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Abstract

The brain is composed of networks of interacting brain regions that support higher order
cognition. Among these, a core network of regions has been associated with recollection and
other forms of episodic construction. Past research has focused largely on the roles of individual
brain regions in recollection or on their mutual engagement as part of an integrated network. Yet
the relationship between these region- and network-level contributions remains poorly
understood. Here we applied multilevel structural equation modeling (SEM) to examine the
functional organization of the posterior medial (PM) network and its relationship to episodic
memory outcomes. We evaluated two aspects of functional heterogeneity in the PM network:
first, the organization of individual regions into subnetworks, and second, the presence of
regionally-specific contributions while accounting for network-level effects. Our results suggest
that the PM network is composed of ventral and dorsal subnetworks, with the ventral subnetwork
making a unique contribution to recollection, especially to recollection of spatial information,
and that memory-related activity in individual regions is well accounted for by these network-
level effects. These findings highlight the importance of considering the functions of individual
brain regions within the context of their affiliated networks.
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The brain is composed of networks of interacting brain regions, and the functioning of
these networks is crucial for higher-level cognition. Within the domain of episodic memory,
researchers have identified a set of cortical and hippocampal regions that has consistently been
linked to our ability to mentally construct events, including recollecting past events, imagining
future events, and constructing fictional scenarios (Andrews-Hanna et al., 2010; Buckner &
DiNicola, 2019; Ranganath & Ritchey, 2012; Ritchey & Cooper, 2020; Rugg & Vilberg, 2013).
These regions include the hippocampus, angular gyrus (AG), precuneus, retrosplenial cortex
(RSC), posterior cingulate cortex (PCC), parahippocampal cortex (PHC), and medial prefrontal
cortex (MPFC), which are all key components of the default mode network, particularly its
medial temporal and core subnetworks (Andrews-Hanna et al., 2010). In recognition of their
special role in recollection-based memory processes, these regions have been collectively
referred to as the “core recollection network™ (Rugg & Vilberg, 2013). More recently, the
functions of this network have been situated within the context of two cortico-hippocampal brain
networks— an anterior temporal network and a posterior medial (PM) network— that differ on
the basis of their structural and functional connectivity with the medial temporal lobes and their
relation to distinct aspects of memory-guided behavior (Ranganath & Ritchey, 2012). In this
framework, the PM network corresponds to the recollection network described above, but is
assigned a more general role in representing contextual information and event models that
support episodic construction, including but not limited to recollection. Exactly how this network
supports episodic construction, however, remains unclear. Past research suggests that there are
both regional and network level contributions of the PM network to episodic recollection. For
instance, the hippocampus has long been known to be essential for episodic memory (e.g.,

Corkin, 2002; Riedel et al., 1999). Using neuroimaging to look beyond the hippocampus,
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however, it is apparent that the rest of the PM network is also reliably engaged during
recollection (H. Kim, 2013; Rugg & Vilberg, 2013; Spaniol et al., 2009). These regions are
robustly structurally and functionally connected with the hippocampus, supporting the idea that
they constitute an integrated functional network, yet how this network-level involvement relates
to their individual functions remains an open question. Here we use multilevel structural
equation modeling to examine heterogeneity in the function of the PM network during an
episodic retrieval task. Specifically, we investigated the subnetwork architecture of the PM
network, as well as the contributions of individual PM regions to predicting memory outcomes.
A great deal of research has focused on the roles of individual brain regions in supporting
episodic construction, delineating specific roles for the hippocampus, angular gyrus, and other
regions of the PM network (Ritchey & Cooper, 2020). The hippocampus, for example, is posited
to support the binding together of contextual details in memory (Davachi, 2006; Diana et al.,
2007; Eichenbaum et al., 2007) and is thought to perform a pattern completion function in which
partial representations evoked by memory cues are “completed” by reinstating related
information stored in memory (Horner et al., 2015; Marr, 1971; Norman & O’Reilly, 2003). The
angular gyrus, on the other hand, is thought to support the representation of multimodal episodic
details brought to mind during recollection (Humphreys et al., 2021; Ramanan et al., 2018; Rugg
& King, 2018). Some fMRI studies have directly tested for cognitive and temporal dissociations
amongst the regions of the PM network, finding evidence for functional specialization in the
context of both episodic memory (Richter et al., 2016; Vilberg & Rugg, 2012, 2014) and
imagination (Thakral et al., 2020). For example, Richter and colleagues (2016) used fMRI to
identify brain activity that tracked the success, precision, and subjective vividness of episodic

recollection. The authors modeled these measures jointly and found that the hippocampus
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uniquely tracked whether or not retrieval was successful, the angular gyrus uniquely tracked the
precision of remembered information, and the precuneus uniquely tracked subjective memory
vividness. These findings suggest that individual regions of the PM network make distinct
contributions to the recollection process.

There is other evidence pointing to the importance of mutual engagement of these regions
as part of an integrated network. Functional MRI studies have consistently observed increased
neural activity across the PM network that is related to successful, vivid episodic recollection (H.
Kim, 2013; Rugg & Vilberg, 2013; Spaniol et al., 2009). Moreover, functional connectivity
within the PM network scales with the quality of recollection, including its subjective vividness
or the recovery of source details (Cooper & Ritchey, 2019; Geib, Stanley, Dennis, et al., 2017;
Geib, Stanley, Wing, et al., 2017; King et al., 2015; Schedlbauer et al., 2014; Watrous et al.,
2013). Interestingly, another line of research suggests that the PM network may not act as a
single homogeneous network but is instead composed of at least two, highly related subnetworks
(Andrews-Hanna et al., 2010; Barnett et al., 2021; Buckner & DiNicola, 2019; Cooper et al.,
2021). For example, Cooper and colleagues (2021) examined the functional connectivity of the
PM network regions while participants watched a short movie and, using data-driven community
detection, showed that the PM network fractured into ventral and dorsal subnetworks that were
differentially engaged during event perception. Barnett and colleagues (2021) used a similar
data-driven approach to delineate multiple subnetworks in the PM network using resting-state
data while also showing evidence that the regions of the different PM subnetworks represented
similar information during a memory-guided decision making task. While these studies provide
support for a subnetwork view of the PM network, it currently remains unclear whether these

subnetworks are dissociable in their contributions to episodic recollection.
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Prior studies have made it clear that activity in regions of the PM network are related to
memory and to one another, but it remains unclear whether their contributions to memory are
regionally specific or shared across the network. Structural equation modeling (SEM) is a well
suited tool for delineating regional and network-level contributions to behavior (Bolt et al.,
2018), allowing for the capturing of common, distributed, network-level contributions by
estimating latent variables that captures the covariance amongst regions of a network. Structural
models can then estimate the statistical dependency between these network latent variables and
some behavioral variable while also estimating the regional-specific effect of each of the regions,
statistically controlling for their membership within larger networks. For instance, Bolt and
colleagues (2018) used SEM to parse the unique contributions of the right dorsolateral prefrontal
cortex to cognitive control from those of the larger frontoparietal control network, showing that
the unit of behavioral significance for many common cognitive control tasks was not the right
dorsolateral prefrontal cortex, but the shared contributions of the frontoparietal control network.
This approach differs from common applications of SEM to study functional interactions
supporting cognition (see McIntosh & Protzner, 2012 for a review), which in the context of
episodic memory, have largely focused on building models of the effective connectivity among
brain regions (Addis et al., 2010; Iidaka et al., 2006; McCormick et al., 2010, 2015; Rajah &
Mclntosh, 2005; Rosenbaum et al., 2010). For instance, past work taking this approach has
shown that episodic retrieval involves increased communication among left frontal and parietal
regions (lidaka et al., 2006) as well as between the hippocampus and regions in the frontal lobes
(McCormick et al., 2010, 2015) and sensory cortex (McCormick et al., 2015). Here, rather than
focusing on interactions among brain regions, we apply SEM to estimate the specific regional

