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Abstract 

The brain is composed of networks of interacting brain regions that support higher order 

cognition. Among these, a core network of regions has been associated with recollection and 

other forms of episodic construction. Past research has focused largely on the roles of individual 

brain regions in recollection or on their mutual engagement as part of an integrated network. Yet 

the relationship between these region- and network-level contributions remains poorly 

understood. Here we applied multilevel structural equation modeling (SEM) to examine the 

functional organization of the posterior medial (PM) network and its relationship to episodic 

memory outcomes. We evaluated two aspects of functional heterogeneity in the PM network: 

first, the organization of individual regions into subnetworks, and second, the presence of 

regionally-specific contributions while accounting for network-level effects. Our results suggest 

that the PM network is composed of ventral and dorsal subnetworks, with the ventral subnetwork 

making a unique contribution to recollection, especially to recollection of spatial information, 

and that memory-related activity in individual regions is well accounted for by these network-

level effects. These findings highlight the importance of considering the functions of individual 

brain regions within the context of their affiliated networks. 
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The brain is composed of networks of interacting brain regions, and the functioning of 

these networks is crucial for higher-level cognition. Within the domain of episodic memory, 

researchers have identified a set of cortical and hippocampal regions that has consistently been 

linked to our ability to mentally construct events, including recollecting past events, imagining 

future events, and constructing fictional scenarios (Andrews-Hanna et al., 2010; Buckner & 

DiNicola, 2019; Ranganath & Ritchey, 2012; Ritchey & Cooper, 2020; Rugg & Vilberg, 2013). 

These regions include the hippocampus, angular gyrus (AG), precuneus, retrosplenial cortex 

(RSC), posterior cingulate cortex (PCC), parahippocampal cortex (PHC), and medial prefrontal 

cortex (MPFC), which are all key components of the default mode network, particularly its 

medial temporal and core subnetworks (Andrews-Hanna et al., 2010). In recognition of their 

special role in recollection-based memory processes, these regions have been collectively 

referred to as the “core recollection network” (Rugg & Vilberg, 2013). More recently, the 

functions of this network have been situated within the context of two cortico-hippocampal brain 

networks— an anterior temporal network and a posterior medial (PM) network— that differ on 

the basis of their structural and functional connectivity with the medial temporal lobes and their 

relation to distinct aspects of memory-guided behavior (Ranganath & Ritchey, 2012). In this 

framework, the PM network corresponds to the recollection network described above, but is 

assigned a more general role in representing contextual information and event models that 

support episodic construction, including but not limited to recollection. Exactly how this network 

supports episodic construction, however, remains unclear. Past research suggests that there are 

both regional and network level contributions of the PM network to episodic recollection. For 

instance, the hippocampus has long been known to be essential for episodic memory (e.g., 

Corkin, 2002; Riedel et al., 1999). Using neuroimaging to look beyond the hippocampus, 

https://paperpile.com/c/ObhI6g/mCyjT+wXYns+3KCa+hZwuU+sWbDz
https://paperpile.com/c/ObhI6g/mCyjT+wXYns+3KCa+hZwuU+sWbDz
https://paperpile.com/c/ObhI6g/hZwuU
https://paperpile.com/c/ObhI6g/sWbDz
https://paperpile.com/c/ObhI6g/wXYns
https://paperpile.com/c/ObhI6g/gjCU+IFpe/?prefix=e.g.%2C,
https://paperpile.com/c/ObhI6g/gjCU+IFpe/?prefix=e.g.%2C,


NETWORK CONTRIBUTIONS TO RECOLLECTION 

4 

however, it is apparent that the rest of the PM network is also reliably engaged during 

recollection (H. Kim, 2013; Rugg & Vilberg, 2013; Spaniol et al., 2009). These regions are 

robustly structurally and functionally connected with the hippocampus, supporting the idea that 

they constitute an integrated functional network, yet how this network-level involvement relates 

to their individual functions remains an open question. Here we use multilevel structural 

equation modeling to examine heterogeneity in the function of the PM network during an 

episodic retrieval task. Specifically, we investigated the subnetwork architecture of the PM 

network, as well as the contributions of individual PM regions to predicting memory outcomes. 

