
tional platforms would be valuable (e.g., Apple’s iOS), Android’s
global market share (i.e., 70% of the global market in 2020 [44])
provides significance to Android-specific results. Android findings
may also generalize to or at least warrant examination on other
platforms. Similarly, inclusion of only free apps is a common prac-
tical limitation of large-scale data collection (e.g., also a limitation
of [2, 13, 50]).

From this initial set, we then excluded apps that did not expose
a usable view hierarchy (i.e., as required for accessibility services
and for our automated crawling and assessment). We made this
determination by manually inspecting view hierarchy data in each
app, obtained using an initial version of our automated crawler,
excluding apps that lacked a view hierarchy exposing the majority
of app content. Common classes of excluded apps were: (1) apps
implemented using a gaming engine that did not expose a view hi-
erarchy, (2) apps that presented their primary content in a WebView
that did not expose a view hierarchy for that content, and (3) apps
defined largely or entirely by multimedia content. Prior research
has noted such apps are generally inaccessible due to their lack of
a usable view hierarchy (e.g., [39, 40]), so our current focus is on
additional insights enabled by analyses of apps that expose a usable
view hierarchy. Exclusion of apps without a usable view hierarchy
means our data and analyses are expected to underestimate the
overall prevalence of accessibility failures.

Due to limitations of our automated crawling (i.e., as detailed
in Section 5.1), we further excluded classes of apps for reasons un-
related to accessibility. Also identified through manual inspection,
these were: (1) apps that operated only in a landscape orientation,

Raymond Fok, Mingyuan Zhong, Anne Spencer Ross, James Fogarty, and Jacob O. Wobbrock

because our crawling executed on a phone locked in portrait ori-
entation, (2) apps that required a SIM card, because our crawling
executed on a phone without a SIM, (3) apps that required a lo-
gin credential we could not effectively mock (e.g., a social security
number, a company-issued code, a driver’s license number) or a
verification we could not effectively mock (e.g., several dating apps
required a verification photo in a specific pose), and (4) apps with
primary content based on an external device (e.g., a virtual reality
headset, a watch). Any portion of these apps we could have crawled
(e.g., a login or verification screen) would have been unlikely to
correspond to their overall accessibility. Expanding data collection
to additional apps is therefore an opportunity for future research.
Applying our exclusion criteria yielded a set of 391 apps that we
included in initial data collection.

4.2 Data Collection Using Automated Crawling

We implemented an automated crawler informed by strategies
from prior research in security [9, 23], privacy [4], and interface
design [13, 14]. The crawler programmatically explores an app
and captures accessibility data for each visited state. We collected
longitudinal data by executing a crawl of each app on a monthly
basis. This section describes our crawler, and Section 5.1 describes
results of crawling from December 2019 to March 2021.

4.2.1 Crawling Devices. We collected app data using 4 identical
Google Pixel 3a devices. Crawls were initially conducted with de-
vices running Android 10, then upgraded to Android 11 beginning
with the October 2020 crawl. We selected physical devices because
we found them faster, more responsive, and more consistent than
emulators.

4.2.2 Pre-Crawl Configuration. Before initiating each monthly
crawl, we manually updated each app to its current version in
the Google Play Store. We then disabled auto-update functionality
(i.e., ensuring all data in a single crawl was from the same version).
We reset each app’s language to English (i.e., if it had been changed
in the previous crawl), but did not otherwise clear app storage or
reset any settings. For each app, we recorded its version and number
of downloads from the Google Play Store.

4.2.3 Capturing Accessibility Data. We implemented data capture
using a custom Android accessibility service, as in [54]. This ser-
vice captures a view hierarchy with standard attributes (e.g., each
element’s location, ClassName), then augments the view hierarchy
with accessibility data (e.g., ContentDescription, IsImportantForAc-
cessibility) and flags for determining whether each element was
actionable (e.g., clickable, long-clickable, scrollable). The service
was installed before data collection, ran in the background, and was
activated by the crawler using a software button. When activated,
the service stored a screenshot and the augmented view hierar-
chy. Devices were locked in portrait orientation, for consistency in
both captured data and crawler access to the data capture software
button.

4.24 Crawler Strategy. Our crawler operated on a Linux worksta-
tion, connected to the physical devices via USB, communicating
with each device using low-level Android Debug Bridge commands

Missing Label Accessibility Failures in Android Apps

for programmatic interaction and for retrieving captured accessi-
bility data. The crawler controlled devices to explore apps using a
modified depth-first search. At each step, the crawler selected a next
actionable element from the current state, performed the action,
waited for an interface update, activated the data capture service,
then retrieved and parsed the new view hierarchy. We found An-
droid’s app state change indicators frequently did not correspond
to complete availability of a new interface state, so we implemented
a fixed 5-second delay after each programmatic interaction. This
strategy was conservative (i.e., we found the delay sufficient to
ensure the crawler did not capture in-progress rendering of state
changes).

To support more thorough exploration, the crawler maintained a
graph representation of its search. This is challenging because apps
do not provide a well-defined representation of a screen (i.e., an
app state that can be revisited and semantically corresponds to a
node in a search). We approximate this using crawl-time equivalence
heuristics, described in Section 4.3.1. This enables several optimiza-
tions for a more thorough search that would not be available in
a random walk. First, upon exploring all actionable elements of a
current screen, the crawler activated the system Back button to
return to a previous screen. Second, upon revisiting a screen, the
crawler prioritized actionable elements that were as-yet unexplored
or led to regions of the graph that were as-yet unexplored.

We also designed the crawler to be robust to relaunching the
app during a crawl, including preservation of the crawl graph. Re-
launching was sometimes necessary when interaction exited the
app (e.g., the crawler backed all the way out of an app, the crawler
activated an actionable element that navigated to outside the app).
Because any screen equivalence heuristic is only approximate, we
also relaunched the app whenever the current view hierarchy was
found inconsistent with the current expected node in the crawl
graph (i.e., re-centering the crawl to the well-defined root of the
app). Upon a restart, the crawler used the crawl graph to generate
a simple action plan for reaching elements that had been encoun-
tered but not yet explored. Crawling terminated after activating all
actionable elements in all discovered screens, or after reaching a
timeout of two hours per app.

4.2.5 Crawler Optimizations. We observed crawler performance
on a smaller set of test apps for 2 months prior to data collection
and then in the first several months of data collection, implement-
ing several optimizations to consistency and coverage. First, we
implemented an action prioritization strategy for actionable ele-
ments within each screen, calculated based on the element’s class
(e.g., clicking an ImageButton is prioritized over text entry), ele-
ment purpose determined from context (e.g., back buttons are given
a lower priority), and the number of times an element has previ-
ously been activated. Second, we enhanced the crawler to support
dictionary-based text entry (e.g., inputting a valid address as re-
quired in a food delivery app). Third, we limited the crawler to con-
sider only the first three actionable children within certain Android
classes (e.g., android.widget.DatePicker, android.widget.TimePicker),
a heuristic we found effective for avoiding unproductive explo-
ration of these types of elements. We implemented other minor
optimizations whenever inspection of crawling data suggested an
adjustment could improve consistency and coverage.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

4.2.6 Human-Guided Versus Automated Exploration. Because other
data collection efforts have sometimes emphasized human-guided
exploration (e.g., [14, 52]), we note that we did leverage our own
manual navigation of app login processes, allowing us to mock
necessary login credentials as part of exposing app content. We did
not otherwise find human guidance necessary, and our data collec-
tion results in Section 5.1 demonstrate our automated crawling was
sufficiently thorough and consistent for our analyses (e.g., yielding
more unique screens per app than prior crawls).

4.3 Defining Screen and Element Equivalence

Data collected in any exploration will include multiple captures
of the same elements (e.g., captures of a screen before and after
manipulating an element within that screen, captures of a screen
encountered multiple times as part of exploration). Android apps do
not provide a well-defined representation of a screen (e.g., analogous
to a URL in well-defined web apps), so data collection and analyses
require some heuristic for determining equivalence of two screens
(e.g., matching 99.8% of pixels or all but 1 ViewldResourceName
in [13], a sequence of structure-based screen transformation and
comparison heuristics in [54]). Our novel emphasis on longitudinal
analyses introduces the additional challenge of relating elements
across multiple explorations (e.g., the potential that elements of an
app may be modified between explorations). This section introduces
heuristics we developed for addressing these challenges in data
collection and analyses, specifically in crawl-time equivalence, in
screen equivalence, and in element equivalence.

4.3.1 Crawl-Time Equivalence. As described in Section 4.2.4, our
crawler maintains a graph of visited screens to support automated
exploration. We implemented crawl-time equivalence based on heuris-
tics defined in [54]. Each heuristic tests for the presence of a com-
mon interface structure (e.g., a floating dialog, a navigation drawer,
a tab layout), then potentially transforms the view hierarchy to
normalize for comparison (e.g., transforming a view hierarchy to
consider only the contents of a navigation drawer). Final equiva-
lence is then based on two view hierarchies having the same set of
ViewldResourceName values and the same set of ClassName values
(i.e., equivalent structure agnostic to content within that structure).
These heuristics were previously validated through inspection of
2038 screens manually sampled from 50 apps [54], and our inspec-
tion of preliminary crawling data found them sufficient to support
crawling. As part of adapting the heuristics to crawling, we modi-
fied the final comparison of ViewIdResourceName and ClassName
values to use a hash-based lookup (i.e., improving performance
over executing many pairwise comparisons).

