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Abstract

We develop the theory of coregular sequences and codepth for modules that need not be
finitely generated or artinian over a Noetherian ring. We use this theory to give a new version
of a theorem of Hellus characterizing set-theoretic complete intersections in terms of local
cohomology modules. We also define quasi-cyclic modules as increasing unions of cyclic
modules, and show that modules of codepth at least two are quasi-cyclic. We then focus our
attention on curves in P3 and give a number of necessary conditions for a curve to be a set-
theoretic complete intersection. Thus an example of a curve for which any of these necessary
conditions does not hold would provide a negative answer to the still open problem, whether
every connected curve in IP3 is a set-theoretic complete intersection.

Keywords Local cohomology - Quasi cyclic modules - Coregular sequences - Koszul
complexes - Matlis dual
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1 Introduction

Kronecker [13] in 1882 proved a theorem, which in modern language says that any closed
algebraic subset of P" can be cut out (set-theoretically) by n 4+ 1 hypersurfaces. An easy
proof was given later by van der Waerden, choosing successively hypersurfaces so that the
excess intersection drops in dimension each time until it is empty.

Vahlen [18] in 1891 published an example to show that Kronecker’s bound was best
possible. It is a rational quintic curve with a single quadrisecant in 3, which he said could
not be the intersection of three surfaces.
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Thus the problem of finding the minimal number of surfaces needed to cut out a curve
in P3 was solved, for fifty years, until Perron [16] in 1941 showed that Vahlen’s example
was wrong. Indeed, Perron exhibited three quintic surfaces whose intersection was Vahlen’s
curve. More generally, Kneser [12] showed in 1960 that any curve in P? could be cut out
by three surfaces, and later Eisenbud and Evans [2] proved an algebraic result, generalizing
Kneser’s method, which shows that any algebraic subset of P” or A" can be cut out by n
hypersurfaces.

Still, the question whether every irreducible curve in 3 is the intersection of two surfaces,
in which case we say it is a set-theoretic complete intersection, remains open.

Hellus [11, Corollary 1.1.4] in 2006 gave a criterion for a variety V in projective space
to be a set-theoretic complete intersection. Let V' C P" be a subvariety of codimension r,
with homogeneous ideal 7 in A, the coordinate ring of P"*. Then V is a set-theoretic complete
intersection in P if and only if the local cohomology modules H ; (A) are zero for all i # r,
and the Matlis dual D(Hj (A)) has depth r. Hellus’s criterion has the advantage of showing
that the question whether V is a set-theoretic complete intersection depends only on module-
theoretic properties of the module M = Hj(A). However, it is impractical, since to find
polynomials fi, ..., f- € A that form a regular sequence for D (M) is tantamount to finding
fis..., frsothat /T = /(f1, ..., f), which is simply a restatement of the problem.

In this paper, in order to avoid dealing with Matlis duals of large modules, we define
in Sect. 2 the notion of coregular sequences and the corresponding notion of codepth for
an A-module M. These notions, which have appeared earlier in the context of artinian A-
modules only (see Example 2.5), are in some sense dual to the usual notions of regular
sequences and depth. We show that a sequence xi, ..., x, is coregular for M if and only
if the Koszul cohomology groups H i(x1,...,xr; M) are zero for all i > 1 (Theorem 2.6).
As a consequence (Corollary 2.7), a permutation of a coregular sequence is also coregular.
Coregular sequences behave well in a short exact sequence of modules (Proposition 2.9).

We then give a new version of Hellus’s theorem in Theorem 3.1. It shows that a variety
V of codimension r in P" is a set-theoretic complete intersection if and only if H ; A)=0
foralli > r and M = Hj(A) has codepth r. Since the Matlis dual functor is exact and
faithful a sequence x1, ..., x, € A is coregular for a module M if and only if xq, ..., x, is
a regular sequence for the Matlis dual D(M). Thus our statement is equivalent to Hellus’s
original statement. However, we give a new statement and a new proof so as to avoid the use
of Matlis duals.

In Sect. 4, we define the notion of a quasi-cyclic module to be an increasing union of
cyclic submodules, or equivalently, a module in which any two elements are contained in
some cyclic submodule. We show that a module of codepth > 2 is quasi-cyclic. Thus a
necessary condition for a variety V in P" of codimension r to be a set-theoretic complete
intersection is that the associated module M = H[ (A) is quasi-cyclic. This property may be
more amenable to verification than asking for its codepth.

In Sect. 5, we show that an element 2 € [ is coregular for the module HIZ(A) of acurve C
in P? if and only if X\C is affine, where X is the surface defined by 4 = 0. We also consider
when X\C is a modification of an affine (see Definition 5.4).

In Sect. 6, we interpret the property of a curve being defined set-theoretically by three
equations in terms of the Koszul cohomology of M.

To sum up, in Sect. 7, we list a number of questions, starting with the motivating question
of this paper: Is every irreducible curve in P? a set-theoretic complete intersection? These
give some necessary and sufficient conditions and some necessary conditions for a curve in
IP3to be a set-theoretic complete intersection. We list some of them here:
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e A curve C is a set-theoretic complete intersection if and only if M = H ,2(A) has a
coregular sequence of length 2, or equivalently codepth M = 2.

e If a curve C is a set-theoretic complete intersection, then M is quasi-cyclic, and any
quotient of M is also quasi-cyclic.

e IfacurveC isaset-theoretic complete intersection, then there exists a surface X containing
C with X\C affine.