A great deal of research has focused on the roles of individual brain regions in supporting 

episodic construction, delineating specific roles for the hippocampus, angular gyrus, and other 

regions of the PM network (Ritchey & Cooper, 2020). The hippocampus, for example, is posited 

to support the binding together of contextual details in memory (Davachi, 2006; Diana et al., 

2007; Eichenbaum et al., 2007) and is thought to perform a pattern completion function in which 

partial representations evoked by memory cues are “completed” by reinstating related 

information stored in memory (Horner et al., 2015; Marr, 1971; Norman & O’Reilly, 2003). The 

angular gyrus, on the other hand, is thought to support the representation of multimodal episodic 

details brought to mind during recollection (Humphreys et al., 2021; Ramanan et al., 2018; Rugg 

& King, 2018). Some fMRI studies have directly tested for cognitive and temporal dissociations 

amongst the regions of the PM network, finding evidence for functional specialization in the 

context of both episodic memory (Richter et al., 2016; Vilberg & Rugg, 2012, 2014) and 

imagination (Thakral et al., 2020). For example, Richter and colleagues (2016) used fMRI to 

identify brain activity that tracked the success, precision, and subjective vividness of episodic 

recollection. The authors modeled these measures jointly and found that the hippocampus 

https://paperpile.com/c/ObhI6g/sWbDz+nqe6y+Eflx
https://paperpile.com/c/ObhI6g/3KCa
https://paperpile.com/c/ObhI6g/l37t+isHw+Ss5R
https://paperpile.com/c/ObhI6g/l37t+isHw+Ss5R
https://paperpile.com/c/ObhI6g/RpRH+BqN9+rI7L
https://paperpile.com/c/ObhI6g/e2XQ+5HDE+OzLo
https://paperpile.com/c/ObhI6g/e2XQ+5HDE+OzLo
https://paperpile.com/c/ObhI6g/xFSOK+RoaEY+OGzMT
https://paperpile.com/c/ObhI6g/mKGmb
https://paperpile.com/c/ObhI6g/xFSOK/?noauthor=1
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uniquely tracked whether or not retrieval was successful, the angular gyrus uniquely tracked the 

precision of remembered information, and the precuneus uniquely tracked subjective memory 

vividness. These findings suggest that individual regions of the PM network make distinct 

contributions to the recollection process. 

There is other evidence pointing to the importance of mutual engagement of these regions 

as part of an integrated network. Functional MRI studies have consistently observed increased 

neural activity across the PM network that is related to successful, vivid episodic recollection (H. 

Kim, 2013; Rugg & Vilberg, 2013; Spaniol et al., 2009). Moreover, functional connectivity 

within the PM network scales with the quality of recollection, including its subjective vividness 

or the recovery of source details (Cooper & Ritchey, 2019; Geib, Stanley, Dennis, et al., 2017; 

Geib, Stanley, Wing, et al., 2017; King et al., 2015; Schedlbauer et al., 2014; Watrous et al., 

2013). Interestingly, another line of research suggests that the PM network may not act as a 

single homogeneous network but is instead composed of at least two, highly related subnetworks 

(Andrews-Hanna et al., 2010; Barnett et al., 2021; Buckner & DiNicola, 2019; Cooper et al., 

2021). For example, Cooper and colleagues (2021) examined the functional connectivity of the 

PM network regions while participants watched a short movie and, using data-driven community 

detection, showed that the PM network fractured into ventral and dorsal subnetworks that were 

differentially engaged during event perception. Barnett and colleagues (2021) used a similar 

data-driven approach to delineate multiple subnetworks in the PM network using resting-state 

data while also showing evidence that the regions of the different PM subnetworks represented 

similar information during a memory-guided decision making task. While these studies provide 

support for a subnetwork view of the PM network, it currently remains unclear whether these 

subnetworks are dissociable in their contributions to episodic recollection. 

https://paperpile.com/c/ObhI6g/nqe6y+Eflx+sWbDz
https://paperpile.com/c/ObhI6g/nqe6y+Eflx+sWbDz
https://paperpile.com/c/ObhI6g/l4aiD+gAnMd+kvziv+GgIyi+S2BZd+SQ8BD
https://paperpile.com/c/ObhI6g/l4aiD+gAnMd+kvziv+GgIyi+S2BZd+SQ8BD
https://paperpile.com/c/ObhI6g/l4aiD+gAnMd+kvziv+GgIyi+S2BZd+SQ8BD
https://paperpile.com/c/ObhI6g/2Pna+hZwuU+mCyjT+Bm9wg
https://paperpile.com/c/ObhI6g/2Pna+hZwuU+mCyjT+Bm9wg
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Prior studies have made it clear that activity in regions of the PM network are related to 

memory and to one another, but it remains unclear whether their contributions to memory are 

regionally specific or shared across the network. Structural equation modeling (SEM) is a well 

suited tool for delineating regional and network-level contributions to behavior (Bolt et al., 

2018), allowing for the capturing of common, distributed, network-level contributions by 

estimating latent variables that captures the covariance amongst regions of a network. Structural 

models can then estimate the statistical dependency between these network latent variables and 

some behavioral variable while also estimating the regional-specific effect of each of the regions, 

statistically controlling for their membership within larger networks. For instance, Bolt and 

colleagues (2018) used SEM to parse the unique contributions of the right dorsolateral prefrontal 

cortex to cognitive control from those of the larger frontoparietal control network, showing that 

the unit of behavioral significance for many common cognitive control tasks was not the right 

dorsolateral prefrontal cortex, but the shared contributions of the frontoparietal control network. 