4.3.2 Screen Equivalence. As described in Section 5.1, our crawling
collected several orders of magnitude more data than was originally
considered when defining the screen equivalence heuristics in [54]
(i.e., we collected data from a larger number of screens in a larger
number of apps). Inspecting collected data in our analyses, we
found otherwise equivalent screens that were considered different
only because of one or more ViewIdResourceName values that were
themselves hashes or random strings. These were generally due to
advertising libraries and other external packages.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Our screen-based analyses are therefore based on an enhanced
definition of screen equivalence. After applying heuristic transfor-
mations of the view hierarchy (i.e., the first 6 heuristics in [54]),
we additionally filter any element with a ViewldResourceName that
does not contain android (i.e., a native Android resource) or the app
package name. As before, equivalence is then determined based on
the set of ViewldResourceName values and ClassName values. This
strictly reduces the number of unique screens in each crawl (i.e., all
screens considered equivalent by our enhanced heuristics are also
equivalent according to the original heuristics), and our inspec-
tion of data in our analyses found this yielded more meaningful
grouping of crawl data into screens for additional analyses.

4.3.3 Element Equivalence. Most of our analyses examine interface
elements after applying a transformation for element equivalence,
motivated by two challenges in examining large-scale longitudinal
accessibility data. First, code re-use and templating make it unclear
how to count occurrences of accessibility failures. For example, a
“Back” arrow button might appear on multiple screens or a “Favorite”
star button might appear next to every item in a list. Such recurring
elements may be implemented in a single piece of code (i.e., a single
ContentDescription may determine whether all are accessible) or
may be similar in appearance but implemented in different code
(e.g., each may require its own ContentDescription). Second, our
desire to track the accessibility of individual interface elements over
multiple crawls is complicated by any change to other elements of
an interface between those crawls. Defining element equivalence
across crawls to first find an equivalent screen and then the equiva-
lent element within that screen will fail if any element in the screen
has changed (i.e., the screen will not be equivalent between crawls).

Our element equivalence transformation therefore considers two
elements equivalent if they have the same ViewlIdResourceName
and ClassName. Within a single crawl of an app, this effectively
ignores where an element occurs in the app, treating all occurrences
as a single instance. Similarly, application of this heuristic across
multiple crawls effectively assumes any occurrences are equivalent.
The transformation is therefore similar to assuming any elements
with the same ClassName and ViewldResourceName share the same
underlying implementation. The next section discusses implications
of this heuristic for our accessibility assessment.

4.4 Accessibility Assessment and Analyses

In this first large-scale longitudinal analysis of Android app acces-
sibility failures, we focus on the prevalent and well-understood
need to provide labels for image-based elements, as emphasized in
prominent accessibility guidelines [6, 19, 46] and prior large-scale
analyses [2, 39, 40, 50]. More specifically we focus on ImageButton
and ImageView, which we collectively refer to as image-based ele-
ments. These are core Android components, implemented by the
classes android. widget.ImageButton and android.widget.ImageView.
App accessibility encompasses a broad range of design and im-
plementation decisions to ensure access for people with different
needs, so labeling image-based elements is not by itself sufficient
for ensuring app accessibility. However, providing labels is neces-
sary and this well-understood accessibility need gives focus to our
analyses while aiming to reveal broader implications.

Raymond Fok, Mingyuan Zhong, Anne Spencer Ross, James Fogarty, and Jacob O. Wobbrock

4.4.1 Missing Label Failures. We implemented assessment of miss-
ing label failures by adapting logic from Google’s open-source
Accessibility Testing Framework for Android [17], which is used
throughout Google’s accessibility technologies and tools. Specifi-
cally, we adapted its logic to execute offline against crawl data. We
identified ImageButton and ImageView elements using class infor-
mation in the captured view hierarchy, then limited analyses to
focusable image-based elements (i.e., ensuring we analyzed only
elements that would be visited by a screen reader). Elements can be
labeled directly (e.g., using a ContentDescription attribute) or can
inherit a label from other elements (e.g., using a LabelFor attribute).
We therefore defined a missing label failure to be any case where a
focusable image-based element does not have a direct or inherited
label, as identified using Google’s platform-standard logic.

4.4.2 Failure Rate. We defined the failure rate of an app to be the
proportion of unique image-based elements that contain a missing
label failure. Because of element equivalence, this does not necessar-
ily correspond to the prevalence of inaccessible elements a person
would encounter when using an app, as each unique element may
have a varying number of occurrences throughout an app. A unique
element can also correspond to multiple occurrences, only some
of which are accessible (i.e., because the underlying implementa-
tion does not share a label across occurrences). We define a unique
element as containing an accessibility failure if any associated oc-
currence contains an accessibility failure. The failure rate therefore
corresponds to proportion of unique ImageButton or ImageView
elements that require at least 1 repair by a developer to provide an
appropriate label.

4.4.3 Snapshots. For clarity and brevity, we defined a snapshot to
be all data collected across all apps within a single set of monthly
crawls. Each app is crawled once per snapshot (i.e., as described in
Section 4.2.4), but the constraints of crawling mean these crawls
happen neither instantaneously nor simultaneously.

4.4.4 Statistical Modeling for Analyses of Variance. Section 5 in-
cludes several analyses of variance. For brevity and readability of
results, this section consolidates details of the modeling in each
analysis of variance.

Section 5.2 analyzes longitudinal change in the prevalence of
missing label failures across all snapshots. The dependent variable
was Missing Label Failure, binary for each unique image-based
element. We modeled Crawl Month as the number of months since
the first snapshot (i.e., numeric between 0 and 14). Because each
app was crawled multiple times throughout data collection, we
accounted for non-independence by modeling App with a random
intercept and Crawl Month with a random slope. We then analyzed
Missing Label Failure using mixed logistic regression [45].

Section 5.3 analyzes longitudinal change in per-app missing label
failure rate across all snapshots, while Section 5.5 analyzes per-
app missing label failure rate according to number of downloads.
Because effects of these factors are not necessarily independent, we
modeled them together [27]. The dependent variable was Failure
Rate, as defined in Section 4.4.2. We modeled Downloads as ordinal
with 6 bins corresponding to a minimum number of downloads
(i.e., 100 thousand, 5 million, 10 million, 50 million, 100 million, and
500 million downloads). Bins were derived from those provided

Missing Label Accessibility Failures in Android Apps

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

20 =
16 —
w
o
o
<
- 12
o
c
[
Q
=
3
=
4
0
oY D @ P O & e 3 N <& N \ d N & «
\«o\’“\v\s@c S i o o RO o o ‘)"& o o \w“& K“"d ‘?"”“e o @es S~ S Oca o oo \\f’ <°3°
F a0 & 9@ o oo & «¥ «° < B?*e OB W ,70 o
o W (< < o 2 » o & 4 o) @
= R ¢ W < o
R o w‘\
(a) Apps per Category
80 35 50
a
30
2601 40
- 25
o
- 2 30
8 401
g 15 20
E 10
201 ’—| 10
5
0 -—S——_ T T 0 + } 04— 1 + —
100K 500K 1M 5M 10M 50M 100M 500M 1B 5B 0 50 100 150 200 [} 20 40 60 80 100

Number of Downloads

(b) Apps by Number of Downloads

Number of Unique Screens

(c) Unique Screens per App

Number of Unique Elements

(d) Unique Elements per App

Figure 2: An overview of our collected dataset, including a total of 3,775 crawls as part of 13 snapshots of 312 apps over 16
months. Summary distribution data shows that apps: (a) came from 30 categories of the Google Play app store, (b) varied
in their number of downloads, (c) averaged 82.6 unique screens in each snapshot, and (d) averaged 20.2 unique image-based
elements in each snapshot. Additional details are included in the Supplemental Materials.

by the Google Play Store to ensure each bin contained at least 40
apps (i.e., by combining bins for 100 thousand, 500 thousand, and
1 million and by combining bins for 500 million, 1 billion, and 5
billion). We again modeled Crawl Month as numeric between 0 and
14, App with a random intercept, and Crawl Month with a random
slope. We then analyzed Failure Rate using mixed logistic regression,
which is suitable for modeling proportions [25].

Section 5.6 analyzes per-app missing label failure rates across
multiple apps released by the same organizations. The dependent
variable was again Failure Rate. We modeled Organization as nom-
inal (i.e., the 6 organizations described in Section 5.6). We again
modeled Crawl Month as numeric between 0 and 14. We then an-
alyzed Failure Rate using logistic regression [25]. We choose this
simpler model because mixed logistic regression appeared unstable,
likely due to the consistently low failure rates of apps by Google
and Microsoft (i.e., consistently near 0, creating instability in a
model that considered both App and Organization).