and common network contributions to episodic remembering within a single statistical model.
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Taken together, the literature suggests that the regions of the PM network perform
dissociable yet interrelated functions and, as a result, make separable contributions to the
recollection process. It remains unclear, however, exactly how to combine the findings from
experiments taking region-focused approaches and network-focused approaches — highlighting
the need for an approach that can simultaneously take into account network-wide and region-
specific contributions to episodic retrieval. The present study uses SEM to model heterogeneity
of function of the PM network. We sought to model two key aspects of functional heterogeneity
within the network: that larger networks fracture into related subnetworks and that regions of the
network make extra-network contributions to cognition. To this end, we first compared a single
network model to a two related subnetworks model, motivated by previous evidence for
dissociable ventral and dorsal PM subnetworks that exhibit distinct patterns of functional
connectivity during movie-watching (Cooper et al., 2021). Next, we modeled region-specific
contributions to behavior, controlling for network-level effects (c.f., Bolt et al., 2018), to
determine whether any regions acted outside of their networks in support of episodic

recollection.

Methods

Experiment

Participants

Twenty eight participants from Cooper & Ritchey (2019) were included in the final set of

analyses after excluding participants who did not complete the study or who had inadequate
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memory performance (see Cooper & Ritchey 2019). Participants were selected such that they
were between the ages of 18 and 35 (M =21.82, SD =3.57, 16 females, 12 males) and had no
history of neurological or psychiatric illness. Participants’ self-reported ethnicity was as follows:
Not Hispanic or Latino (n = 22) and Hispanic or Latino (n = 6). Race was self-reported as White
(n=18), Asian (n = 3), More Than One Race (n = 3), Black or African American (n = 2), Other
(n = 1), with one participant electing not to report their race (n = 1). Participants reported an
average years of education of M = 15.2 years (SD = 1.67). Informed consent was obtained from
all participants prior to the experiment and participants were reimbursed for their time. All
procedures were approved by the Boston College Institutional Review Board.

With respect to statistical power, our analyses focused on trial-to-trial variability in brain
activity and memory outcomes. Our dataset had a total of 3888 trials nested within 28 subjects
(22 subjects contributing 144 trials; 6 subjects contributing 120 trials — see Cooper & Ritchey
2019). Wolf and colleagues (2013) ran a series of Monte Carlo simulations to determine the
minimum sample size required to achieve SEMs that had at least 80% power to detect nonzero
parameters with an alpha = 0.05. In order to determine if our models were sufficiently powered,
we compared the number of observations that we had at the within subject, across trial level (i.e.,
3888 observations) to the most conservative recommendations made for achieving adequate
power in the Wolf simulations, which argue for 460 observations. However, we note that, unlike
our study, the Wolf simulations did not use a multilevel model and they did not use categorical
variables. There does not currently exist any published recommendations for the required N to
achieve sufficient power using the type of multilevel SEM that we use in this manuscript. In the
absence of alternative recommendations, we argue that our models are likely to be sufficiently

powered given that our number of observations at the within subjects, across trials level far
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exceeds the most conservative recommendations made by Wolf and colleagues (2013). Although
we have sufficient power to model trial-to-trial variability in this dataset, we remain
underpowered to model between-subjects variability, and thus we refrain from interpreting any

existing subject-to-subject variability in our analyses.

Materials

Memoranda consisted of 144 unique events that were constructed using a combination of
144 episode-unique object stimuli from Brady and colleagues (2013), 6 panoramic scenes from
the SUN 360 database (Xiao et al., 2012), and 12 sounds from the International Affective
Digitized Sounds (IADS) database (Bradley & Lang, 2007). The grayscale object images were
altered such that they took on 1 of 120 unique colors taken from the equally spaced positions in
CIELAB color space. In a similar manner, the 360 degree panoramic background images were
transformed into 120 equally spaced 100° field of view images taken at regular intervals around
the panorama. Events consisted of the simultaneous presentation of the colored object on top of a
randomly chosen view from the panorama coupled with the presentation of one of the affective
sounds. Participants were encouraged to integrate the three features together into a single
meaningful event. For example, a red radio could be placed on top of a beach scene with a view
of the ocean while the sound of a woman screaming played in the background. See Cooper &

Ritchey (2019) for further information.

Procedure

Participants completed six interleaved encoding and retrieval phases while undergoing
MRI scanning (see Cooper & Ritchey, 2019). To summarize, during scanned encoding phases

participants were told that they would encounter 24 events consisting of a foreground object, a
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background scene, and an emotionally evocative sound. Participants were asked to remember
each of the events in as much detail as possible, with explicit instructions to try and remember
the color of the foreground object, the position of the object within the background scene, and
the emotional valence of the sound. During scanned retrieval phases, participants were tested on
their ability to reconstruct episode features from memory. At the beginning of each retrieval trial,
participants were shown grayscale versions of the object stimuli from the previous encoding
phase. During this remember period, participants were asked to bring to mind the cued episode in
as much detail as possible. Immediately after the remember period, participants were asked to
report the emotional valence of the episode’s sound using a confidence scale. The confidence
scale asked participants to identify their response to the emotional valence question as either with
high confidence or with low confidence. After reporting the sound’s valence, participants were
asked to report the quality of their memory for the remaining two features in a counterbalanced
order. Specifically, participants were presented with the object image in a random color on top of
a random view from the correct background scene. Participants were instructed to reconstruct the
color of the target image using an interactive 360-degree color wheel and to position the object

within the background scene using a similar interactive 360-degree panoramic scale.

FMRI data acquisition

MRI scanning was performed at the Harvard Center for Brain Science using a 3T
Siemens Prisma MRI scanner with a 32-channel head coil. Structural MRI images were collected
using a T-1 weighted multiecho MPRAGE protocol with a field of view = 256 mm, 1 mm
isotropic voxels, 176 sagittal slices with an interleaved acquisition, TR = 2530 ms, TE =
1.69/3.55/5.41/7.27 ms, flip angle = 7 degrees, phase encoding from anterior-posterior, parallel

imaging = GRAPPA, and an acceleration factor of 2. Functional images were acquired using a

10
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whole brain multiband echo-planar imaging sequence with a field of view of 208 mm, 2 mm
isotropic voxels, 69 slices at T > C -25.0 with interleaved acquisition, TR = 1500 ms, TE = 28
ms, flip angle = 75 degrees, anterior-posterior phase encoding, parallel imaging with GRAPPA,
and an acceleration factor of 2. A total of 6 scan runs were collected, each of which consisted of

466 TRs.

Analyses
Behavioral Data

Behavioral data from the dataset consisted of trialwise error values measured in degrees
for the object color and scene position features and of binary data (i.e., 1: correct; 0: incorrect)
for the sound valence feature (i.e., collapsed across confidence). For consistency across
behavioral measures, we transformed the object color and scene position measures into binary
measures representing whether a response was correct (1) or incorrect (0), similar to what we
have done previously (Cooper & Ritchey 2019). This was done by taking any trial with an error
smaller than the accuracy threshold (see below) and giving it a score of 1 and taking any trial
with an error greater than the accuracy threshold and giving it a score of 0. Descriptive statistics
of our behavioral variables are detailed in Table 1.

The accuracy threshold was determined by fitting two probability density functions to
group aggregate data within a mixture modeling framework and is described in detail in Cooper
and Ritchey (2019). In brief, Cooper and Ritchey (2019) estimated (for the color and scene
features separately) the probability that each error resulted from the von Mises as opposed to the
uniform distribution. Errors that had less than a 50% chance of fitting the von Mises distribution

were labeled as incorrect. This analysis resulted in a threshold of +/- 57 degrees for the object

11
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color feature and +/- 30 degrees for the scene position feature and served as our threshold for

labeling a response as “correct” or “incorrect”.