This approach differs from common applications of SEM to study functional interactions 

supporting cognition (see McIntosh & Protzner, 2012 for a review), which in the context of 

episodic memory, have largely focused on building models of the effective connectivity among 

brain regions (Addis et al., 2010; Iidaka et al., 2006; McCormick et al., 2010, 2015; Rajah & 

McIntosh, 2005; Rosenbaum et al., 2010). For instance, past work taking this approach has 

shown that episodic retrieval involves increased communication among left frontal and parietal 

regions (Iidaka et al., 2006) as well as between the hippocampus and regions in the frontal lobes 

(McCormick et al., 2010, 2015) and sensory cortex (McCormick et al., 2015). Here, rather than 

focusing on interactions among brain regions, we apply SEM to estimate the specific regional 

and common network contributions to episodic remembering within a single statistical model. 

https://paperpile.com/c/ObhI6g/U6fy
https://paperpile.com/c/ObhI6g/U6fy
https://paperpile.com/c/ObhI6g/ERvq/?prefix=see&suffix=for%20a%20review
https://paperpile.com/c/ObhI6g/43yj+O0cW+clOm+8nRg+lgxT+iMbF
https://paperpile.com/c/ObhI6g/43yj+O0cW+clOm+8nRg+lgxT+iMbF
https://paperpile.com/c/ObhI6g/O0cW
https://paperpile.com/c/ObhI6g/iMbF+lgxT
https://paperpile.com/c/ObhI6g/lgxT
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Taken together, the literature suggests that the regions of the PM network perform 

dissociable yet interrelated functions and, as a result, make separable contributions to the 

recollection process. It remains unclear, however, exactly how to combine the findings from 

experiments taking region-focused approaches and network-focused approaches — highlighting 

the need for an approach that can simultaneously take into account network-wide and region-

specific contributions to episodic retrieval. The present study uses SEM to model heterogeneity 

of function of the PM network. We sought to model two key aspects of functional heterogeneity 

within the network: that larger networks fracture into related subnetworks and that regions of the 

network make extra-network contributions to cognition. To this end, we first compared a single 

network model to a two related subnetworks model, motivated by previous evidence for 

dissociable ventral and dorsal PM subnetworks that exhibit distinct patterns of functional 

connectivity during movie-watching (Cooper et al., 2021). Next, we modeled region-specific 

contributions to behavior, controlling for network-level effects (c.f., Bolt et al., 2018), to 

determine whether any regions acted outside of their networks in support of episodic 

recollection. 

Methods 

Experiment 

Participants 

 Twenty eight participants from Cooper & Ritchey (2019) were included in the final set of 

analyses after excluding participants who did not complete the study or who had inadequate 

https://paperpile.com/c/ObhI6g/Bm9wg
https://paperpile.com/c/ObhI6g/U6fy/?prefix=c.f.%2C
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memory performance (see Cooper & Ritchey 2019). Participants were selected such that they 

were between the ages of 18 and 35 (M = 21.82, SD = 3.57, 16 females, 12 males) and had no 

history of neurological or psychiatric illness. Participants’ self-reported ethnicity was as follows: 

Not Hispanic or Latino (n = 22) and Hispanic or Latino (n = 6). Race was self-reported as White 

(n = 18), Asian (n = 3), More Than One Race (n = 3), Black or African American (n = 2), Other 

(n = 1), with one participant electing not to report their race (n = 1). Participants reported an 

average years of education of M = 15.2 years (SD = 1.67). Informed consent was obtained from 

all participants prior to the experiment and participants were reimbursed for their time. All 

procedures were approved by the Boston College Institutional Review Board. 