5 RESULTS AND ANALYSES

This section first presents the result of our data collection, then
results from a series of quantitative analyses of that data. Quanti-
tative analyses are organized around a set of research questions,
and Section 6 will then complement these analyses through quali-
tative consideration of illustrative examples of the evolution of the
accessibility of specific apps.

5.1 A Large-Scale Longitudinal Dataset on
Android App Accessibility

We collected monthly snapshots of selected apps from December
2019 to March 2021. Collection of each snapshot began on the 1st of
each month, and required about 12 days to complete. Restrictions
on physical access amidst the COVID-19 pandemic meant that we
were unable to initiate snapshots in July 2020, September 2020, and
January 2021. We therefore collected a total of 13 snapshots during
the 16-month data collection period.

We monitored the set of included apps between snapshots, find-
ing it necessary to exclude some apps from additional crawling.
These included apps that shifted from a free to a paid model, added
new requirements for credentials that were difficult to mock, were
no longer supported on our crawl devices, or were removed from
the Google Play Store. After starting with the 391 apps described
in Section 4.1, the final snapshot included 340 apps.

After collecting all snapshots, we manually inspected apps that
had fewer than 6 unique screens in any snapshot. We excluded
individual crawls that had failed to capture most of an app (i.e., by
comparison to the same app in other snapshots). This excluded 210
individual crawls, including 53 where an app failed to launch or load
content and 100 where the crawler failed to navigate past a blocking
screen (e.g., an ad, a pop-up). After excluding individual crawls,
we excluded 43 apps that were not successfully crawled at least
once in both: (1) the first 4 snapshots, and (2) the final 4 snapshots.
Given our focus on longitudinal analyses, we wanted apps that

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Raymond Fok, Mingyuan Zhong, Anne Spencer Ross, James Fogarty, and Jacob O. Wobbrock

Table 1: Number of unique image-based elements observed in each snapshot and the prevalence of missing label accessibility
failures in observed unique elements. Over 16 months of data collection, we found a significant decline in missing label failures
in unique ImageButton elements, but no detectable difference in unique ImageView elements or in combined unique image-

based elements.

Combined Unique
Crawl Unique ImageButtons Unique ImageViews Image-Based Elements
Month Failures Elements Failure % Failures Elements Failure % Failures Elements Failure %
2019.12 648 1,370 47.3 1,760 2,961 59.4 2,408 4,331 55.6
2020.01 684 1,511 45.3 1,969 3,290 59.8 2,653 4,801 55.3
2020.02 716 1,654 43.3 2,269 3,721 61.0 2,985 5,375 55.5
2020.03 812 1,769 459 2,405 3,843 62.6 3,217 5,612 57.3
2020.04 751 1,768 42.5 2,547 4,085 62.4 3,298 5,853 56.3
2020.05 851 1,903 44.7 2,689 4,291 62.7 3,540 6,194 57.2
2020.06 781 1,867 41.8 2,625 4,132 63.5 3,406 5,999 56.8
2020.08 861 1,998 43.1 2,796 4,338 64.5 3,657 6,336 57.7
2020.10 939 2,143 43.8 2,773 4,534 61.2 3,712 6,677 55.6
2020.11 868 2,002 43.4 2,646 4,358 60.7 3,514 6,360 55.3
2020.12 764 1,874 40.8 2,565 4,249 60.4 3,329 6,123 54.4
2021.02 816 1,942 42.0 2,484 4,298 57.8 3,300 6,240 52.9
2021.03 793 2,030 39.1 2,514 4,256 59.1 3,307 6,286 52.6
Average 791 1,833 43.3% 2,465 4,027 61.2% 3,256 5,860 55.6%

were consistently crawled throughout data collection. Finally, we
excluded 3 apps that did not include any instances of ImageButton
or ImageView. Although our collected data could support other
longitudinal analyses of these apps, they were not relevant to our
current analyses.

Our analyses are therefore conducted with data from 13 snap-
shots of 312 apps including a total of 3,775 crawls. We maintained
good crawl consistency, with 304 apps included in at least 10 snap-
shots. Apps also evolved throughout data collection, with 2,836 of
3,463 re-crawls (81.9%) executed with an app that had a different
version than in the previous snapshot. Figure 2 summarizes the
collected data, with collected data drawn from across 30 categories
of the Google Play Store, the majority of apps having between 10
million and 50 million downloads, and snapshots including an aver-
age of 82.6 (sd = 48.3) unique screens and 20.2 (sd = 16.4) unique
image-based elements for each app.

Summary statistics cannot be directly compared to prior data,
due differences in factors such as data collection methods (e.g., au-
tomated crawling, manual collection) and definitions of screen
equivalence. However, prior analyses [39, 40] based on the Rico
dataset [13] were limited to a single snapshot averaging 7 unique
screens per app. Yan et al. [50] present analyses based on manual
collection of a single snapshot averaging 29 screens per app. Zhang
et al. [52] describe manual collection of a single snapshot averaging
18.3 screens per app. Our data is therefore sufficient for our claims
regarding large-scale analyses, and our data is further unique in fo-
cusing on longitudinal analyses across multiple snapshots. As part
of supporting continued research enabled by our large-scale longi-
tudinal data, we will release this data together with the publication
of this research.

5.2 Longitudinal Analysis of Missing Label
Failures

RQ1: How prevalent are missing label failures in unique image-

based elements?

Analyzing unique elements in each snapshot, we found a high
prevalence of missing label failures in both ImageButton and Im-
ageView elements. Table 1 summarizes failures across all apps in
each snapshot. We observed:

e An average of 1,833 unique ImageButton elements, of which
791 (43.3%) were inaccessible.

e An average of 4,027 unique ImageView elements, of which
2,464 (61.2%) were inaccessible.

e A combined average of 5,860 unique image-based elements,
of which 3,256 (55.6%) were inaccessible.

This high prevalence is consistent with prior results and moti-
vates a continued need to improve labeling.

RQ2: How frequently do changes in image-based elements
introduce or repair missing label failures?

Our dataset is unique in its ability to track changes in the ac-
cessibility of image-based elements across snapshots. We applied
element equivalence to examine such changes in unique elements be-
tween snapshots. We observed 5 apps with unusually high rates of
new unique elements in each snapshot. Upon inspection, these apps
assigned automatically-generated unique values of ViewIdResource-
Name (e.g., Airbnb assigned a unique ViewldResourceName to the
image of each listing). This prevents tracking across snapshots, so
we excluded these apps from this analysis.

We found 4,705 examples of unique image-based elements that
were newly observed after not being observed in any of at least 3
previous successful crawls of an app (i.e., suggesting these were
new image-based elements). Conversely, we found 3,809 examples

Missing Label Accessibility Failures in Android Apps

80 1
1.0
70 A
604 [| 0.8
8 501
< 206
s &
5 401 o
Q 2
€ ®
fo4
2 301
201 | 0.2
10 A
0.0
0 u 1 t
0.0 0.2 0.4 0.6 0.8 1.0
Failure Rate

(a) March 2021 Snapshot Per-App Failure Rate

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

&
99°7 0% 0% 20 20" 509 509 00 500% g03* 03 n 0

Crawl Month

(b) Longitudinal Per-App Failure Rate

Figure 3: We observed a strongly bi-modal distribution of Failure Rate: (a) in the March 2021 snapshot, 19.7% of apps had
missing label failures in more than 95% of their unique image-based elements and 21.4% of apps had missing label failures
in fewer than 5% of their unique image-based elements, and (b) there was no detectable difference in the distribution over 16

months of data collection.

of unique image-based elements that were observed in a crawl
and then not observed in any of at least 3 additional successful
crawls of that app (i.e., suggesting these image-based elements
were removed).

Of newly observed unique image-based elements, 2,498 (53.1%)
contained missing label failures. This was not significantly different
from the 53.9% prevalence in other elements that had been previ-
ously observed at least once (y2(1, N=73,785) = 1.19, p = .28).
We therefore do not find evidence that new unique image-based
elements are more likely to have missing label failures than existing
unique image-based elements.

We found 169 examples of unique image-based elements that
were observed with a missing label failure and then later observed
to have corrected that failure (i.e., suggesting an accessibility re-
pair). We also found 38 examples of unique image-based elements
that were observed without a missing label failure and then later
observed to have introduced a missing label failure (i.e., suggesting
an accessibility regression).

RQ3: How do changes in image-based elements impact the
overall prevalence of missing label failures over time?