2 Coregular sequences and codepth

Throughout this paper, A will denote a Noetherian local ring or a standard graded ring. If A
is a standard graded ring, we assume that all modules are graded and all ideals and elements
are homogenous.

Definition 2.1 Let A be a ring, I an ideal, and M a non-zero A-module with Supp(M) C

V(I). A sequence x1, ..., x, of elements of [ is coregular for M if
() xxM = M,
2) xi41O:pr (x15...,x)) =0 (x1,...,x))forl <i <r—1.

In other words multiplication by x is surjective on M, multiplication by x; is surjective on
the kernel of the multiplication by x1, and so on.

Lemma 2.2 Let A be aring, I anideal, and M a non-zero A-module with Supp(M) C V (I).
If x € I and m € M, then there exists a power of x that kills m.

Proof Left to reader. O

Proposition 2.3 Let A be a ring, I an ideal, and M a non-zero A-module with Supp(M) C
V(I). Then the length of any coregular sequence x1, ..., x, in I for M is at most equal to
the dimension of A.

Proof We proceed by induction on r > 1. If x € [ is a coregular element for M, then we
will show that the dimension of A is positive. We can mod out by the annihilator of M. Write
a =ann M and A’ = A/a. We observe that the support of M is still contained in V (1 A).
Indeed, this is equivalent to Supp(M) C V(I + a) and since a = ann M we clearly have
Supp(M) C V(a). Thus Supp(M) C V)N V(a) =V + a).

We have now reduced to the case when M is a faithful A-module. We first show that x
is a non zero-divisor on A. Suppose that xy = 0 for some y € A. We prove that y = 0 by
showing that y is in the annihilator of M. Indeed, for every m € M there exists an m’ € M
such that m = xm’ because x is coregular for M. Thus ym = yxm’ = 0. Thus htxA > 1
and therefore the dimension of A is at least one.

For the general case of a coregular sequence, we first reduce to the case M faithful so
that ht x;A > 1. Then the ring A’ = A/x A has dimension at most dim A — 1. The elements
X2,...,xr € I A" are still coregular for M’ = 0 :); x. Notice the module M’ is non-zero
by Lemma 2.2 since the support of M is contained in V (I). Also Supp(M’) C Supp(M) C
V(I) = V(I A’), hence the support of M’ is still in V(I A’). By induction dim A’ > r — 1,
thus dim A > r. O

Definition 2.4 Let A be a ring, I an ideal, and M a non-zero A-module with Supp(M) C
V(I). The I-codepth of M is the supremum of lengths of coregular sequences in / for M.
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Notice that by Proposition 2.3, if the ring A has finite dimension then the /-codepth of M
is finite.

Example 2.5 Let (A, m) be a complete Noetherian local ring and let M be an artinian non-
zero A-module. Then the m-codepth of M is equal to the usual depth of the Matlis dual D (M)
of M. This follows from the definition, because Matlis duality gives an exact contravariant
equivalence of the category of artinian A-modules with the category of finitely generated
A-module. In this context, and for artinian modules only, the notions of coregular sequences
(or cosequences) and codepth (or width) were defined by Matlis [14] in his original paper,
and have been used by several authors since then. In this paper, however, most of the modules
we consider will not be artinian, and the old theory does not apply.

In the next theorem, inspired by the usual Koszul homology characterization of regular
sequences, we use Koszul cohomology to characterize coregular sequences.

Theorem 2.6 Let A be aring, I anideal, and M a non-zero A-module with Supp(M) C V (I).
Asequencexi, ..., x of elements of I is coregular for M if and only if the Koszul cohomology
groups H' (x1, ..., x,; M) are zero for alli > 1.

Proof We proceed by induction onr > 1.If r = 1, the Koszul complex is M 1 M. Notice
that H9(x;; M) = 0 :py x; and H'(x;; M) = M /x1 M. The latter is zero if and only if x|
acts surjectively on M. All higher cohomologies are zero.

If r > 2 we use the short exact sequence of Koszul complexes

0 — K*((x1,....,%—1; M)[-1] — K°((x1,...,x; M)
— K*((x1, ..., %35 M) — O

The associated long exact sequence of cohomology is

i . .
DHT N, Xy M) —> H(x1 e Xy M)
. S .
—)HI(X],...,xr_];M)—)HZ(X],...,)C,»_];M)

and the connecting homomorphisms §; are just multiplication by x, in the corresponding
cohomology groups.

Now suppose first that the sequence xi, ..., x, is coregular for M. This implies that
X1, ..., Xr—1 is coregular for M and that multiplication by x, acts surjectively on

0:m (X1, .eosx—) = HOG1, ooy X213 M)

Thus by induction Hi(xl, ey Xp—13; M) = 0 for all i > 1 and Jp is surjective on
HO%x1,...,x—1; M). From the long exact sequence of cohomology we conclude that
Hi(x1,...,x;; M) =0foralli > 1.