With respect to statistical power, our analyses focused on trial-to-trial variability in brain 

activity and memory outcomes. Our dataset had a total of 3888 trials nested within 28 subjects 

(22 subjects contributing 144 trials; 6 subjects contributing 120 trials – see Cooper & Ritchey 

2019). Wolf and colleagues (2013) ran a series of Monte Carlo simulations to determine the 

minimum sample size required to achieve SEMs that had at least 80% power to detect nonzero 

parameters with an alpha = 0.05. In order to determine if our models were sufficiently powered, 

we compared the number of observations that we had at the within subject, across trial level (i.e., 

3888 observations) to the most conservative recommendations made for achieving adequate 

power in the Wolf simulations, which argue for 460 observations. However, we note that, unlike 

our study, the Wolf simulations did not use a multilevel model and they did not use categorical 

variables. There does not currently exist any published recommendations for the required N to 

achieve sufficient power using the type of multilevel SEM that we use in this manuscript. In the 

absence of alternative recommendations, we argue that our models are likely to be sufficiently 

powered given that our number of observations at the within subjects, across trials level far 

https://paperpile.com/c/ObhI6g/FAsx/?noauthor=1
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exceeds the most conservative recommendations made by Wolf and colleagues (2013). Although 

we have sufficient power to model trial-to-trial variability in this dataset, we remain 

underpowered to model between-subjects variability, and thus we refrain from interpreting any 

existing subject-to-subject variability in our analyses. 

Materials 

 Memoranda consisted of 144 unique events that were constructed using a combination of 

144 episode-unique object stimuli from Brady and colleagues (2013), 6 panoramic scenes from 

the SUN 360 database (Xiao et al., 2012), and 12 sounds from the International Affective 

Digitized Sounds (IADS) database (Bradley & Lang, 2007). The grayscale object images were 

altered such that they took on 1 of 120 unique colors taken from the equally spaced positions in 

CIELAB color space. In a similar manner, the 360 degree panoramic background images were 

transformed into 120 equally spaced 100° field of view images taken at regular intervals around 

the panorama. Events consisted of the simultaneous presentation of the colored object on top of a 

randomly chosen view from the panorama coupled with the presentation of one of the affective 

sounds. Participants were encouraged to integrate the three features together into a single 

meaningful event. For example, a red radio could be placed on top of a beach scene with a view 

of the ocean while the sound of a woman screaming played in the background. See Cooper & 

Ritchey (2019) for further information. 

Procedure 

Participants completed six interleaved encoding and retrieval phases while undergoing 

MRI scanning (see Cooper & Ritchey, 2019). To summarize, during scanned encoding phases 

participants were told that they would encounter 24 events consisting of a foreground object, a 

https://paperpile.com/c/ObhI6g/e6dqh/?noauthor=1
https://paperpile.com/c/ObhI6g/FPB9t
https://paperpile.com/c/ObhI6g/MJ6cx
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background scene, and an emotionally evocative sound. Participants were asked to remember 

each of the events in as much detail as possible, with explicit instructions to try and remember 

the color of the foreground object, the position of the object within the background scene, and 

the emotional valence of the sound. During scanned retrieval phases, participants were tested on 

their ability to reconstruct episode features from memory. At the beginning of each retrieval trial, 

participants were shown grayscale versions of the object stimuli from the previous encoding 

phase. During this remember period, participants were asked to bring to mind the cued episode in 

as much detail as possible. Immediately after the remember period, participants were asked to 

report the emotional valence of the episode’s sound using a confidence scale. The confidence 

scale asked participants to identify their response to the emotional valence question as either with 

high confidence or with low confidence. After reporting the sound’s valence, participants were 

asked to report the quality of their memory for the remaining two features in a counterbalanced 

order. Specifically, participants were presented with the object image in a random color on top of 

a random view from the correct background scene. Participants were instructed to reconstruct the 

color of the target image using an interactive 360-degree color wheel and to position the object 

within the background scene using a similar interactive 360-degree panoramic scale. 

FMRI data acquisition 

 MRI scanning was performed at the Harvard Center for Brain  Science using a 3T 

Siemens Prisma MRI scanner with a 32-channel head coil. Structural MRI images were collected 

using a T-1 weighted multiecho MPRAGE protocol with a field of view = 256 mm, 1 mm 

isotropic voxels, 176 sagittal slices with an interleaved acquisition, TR = 2530 ms, TE = 

1.69/3.55/5.41/7.27 ms, flip angle = 7 degrees, phase encoding from anterior-posterior, parallel 

imaging = GRAPPA, and an acceleration factor of 2. Functional images were acquired using a 
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whole brain multiband echo-planar imaging sequence with a field of view of 208 mm, 2 mm 

isotropic voxels, 69 slices at T > C -25.0 with interleaved acquisition, TR = 1500 ms, TE = 28 

ms, flip angle = 75 degrees, anterior-posterior phase encoding, parallel imaging with GRAPPA, 

and an acceleration factor of 2. A total of 6 scan runs were collected, each of which consisted of 