To examine whether such changes led to an overall improve-
ment in missing label failures, we conducted an analysis of vari-
ance, modeled as described in Section 4.4.4. We found no detectable
improvement in Missing Label Failure in image-based elements
according to Crawl Month (x?(1, N=70,108) = 0.53, p = .47) in
16 months of data collection. Separate analyses of ImageButton
and ImageView found significant improvement according to Crawl
Month for ImageButton (y*(1, N=21,841) = 11.38, p < .001) but no
detectable improvement according to Crawl Month for ImageView
(x?(1, N=48,267) = 0.18, p = .67). The lack of an overall im-
provement is consistent with the much greater number of unique
ImageView elements observed in our data.

5.3 Longitudinal Analysis of Per-App Missing
Label Failure Rate

RQ4: How do changes in image-based elements impact per-
app missing label failure rates over time?

Although the analyses of missing label failures in Section 4.4.4
characterize our overall dataset, individual failures are generally
not independent but instead clustered in apps that are more or less
accessible. We therefore also analyzed per-app missing label failure
rates (i.e., as defined in Section 4.4.2) in image-based elements,
finding a strong bimodal distribution consistent with prior large-
scale analyses [39, 40]. As illustrated in Figure 3a for the March
2021 snapshot, 57 apps (19.7%) had missing label failures in more
than 95% of their unique image-based elements, 62 apps (21.4%) had
missing label failures in fewer than 5% of their unique image-based
elements, and the remainder of apps were approximately uniformly
distributed in their failure rate.

Our longitudinal analysis found this bimodal distribution consis-
tent across all snapshots, with no clear indication of change accord-
ing to Crawl Month (Figure 3b). An analysis of variance, modeled
as described in Section 4.4.4, found no detectable change in Failure
Rate according to Crawl Month (x*(1, N=3,775) = 1.18, p = .27).
Consistent with Section 4.4.4, separate analyses of ImageButton
and ImageView found significant improvement according to Crawl
Month for ImageButton (y*(1, N=3,169) = 6.14, p = .013) but no
detectable improvement according to Crawl Month for ImageView
(x?(1, N=3,691) = 0.03, p = .86).

5.4 Impact of Missing Label Failures on App
Navigation
RQ5: How do missing label failures impact navigation within

apps?
Apps commonly use image-based elements as a primary or even
exclusive method of navigation among screens (e.g., a shopping cart

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

1.0
Downloads
— 10K --- 10M 100M
5M —-- 50M ——- 500M

0.8 4
L
&
o 061
3
e
L]
[=2]
2 0.4
g
<L

o2 o

0.0 b —— T — — — . — T

AL (O (0% (03 (0f (0% (00 (0% (A0 (ad (4l ol o
02 20 510 010 510 @t a0 e en® g e e et
Craw| Month

(a) Longitudinal Per-App Failure Rate
by Number of Downloads

Failure Rate

Raymond Fok, Mingyuan Zhong, Anne Spencer Ross, James Fogarty, and Jacob O. Wobbrock

104 T - - - T -
0.8 1
0.6 1
0.4
0.2
004 L+ 4 £ 1L 4 -
10K 5M 10M 50M 100M 500M
Downloads
(b) March 2021 Snapshot

Per-App Failure Rate by Number of Downloads

Figure 4: We found no evidence that missing label failure rate incrementally improved as apps became more popular. Apps with
more than 500 million downloads had lower failure rates, but most apps will never reach that point. There was no detectable

difference among apps with fewer downloads.

icon for checkout, a gear icon for app settings). If such a navigation
element is inaccessible, it becomes a barrier for all content that
is accessed through that navigation element. Current accessibility
heuristics (i.e., as in the Accessibility Testing Framework for An-
droid [17]) and prior large-scale analyses (e.g., [39, 40, 50]) consider
only the accessibility of individual elements. We examined how our
collected crawl graph data could support additional analysis of the
accessibility implications of image-based navigation elements.

We applied screen equivalence to our crawl graph data and iden-
tified screens that were reached only through an actionable image-
based element. We performed this analysis on the 10 snapshots
from March 2020 onward, as prior snapshots did not retain the
crawl graph. As described in Section 4.2.4, a crawl graph consists of
nodes corresponding to unique screens connected by edges corre-
sponding to the action required to transition between screens. Due
to crawler restarts and other artifacts of data collection, there may
be disconnected components in the graph. Across analyzed snap-
shots, the largest component in each crawl of each app contained
an average of 84.0 (sd = 48.9) of 88.1 (sd = 50.3) unique screens
(95.3%). This further supports validity of our crawl data, and we
proceeded by analyzing only the largest connected component.

Analyzing the largest connected component in each crawl, apps
contained an average of 84.0 (sd = 48.9) unique screens. Of these,
an average of 21.9 (sd = 22.3) (26.1%) could be reached only by nav-
igating through at least one image-based element. Because some of
these navigational image-based elements had missing label failures,
an average of 7.4 (sd = 13.7) unique screens could not be reached
without navigating through at least one image-based element with
a missing label failure. This was 33.8% of average unique screens
reachable only through navigational image-based elements, and
overall meant that 8.8% of average unique screens were unreachable
without navigating through at least one missing label failure.

5.5 Impact of Number of Downloads on
Accessibility

RQ6: Do apps become more accessible as they become more
popular?

When advocating for early commitment to and adoption of prac-
tices to promote accessibility, a common pressure is to defer accessi-
bility in order to prioritize other design and implementation efforts.
Such deferral is sometimes based on an argument that accessibility
can be incrementally added later as an app becomes more popular.
Although such deferral is problematic in multiple regards, our data
also allows directly examining this argument in practice.

Figure 4 shows: (a) the average Failure Rate for apps grouped by
Downloads in each monthly snapshot, and (b) the distribution of Fail-
ure Rate for apps grouped by Downloads in the March 2021 snapshot.
We examined the relationship between Downloads and Failure Rate
using an analysis of variance, modeled as described in Section 4.4.4,
finding a significant effect of Downloads (x%(5, N=3775) = 63.60,
p < .001). We conducted post-hoc pairwise comparisons using Z-
tests, corrected with Holm’s sequential Bonferroni procedure [24],
finding apps with more than 500 million downloads had signif-
icantly lower Failure Rate than apps with less than 500 million
downloads (p < .001 for all pairs comparing 500 million downloads
to other bins). There were no detectable differences in Failure Rate
among pairs with fewer than 500 million downloads.

Although apps with more than 500 million downloads have lower
Failure Rate, most apps will never reach that point. Our inclusion
criteria emphasized the Google Play Store’s most-downloaded apps,
but only 43 apps had more than 500 million downloads. We found
no detectable differences in Failure Rate for apps with fewer than
500 million downloads, providing no support for suggestions that
apps will in practice be made incrementally more accessible as they
become more popular.

Missing Label Accessibility Failures in Android Apps

1.0 [¢]

Failure Rate

00 i = L

Adébe Amézon Facébook Goégle Micr(l)soﬁ Yarlwo

Figure 5: A box plot of per-app failure rate in 6 large and ma-
ture software organizations that published at least 4 apps in-
cluded in our analyses. We found Google and Microsoft pub-
lished apps with consistently lower failure rates than the
other 4 organizations, and we found examples of low fail-
ure rates in apps published by another 30 different organi-
zations. These results suggest that being one of the largest
and most mature software organizations does not by itself
guarantee accessible apps. Conversely, accessible apps in our
dataset were not limited to these large and mature software
organizations.

5.6 Impact of Organization on Accessibility

RQ7: Are large and mature software organizations more ef-
fective at labeling image-based elements?

Among highly downloaded apps in our data, we observed that
many were published by large and mature software organizations.
For example, of the 43 apps in our data that had more than 500
million downloads, 18 (41.9%) were developed by Google. We there-
fore examined how accessibility might be shaped by factors re-
lated to these organizations, analyzing missing label failure rates
across multiple apps published by the same organizations. We iden-
tified 6 organizations that had published at least 4 apps in our data:
Adobe (4), Amazon (4), Facebook (6), Google (22), Microsoft (7), and
Yahoo (6). This resulted in 49 apps, with an average of 18.5 unique
image-based elements in each crawl of each app.

Figure 5 plots the missing label failure rate for these apps accord-
ing to Organization. Although each organization published at least
one app with a low missing label failure rate, several organizations
also published apps with much higher missing label failure rates.
An analysis of variance, modeled as described in Section 4.4.4, found
a significant difference in Failure Rate according to Organization
(x?(5, N=583) = 136.4, p < .001). We conducted post-hoc pairwise
comparisons using Z-tests, corrected with Holm’s sequential Bon-
ferroni procedure [24], finding that apps published by Google or
Microsoft had significantly lower Failure Rate than apps published
by the other 4 organizations (p < .01 for all pairs comparing Google
or Microsoft to other organizations). Organizational factors that can
shape accessibility warrant additional investigation, but our data
suggests that access to expertise and resources at large and mature
software organizations does not by itself guarantee accessible apps.

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Furthermore, while the above 6 organizations account for 32 of
the 62 apps with less than 5% missing label failure rate in our March
2021 snapshot, the remaining 30 were published by 30 different
organizations. Though our data does not otherwise characterize
those different organizations (e.g., a large and mature organization
may have only 1 app in our data), our results suggest the develop-
ment of accessible apps is also not limited to the above 6 largest
and most mature software organizations.