Now suppose, conversely, that H "(x1,...,x; M) = 0foralli > 1.Then by the long exact
sequence of cohomology, the connecting homomorphisms §; are isomorphisms for i > 1
and surjective for i = 0. However, the modules H H(x1, ... Xr—1; M) are all subquotients
of sums of copies of M, hence have support in V(). Now by Lemma 2.2, every element of
M or any of its subquotients is annihilated by a power of x,, since x, € I. Thus the only
way multiplication by x, can be an isomorphism is that the modules H Hxp, oo Xees M)
are zero. Hence, by induction, the sequence x, ..., x,—1 is coregular for M. Furthermore,
since Jg is surjective on HOCer, ..., x—1; M) =0 :y (x1,...,xr_1), We see that x, acts
surjectively on O :ps (x1, ..., x,—1) and therefore the sequence x1, ..., x, is coregular for
M. O
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Corollary 2.7 Let A be aring, I anideal, and M a non-zero A-module with Supp(M) C V (I).
Any permutation of a coregular sequence x C I for M is a coregular sequence for M.

Proof Tt follows from Theorem 2.6 since the Koszul complex K®(xy, ..., x,; M) is inde-
pendent of the order of the x;. O

Warning 2.8 Unlike the case of regular sequences for finitely generated modules, a partial
coregular sequence cannot always be extended to a coregular sequence of length equal to the
codepth (see, for instance, Example 3.3). Further, observe that a finitely generated module
always has codepth zero.

Proposition 2.9 Let A be aring and I anideal. Consider a short exact sequence of A-modules
with support contained in V (I)

0— M —M— M —0.

Let x = x1, ..., x; be a sequence of elements of 1.

(1) If x is a coregular sequence for M' and M" then it is a coregular sequence for M.
(2) If x is a coregular sequence for M then x is a coregular sequence for M" if and only if

Hixy,...,x;; M) =0

foralli > 2.
(3) If xy is coregular for M, it is also coregular for M" .

Proof These statements follow easily from Theorem 2.6 using the long exact sequence of
Koszul cohomology of x1, ..., x, associated to the short exact sequence of modules. O

Corollary 2.10 Let A be a ring, I an ideal, and M a non-zero A-module with Supp(M) C
V(I). Let h € A with M/hM # 0. If x1, x2 € I is a coregular sequence for M, then it is
also a coregular sequence for M /h M.

Proof Let ¢ be the map induced by multiplication by 4 on M. Then we have the short exact
sequences

0—kerg — M — imp — 0
and
00— imgp — M — M/hM — 0.

From the first exact sequence, since the functor H 2(x1, x2; @) is right exact, we conclude
that

H?(x1, x2; im ¢) = 0.

From Proposition 2.9(b) and the second sequence, we conclude that x, x» is a coregular
sequence for M /hM. O
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3 Hellus’s theorem

In this section we give a new version of Hellus’s theorem, in terms of coregular sequences. It
gives a criterion for an ideal to be generated up to radical by a regular sequence. In the case
of the homogeneous coordinate ring of a projective space, it gives a criterion for a variety to
be a set-theoretic complete intersection.

Theorem 3.1 (Hellus) Let A be aring, I anideal, andlet x1, . . . , x, be an A-regular sequence
contained in 1. Then the following conditions are equivalent

() VT=V01,. %)

(i) x1,...,x, form a coregular sequence for Hy (A), and H} (A) =0foralli > r.

Proof First notice that since x1, ..., x, form a regular sequence for A, we have H } (A)=0
for all i < r. This is the usual local cohomology characterization of /-depth of A.

(i) = (ii) The vanishing of the local cohomology for i > r follows from the Cech
computation of local cohomology.

Since local cohomology depends only on the radical of the ideal, we may assume that

I = (x1,...,x,). To show that xp, ..., x, form a coregular sequence on M = Hj(A), we
use the Koszul complex K*®(x1, ..., x,; M). Since x1, ..., x, is an A-regular sequence, the
Koszul complex Ko (x1, ..., x;) is aresolution of A/I and therefore the cohomology groups

of the complex K*®(xy, ..., x,; M) arethe Ext! (A/I, M).Inorder to compute Ext! (A1, M),
we will use an injective resolution of M obtained from an injective resolution of A by applying
the functor I';. Since the H } (A) = 0O forall i # r, this complex is exact everywhere except
for i = r where its cohomology is M, and therefore it gives an injective resolution of M.
This also shows that Ext’ (A /1, M) = Extt" (A /1, A). But the latter modules are zero for all

i +r # r and hence Hi(xy,...,x;; M) =0foralli > 0. Thus x1, ..., x, form a coregular
sequence for M by Theorem 2.6.
(il)) = (i) Since x1, ..., x, is a regular sequence on A, we can write

O—>A1>A—>A1—>O

where A; = A/(x1). Running the long exact sequence of local cohomology with supports
in I, we find, since x; acts surjectively on M = Hj (A), that M| = lefl(Al) is the only
local cohomology group of A that is non zero. Since M is the kernel of multiplication by
x1 on M, we find that x,, .. ., x, is a coregular sequence for M.

Next we use the exact sequence

0—>A1£>A1—>A2—>0

where A» = A/(x1, x2), and we find similarly that M, = le—z (A») is the only non-zero
local cohomology group of A», and x3, ..., x, is a coregular sequence for M>.

Proceeding inductively, we find that A, = A/(x1, ..., x,) has only one non-zero local
cohomology group M, = HIO(Ar). It follows by Lemma 3.2 below that A, has support in
V (I). Since the annihilator of A, is (xi, ..., X,), this shows that I C /(x1, ..., X). But

X1, ..., X, € I by hypothesis, so VI = «/(xl, L Xr).