MRI Preprocessing

All preprocessing of the MRI data was performed using FMRIPrep v1.0.3 (Esteban et al.,
2019). Data were preprocessed using the same steps as in Cooper & Ritchey (2019). First, each
T1w volume was corrected for intensity non uniformity and skull-stripped. Spatial normalization
to the ICBM 152 Nonlinear Asymmetrical template version 2009¢ was performed through
nonlinear registration, using brain-extracted versions of both the T1w volume and template. All
analyses reported here use structural and functional data in MNI space. Brain tissue segmentation
of cerebrospinal fluid (CSF), white-matter (WM), and gray-matter (GM) was performed on the
brain-extracted T1w image. Functional data was slice time corrected, motion corrected, and
corrected for field distortion. This was followed by co-registration to the corresponding T1w
using boundary-based registration with 9 degrees of freedom. Physiological noise regressors
were extracted using CompCor. A mask to exclude signals with cortical origin was obtained by
eroding the brain mask, ensuring it only contained subcortical structures. Six aCompCor
components were calculated within the intersection of the subcortical mask and the union of CSF
and WM masks calculated in T1w space, after their projection to the native space of each
functional run. Framewise displacement was also calculated for each functional run. No
smoothing of the data was performed. For further details of the pipeline please refer to the online

documentation: https://fmriprep.readthedocs.io/en/1.0.3/index.html. Entire scan runs were

excluded from further analysis if more than 20% of frames had a framewise displacement

exceeding 0.3mm. Spike regressors were additionally created and added to our trialwise models

12
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(detailed below) by flagging all frames that had a framewise displacement greater than 0.6mm.

In total, 6 subjects had a single scan run excluded from further analysis due to excessive motion.

Trialwise Response Estimates

To estimate trialwise response estimates, we used a multi-model approach proposed by
Mumford and colleagues (2012) and implemented in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/)
using in house MATLAB (https://www.mathworks.com/products/matlab.html) scripts. In this
approach, a separate general linear model (GLM) is built to estimate the amplitude of the BOLD
response for each trial by modeling the response for each trial using its own dedicated regressor
and modeling all other trials as a separate regressor (including the following nuisance regressors:
translation in the X, y, and z dimensions; rotation in pitch, roll, and yaw; the first 5 principal
component from aCompCorr, framewise displacement, and spike regressors censoring high
motion frames). In total, 3888 GLMs were constructed — one for each trial in our dataset.
Encoding and retrieval phases for our experiment were interleaved, such that each scan run had
24 encoding trials followed by 24 retrieval trials. The GLMs for the current study were restricted
to TRs encompassing the retrieval trials from Cooper and Ritchey (2019), i.e., excluding the
encoding trials. Each retrieval trial was modeled by convolving SPM12’s hemodynamic response
function with a stick function placed at the onset of the remember period of each retrieval trial.
The statistic used as our estimate of the BOLD response was the t-statistic for the regressor
corresponding to each individual trial. The t-statistic provides a more sensitive measure than beta
values when searching for information within the brain (Misaki et al., 2010) and downweights
noisy voxels, allowing them to have a smaller influence on results. Trialwise response estimates
were extracted from our regions of interest (ROIs) averaged within each ROI and submitted to

further analysis.

13
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ROIs

The ROIs for the present analysis are the same ones used in a previous study from our lab
investigating interactions among PM regions (Cooper et al., 2021). The ROIs were created using
a combination of cortical ROIs from the ‘Default A’ and ‘Default C’ subnetworks from the
Schaefer Atlas (Schaefer et al., 2018) and a hippocampal ROI from a probabilistic parcellation
(Ritchey et al., 2015). These anatomical ROIs were combined with a meta-analytic map
generated using Neurosynth (Yarkoni et al., 2011) using the search term “episodic”. Functional
peaks from this map within regions of the PM network were selected and ROIs were drawn
around these peaks such that they were of equal size and each contained 100 contiguous voxels.
These ROIs were additionally constrained to the left hemisphere because cortical memory
retrieval effects are often found to be strongest in the left hemisphere of the brain, which was
also evident in the meta-analytic map used to create the ROIs. The final set of ROIs included the
posterior hippocampus (pHipp), the parahippocampal cortex (PHC), the retrosplenial cortex
(RSC), the precuneus (Prec), posterior cingulate cortex (PCC), posterior angular gyrus (pAG),
anterior angular gyrus (aAG), and the medial prefrontal cortex (MPFC). We previously
examined the functional connectivity of these ROIs in an independent dataset (Cooper et al.,
2021). In a community detection analysis, we found evidence for subnetwork organization of the
PM network, including a ventral PM subnetwork including RSC, PHC, and pAG and a dorsal
PM subnetwork including the MPFC, pHipp, Prec, PCC, and aAG. Although there exist multiple
possible subnetwork organizations of the PM network, we were motivated by these previous
findings to examine a ventral-dorsal subnetwork architecture. We additionally note that this
subnetwork grouping appears to align with correlations among the ROIs observed in the current

dataset (see Table 1).

14


https://paperpile.com/c/ObhI6g/Bm9wg
https://paperpile.com/c/ObhI6g/W0Ms
https://paperpile.com/c/ObhI6g/bqr1T
https://paperpile.com/c/ObhI6g/cR29

NETWORK CONTRIBUTIONS TO RECOLLECTION

Multilevel Structural Equation Modeling

The present study took a multilevel structural equation modeling (SEM) approach to
investigate functional heterogeneity in the PM network. Multilevel SEM allows for the
estimation of latent constructs and for modeling of structural paths amongst those latent
constructs in datasets that have a nested structure. This approach is optimal for the current
dataset that contains observations of ROI activity across trials that are nested within subjects. In
our data, trials are the level-1 units and subjects are the level-2 units. Because of the nested
structure, the data have two sources of variation: one due to the difference between trials within
subjects and the other due to the difference between subjects. For the neural data, the former
represents where the BOLD response estimate (i.e., the t value) is relative to that subject’s own
average across all trials and the latter represents where each subject’s average t value compared
to other subjects' average t values. Our primary interest was in modeling within-subject, trial-to-
trial variability. The between-subject variability in the neural data could represent meaningful
differences in individual characteristics, but we did not have a-priori hypotheses about these
individual differences in the present sample. Therefore, in the multilevel model for the neural
data (see below), the between-subject model is specified only so that this source of variability is
accounted for and therefore the statistical validity of the within-subject model is not
compromised. For the behavioral data, the two sources of variation represent differences in
overall memory quality on a trial-to-trial basis and differences in overall accuracy across trials on
a subject-to-subject basis.

All modeling was performed using Mplus software version 8.2 (Muthén & Muthén, 1997-
2017). Models were determined to have acceptable levels of model fit if they displayed the

following fit indices: root mean squared error of approximation (RMSEA) < .06, comparative fit
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index (CFI) > .95, and a standardized root mean squared residual (SRMR!) < .08 (Hu & Bentler,
1999). For SRMR, a separate index was calculated for the within cluster (i.e., within subject) and
between cluster (i.e., between subject) levels. The models were estimated using the MLR
(maximum likelihood with robust standard errors) and the WLSMYV (weighted least squares
means and variances adjusted) estimators in Mplus. The cutoff values cited above are ones that
are commonly applied in the SEM literature. We note that these values were originally
determined based on simulations of SEMs on continuous variables estimated using a maximum
likelihood estimator, whereas our behavioral data contains binary variables and all of our models
that contain the behavioral variables use the WLSMYV estimator. A recently published report by
Xia and Yang (2019) suggests that models fit on categorical data using an estimator similar to
MPlus’s WLSMYV estimator may be overly optimistic when using traditional fit index cutoffs. In
the absence of alternative model fit thresholds, we interpret our results with respect to traditional
model fit index thresholds. We do, however, use caution and carefully examine all statistics
available to make a judgment with respect to model fit. For a summary of all of the models fit in

the current manuscript, see Appendix A.