6 ILLUSTRATIVE EXAMPLES OF EVOLUTION
IN APP ACCESSIBILITY

Prior large-scale analyses of mobile app accessibility have been
conducted within a single snapshot and therefore were unable to
observe specific changes in the accessibility of apps over time. We
identified illustrative examples of evolution in the accessibility of
specific apps by generating longitudinal failure plots for each app,
each of which show the unique elements observed in an app and the
accessibility of those elements across collected snapshots (e.g., as
in Figure 1 and Figure 6). We highlighted plots for trends that
seemed compelling or informative, then inspected the data behind
each plot to ensure appropriate interpretation. Observations in
these qualitative examples are intended to complement and provide
additional nuance to our large-scale quantitative analyses.

6.1 Systematic Accessibility Improvement

Although our large-scale quantitative analyses did not find an over-
all longitudinal improvement of missing label failures in image-
based elements, we did observe individual apps making systematic
improvements to their accessibility. For example, Figure 1 shows
failure plots for 2 apps published by Zillow: a home buying app
and an apartment rental app. Across multiple snapshots, both apps
included multiple unique elements with missing label failures. The
June 2020 snapshot then repaired most of these failures across both
apps. These repairs suggest a relatively systematic approach to im-
proving accessibility, and the visual similarity of the apps together
with 4 identical ViewldResourceName values suggests they likely
share underlying code that was improved. We did not observe the
later introduction of new unique elements, so our data provides
no insight into whether June 2020 improvements might have re-
sulted from a one-time accessibility audit or from a more sustained
organizational approach to ensuring accessibility. However, this
relatively systematic improvement does provide an example of ef-
fective improvement and a contrast to our observations in other
examples.

6.2 Incomplete or Opportunistic Accessibility
Improvement

In contrast to such systematic improvement, we more commonly
observed apps that made incomplete or opportunistic accessibility
improvements. Such improvements were characterized by repair-
ing one or more missing label failures while other elements in the
same app or even the same screen remained unlabeled. For exam-
ple, Figure 6 shows a failure plot for the FOX Now app. The March
2020 snapshot repaired 4 unique missing label failures (i.e., “Home”,
“Live”, “Search”, “My Account”), all within the app’s navigation
toolbar. Several other missing label failures in the same screens

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Missing Labels in FOX Now

Raymond Fok, Mingyuan Zhong, Anne Spencer Ross, James Fogarty, and Jacob O. Wobbrock

N

reminder_icon [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] [m] Bulls & Bears
dropdown]] m] [m] [m] [m] [m] [m] [m] [m] O
mini_forward_button O Foxy
mini_rewind_button A A
GEJ - = = The Evening Edit
= stop_casting_button o The Evening Edit
% category_close_button O O O
< castCaptionsButton O
=]
] btn_play_pause u} u} O
g image_captions O] m] m] m]
g image_full_screen u} u} u} O O ° °
K AdsFullScreenButton | 0O o o o u] o
> info ° ° u} u} u} ° ° ° ° ° °
nav_account [m} [m} ° ° ° ° ° ° ° ° °
nav_find u} u} ° ° ° ° ° ° ° ° °
nav_live_tv m] m] ° ° ° ° ° ° ° ° °
nav_watch [m] [m] ° ° ° ° ° ° ° ° °
SRS S L - B A N
P & P PFH PP PP PP
Q Q Q Q Q Q Q Q Q Q Q Q
v v v v v v v v v v v v

Figure 6: Failure plot for the FOX Now app. As in Figure 1, an empty orange square indicates a unique element observed to
have a missing label failure, a solid blue circle indicates a unique element observed as labeled, and a black point indicates
the element was not observed in that snapshot. The March 2020 snapshot repaired 4 unique missing label failures in the
app’s navigation bar, highlighted in blue in the accompanying screenshot. However, 2 other missing label failures in the same
screen were not repaired, highlighted in orange. This incomplete repair suggests the app developers had an awareness of app
accessibility and how to repair failures, but other factors prevented more complete implementation of accessibility repairs.

were not repaired (e.g., “Collapse”, “Alert”), and the failure plot
shows later snapshots introduced newly observed elements that
contained new missing label failures. As another example, our orig-
inal snapshot of the SHEIN-Fashion Shopping Online app included
36 unique elements with missing label failures. The December 2020
snapshot added labels to least 16 previously inaccessible elements
across 7 unique screens. The February 2021 snapshot added labels
to another 5 elements across 2 unique screens. Despite such repairs
indicating awareness and knowledge regarding image labeling, the
March 2021 snapshot still included 43 unique elements with missing
label failures. In contrast to systematic repair in Section 6.1, these
patterns suggest accessibility improvements due to specific limited
reports (e.g., a complaint about a specific element may prompt re-
pair of that element) or variations in development practice (e.g., one
developer in a team may have better accessibility practices or may
opportunistically repair elements they encounter). The developer
of such an app has at least some awareness and knowledge re-
garding accessibility, but other factors seem to prevent them from
implementing more complete accessibility support.

In addition to such incomplete labeling across snapshots, we
also observed inconsistent labeling within snapshots. We examined
80 apps that had at least one instance of inconsistent labeling of
equivalent elements (i.e., according to our definition of element
equivalence in Section 4.3). For example, Figure 7a shows the Post-
mates app in the October 2020 snapshot. It contained multiple
screens with a “Close” button, but only some properly labeled the
button. Similarly, Figure 7b shows the Roomster app in the February
2021 snapshot. It contained screens with an “Edit Profile” Image-
Button that was properly labeled on a My Info screen but not on

a Listings screen. Our inspection found inconsistent labeling was
most common among “Back”, “Close”, and other navigation actions.
In contrast to the evidence that code reuse provided consistency
even across apps in Section 6.1, such inconsistencies likely resulted
from code repetition that failed to consistently include accessibility
data.

6.3 Accessibility in Interface Redesigns

We observed that interface redesigns can have additional impact
on accessibility. For example, the October 2020 snapshot of the
DoorDash app introduced several changes relative to the prior
August 2020 snapshot. We detected 17 unique image-based elements
with missing label errors in the August 2020 snapshot that were then
not detected in or after the October 2020 snapshot. Inspection of this
accessibility-related event found these elements had generally been
removed or re-implemented with a different ViewldResourceName.
For example, Figure 8 shows an ImageView with a “plus” icon was
that added, allowing selection of the quantity of an item before
adding it to a cart. Unfortunately, this and many other new elements
also had missing label failures.

Although Section 5.2 found no detectable difference in the preva-
lence of missing label failures for newly-observed versus previously-
observed unique elements, this example highlights that new acces-
sibility failures can come together with changes in an interface. A
person may have learned to work around existing failures (e.g., by
memorizing paths through an app, by using Android support for
custom labeling based on ViewIdResourceName), so new accessibility
failures together with changes that invalidate a prior workaround
could be additionally problematic.

Missing Label Accessibility Failures in Android Apps

Invite Friends, Get $25

Share your code with friends and get $25 in Postmates
credit. Learn More

Unlabeled — -

Category

(a) Postmates app, October 2020 snapshot

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

< m — Edit Profile

My Info

¢ mn @

Listings

- Unlabeled

(b) Roomster app, February 2021 snapshot

Figure 7: Examples of inconsistent labeling of the same interface element: (a) 2 different screens from the Postmates app
contain the same “Close” button, but only 1 is labeled, and (b) 2 different screens from the Roomster app contain the same
“Edit Profile” button, but only 1 is labeled. Such inconsistent labeling suggests code repetition is contributing to accessibility

failures.

7 7 |7

a

) 4 Unlabeled

$1.49 $1.49 $2.89 $1.49 $a59 §1.49
Steak & Cheese Jalapeno & Chee Select X c
Taquit Taquito Egg Taqui

Most Popular Thirst Quenchers

= 5
ViewCart
n \d 7-Eleven 1

Figure 8: An example of a missing label failure in a new ele-
ment introduced in a redesign, observed in the October 2020
snapshot of the Doordash app. The update added a new but-
ton for selecting the quantity of an item before adding it to
the cart, but this element was not labeled. Accessibility fail-
ures introduced during redesigns may be additionally prob-
lematic if the redesign invalidates any workarounds that
people have developed with a prior interface.

6.4 Accessibility Regressions

Our longitudinal tracking of elements across snapshots found 27
examples that were observed without a missing label failure, then
later observed to have introduced a missing label failure. Inspec-
tion confirmed these were generally accessibility regressions, as
illustrated in Figure 9. For example, the March 2020 snapshot of
the Amazon Prime Video app included two ImageView-based but-
tons in a playback control toolbar that were properly labeled as
“Pause” and “Connected to cast device”, but these same elements
then contained missing label failures in the May 2020 snapshot.
Similarly, the August 2020 snapshot of the CBS Sports app included
browser controls for an embedded WebView that were properly
labeled (i.e., as “Back”, “Forward”, “Stop”, and “Share”), but these
same buttons then had missing label failures in the October 2020
snapshot. In both examples, the icons and arrangement of the image-
based elements were unmodified and we saw no evidence of larger
changes in the design. Other than the accessibility regression, the
only detectable change in these elements was their height (i.e., the
Amazon Prime Video buttons changed height from 204 pixels to
215 pixels; the CBS Sports buttons changed height from 132 pixels
to 154 pixels, the icons within the buttons appeared identical but
scaled slightly smaller). Our data does not clearly suggest how these

regressions were introduced, but does illustrate a lack of testing or
other mechanisms for preventing such regressions.