Lemma3.2 Let A be aring, I anideal, and N a finitely generated A-module with IN # N.
If H(N) =0 foralli > 0, then Supp(N) C V(I) and N = H?(N).

Proof We write the short exact sequence

0— H)(N) — N — C — 0
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Quasi-cyclic modules and coregular sequences 129

where C is another finitely generated A-module. Our hypothesis implies that H,i (C) =0 for
all i. But this is impossible unless C = 0, because a non-zero finitely generated module has
a well-defined /-depth, namely, the smallest r such that H 1’ (C) #0115, 16.7]. O

Example 3.3 (The twisted cubic curve) Let C be a twisted cubic curve in P3. One knows that
C is a set-theoretic complete intersection, since it lies on a quadric cone Qp, and on that
cone, 2C is a Cartier divisor cut out by a cubic surface F, so that C = Q¢ N F. Hence by
Theorem 3.1, M = H,2 (A) has codepth 2, where [ is the ideal of C in the homogeneous
coordinate ring A.

On the other hand, C lies on a non-singular quadric surface Q, and since Q\C is affine
(see [6, §V 1.10.1)), it follows that HIZ(A/qA) = 0, where ¢ is the equation defining Q.
Therefore g is a coregular element for M (see Proposition 5.2). However, since the only
complete intersections on Q have bidegree (a, a) for some a > 0, whereas C has bidegree
(1, 2) on Q, no multiple of C can be a complete intersection on Q. Therefore the coregular
sequence {q} of length one cannot be extended to a coregular sequence of length 2, even
though codepth M = 2.

4 Quasi-cyclic modules

In the previous section, we saw that a curve C C P? is a set theoretic complete intersection
if and only if the associated local cohomology module M = H12 (A) has codepth 2. This
condition is difficult to verify in practice, so in this section we introduce another property of
the module M, which may be easier to test.

Definition 4.1 An A-module M is quasi-cyclic if it is a countable increasing union of cyclic
submodules. In the graded case we assume that the cyclic submodules are generated by
homogenous elements.

The facts listed in the following proposition are worth noting but easy to prove. We leave
the proofs to the reader.

Proposition 4.2 Let M be an A-module.

(1) M is quasi-cyclic if and only if it is a countable direct limit of cyclic A-modules.
(i) M is quasi-cyclic if and only if it is countably generated and every finite subset of M is
contained in a cyclic submodule of M
(iii) Any quotient of a quasi-cyclic module is quasi-cyclic.

Example 4.3 (1) A finitely generated module is quasi-cyclic if and only if it is cyclic.

(2) If f € A, the localization A  is quasi-cyclic.

(3) If A is a local Gorenstein ring and ~/J = /(f1,.... f,) for fi,..., f a regular
sequence, then the local cohomology module H'(R) is quasi-cyclic. Indeed, it is the
directlimit of Ext" (R/J,,, R), where J, = (f{', ..., f"), and the module Ext" (R/J,;, R)
is a canonical module w4, ,,, which is cyclic since A/J, is Gorenstein.

Remark 4.4 1f a sequence x, y of elements of / is coregular for M, then the sequence x¢, y?
is coregular for M for arbitrary positive integers a, b. For the proof notice that 0 :p; x“ has
a filtration by submodules 0 :); x', for 1 <i < a — 1, whose quotients are isomorphic to
0:p x.
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Theorem 4.5 Let A bearing, I anideal, and M a non-zero A-module with Supp(M) C V (I).
If M is countably generated and has codepth at least 2, then M is quasi-cyclic.

Proof By Proposition 4.2(ii), it will be sufficient to show that any two elements m,n € M
are contained in a cyclic submodule. Let x,y € I be a coregular sequence for M. By
Corollary 2.7, then y, x is also a coregular sequence. By Lemma 2.2 every element of M is
annihilated by some power of x and some power of y. Let N; = 0 :p7 x’ andlet L ; i=0:y yi.
Then M = U,>1N, and M = U,>1LJ Thus we may assume that m € N; and n € L/ By
Remark 4.4, x*, y/ and yJ x' are also coregular sequences for M. In particular, yf acts
surjectively on N; and x* acts surjectlvely on L ;. In other words, there are elements m’ € N;
andn’ € L; such that y/m’ = m and x'n’ = n. Now let @ = m’ +n’ € M. Then

Xa=xm+xn"=0+n=n
yia=yim'+yin =m+0=m.

Hence m and n are contained in the cyclic submodule generated by . Thus M is quasi-cyclic.
]

Corollary 4.6 If a variety V. C P" is a set-theoretic complete intersection of codimension r,
then Hj (A) is a graded quasi-cyclic A-module.

Proof Write M = Hj(A).If r = 1 and f is the defining equation of V,then M = Ay /A,
which is quasi-cyclic by Example 4.3(2). If r > 2, then M has codepthr > 2 by Theorem 3.1,
and hence is quasi-cyclic by Theorem 4.5. O

Example 4.7 Let C be the disjoint union of two lines Lj and L in P3. Then H12 (A), where
I is the defining ideal of C, is not quasi-cyclic. In particular, this gives a new proof of the
well-known result that C is not a set-theoretic complete intersection.