Preliminary Analyses

Prior to performing our multilevel SEM analysis, we verified the necessity of a multilevel
analysis by calculating intraclass correlations (ICCs) for each of our variables of interest and by
fitting a “null” model designed to test if there is any structure in the between-subjects covariance
matrix (see Jak et al., 2013). The ICC is a statistic that reflects the proportion of variance of a

variable that can be attributed to individual differences amongst our subjects. Datasets that

!'In multilevel models, SRMR at the between-cluster level may be large because the observed variances are small,
not necessarily because there is a large extent of misfit.
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contain variables that have ICCs close to 0 will not see an additional benefit from multilevel
modeling. In the null model, a saturated (i.e., a model that estimates parameters for all possible
variances and covariances amongst variables) was specified for the within-subject covariance
structure, and a nu/l model in which all of the variances and covariances are constrained to be
zero was specified for the between-subject covariance structure. If this model fails to
satisfactorily fit the data, it suggests that the between-subject variances need to be allowed in the
model and therefore calls for a two-level model. If the ICCs are greater than 0.1 or the null

model fits the data poorly, we will conclude that multilevel modeling is required for our dataset.

Measurement Models

After verifying the necessity of multilevel modeling, we examined the measurement
structure underlying our eight ROIs. We tested two measurement models: a single-factor model
for the integrated PM network hypothesis and a two factor model for the two subnetworks
hypothesis. In the single-factor model, the eight PM network regions loaded onto a single latent
factor at the within-subject level. We did not impose any restriction at the between-subject level
because we did not have a-priori hypotheses about the nature of the between-subject variability
in neural data. In the two factor model, RSC, PHC, and pAG loaded on one factor representing
the ventral posterior medial network (VPMN), and MPFC, pHipp, Prec, PCC, and aAG loaded on
the other factor representing the dorsal posterior medial network (dPMN) (see Figure 1). Again,
we did not impose any restriction at the between-subject level. For the measurement models for
neural data, the MLR estimator was used.

We next fit a two level categorical factor model to the behavioral data. This model
contained a single latent factor that loaded onto each of our memory measures (i.e., scene

position memory, object color memory, and sound valence memory). We placed restrictions on
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this model such that it had cross-level metric invariance — the factor loadings for level 1 (i.e.,
within-subjects, across trials) of the model were set equal to the corresponding factor loadings
for level 2 (i.e., between-subjects, across subjects) of the model. These restrictions were placed
on the model for two reasons. First, the cross-level metric invariance model facilitates the
interpretation of the latent construct at both levels as being the within-subjects and between-
subjects components of the same underlying construct. In this context, the level 1 latent variable
represents overall memory for each episode whereas the level 2 latent variable represents
participant’s overall memory ability. Second, the cross-level metric invariance model limits the
number of free parameters in the model, avoiding possible estimation problems common to
overparameterized models (see Jak, 2019). Because the behavioral variables were binary, the
WLSVM estimator in MPLUS was used to estimate this model. This behavioral model with
cross-level metric invariance was then stitched together with the neural model to form our final

measurement model.

Structural Models

After establishing good-fitting measurement models, the neural and behavioral models
were stitched together to form a single model (see Figure 1). We subsequently fit a series of
models to the data to quantify the contribution of the PM network (or PM subnetworks) to
memory quality and whether any of the regions made a region-specific contribution to memory
quality over and above their network (or subnetwork) contribution. For these models, the
WLSMYV estimator was used. The baseline structural model contained a structural path from the
PM Network (or PM subnetworks) latent variable(s) to the memory quality latent variable at the
within-subjects level. After fitting the baseline model, a series of models were fit to test for

region-specific contributions (i.e., one at a time). Each of these models included an additional
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structural path from the region to memory quality. This direct path reflects the predictive effect
of the region after accounting for its participation in the network (or subnetwork). In a secondary
set of analyses, we examined paths between the neural variables and memory outcomes for each
individual event feature, allowing memory features to covary but removing the latent variable for

overall memory quality.
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mean  sd min  max ICC Correlations
RSC PHC pAG aAG pHipp Prec PCC MPFC SCENE COLOR
RSC 0.049 0.170 -0.567 0.808 0.138
PHC -0.028 0.181 -0.763 1.048 0.155 0.324
pAG -0.007 0.315 -1.292 1.232 0.138 0.296 0.330
aAG 0.188 0.352 -1.346 1.648 0.184 0.296 0.119 0.295
pHipp  0.077 0.156 -0.614 1.182 0.022 0.191 0.184 0.135 0.276
Prec 0.116 0.215 -0.923 0.971 0.123 0.326 0.265 0.247 0.356 0.285
PCC 0.144 0.218 -0.614 1.044 0.142 0.282 0.173 0.189 0.418 0.283 0.410
MPFC  0.135 0.279 -1.176 1.308 0.036 0.162 0.101 0.066 0.342 0.285 0.282 0.402
SCENE 0.675 0.468 0.000 1.000 0.205 0.194 0.130 0.086 0.050 0.051 0.094 0.055 -0.026
COLOR 0.724 0.447 0.000 1.000 0.135 0.070 0.046 0.024 0.046 0.032 0.081 0.061 -0.033 0.251
SOUND 0.758 0.429 0.000 1.000 0.118 0.091 0.070 0.034 0.039 0.066 0.099 0.078 0.021 0.229 0.170

Table 1: Descriptive statistics for variables of interest. Neural measures (RSC-MPFC) are the mean t-value across all voxels within that ROI from the single-trial
estimation step. Behavioral measures (SCENE, COLOR, SOUND) are binary, coded such that 1 = correct and 0 = incorrect. Correlations between neural
measures are Pearson’s Correlation Coefficients. Correlations between the behavioral and neural variables are Point-Biserial Correlations Coefficients. All
descriptive statistics, excluding the ICCs, were calculated ignoring the nested structure. pHipp = posterior hippocampus, Prec = precuneus, PCC = posterior
cingulate cortex, MPFC = medial prefrontal cortex, PHC = parahippocampal cortex, RSC = retrosplenial cortex, aAG = anterior angular gyrus, pAG = posterior
angular gyrus, SCENE = Scene Position Correct, COLOR = Object Color Correct, SOUND = Sound Valence Correct, sd = standard deviation, ICC = interclass

correlation coefficient.

20



NETWORK CONTRIBUTIONS TO RECOLLECTION

Results

Preliminary Analyses

The ICCs were larger than 0.1 for the neural measures, except for pHipp whose ICC was
.022 and MPFC whose ICC was .036. The null model for the neural data did not fit the data well
(Model 1: y*>=2951.578, df = 36, p < .001, RMSEA = 0.144, CFI = 0.000, SRMRwithin = 0.047,
SRMRubetween= 0.352, AIC =-10496.752, BIC =-10221.064). Thus, we concluded that multilevel
modeling was appropriate for our neural data. For the behavioral measures, the ICCs ranged
from .118 to .205, indicating that about 10 to 20% of the variance in the memory measures are
due to between-subjects differences. The null model resulted in adequate fit to the data (Model 2:
x*>=20.882,df =6, p <.01, RMSEA = 0.025, CFI = 0.958, SRMRuithin = 0.000, SRMRbetween=
0.634). However, the fit statistics for the behavioral null model were obtained with the WLSMV
estimator (because the behavioral memory measures were binary) and applying the same criteria
for the WLSMV fit statistics have been shown to be less sensitive to discover model-data misfit
(Xia & Yang, 2019). Thus, considering the large ICC values and the limitation in the
performance of the WLSMYV fit statistics, we concluded that adopting a multilevel model was

also appropriate for the behavioral data.