7 DISCUSSION

We have presented a set of initial analyses focused on missing la-
bel accessibility failures within a unique large-scale longitudinal
dataset of app accessibility. Labeling image-based elements is a crit-
ical and necessary component of accessibility, as emphasized in ac-
cessibility guidelines and prior analyses. Prior large-scale analyses
largely focused on a single snapshot of each app and therefore were
unable to explore change in accessibility over time [2, 39, 40, 50]. We
examined changes in accessibility over time using both large-scale
quantitative analyses and the qualitative consideration of specific
illustrative examples. In addition to providing a new understanding
of current app accessibility, our analyses suggest potential design
opportunities for improved labeling of image-based elements.

7.1 Supporting Systematic Accessibility
Improvements

One set of opportunities is to help developers be more systematic in
their labeling of image-based elements. Incomplete labeling in Sec-
tion 6.2 demonstrates that developers have at least some awareness
and knowledge, yet they do not systematically apply that knowl-
edge. Section 5.3’s bimodal distribution of per-app failure rate is
also consistent with this finding, as the uniform middle portion
of the distribution collectively accounts for approximately 60% of
apps that provide labels for some but not all image-based elements.
Future research could examine which elements are labeled versus
not and how any such differences might suggest improvements in
development and accessibility testing tools. One possibility is that
developers are simply unaware of additional missing label failures.
A tool based on automatically collected data like our crawls could
help surface failures (e.g., complementing manual exploration using
tools like the Accessibility Scanner [18]). Another possibility is that
failures are in third-party components (e.g., a library used by an
app, in which the app developer cannot directly repair an accessibil-
ity failure). Large-scale analyses might identify such library-based
failures across different apps, help prompt repairs in such libraries,
and support app developers in early decision-making around which

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Connected to cast device

Pause

Unlabeled

(a) Amazon Prime Video app, May 2020 regression

Raymond Fok, Mingyuan Zhong, Anne Spencer Ross, James Fogarty, and Jacob O. Wobbrock

Back Share

Forward Stop

o <

Unlabeled

(b) CBS Sports app, October 2020 regression

Figure 9: Examples of accessibility regressions: (a) 2 playback control elements in the Amazon Prime Video app that were
previously labeled but then observed with missing label failures in the May 2020 crawl, and (b) 4 browser control buttons in
the CBS Sports app that were previously labeled but then observed with missing label failures in the October 2020 snapshot.

libraries to use. Our data overall suggests an audience of develop-
ers who are already motivated to improve accessibility and would
benefit from tools that supported them in being more systematic.

7.2 Reducing Failures Introduced Through
Code Duplication

Another set of opportunities is to reduce the number of distinct
labels app developers must provide. Our definition of element equiv-
alence and the inconsistent labeling in Section 6.2 highlight that
apps contain many equivalent elements, some of which are inac-
cessible due to inconsistent labeling. Implementation of equivalent
elements in separate code is straightforward (e.g., instantiating an
ImageButton parameterized with an icon), but resulting code repeti-
tion contributes to accessibility failures. For example, the interface
redesign in Section 6.3 reduced the number of unique elements
with missing label failures by repairing or removing several ele-
ments with similar ViewldResourceName (e.g., “close”, “closeButton”,
“close_button”), although a new “btn_close” element then also in-
troduced a new missing label failure. It is possible for developers to
create and reuse components, and the systematic examples in Sec-
tion 6.1 apparently benefited from code reuse. However, developer
tools could also better promote label reuse as an example of the
Don’t Repeat Yourself principle. For example, modern development
environments can detect code repetition as potentially problem-
atic, and our analyses suggest repetition when instantiating image-
based elements might be especially problematic (e.g., development
environments might present a warning or support automated refac-
toring). Because we found many inconsistent labels in common
components (e.g., “Back”), libraries that automatically pair common
icons and appropriate labels could reduce labeling required of app
developers. Implementation patterns for centralization and reuse
of images and their labels, as already common when centralizing
text into tables for localization, could support both reuse and more
systematic coverage in labeling.

7.3 Supporting Adoption of Accessibility
Practices

Additional opportunities to promote accessibility through developer

tools and practices are suggested by considering the accessibility

of an app in terms of its longitudinal evolution (i.e., rather than

as a static property of an app). Accessibility advocates have long

argued for the importance of starting with accessibility, and Sec-
tion 5.5’s analysis of missing label failure rate according to number
of downloads demonstrates that suggestions an app will be made
incrementally more accessible as it becomes more popular are gen-
erally not born out in practice. Such data can and should be used to
advocate for stronger accessibility practices in organizations and
stronger accessibility defaults in developer tools. At a smaller scale,
developer tools might also target moments of change corresponding
to new interface elements or significant interface redesigns. Sec-
tion 5.4 found that image-based elements often provide the primary
or exclusive path for navigating to portions of an app, so detecting
the introduction of such an element could support stronger inter-
ventions to ensure its accessibility. Significant interface redesigns
like in Section 6.3 provide a similar opportunity. The fact that a
portion of an interface is already undergoing significant change
provides an opportunity for stronger interventions to ensure acces-
sibility in that change (e.g., organizations could require accessibility
in new functionality as part of allowing developers to publish that
functionality). Finally, our observation of specific accessibility re-
gressions in Section 6.4 warrants further investigation and potential
improvements in associated tools.

7.4 Limitations and Future Work

Crawls were conducted at monthly intervals since we found most
popular Android apps like those included in our dataset were often
updated. We found that 81.9% of sequential crawls were conducted
on different app versions, suggesting that most apps were frequently
updated between snapshots. Monthly sampling also offered several
technical advantages, such as ensuring sufficient time for all apps
to be crawled thoroughly, and providing a window to prepare the
infrastructure for the next snapshot of crawls. Furthermore, our
16-month study is comparable in timeframe to some insightful
longitudinal studies conducted on web accessibility [12, 26], and
we also believe 16 months is an adequate amount of time for screen
reader users to expect to see accessibility improvements within
their commonly used mobile apps.

While our results suggest that monthly sampling over 16 months
is sufficient to detect a small evolution of app accessibility, there are
potential analyses that it does not support. Future longitudinal stud-
ies of app accessibility may consider other sampling frequencies to
complement our analyses. For example, apps could be crawled at

Missing Label Accessibility Failures in Android Apps

every update to provide a fine-grained lens into each app’s acces-
sibility evolution. Less frequent crawls (e.g., sampling every three
months) over a longer period of time could provide a broader per-
spective of accessibility changes, such as enabling the macroscopic
analysis of the relationship between evolving developer tools and
resources (e.g., developer documentation, mobile frameworks, and
common app libraries) and accessibility failures. Finally, our study
does not currently differentiate between accessibility failures of
different image-based elements. One avenue for future work is to
distinguish between missing labels that were caused during the
initial design and development of an interface element, or those
that were caused by missing label data when populating dynamic
image elements from a database.

8 CONCLUSION

We have presented the first large-scale longitudinal analysis of
missing label accessibility failures in Android apps, and created a
unique dataset of monthly snapshots of 312 apps over 16 months.
Our large-scale quantitative analyses of missing label failures in this
dataset found missing label failures in 55.6% of unique image-based
elements, longitudinal improvement in ImageButton elements but
not in more prevalent ImageView elements, that 8.8% of unique
screens are unreachable without navigating at least one missing
label failure, that app failure rate does not improve with number of
downloads, and that effective labeling is neither limited to nor guar-
anteed by large software organizations. We complemented this with
qualitative examination of longitudinal failure plots in individual
apps, presenting illustrative real-world examples of the accessibility
impacts of systematic improvements, incomplete improvements,
interface redesigns, and accessibility regressions. Finally, we sug-
gested opportunities for better supporting systematic accessibility
improvements, in reducing failures introduced through code du-
plication, and in supporting adoption of accessibility practices. As
accessibility research in current and emerging technologies de-
fines best practices for supporting individual accessibility needs
and preferences, our research demonstrates the potential value of
large-scale longitudinal data in examining how to ensure developer
implementation of those practices.

ACKNOWLEDGMENTS

This work was supported in part by Google, by the University of
Washington Center for Research and Education on Accessible Tech-
nology and Experiences (CREATE), and by National Science Foun-
dation grant #IIS-1702751. We also thank our anonymous reviewers
for their helpful feedback. Any opinions, findings, conclusions or
recommendations expressed in our work are those of the authors
and do not necessarily reflect those of any supporter.