Proof By direct computation. If we define the lines by x = y = 0 and z = w = 0, then the
Mayer—Vietoris sequence for local cohomology

2 2 2 2 3
0=H2 ) (A) — HZ (A ® HE , (A) — H}A) — HJ . w)(A) =0

shows that H2(A) x )(A) ®H (Z w) (A) Let M| = (A) and M, = (A)

We can compute them as in [5 Section 3]. They are generated as k[z w]-module (as k[x y]-

module, respectively) by {x’ 'yJ |i < Oand j < 0} (respectively, by {Zw/ |i <0andj < O}).
An arbitrary element of M can be written as

_a b
xiyi + 2w
for positive integers i, j, £, m and a, b € A.
We now prove that the the socle elements of M
1 1
— and —
Xy zw
are not contained in any cyclic submodule of M, that is they cannot be contained in the
submodule generated by any a.
Indeed, suppose fo = —y and go = - forsome f, g € A. The equality fa = Ty L forces
b = 0, since otherwise f € (z, w) in Wthh case the first term would have z and w. But if

b = 0 the equality go = ZL} cannot be satisfied. O
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Quasi-cyclic modules and coregular sequences 131

Remark 4.8 (Segre embedding) If V is the Segre embedding of P! x P? into P3, then Claudiu
Raicu has shown us an argument, using representation theory in characteristic zero, that
HI2 (A) is not quasi-cyclic. The point is that HI2 (A), with its grading, is a direct sum of
irreducible representations and Pieri’s rules shows that the ‘bottom’ piece cannot be reached
by multiplication from higher pieces. This gives another proof in characteristic zero that V
is not a set-theoretic complete intersection, which was already known, since HI3(A) is not
Zero.

5 Curves on surfaces

In this section we consider the following Setting 5.1 to relate properties of X and X\C to
the behavior of multiplication by & on M and the module M /h M. In particular we examine
when X\C is affine or a modification of an affine.

Setting 5.1 Let C be a connected curve lying on a surface X in P>, Let A be the homogeneous
coordinate ring of P3, let I be the ideal of C, and let i € I be the element defining the surface
X. Write M for the module HIZ(A).

Proposition 5.2 In Setting 5.1, h is a coregular element for M if and only if X\C is affine.

Proof Let B = A/(h) be the coordinate ring of X and let / = I B be the ideal of C in X.
Note that M /hM = H,2 (A/(h)) since H,3 (A) = Oaccording to [8, 7.5]. Hence # is coregular
for M if and only if H12 (A/(h)) = H12(B) = 0. We make use of the well-known result (see
[8, Section 2, page 412]) that

H3(B) = @uez H (X\C, Ox(n)).

The latter is zero if and only if H!(X\C, Ox(n)) = 0 foralln € Z. Since H} (B) = 0forall
i > 3, it follows that also Hi(X\C, Ox(n)) =0foralli > 2, and so H' (X\C, F)) =0 for
all coherent sheaves on X\C. By Serre’s criterion, this implies that X\C is affine. Conversely,
if X\C is affine all higher cohomology of coherent sheaves on X\C vanish, so / is coregular.

O

Example 5.3 (a) LetC be a curve of bidegree (a, b) on a nonsingular quadric surface Q with
a,b > 0. Then C is connected and the defining equation g of Q is coregular for M.
Indeed, C is ample on Q so Q\C is affine.

(b) Let C be a curve on a nonsingular cubic surface X with divisor class (a; by, ..., bg) in
the usual notation, with a > by + by + b3 and by > by > --- = bg > 0. Then C is
connected and is ample on X (see [6, V, 4.12]). Hence X\C is affine, and the equation
defining X is coregular for M.

(c) Let C be the rational quartic curve given by the parametric representation

(x,y,z,w) = (14, Bu, i, u4).

This curve C lies on the nonsingular quadric surface defined by ¢ = xw — yz and it has
bidegree (1, 3) hence by (a), g is a coregular element for M. The curve C also lies on
the cone X over a cuspidal plane cubic curve defined by g = y3 — x2z. We will show
that X\C is affine, so that g is another coregular element for M (the same applies to the
element h = z3 — yw?). However, g, ¢ is not a coregular sequence, by Hellus’s theorem,
since the ideal (g, g) defines a curve of degree 6 consisting of C and a double line.
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132 R. Hartshorne, C. Polini

To show that X\C is affine, we consider the normalization X of X , which is the cone over
a twisted cubic curve in P? [10, 6.9]. The inverse image of C in X is a curve C , isomorphic
to C, which meets every ruling of the cone X in one point. Therefore 3C is a Cartier divisor
on X, and since Pic X = 7, this Cartier divisor is ample hence X \C is affine. But X \C is the
normalization of X\C, thus X\C is affine as well.

Definition 5.4 A scheme V of finite type over k is a modification of an affine, in the sense
of [3], if there exists a proper surjective map w : V — Vj with Vj affine, 7,0y = Oy,,
and such that 7 has only finitely many fundamental points, that is points P € Vj for which
dimm7~1(P) > 1.

Remark 5.5 There may be other definition of “modification” in the literature, but we use this
one because it is the one that makes valid the following Proposition 5.6.

Proposition 5.6 In Setting 5.1 the following conditions are equivalent:

(1) X\C is a modification of an affine scheme;
(2) dim H'(X\C, F) < oo for every coherent sheaf F on X\C and everyi > 0;
(3) each graded component of M /hM = HI2 (A/hA) is finite dimensional over k.