Measurement Models

The one factor model for the neural data resulted in the following fit statistics (Model 3:
X% =290.442, df = 20, p <.001, RMSEA = 0.059, CFI = 0.905, SRMRuithin = 0.063,

SRMRbetween= 0.005, AIC = -12584.469, BIC =-12208.530). The two factor model fit the data
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well and better than the one factor model (Model 4: x> = 90.096, df = 19, p <.001, RMSEA =
0.031, CFI = 0.975, SRMRuithin = 0.035, SRMRbetween= 0.003, 4/C =-13145.343, BIC = -
12763.138). To further compare model fits, we examined the estimated correlation between the
two latent factors in the two factor model and compared the estimated communality values of the
two models. We reasoned that additional evidence in favor of the two factor model would be
seen if the correlation between the latent factors was estimated to be low-moderate and if the
estimated communality values were all equivalent or higher for the two factor model relative to
the one factor model. We note that the correlation between the vVPMN and dPMN latent variables
was high, but not perfect (» = 0.630 or ~39.7% of variance shared) and the communality values
in the two factor model were all equivalent or higher compared with the one factor model (see
Table 2). Taken together, these results suggest that a two factor model was a better model for the

neural data.

One Factor Two Factor

param est se pval est se pval

pHipp 0.188 0.024 < 0.001 0.193  0.025 < 0.001
Prec 0.397 0.039 < 0.001 0.395  0.039 <0.001
PCC 0.437 0.029 < 0.001 0.479  0.024 <0.001
MPFC 0.251 0.030 < 0.001 0.286  0.032 <0.001
PHC 0.177 0.027 < 0.001 0.344  0.030 <0.001
RSC 0.231 0.036 < 0.001 0.391 0.035 < 0.001
aAG 0.472 0.030 < 0.001 0.485  0.032 <0.001
pAG 0.215 0.038 < 0.001 0.363  0.036 < 0.001

Table 2: Communality Values. Communality value estimates from the One Factor and Two
Factor measurement models. All of the estimated communality values are equivalent or higher in
the Two Factor model compared with the One Factor model. param = parameter, est = estimate
se = standard error, pval = p value. pHipp = posterior hippocampus, Prec = precuneus, PCC =
posterior cingulate cortex, MPFC = medial prefrontal cortex, PHC = parahippocampal cortex,
RSC = retrosplenial cortex, aAG = anterior angular gyrus, pAG = posterior angular gyrus.
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For the behavioral data, the two level categorical single factor model with equality
constraints on the factor loadings across levels fit the data well (Model 5: y*>=0.163, df =2, p <
9218, RMSEA = 0.000, CFI = 1.00, SRMRuwithin = 0.001, SRMRbetween= 0.022). This model has
cross-level metric invariance, meaning that the latent variables at each level can be interpreted as
the within-subject and between-subject components, respectively, of the same construct “overall
memory quality.” Cross-level metric invariance additionally allowed us to calculate the
proportion of variance in the overall memory quality factor that is attributable to individual
differences and trial-to-trial differences. The memory quality factor had an ICC of .329, meaning
that 32.9% of the variability in memory quality comes from individual differences and 67.1% of
the variability comes from trial-to-trial differences. This is advantageous for our purposes, since
our primary interest was explaining trial-to-trial variability in memory quality.

After finding good fitting neural and behavioral measurement models, we proceeded to
fit a joint measurement model by stitching the two factor neural model and the cross-level metric
invariance behavioral model together (see Figure 1; Model 6). At the between subjects level, the
regions were allowed to covary with one another and also allowed to covary with the between-
subject memory quality factor. This joint measurement model fit the data adequately (Model 6:
x*=1534.782, df = 59, p <.001, RMSEA = 0.046, CFI = 0.974, SRMRuithin = 0.034,
SRMRbetween= 0.043). The key parameter estimates for the within-subjects part of this model are
reported in Table 3. This is the model that we then incorporated into our SEM linking the neural

and behavioral variables.
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Between Subjects

Saturated '\Memory/.'
| | | | |_:r‘. \\:: | | Ilr‘ \\" Ilr‘. \\" Ilr‘ \\‘
| | l ] ] T ] ] l l ]
RSC PHC pAG aAG pHipp Prec PCC MPFC SCENE | | COLOR | | SOUND

-~ i . T -
— / - T
. vPMN >. Ii Memory )
. N
., . - __,-i\ —_ ) -
LN \5 B ~ ‘_//‘ ) T

Within Subjects

Figure 1: Measurement Model. A graphical representation of our combined measurement model
including both neural and behavioral variables (Model 6), following the graphing conventions of
E. Kim and colleagues (2016). Our measurement model contained two latent variables for the
neural data at the within-subjects level, a single latent variable for the behavioral data at the
within-subjects level, and a single latent variable representing the behavioral data at the between-
subjects level. The factor loadings for the Memory latent variable were set equal across the
levels. At the between subject level, the eight neural variables were allowed to covary with one
another and with the Memory factor. See Table 3 for standardized parameters of the within-
subjects part of the model. vVPMN = ventral posterior medial network, dPMN = dorsal posterior
medial network, Memory = overall memory quality, pHipp = posterior hippocampus, Prec =
precuneus, PCC = posterior cingulate cortex, MPFC = medial prefrontal cortex, PHC =
parahippocampal cortex, RSC = retrosplenial cortex, aAG = anterior angular gyrus, pAG =
posterior angular gyrus, Scene = scene position feature correct, Color = object color feature
correct, Sound = sound valence feature correct.
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paramHeader param est se pval
vPMN.BY RSC 0.627 0.006 <0.001
PHC 0.567 0.008 <0.001
pAG 0.608 0.007 <0.001
dPMN.BY MPFC  0.516 0.006 <0.001
pHipp 0.437 0.008 <0.001
Prec 0.647  0.007 <0.001
PCC 0.685 0.004 <0.001
aAG 0.711  0.005 <0.001
Memory.BY SCENE 0.707 0.057 <0.001
COLOR 0.465 0.044 <0.001
SOUND 0.460 0.030 <0.001
dPMN.WITH  vPMN 0.634 0.008 <0.001
Memory.WITH vPMN 0.200 0.025 <0.001
dPMN  0.102 0.026 <0.001

Table 3: Measurement Model Standardized Parameter Estimates. Select standardized parameter

estimates in the within-subject level model (Model 6). This table was created using the R

package MplusAutomation (Hallquist & Wiley, 2018). Parameter headers (paramHeader) follow
standard Mplus syntax, where the BY keyword indicates a loading parameter (lambda A) and the
WITH keyword indicates a covariance parameter (theta 6). param = parameter, est = estimate, se
= standard error, pval = p value. See Figure 1 caption for abbreviations.