REFERENCES

[1] Eman Alomar, Wajdi Aljedaani, Murtaza Tamjeed, William Catzin, Mo-
hamed Wiem Mkaouer, and Yasmine Elglaly. 2021. Finding the Needle in a
Haystack: On the Automatic Identification of Accessibility User Reviews. In
Proceedings of the 2021 Conference on Human Factors in Computing Systems (Yoko-
hama, Japan) (CHI ’21). Association for Computing Machinery, New York, NY,
USA.

Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility Issues
in Android Apps: State of Affairs, Sentiments, and Ways Forward. In Proceedings

of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,
South Korea) (ICSE °20). Association for Computing Machinery, New York, NY,
USA, 1323-1334.

&

[11

[12

(13

(14

[15

[16

(17

oy
&

(19]

[20

[21

[22

[23

[24

[25

CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Amazon. 2021. Amazon Accessibility. https://www.amazon.com/b?ie=UTF8&
node=15701038011

Shahriyar Amini. 2018. Analyzing Mobile App Privacy Using Computation and
Crowdsourcing.
Apple. 2021. Accessibility Programming Guide for OS X. https:

//developer.apple.com/library/archive/documentation/Accessibility/
Conceptual/AccessibilityMacOSX/OSXAXTesting Apps.html

Apple. 2021. Human Interface Guidelines - Accessibility. https://developer.apple.
com/design/human-interface- guidelines/accessibility

Ibtehal S. Baazeem and Hend Suliman Al-Khalifa. 2015. Advancements in web
accessibility evaluation methods: how far are we?. In Proceedings of the 17th
International Conference on Information Integration and Web-Based Applications &
Services (Brussels, Belgium) (iiWAS °15). Association for Computing Machinery,
New York, NY, USA, Article 90, 5 pages.

Lucas Pedroso Carvalho, Bruno Piovesan Melchiori Peruzza, Flavia Santos, Lu-
cas Pereira Ferreira, and André Pimenta Freire. 2016. Accessible Smart Cities?
Inspecting the Accessibility of Brazilian Municipalities” Mobile Applications. In
Proceedings of the 15th Brazilian Symposium on Human Factors in Computing
Systems (Sao Paulo, Brazil) (IHC ’16). Association for Computing Machinery, New
York, NY, USA, Article 17, 10 pages.

Chunyang Chen, Ting Su, Guozhu Meng, Zhenchang Xing, and Yang Liu. 2018.
From UI Design Image to GUI Skeleton: A Neural Machine Translator to Bootstrap
Mobile GUI Implementation. In Proceedings of the 40th International Conference
on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association for Com-
puting Machinery, New York, NY, USA, 665-676.

Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guo-
qiang Li, and Jinshui Wang. 2020. Unblind Your Apps: Predicting Natural-
Language Labels for Mobile GUI Components by Deep Learning. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering (Seoul,
South Korea) (ICSE °20). Association for Computing Machinery, New York, NY,
USA, 322-334.

Raphael Clegg-Vinell, Christopher Bailey, and Voula Gkatzidou. 2014. Investigat-
ing the Appropriateness and Relevance of Mobile Web Accessibility Guidelines.
In Proceedings of the 11th Web for All Conference (Seoul, Korea) (W4A ’14). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 38, 4 pages.
Angela L. Curl and Deborah D. Bowers. 2009. A Longitudinal Study of Website
Accessibility: Have Social Work Education Websites Become More Accessible?
Journal of Technology in Human Services 27, 2 (2009), 93-105.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology (Québec City, QC,
Canada) (UIST ’17). Association for Computing Machinery, New York, NY, USA,
845-854.

Biplab Deka, Zifeng Huang, and Ranjitha Kumar. 2016. ERICA: Interaction Mining
Mobile Apps. In Proceedings of the 29th Annual ACM Symposium on User Interface
Software and Technology (Tokyo, Japan) (UIST ’16). Association for Computing
Machinery, New York, NY, USA, 767-776.

deque. 2021. axe: Accessibility Testing Tools and Software. https://www.deque.
com/axe/

Facebook. 2021. Facebook Accessibility.
accessibility

Google. 2021. Accessibility Test Framework for Android. https://github.com/
google/Accessibility-Test-Framework-for- Android.

Google. 2021. Get started with Accessibility Scanner. https://support.google.
com/accessibility/android/faq/6376582

Google. 2021. Google Accessibility Guidelines. https://developer.android.com/
guide/topics/ui/accessibility/apps

Google. 2021. Material Design - Accessibility. https://material.io/design/usability/
accessibility.html#understanding- accessibility

Stephanie Hackett, Bambang Parmanto, and Xiaoming Zeng. 2005. A retrospec-
tive look at website accessibility over time. Behaviour & Information Technology
24, 6 (2005), 407-417.

Vicki L. Hanson and John T. Richards. 2013. Progress on Website Accessibility?
ACM Trans. Web 7, 1, Article 2 (March 2013), 30 pages.

Shuai Hao, Bin Liu, Suman Nath, William G.J. Halfond, and Ramesh Govindan.
2014. PUMA: Programmable UI-Automation for Large-Scale Dynamic Analysis
of Mobile Apps. In Proceedings of the 12th Annual International Conference on
Mobile Systems, Applications, and Services (Bretton Woods, New Hampshire,
USA) (MobiSys ’14). Association for Computing Machinery, New York, NY, USA,
204-217.

Sture Holm. 1979. A Simple Sequentially Rejective Multiple Test Procedure.
Scandinavian Journal of Statistics 6, 2 (1979), 65-70.

Peter B. Imrey. 2000. Poisson Regression, Logistic Regression, and Loglinear
Models for Random Counts. In Handbook of Applied Multivariate Statistics and
Mathematical Modeling, Howard E.A. Tinsley and Steven D. Brown (Eds.). Aca-
demic Press, San Diego, 391-437.

https://www.facebook.com/help/

https://www.amazon.com/b?ie=UTF8&node=15701038011
https://www.amazon.com/b?ie=UTF8&node=15701038011
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/design/human-interface-guidelines/accessibility
https://developer.apple.com/design/human-interface-guidelines/accessibility
https://www.deque.com/axe/
https://www.deque.com/axe/
https://www.facebook.com/help/accessibility
https://www.facebook.com/help/accessibility
https://github.com/google/Accessibility-Test-Framework-for-Android
https://github.com/google/Accessibility-Test-Framework-for-Android
https://support.google.com/accessibility/android/faq/6376582
https://support.google.com/accessibility/android/faq/6376582
https://developer.android.com/guide/topics/ui/accessibility/apps
https://developer.android.com/guide/topics/ui/accessibility/apps
https://material.io/design/usability/accessibility.html#understanding-accessibility
https://material.io/design/usability/accessibility.html#understanding-accessibility

CHI 22, April 29-May 5, 2022, New Orleans, LA, USA

[26] Jonathan Lazar and Kisha-Dawn Greenidge. 2006. One Year Older, but Not

Necessarily Wiser: An Evaluation of Homepage Accessibility Problems over
Time. Univers. Access Inf. Soc. 4, 4 (May 2006), 285-291.

Lung-Fei Lee. 1982. Specification error in multinomial logit models: Analysis of
the omitted variable bias. Journal of Econometrics 20, 2 (1982), 197-209.

[28] Junchen Li, Garreth Tigwell, and Kristen Shinohara. 2021. Accessibility of High-

Fidelity Prototyping Tools. In Proceedings of the 2021 Conference on Human Factors
in Computing Systems (Yokohama, Japan) (CHI °21). Association for Computing
Machinery, New York, NY, USA.

Forough Mehralian, Navid Salehnamadi, and Sam Malek. 2021. Data-Driven Ac-
cessibility Repair Revisited: On the Effectiveness of Generating Labels for Icons in
Android Apps. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineer-
ing (Athens, Greece) (ESEC/FSE 2021). Association for Computing Machinery,
New York, NY, USA, 107-118.

Microsoft. 2021. Accessibility overview. https://docs.microsoft.com/en-us/
windows/uwp/design/accessibility/accessibility-overview

Lauren R. Milne, C. Bennett, and R. Ladner. 2014. The Accessibility of Mobile
Health Sensors for Blind Users. Journal on Technology & Persons with Disabilities
2 (2014), 10 pages.

Sujeath Pareddy, Anhong Guo, and Jeffrey P. Bigham. 2019. X-Ray: Screenshot
Accessibility via Embedded Metadata. In The 21st International ACM SIGACCESS
Conference on Computers and Accessibility (Pittsburgh, PA, USA) (ASSETS ’19).
Association for Computing Machinery, New York, NY, USA, 389-395.

Raymond Fok, Mingyuan Zhong, Anne Spencer Ross, James Fogarty, and Jacob O. Wobbrock

Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O. Wobbrock. 2020.
An Epidemiology-Inspired Large-Scale Analysis of Android App Accessibility.
ACM Trans. Access. Comput. 13, 1, Article 4 (April 2020), 36 pages.