Proof The equivalence of (1) and (2) follows from [3, Theorem 1 and Corollary 3].
We now show (2) implies (3). As in the proof of Proposition 5.2, we have

M/hM = @,cz,H' (X\C, Ox (n))

where n indicates the grading. Thus by (2), each graded piece is finite-dimensional.

Finally we show that (3) implies (2). Again, as in the proof of Proposition 5.2,
Hi(X\C, Ox(n)) = O foralln € Z and all i > 2. Thus by the usual dévissage,
H!(X\C,F) = 0 for i > 2 and finite dimensional for i = 1, for all coherent sheaves
FonX. O

Corollary 5.7 In Setting 5.1 if C satisfies the equivalent conditions of Proposition 5.6, then
the degree n component of M /hM is zero for n > 0.

Proof This follows from [3, Corollary 4]. O

Example 5.8 (a) If C is a curve on the nonsingular cubic surface X having divisor class
(a; by, ..., be) in the usual notation, witha > by +br+bszandb; > by > ... > bg >0
and b3 > 0, then X\C is a modification of an affine scheme. Indeed, in the trivial case
be > 0, we have seen already that X\C is affine (see Example 5.3(b)), so there is nothing
to prove. If r is the largest index for which b, > 0, withr = 3, 4, 5, then C is on a surface
X obtained by blowing up r points in P2, and C will be ample there, so that Xo\C is
affine. Then the projection 7 : X\C — X\C makes X\C a modification of an affine.

(b) If C is the rational quartic curve of Example 5.3(c), then C lies on a ruled cubic surface
X defined by p = xz> — y>w (see [9, §6] and [10, 6.3 and 7.12]). Since C meets the
double line of X only at the pinch points, its inverse image in the normalization S of X
is a curve C’ corresponding to a conic Cg in P? that does not meet the point P of P2 that
was blown up. Thus S\C’ is a modification of the affine scheme P2\Cp. Now it follows
that X\C is a modification of an affine since = : S\C' —> X\C is a finite morphism.
Indeed, by applying the criterion of Proposition 5.6(2) and the Leray spectral sequence
of cohomology for a finite surjective morphism 7 : V/ — V, we obtain that if V' is a
modification of an affine if and only if V is.
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(c) More generally, if C is a curve on a nonsingular surface X with C> > 0, then X\C is
a modification of an affine. Inded, this follows from [4, §1II 4.1] which implies that
H'(X\C, F) is finite-dimensional for every coherent sheaf 7 on X\C and every i > 0.

Theorem 5.9 In Setting 5.1 if X\C is a modification of an affine, then the I1-codepth of M /h M
is at least two.

Proof Since X\C is a modification of an affine, we have a proper map = : X\C — V
with V affine. Then there are finitely many fundamental points Py, ..., Py € V. If we let
E;, = 71_1(Pi), then 7 : X\C — V is an isomorphism outside E; and P;. Indeed, 7 is
proper with finite fibers outside E; and P;, therefore it is a finite morphism there. Since
m+Ox\c — Oy is an isomorphism, by definition of modification. It follows that X\C — V
is an isomorphism outside of E; and P;.

Using the Leray spectral sequence for 7 and the fact that V is affine, we find

(M/hM), = H'(X\C,O(m)) = H(V, R'5,0(n)).
The sheaves R'!7,O(n) are coherent and are supported at the points P;. Therefore,
H(V, R'7,0(n)) = R'7,.0(n).

In addition the modules R' 7, (n) are of finite length and are equal to their own comple-
tions over the local rings at P;. Write E = UE;. Now the theorem on formal functions [6,
III, 11.1] shows that

R'm.0(m) = lim H' (E,, Ok, (n))

where E, is the closed subcheme of X\C defined by I}, where Zr = n*(}_mp,) defines
the inverse image scheme of the P;. The maps in the inverse system come from the short
exact sequences

00— I},’S/Il,‘ifrl — Og,,; — Og, — 0.

Since the E, are curves, the H'! functor is right exact, so the maps of the inverse system are
all surjective. Furthermore, since (M /hM),, is finite-dimensional for each n, it follows that
the maps in the inverse system, for each n, are eventually constant.

Now we look for coregular elements. Since elements of the ideal I cut out the curve C
we can find elements f, g € I whose zero-sets meet the curve E in finitely many points all
distinct from each other. It may happen that the schemes E,, for various v, have embedded
points. However, according to a theorem of Brodmann [1, 1], the union for all v of the sets
of embedded points of E, is a finite set. Therefore, we may assume that f, ¢ meet each E,
in distinct points, none of which is embedded for E,,.

Since f does not meet E, at any embedded points, we have exact sequences

0 —> O, (n) _f) Op,(n+d) — Oz, (n+d) — 0

where Z), is the scheme of zeros of f in E,. Since Z, is a zero dimensional scheme,
HY(E,, Oz, (n+d)) = 0. Hence multiplication by f is surjective on o, HY(E,, Og,(n))) =
HYE,, ®, OE,(n))) for each v. Since the maps of the inverse limit above are eventually
constant in each degree, it follows that multiplication by f is surjective on M /hM. Thus f
is a coregular element for M /h M.