Structural Models

Overall Memory Quality Models

We next estimated a series of structural models to tease apart network and region specific

contributions to overall memory. In the first model (Mode! 7), each of the two subnetworks was

allowed to have a structural path to overall memory quality. In this baseline model, the vVPMN
uniquely (i.e., when statistically controlling for the dPMN) predicted the overall quality with

which events were remembered while the dPMN did not (see Figure 2). When modeled
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separately, however, both the vPMN (8 =0.190, S.E. = 0.021, p <0.001) and the dPMN (f =
0.170, S.E. = 0.022, p < 0.001) predicted Memory Quality (i.e., in models that included only one
of the two paths). Models estimating region-specific contributions to overall memory quality are
depicted in Figure 2 and structural path parameter estimates for these models are reported in
Table 4. Of the PM network regions, only the MPFC displayed a statistically significant region-
specific ability to predict Memory Quality when controlling for its participation in its PM
subnetwork (see Table 4; alpha = 0.05, FWE corrected for multiple comparisons). Inspection of
the parameter estimates from this alternate model (Model 07uprc) suggests that the MPFC had a
negative relationship with Memory Quality when controlling for its participation in the dPMN.
The absence of other region-specific effects suggests that the contributions of the other PM

regions were well described by the subnetwork level effects.
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Title paramHeader param  est se pval

Model 07pHipp  MEMQ.ON  PHIPP  0.059 0.030 0.048
Model 07pr.c MEMQ.ON PREC 0.110 0.045 0.016
Model 07pcc MEMQ.ON PCC 0.066 0.081 0.420
Model 07mprc - MEMQ.ON  MPFC -0.158 0.037 < 0.001
Model 07pvc MEMQ.ON PHC 0.097 0.090 0.282
Model 07rsc  MEMQ.ON RSC 0.026 0.045 0.575
Model 07a.ac MEMQ.ON  AAG 0.047 0.057 0.415
Model 07pac  MEMQ.ON PAG -0.063 0.051 0.218

Table 4: Key Parameter Estimates from Region-Specific Models. Table reports the key
parameter estimates for the family of models delineating region-specific contributions. This table
was created using the R package MplusAutomation (Hallquist & Wiley, 2018). Parameter
headers (paramHeader) follow standard Mplus syntax, where the ON keyword indicates a path
parameter (f3). param = parameter, est = estimate, se = standard error, pval = p value. See Figure
1 caption for abbreviations. Listed p values are uncorrected for multiple comparisons.

region-specific
aAG pHipp Prec PEE MIBERE B == mmm s m e : contribution

/ a0 R Y -0.042 (09 .

dPMN -050) - SCENE
\%_ _ // \__ v _—

'\/ Memory \/ COLOR
o 26 (0 049) e
- “\\% SOUND
L vPMN )
RSC PHC pAG

Figure 2: Path Diagram. Path diagram representing the within-subject level of our two level
baseline model (i.e., Model 7) with standardized parameter estimates (standard error in
parentheses). The dotted line depicts the additional region-specific contribution path added in the
region-specific family of models detailed in Table 4. See Figure 1 caption for abbreviations. * =
p <.05,**=p < .01, ***=p<.001.
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Memory Feature Models

Our primary aim was to examine the region-specific and network-level contributions of
PM regions to overall memory quality during retrieval. Our experimental design, however, also
afforded us the opportunity to examine their contributions to the retrieval of different memory
features (i.e., scene perspective, object color, sound valence). To examine this, we updated our
joint measurement model so that the behavioral measures simply covaried with one another
instead of loading onto a common factor. This updated measurement model fit the data well
(Model 8: x> =683.198, df =37, p <.001, RMSEA = 0.067, CFI = 0.965, SRMRuwithin = 0.030,
SRMRGbetween= 0.000). Using this measurement model, we then fit a series of structural models to
examine the network-level and region-specific contributions to each of the features of our events
(see Figure 3). Key parameter estimates from this family of models can be found in Table 5. The
baseline model (Model 9; see Figure 3) suggests that there were statistically significant network-
level contributions of the vVPMN and the dPMN to scene feature memory, such that the vVPMN
contributed positively to scene memory whereas the dPMN contributed negatively. No other
network-level effects were statistically significant, although it is worth noting that in contrast to
its negative relationship with scene memory, the dPMN trended toward positive relationships
with sound memory. Interestingly, the parameter estimates for the covariances amongst the
residuals of the behavioral variables suggest that there remains a joint “holistic” remembering
property that is not explained by PM network activity (see Appendix B for a full table of model
parameters). The results from a family of models containing region-specific paths from each
region to each memory feature (see Figure 3, Table 5) suggest that the MPFC made a region-
specific negative contribution to object color memory. No other regions made a region-specific

contribution after controlling for family-wise error using a Bonferroni correction.
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RSC PHC pAG

Figure 3. Memory Feature Model Path Diagram. Path diagram representing our feature specific
memory model (Model 9) capturing network-level and region-specific contributions to feature
memory. The baseline model contained paths from each subnetwork latent variable to each
memory feature (i.e., 6 in total, solid lines). The region-specific models contained all of the paths
from the baseline model with the addition of paths from a single region to each memory feature
(i.e., 3 additional paths, dotted lines), iterated across the entire set of regions. See Table 5 for
parameter estimates.

Model paramHeader param  est se pval
Model 9 COLOR.ON VPMN -0.004 0.047 0.933
COLOR.ON DPMN 0.041 0.050 0.417

SOUND.ON VPMN 0.006 0.043 0.882
SOUND.ON DPMN 0.114 0.059 0.052
SCENE.ON VPMN 0.277 0.043 0.000
SCENE.ON DPMN -0.147 0.040 0.000
Model 9pHipe COLOR.ON PHIPP 0.015 0.024 0.544
SOUND.ON PHIPP 0.038 0.032 0.234
SCENE.ON PHIPP 0.045 0.033 0.163
Model 9prec COLOR.ON PREC 0.073 0.049 0.135
SOUND.ON PREC -0.001 0.040 0.971
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SCENE.ON PREC 0.061 0.087 0.485
Model 9pcc COLOR.ON PCC 0.026 0.050 0.600
SOUND.ON PCC 0.014 0.078 0.863
SCENE.ON PCC 0.083 0.126 0.511
Model 9mprc COLOR.ON MPFC -0.096 0.027 0.000
SOUND.ON MPFC -0.040 0.036 0.272
SCENE.ON MPFC -0.089 0.038 0.020
Model 9pHc COLOR.ON PHC 0.012 0.105 0.907
SOUND.ON PHC  -0.004 0.094 0.966
SCENE.ON PHC 0.052 0.046 0.261
Model 9rsc COLOR.ON RSC -0.027 0.055 0.616
SOUND.ON RSC 0.008 0.043 0.847
SCENE.ON RSC 0.062 0.046 0.177
Model 9rac COLOR.ON PAG 0.025 0.060 0.674
SOUND.ON PAG  -0.004 0.037 0.923
SCENE.ON PAG -0.079 0.033 0.016
Model 9aac COLOR.ON AAG 0.013 0.066 0.845
SOUND.ON AAG -0.056 0.053 0.285
SCENE.ON AAG 0.047 0.089 0.596

Table 5. Memory Feature Models: Parameter Estimates. Key parameter estimates from a family
of memory feature specific models. Statistically significant path estimates that survive a
Bonferroni correction are highlighted in yellow. This table was created using the R package
MplusAutomation (Hallquist & Wiley, 2018). Parameter headers (paramHeader) follow standard
Mplus syntax, where the ON keyword indicates a path parameter from the variable listed in the
“param” column to variable listed in the “paramHeader” column. param = parameter, est =
standardized estimate, se = standard error, pval = p value. See Figure 1 caption for abbreviations.
See Figure 3 for path diagram. Listed p values are uncorrected for multiple comparisons.

Discussion

In the current study, we examined heterogeneity in the function of the PM network using
a multilevel SEM framework. Our measurement models indicated that a two factor model with

latent factors representing ventral and dorsal subnetworks was the best model for our neural data
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compared to a single-factor model grouping all PM regions together. Our structural models
indicated that the contributions of individual regions of the PM network to memory quality are
largely subsumed by subnetwork-level contributions, with the exception of the MPFC which
made a unique, region-specific contribution to memory quality. Interestingly, the region-specific
contribution of the MPFC was found to be negative, such that less MPFC activation (when
controlling for subnetwork membership) was associated with more accurate recollections.
Feature specific analyses revealed that the dissociation between vVPMN and dPMN was driven
largely by their distinct contributions to memory for scene information, compared to object color
or sound valence information. Together, these results reveal new insights into how memory
outcomes can be explained by a combination of network-level and region-specific factors.