Navid Salehnamadi, Abdulaziz Alshayban, Jun-Wei Lin, Iftekhar Ahmed, Stacy
Branham, and Sam Malek. 2021. Latte: Use-Case and Assistive-Service Driven
Automated Accessibility Testing Framework for Android. In Proceedings of the
2021 CHI Conference on Human Factors in Computing Systems (Yokohama, Japan)
(CHI °21). Association for Computing Machinery, New York, NY, USA, Article
274, 11 pages.

Leandro Coelho Serra, Lucas Pedroso Carvalho, Lucas Pereira Ferreira, Jorge
Belimar Silva Vaz, and André Pimenta Freire. 2015. Accessibility Evaluation
of E-Government Mobile Applications in Brazil. Procedia Computer Science 67
(2015), 348-357. Proceedings of the 6th International Conference on Software
Development and Technologies for Enhancing Accessibility and Fighting Info-
exclusion.

Starbucks. 2015. Global Accessibility Awareness Day: Starbucks Supports Digital
Inclusion. https://stories.starbucks.com/stories/2015/digital-accessibility-in-
starbucks-stores/

StatCounter. 2021. Mobile Operating System Market Share Worldwide. https:
//gs.statcounter.com/os-market-share/mobile/worldwide

Robert Stiratelli, Nan Laird, and James H. Ware. 1984. Random-Effects Models

for Serial Observations with Binary Response. Biometrics 40, 4 (1984), 961-971.
W3C. 2021. How to Meet WCAG (Quick Reference). https://www.w3.org/WAI/

WCAG21/quickref/

[33] Kyudong Park, Taedong Goh, and Hyo-Jeong So. 2014. Toward Accessible Mobile [47] W3C. 2021. Mobile Accessibility: How WCAG 2.0 and Other W3C/WAI Guidelines
Application Design: Developing Mobile Application Accessibility Guidelines for Apply to Mobile. https://www.w3.org/TR/mobile-accessibility-mapping/
People with Visual Impairment. In Proceedings of HCI Korea (Seoul, Korea) (HCIK [48] WebAIM. 2021. The WebAIM Million. https://webaim.org/projects/million/
’15). Hanbit Media, Inc., Seoul, KOR, 31-38. [49] Business Wire. 2017. Wells Fargo Launches Enterprise Accessibility Program

[34] John T.Richards, Kyle Montague, and Vicki L. Hanson. 2012. Web Accessibility as Office. https://www.businesswire.com/news/home/20171130005201/en/Wells-
a Side Effect. In Proceedings of the 14th International ACM SIGACCESS Conference Fargo-Launches-Enterprise- Accessibility-Program-Office
on Computers and Accessibility (Boulder, Colorado, USA) (ASSETS ’12). Association [50] Shunguo Yan and P. G. Ramachandran. 2019. The Current Status of Accessibility
for Computing Machinery, New York, NYY, USA, 79-86. in Mobile Apps. ACM Trans. Access. Comput. 12, 1, Article 3 (Feb. 2019), 31 pages.

[35] André Rodrigues. 2015. Breaking Barriers with Assistive Macros. In Proceedings of [51] Daihua Yu, Bambang Parmanto, Brad Dicianno, and Gede Pramana. 2015. Acces-

the 17th International ACM SIGACCESS Conference on Computers and Accessibility sibility of mHealth Self-Care Apps for Individuals with Spina Bifida. Perspectives

(Lisbon, Portugal) (ASSETS °15). Association for Computing Machinery, New in Health Information Management 12 (04 2015), 19 pages.

York, NY, USA, 351-352. [52] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray,

André Rodrigues and Tiago Guerreiro. 2014. SWAT: Mobile System-Wide Assis- Lisa Yu, Qi Shan, Jeffrey Nichols, Jason Wu, Chris Fleizach, Aaron Everitt, and

tive Technologies. In Proceedings of the 28th International BCS Human Computer Jeffrey P. Bigham. 2021. Screen Recognition: Creating Accessibility Metadata

Interaction Conference on HCI 2014 - Sand, Sea and Sky - Holiday HCI (Southport, for Mobile Applications from Pixels. In Proceedings of the 2021 Conference on

UK) (BCS-HCI °14). BCS, Swindon, GBR, 341-346. Human Factors in Computing Systems (Yokohama, Japan) (CHI °21). Association

[37] André Rodrigues, André Santos, Kyle Montague, and Tiago Guerreiro. 2017. for Computing Machinery, New York, NY, USA.

Improving Smartphone Accessibility with Personalizable Static Overlays. In Pro- [53] Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James Fogarty, and Jacob O.
ceedings of the 19th International ACM SIGACCESS Conference on Computers and Wobbrock. 2017. Interaction Proxies for Runtime Repair and Enhancement of
Accessibility (Baltimore, Maryland, USA) (ASSETS ’17). Association for Computing Mobile Application Accessibility. In Proceedings of the 2017 CHI Conference on
Machinery, New York, NY, USA, 37-41. Human Factors in Computing Systems. Association for Computing Machinery,
[38] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O. Wobbrock. 2017. New York, NY, USA, 6024-6037.
Epidemiology as a Framework for Large-Scale Mobile Application Accessibility [54] Xiaoyi Zhang, Anne Spencer Ross, and James Fogarty. 2018. Robust Annotation
Assessment. In Proceedings of the 19th International ACM SIGACCESS Confer- of Mobile Application Interfaces in Methods for Accessibility Repair and En-
ence on Computers and Accessibility (Baltimore, Maryland, USA) (ASSETS ’17). hancement. In Proceedings of the 31st Annual ACM Symposium on User Interface
Association for Computing Machinery, New York, NY, USA, 2-11. Software and Technology (Berlin, Germany) (UIST ’18). Association for Computing

[39] Anne Spencer Ross, Xiaoyi Zhang, James Fogarty, and Jacob O. Wobbrock. 2018. Machinery, New York, NY, USA, 609-621.

Examining Image-Based Button Labeling for Accessibility in Android Apps [55] Yu Zhong, Astrid Weber, Casey Burkhardt, Phil Weaver, and Jeffrey P. Bigham.
through Large-Scale Analysis. In Proceedings of the 20th International ACM SIGAC- 2015. Enhancing Android Accessibility for Users with Hand Tremor by Reducing

[36

CESS Conference on Computers and Accessibility (Galway, Ireland) (ASSETS ’18).
Association for Computing Machinery, New York, NY, USA, 119-130.

Fine Pointing and Steady Tapping. In Proceedings of the 12th International Web for
All Conference (Florence, Italy) (W4A ’15). Association for Computing Machinery,
New York, NY, USA, Article 29, 10 pages.

https://docs.microsoft.com/en-us/windows/uwp/design/accessibility/accessibility-overview
https://docs.microsoft.com/en-us/windows/uwp/design/accessibility/accessibility-overview
https://stories.starbucks.com/stories/2015/digital-accessibility-in-starbucks-stores/
https://stories.starbucks.com/stories/2015/digital-accessibility-in-starbucks-stores/
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://www.w3.org/WAI/WCAG21/quickref/
https://www.w3.org/WAI/WCAG21/quickref/
https://www.w3.org/TR/mobile-accessibility-mapping/
https://webaim.org/projects/million/
https://www.businesswire.com/news/home/20171130005201/en/Wells-Fargo-Launches-Enterprise-Accessibility-Program-Office
https://www.businesswire.com/news/home/20171130005201/en/Wells-Fargo-Launches-Enterprise-Accessibility-Program-Office

	Abstract
	1 Introduction
	2 Related Work
	2.1 Analyses of App Accessibility
	2.2 Improving App Accessibility
	2.3 Longitudinal Analyses of Web Accessibility

	3 Android Accessibility Background
	4 Method
	4.1 App Inclusion and Exclusion Criteria
	4.2 Data Collection Using Automated Crawling
	4.3 Defining Screen and Element Equivalence
	4.4 Accessibility Assessment and Analyses

	5 Results and Analyses
	5.1 A Large-Scale Longitudinal Dataset on Android App Accessibility
	5.2 Longitudinal Analysis of Missing Label Failures
	5.3 Longitudinal Analysis of Per-App Missing Label Failure Rate
	5.4 Impact of Missing Label Failures on App Navigation
	5.5 Impact of Number of Downloads on Accessibility
	5.6 Impact of Organization on Accessibility

	6 Illustrative Examples of Evolution in App Accessibility
	6.1 Systematic Accessibility Improvement
	6.2 Incomplete or Opportunistic Accessibility Improvement
	6.3 Accessibility in Interface Redesigns
	6.4 Accessibility Regressions

	7 Discussion
	7.1 Supporting Systematic Accessibility Improvements
	7.2 Reducing Failures Introduced Through Code Duplication
	7.3 Supporting Adoption of Accessibility Practices
	7.4 Limitations and Future Work

	8 Conclusion
	Acknowledgments
	References