The kernel of multiplication by f on HY(E,, OE, (n)) is a quotient of HO(EV, Oz, (n+
d)). Since g does not vanish at the points of Z,, it follows that g acts isomorphically on

@ Springer



134 R. Hartshorne, C. Polini

®.H(E,, O, (n))) = H(E,, ®,0F, (n))). Thus multiplication by g is surjective on the
kernel 0 :1(g, @,0p, @y (f) for each v. Again, since the maps in the inverse system are
eventually isomorphisms, it follows that multiplication by g is surjective on O :p7/np (f), SO
that (f, g) form a coregular sequence of length two for M /h M. O

6 Intersection of three surfaces

The first example was in Perron’s paper [16], where he showed that Vahlen’s curve, a rational
quintic curve with a single quadrisecant, is an intersection of three surfaces in P3. Then Kneser
[12] showed that any curve in P3 is the intersection of three surfaces. This was generalized
by Eisenbud and Evans [2], and independently Storch [17] (in the affine case only), to show
that any variety in affine or projective n-space is an intersection of n hypersurfaces.

In this section we interpret the condition for three polynomials f, g, & to cut out a subva-
riety of codimension 2 in P" set-theoretically, in terms of the Koszul cohomology of certain
local cohomology modules. We start with an auxiliary result, which will be used for the
homogeneous coordinate ring of a hypersurface.

Proposition 6.1 Let B be a ring, let J be an ideal, let f, g € J, and assume that f is not a
zero-divisor in B. The following condition are equivalent

() VT =J(F. 8

(2) Let M; = H'(B) fori > 1

(a) M; =0fori > 2
(b) f, g is a coregular sequence for M;
(¢) The natural map (defined in the proof)

5: H(f, g Ma) — H(f, 8 M)
is surjective.

Proof If f, g is a regular sequence in B, then M| is automatically zero and this statement
follows from Theorem 3.1.

We first show that (1) implies (2). Part (a) follows from the computation of local coho-
mology using the Cech complex.

For part (b) consider the short exact sequence

0—B-LB—B/fB—0.

Applying local cohomology we obtain the long exact sequence

oo My L My — HYB/fB) — My L My — HXB/fB) —> 0

We may assume that J is defined by f, g. Then in the ring B/ f B the ideal J is defined
by g, so H}(B / f B) = 0. We conclude that multiplication by f is surjective on M>.

Write K = ker(M» —f> M>) and Q = coker(M; —f> M1). Thus we obtain a short exact
sequence

0— Q — H)}(B/fB) — K —> 0.
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Multiplication by g gives a commutative diagram

0— Q — H}(B/fB) — K — 0

oyl

0— Q — H}(B/fB) — K — 0

The middle map is surjective since J (B/ f B) is generated by g, so using the Snake Lemma,
we find that the coboundary map

§ : ker(K LN K) — coker(Q LN 0)

is surjective, and the last map in the diagram K £ Kis surjective as well. This last assertion
shows by definition that f, g is a coregular sequence for M>.

To prove (c) we need only to observe that ker(K LN K) = Ho(f, g; M) and
coker(Q —> Q) = H2(f, g; My).

We now show that (2) implies (1). Using the hypotheses (a), (b), (c), and running the
argument backwards, we find

H>(B/fB)=0 and H}(B/fB) —> H}(B/fB) is surjective.

Since H}(B/fB) = 0 for i > 2, a standard dévissage shows that H} (N) = 0 for any
finitely generated B/ f B-module. Thus the functor H} (—) is right exact for finitely gener-
ated B/ f B-modules. Therefore Hj(B/(f, g)B) = 0 for all i > 0. The latter implies that
Supp(B/(f, g)B) C V(J) according to Lemma 3.2, hence (1) holds. O

Theorem 6.2 Let A be aring, I an ideal, and let f, g, h € I. Assume that (f, h) is a regular
sequence in A. Assume also that Hy(A) = 0 fori > 2, and let M = HIZ(A). Then the
following are equivalent

) VT=V(F g h

2) Hi(f,g,h; M) =0fori > 2.

Proof Let B = A/hA, let J = IB, and notice that f is regular on B. We want to apply
Proposition 6.1 to B, J, and f, g € J. Notice that part (1) of Proposition 6.1 is clearly
equivalent to /I = /f, g, i. So it is enough to show that H' (f, g, h; M) = 0 fori > 2 is
equivalent to assertion (2) of Proposition 6.1.

We use the notation of Proposition 6.1, in particular we let M; = H ’J (B) fori > 1. Since
h is a regular element in A and H} (A) =0fori # 2, we have the exact sequence

0—>M1—>Mi>M—>M2—>O,
and note that all M; = 0 fori > 2. We need to show that Hi(f, g, h; M) =0fori > 2is
equivalent to (b) and (c) of Proposition 6.1.

Consider the map of Koszul co_mplexes K*(f,g; M) —h> K*(f, g; M). The cohomology
of the total complex is simply H' (f, g, h; M). The spectral sequence of the double complex
degenerates to give a long exact sequence

0—> H'(f.g: My) —> H'(f.g.h: M) — HO(f.g: My) —>>
H*(f.g; M) — H*(f,g.h; M) — H'(f, g My) — 0
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and the isomorphism
H3(f, g, h; M) = H*(f, g; Ma) .

The vanishing of H2(f, g, h; M) and H3(f, g, h; M) is equivalent to the vanishing of
H'(f,g: M) and H?(f, g; M>), plus the surjectivity of 8. Hence H(f, g, h; M) = 0 for
i > 2 is equivalent to (b) and (c) of Proposition 6.1 by Theorem 2.6. ]

Corollary 6.3 If C is any curve in P2, then there exists a surface X containing C, defined by
h =0, such that M /hM has I-codepth 2, where M = H12(A).