Our results support the presence of dissociable subnetworks within the PM network
(Andrews-Hanna et al., 2010; Barnett et al., 2021; Buckner & DiNicola, 2019; Cooper et al.,
2021). Previous studies have shown evidence for highly-related subnetworks during rest
(Andrews-Hanna et al., 2010; Barnett et al., 2021) and during movie-watching (Cooper et al.,
2021). Our results extend these findings, showing evidence that a similar subnetwork
organization explains the trialwise involvement of PM regions during retrieval of multi-feature
events. Our models also showed that the coactivation of the vVPMN makes contributions to
memory quality that go above and beyond those made by coactivation of the dPMN (see Figure
2). The vPMN has previously been shown to modulate its connectivity in response to event
transitions, and individual differences in episodic memory ability have been linked to dynamic
changes in vVPMN connectivity during movie watching (Cooper et al., 2021). The vPMN regions
have also been shown to represent similar information during a memory-guided decision making

task (Barnett et al., 2021). The vPMN is strongly related to episodic retrieval and
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autobiographical remembering, while portions of the dPMN have been linked to mentalizing
about the mental states of others (Andrews-Hanna, Saxe, et al., 2014; Andrews-Hanna,
Smallwood, et al., 2014). Additional evidence suggests that the vVPMN may be particularly
responsive to remembering and orienting towards visual-spatial information and the dPMN
towards people (Peer et al., 2015; Silson et al., 2019) and the thematic elements of
autobiographical remembrances (Gurguryan & Sheldon, 2019).

The fact that the vPMN in our dataset was uniquely related to overall memory quality
could be reflective of our experimental design, which required the recollection of fine grained
visual-spatial details. At least two other aspects of our results seem to support this conclusion.
First, memory for the scene feature—which in our experimental design requires the recollection
of the fine grained visual-spatial details—loaded most strongly onto our overall memory quality
factor (see Table 3). Second, the vVPMN significantly contributed only to scene feature memory
in our memory feature models (see Table 5). The specific role of the vVPMN in supporting scene
memory is consistent with recent frameworks proposing that the anterior hippocampus and
anterior regions of the neocortex support memory for coarse, gist-level, schematic details in
memory whereas posterior regions of the hippocampus and the neocortex— including PHC,
RSC, and posterior AG— support memory for fine grained perceptual details, especially spatial
details (Robin & Moscovitch, 2017; Sekeres et al., 2018; Sheldon et al., 2019). In contrast, the
dPMN was negatively correlated with scene memory and tended to be positively related to sound
memory, which may have been mediated by relatively coarse representations of the sound
valence that were sufficient to drive memory for this feature.

When taking into consideration the covariance among PM network regions, we did not

find much evidence for independent, region-specific contributions, suggesting that the network-
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level effects could adequately account for their roles in predicting memory outcomes.
Nevertheless, we had expected that there might be more region-specific effects, based on
evidence that many of these regions play specialized roles in recollection. There are several
reasons for why we did not see the region-specific effects that we had hypothesized. One
possibility is that there is something unique about our experimental paradigm that did not allow
us to observe region-specific contributions. For example, the hippocampus may have emerged as
making a region-specific contribution if we had operationalized our measure of memory success
to more specifically target the hippocampus’ proposed function. The hippocampus’ contribution
to predicting overall memory success may be subsumed by the network level contribution, but
this may not be the case if the measure was more specific to successful pattern completion, for
instance. Another possibility lies in how we modeled the neural response. In the current report,
we modeled the neural response by assuming that it was transient, starting at the presentation of
the memory cue during our ‘remember’ periods. Previous research suggests that the memory-
related neural response in the angular gyrus is not transient with respect to the onset of recall, but
is instead sustained throughout the duration of the recall period (Vilberg & Rugg, 2012, 2014). It
is possible that modeling a sustained response throughout the recall period would allow for the
identification of region-specific contributions of the angular gyrus. Our experimental design only
allowed for 4 seconds for recall, so the responses captured here are likely to be similar to the
transient responses seen in Vilberg & Rugg (2012, 2014). As an additional test of this possibility,
all of our models were rerun using single trial estimates modeling the entire 4-second retrieval
period. The key results of the current report remained unchanged. Another possible explanation
is that the identification of region-specific contributions within our framework assumes that the

operations and representations of individual regions can be decoupled. However, in a typically
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functioning brain, the activity of two brain regions may be highly correlated if the involvement
of one brain region depends on the output of the other, even if they are performing otherwise
separate functions. Thus, although the current results suggest strong evidence for network-level
effects in the context of the typically functioning brain, the roles of individual brain regions may
be better revealed in studies documenting the consequences of region-specific disruptions, such
as studies of patients with focal brain damage (Corkin, 2002; Moscovitch & Winocur, 1992), or
in electrophysiological studies that can resolve fine temporal differences in information
processing among regions in the same network (Fox et al., 2018; Treder et al., 2021).

The one region in which we found a region-specific effect was the MPFC. The MPFC has
been commonly described as part of the PM network (Ritchey & Cooper, 2020; Rugg & Vilberg,
2013) and is thought to support the formation and retrieval of gist level, schema-based
representations (Robin & Moscovitch, 2017; Schlichting & Preston, 2015; Sekeres et al., 2018;
van Kesteren et al., 2012). Our results indicated that, after accounting for MPFC’s participation
in the dPMN subnetwork, the MPFC had a region-specific negative relationship with memory
quality. The negative relationship between MPFC and memory success is not without precedent,
with fMRI experiments of memory encoding often finding that less MPFC activation is
associated with greater subsequent memory, particularly for objective compared to subjective
memory judgments (Maillet & Rajah, 2014). This MPFC activation is thought to be associated
with mind-wandering or off-task thoughts (Christoff et al., 2009) which interferes with the
formation of a lasting memory trace. The current experiment, however, was primarily focused on
retrieval where previous reports have indicated a positive relation between MPFC activity and
measures of subjective memory success (H. Kim, 2016; McDermott et al., 2009; Spaniol et al.,

2009). One possible explanation of this surprising result is that it reflects the role of the MPFC in
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schema based memory. Our experimental design relies on participants arbitrarily associating
event elements at a fine level of detail. If participants were relying on a schema to meet our task
demands, this could potentially lead to decreased performance on the fine-grained memory
measures in our experiment. However, in the absence of any independent measures of schema
use in our experiment, another plausible interpretation is that the observed negative relationship
may be the result of a statistical artifact. In the current study, the MPFC was only weakly
correlated with the quality with which events were remembered, but was still positively
correlated with other regions of the network (see Table 1). It was only after controlling for its
subnetwork participation that we saw a strong negative contribution to memory. Thus, the result
seen here could be the result of a conditioning-on-a-collider bias, also known as Berkson'’s
paradox (Berkson, 1946; Liibke et al., 2020). In this paradox, two variables that, in reality, do
not have a statistical association are induced to have a negative association by statistically
controlling for a variable that they both cause. In the current scenario, it could be the case that
MPEFC activation and memory quality are (at least in part) correlated with increases in PM
network coactivation, but memory quality and MPFC activation are not related to one another.
The SEM methodology applied in the current report has a number of distinct advantages.
Firstly, the current SEM approach has an advantage over previous reports of brain-behavior
correlations in that it can simply and simultaneously capture the network-level and region-
specific contributions of brain regions to behavioral phenomena. Second, the current report
expanded upon previous deployments of this methodology (Bolt et al., 2018) by applying a
multilevel SEM to simultaneously model within-subjects and between-subjects variation in the
BOLD response, seeking to relate trial-by-trial, within-subjects variability in BOLD response to

trial-by-trial variability in memory while controlling for individual differences. Thirdly, our
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dataset has a distinct advantage over previous studies of episodic remembering because it
incorporates multiple measures of the quality of retrieval of an episode. This allowed us to model
overall memory quality as a latent variable loading onto our measures of memory for 3 different
features of each episode. By operationalizing memory success in this way, we were able to
capture trial-to-trial variability in the joint remembering of event features. This is key, because
holistic recollection is thought to be a key characteristic separating episodic remembering from
other forms of memory (Tulving, 1983).

Our SEM approach is related to, but distinct from, other methods for relating regions and
networks to episodic remembering. For example, previous studies have used data-driven,
hierarchical clustering methods to parcellate PMN subnetworks (Andrews-Hanna et al., 2010;
Barnett et al., 2021; Cooper et al., 2021), but did not relate trialwise coactivation within those
subnetworks to episodic remembering. Another set of related methodological approaches is
effective connectivity approaches. Specifically, some effective connectivity approaches also use
SEM, but they use SEM to attempt to test hypothetical models of the underlying causal relations
amongst regions of interest (e.g., McIntosh & Gonzalez-Lima, 1994; see Mclntosh & Protzner,
2012 for review). The latent variable modeling approach applied here, in contrast, does not
attempt to make such causal inferences. Instead, our approach uses a latent variable to capture
the coactivation seen within a network and relates this coactivation to a behavioral variable of
interest. Lastly, the current approach is conceptually similar to partial least squares (PLS)
analyses (Krishnan et al., 2011; Mclntosh et al., 1996; McIntosh & Lobaugh, 2004). PLS
involves maximizing the covariation between signal extracted from voxels of the brain and
behavior, extracting latent variables reflecting distributed coactivation across the brain that

explains variance in some behavior of interest. The SEM approach used in the current report is
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similar to PLS in that it also estimates a latent variable using the covariation of regional
activation profiles, but has the advantage of being exclusively hypothesis driven and
computationally and conceptually simpler. Many PLS applications (but not all Krishnan et al.,
2011), in contrast, are data driven in nature. Additionally, PLS typically operates on all of the
voxels collected during the course of an experiment, whereas the current approach operates on a
set of hypothesized ROIs.

The current report makes an important contribution to the literature on the role of the PM
network in episodic remembering. It does, however, have its limitations. Our multilevel approach
allowed us to model trialwise neural activation and behavioral profiles while controlling for
individual differences. Multilevel SEM, however, also allows researchers to build models of
individual differences in neural activation and behavior beyond simply controlling for this
important source of variability. We did not attempt to model individual differences in the current
report in large part because our dataset would be underpowered to do so. Future research could
utilize larger sample sizes to model individual differences related to particular participant
characteristics (see Bolt et al., 2018 for an SEM application to individual differences).
Additionally, the current analysis was focused on a set of a-priori ROIs that were the same
across individuals. Although this is a good starting point and is a strategy often adopted by
researchers, recent research in high-precision functional mapping suggests that individually
defined ROIs may provide more accurate insights into network organization and function
(Buckner & DiNicola, 2019; Gilmore et al., 2021). Finally, although our memory measures
captured multiple aspects of each episode (specifically, memory for multiple episodic features),
they may not have adequately captured the functioning of core alliances within the PM network

(Ritchey & Cooper, 2020).
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In conclusion, the brain is simultaneously composed of large scale brain networks and
individual regions composing those networks. Here we demonstrate the importance of
considering both network and regional levels of analysis when studying brain-behavior
relationships, finding evidence in favor of a specific subnetwork organization of the PM network
in its relation to episodic memory outcomes. Future work should continue to characterize the PM
network by examining how these levels of analysis differentially support the various

subprocesses and representations underlying episodic recollection.
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Appendix A

Model Description Estimator Chi-square (df) RMSEA CFI SRMR_W SRMR_B

Preliminary

1 Neural MLR 2951.578 (36), p<.001 .144 .000 .047 352
Preliminary

2 Behavioral WLSMV  20.882 (6), p=.002 .025 .958  .000 .634
Preliminary

Measurement models

3 One Factor MLR 290.442 (20), p<.001  .059 905 .063 .005
Neural

4 Two Factor MLR 90.096 (19), p<.001 .031 .975 .035 .003
Neural

5 Latent Variable =~ WLSMV 0.163 (2), p=.922 .000 1.000 .001 .022
Behavioral

6 Stitched Model WLSMV 534.782 (59), p<.001 .046 974 .034 .043

8 Stitched Model WLSMV  683.198 (37), p <.001 .067 965  .030 .000
Without
Behavioral
Latent Variable

Structural models

7 Behavioral WLSMV See Table 4 and Figure 2
Latent Variable

9 Without WLSMV  See Table 5 and Figure 3
Behavioral

Latent Variable

Appendix A Table Al: Summaries of all models included in the manuscript along with their

model fit indices. The preliminary models were used to establish the appropriateness of the
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multi-level modeling approach for the neural (Model 1) and behavioral (2) data. The

measurement models characterized the loading of individual measures onto their corresponding

latent variables, separately for the neural (3, 4) and behavioral (5) data. Measurement models
were stitched together into combined models with (6) and without (8) the latent variable for
overall memory quality. Finally, structural models were used to test the paths connecting the

neural and behavioral latent variables with each other and with the individual measures, for both
the overall memory quality (7) and memory feature (9) analyses.

Appendix B

paramHeader param est se pval
VPMN.BY RSC 0.627 0.006 < 0.001
PHC 0.567 0.008 <0.001
PAG 0.608 0.007 < 0.001
DPMN.BY MPFC 0.516 0.006 < 0.001
PHIPP 0.438 0.008 < 0.001
PREC 0.647 0.007  <0.001
PCC 0.685 0.004 <0.001
AAG 0.711 0.005 < 0.001
SCENE.ON VPMN 0.277 0.043 < 0.001
DPMN -0.147  0.040 < 0.001
COLOR.ON VPMN -0.004  0.047 0.933
DPMN 0.041 0.050 0.417
SOUND.ON VPMN 0.006 0.043 0.882
DPMN 0.114 0.059 0.052
DPMN.WITH VPMN 0.634 0.008 <0.001
SCENE.WITH COLOR 0.340 0.025 <0.001
SOUND 0.313 0.026 < 0.001
COLOR.WITH SOUND 0.232 0.026  <0.001
Variances VPMN 1 0 999
DPMN 1 0 999
PHIPP 0.809 0.007  <0.001
PREC 0.581 0.009 <0.001
PCC 0.531 0.006 < 0.001
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MPFC 0.734 0.006  <0.001
PHC 0.679 0.009 <0.001
RSC 0.607 0.008 <0.001
AAG 0.495 0.007  <0.001
PAG 0.630 0.008  <0.001

Appendix B Table B1: Parameter estimates for the within-subjects part of our feature specific
memory model (Model 9; see manuscript Figure 3). This table was created using the R package
MplusAutomation (Hallquist & Wiley, 2018). Parameter headers (paramHeader) follow standard
Mplus syntax, where the ON keyword indicates a path parameter from the variable listed in the
“param” column to variable listed in the “paramHeader” column, the BY keyword indicates a
loading parameter (lambda 1), and the WITH keyword indicates a covariance parameter (theta
0). param = parameter, est = standardized estimate, se = standard error, pval = p value. See
Figure 1 caption for abbreviations. See Figure 3 for path diagram.
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