Proof By Kneser’s Theorem, there exist f, g, i with VI = J(f, g h). We may assume
that two of these, say f, &, form a regular sequence for A. Then if X is defined by #,
and B = A/hA, applying Proposition 6.1, we see that f, g form a coregular sequence for
M, = H}(B) = M/hM. o

7 Questions

The first question is a well known, long-standing open problem, which was the motivation for
this paper. The remaining questions are consequences. That is to say, a yes answer to the first
question would imply a yes answer to all the remaining questions. Conversely a no answer
to any of the remaining questions would imply a no answer to the first question. In all these
questions C is an irreducible curve in P3 and I is its homogeneous ideal in the homogeneous
coordinate ring A of P3.

Question 7.1 Is every irreducible curve in P? a set-theoretic complete intersection?

As far as we know, this question was first stated explicitly by Perron.

Question 7.2 If C is an irreducible curve in P3, does the module HIZ(A) have codepth 2?
By Theorem 3.1, Question 7.2 is equivalent to Question 7.1.

Question 7.3 If C is an irreducible curve in P3, is the module H12(A) quasi cyclic?
Question 7.3 follows from Question 7.2 by Theorem 4.5.

Question 7.4 If C is an irreducible curve in P?, does the module HIZ(A) have codepth > 17

Clearly Question 7.4 is a trivial consequence of Question 7.2

Question 7.5 If C is an irreducible curve in P?, does there exist a surface X containing C
with X\C affine?

Question 7.5 is equivalent to Question 7.4 by Proposition 5.2.

Question 7.6 If C is an irreducible curve in P3, does there exist a surface X containing C
with X\C a modification of an affine?

Question 7.6 is a trivial consequence of Question 7.5.

Question 7.7 If X is an irreducible surface containing an irreducible curve C in P3, do there
exist two more surfaces Y and Z containing C such thatC = X NY N Z?
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Question 7.7 would follow from Question 7.1, taking Y and Z to be the surfaces defining
C.

Question 7.8 If C is an irreducible curve in P* and X is a surface defined by a non-coregular
element i € I, does the module le(A /hA) have codepth 2?

Question 7.8 would follow from Question 7.2 by Corollary 2.7. It would also follow from
Question 7.7 by Proposition 6.1.

Question 7.9 With C, X, & as in Question 7.8, is the module HI2 (A/hA) quasi-cyclic?

Question 7.9 follows from Question 7.8 by Proposition 4.5, or from Question 7.3 by
Proposition 4.2(iii).

Example 7.10 (1) The rational quartic curve (see Example 5.3(c)) is the smallest degree
example of a curve for which it is not known whether it is a set-theoretic complete inter-
section in characteristic zero. In any characteristic p > 0 it is a set-theoretic complete
intersection [7]. For this curve, the answers to Questions 7.4 and 7.5 are yes.

(2) For Vahlen’s quintic, which is a rational quintic curve C with a single quadrisecant, we
do not know the answer to Question 7.5, but the answer to Question 7.6 is yes, because
C can be found on a nonsingular cubic surface X with divisor class (2; 1, 105), using
Example 5.8(c).

(3) We will show that the answer to Question 7.7 is also yes for Vahlen’s quintic. Let X be a
nonsingular cubic surface and let C be the curve with divisor class (2; 1, 10%). We take
Y to be another cubic surface containing C so that XNY = CU G U T where X NY has
divisor class 3H = (9; 36) and G is the line (2; 0, 15), which is the quadrisecant, and
T = (5; 26) is a twisted cubic curve. We can take T to be irreducible and nonsingular,
because for any T in that divisor class, CU G UT ~ 3H, and X being projectively
normal, this is the intersection with another cubic surface Y.

We cannot take Z to be another cubic surface, because every cubic surface containing C
also contains its quadrisecant G. So we look for a quartic surface Z. Then XNZ = CUD
where D = (10; 3, 4°). This is a curve of degree 7 and genus 3. Any curve in this linear
system arises as X N Z\C.

To show that C = X NY N Z, we must show that the points of D N (G UT) are contained
inC.Now D - G = 0, and a general D is irreducible so we may assume D NG = 0.
Observe that D - T = 4. We need to show that D can be chosen so that the four points of
D NT are among the 8 intersections of 7" with C. Since T is a rational curve, for this it
will be sufficient to show that the linear system | D| on X maps surjectively to the linear
system |D - T'| on T'; that is that the map

7 : H'(Ox(D)) — H°(O7(D - T))

is surjective. The cokernel of 77 is H! (Ox (D\T)), as can be seen applying cohomology
to the short exact sequence

0— Ox(D\T) — Ox(D) — Or(D-T) — 0.

Now D\T has divisor class (5; 1,2°) and therefore can be represented by an elliptic
curve E of degree 4. From the exact sequence

- — H'(Ox) — H'"(Ox(E)) — H'(Op(E)) — ---

we deduce that H'(Ox(E)) = 0, since H'(Ox) = 0 and E> = 4 which gives
HY(Og (E)) = 0. Thus the map = is surjective.
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Hence we conclude that C = X N'Y N Z, the intersection of two cubics and one quartic
surface.
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