466 TRs. 

Analyses 

Behavioral Data 

 Behavioral data from the dataset consisted of trialwise error values measured in degrees 

for the object color and scene position features and of binary data (i.e., 1: correct; 0: incorrect) 

for the sound valence feature (i.e., collapsed across confidence). For consistency across 

behavioral measures, we transformed the object color and scene position measures into binary 

measures representing whether a response was correct (1) or incorrect (0), similar to what we 

have done previously (Cooper & Ritchey 2019). This was done by taking any trial with an error 

smaller than the accuracy threshold (see below) and giving it a score of 1 and taking any trial 

with an error greater than the accuracy threshold and giving it a score of 0. Descriptive statistics 

of our behavioral variables are detailed in Table 1. 

The accuracy threshold was determined by fitting two probability density functions to 

group aggregate data within a mixture modeling framework and is described in detail in Cooper 

and Ritchey (2019). In brief, Cooper and Ritchey (2019) estimated (for the color and scene 

features separately) the probability that each error resulted from the von Mises as opposed to the 

uniform distribution. Errors that had less than a 50% chance of fitting the von Mises distribution 

were labeled as incorrect. This analysis resulted in a threshold of +/- 57 degrees for the object 
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color feature and +/- 30 degrees for the scene position feature and served as our threshold for 

labeling a response as “correct” or “incorrect”. 

MRI Preprocessing 

All preprocessing of the MRI data was performed using FMRIPrep v1.0.3 (Esteban et al., 

2019). Data were preprocessed using the same steps as in Cooper & Ritchey (2019). First, each 

T1w volume was corrected for intensity non uniformity and skull-stripped. Spatial normalization 

to the ICBM 152 Nonlinear Asymmetrical template version 2009c was performed through 

nonlinear registration, using brain-extracted versions of both the T1w volume and template. All 

analyses reported here use structural and functional data in MNI space. Brain tissue segmentation 

of cerebrospinal fluid (CSF), white-matter (WM), and gray-matter (GM) was performed on the 

brain-extracted T1w image. Functional data was slice time corrected, motion corrected, and 

corrected for field distortion. This was followed by co-registration to the corresponding T1w 

using boundary-based registration with 9 degrees of freedom. Physiological noise regressors 

were extracted using CompCor. A mask to exclude signals with cortical origin was obtained by 

eroding the brain mask, ensuring it only contained subcortical structures. Six aCompCor 

components were calculated within the intersection of the subcortical mask and the union of CSF 

and WM masks calculated in T1w space, after their projection to the native space of each 

functional run. Framewise displacement was also calculated for each functional run. No 

smoothing of the data was performed. For further details of the pipeline please refer to the online 

documentation: https://fmriprep.readthedocs.io/en/1.0.3/index.html. Entire scan runs were 

excluded from further analysis if more than 20% of frames had a framewise displacement 

exceeding 0.3mm. Spike regressors were additionally created and added to our trialwise models 

https://paperpile.com/c/ObhI6g/zI10
https://paperpile.com/c/ObhI6g/zI10
https://fmriprep.readthedocs.io/en/1.0.3/index.html
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(detailed below) by flagging all frames that had a framewise displacement greater than 0.6mm. 

In total, 6 subjects had a single scan run excluded from further analysis due to excessive motion. 

Trialwise Response Estimates 

To estimate trialwise response estimates, we used a multi-model approach proposed by 

Mumford and colleagues (2012) and implemented in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/) 

using in house MATLAB (https://www.mathworks.com/products/matlab.html) scripts. In this 

approach, a separate general linear model (GLM) is built to estimate the amplitude of the BOLD 

response for each trial by modeling the response for each trial using its own dedicated regressor 

and modeling all other trials as a separate regressor (including the following nuisance regressors: 

translation in the x, y, and z dimensions; rotation in pitch, roll, and yaw; the first 5 principal 

component from aCompCorr, framewise displacement, and spike regressors censoring high 

motion frames). In total, 3888 GLMs were constructed – one for each trial in our dataset. 

Encoding and retrieval phases for our experiment were interleaved, such that each scan run had 

24 encoding trials followed by 24 retrieval trials. The GLMs for the current study were restricted 

to TRs encompassing the retrieval trials from Cooper and Ritchey (2019), i.e., excluding the 

encoding trials. Each retrieval trial was modeled by convolving SPM12’s hemodynamic response 

function with a stick function placed at the onset of the remember period of each retrieval trial. 

The statistic used as our estimate of the BOLD response was the t-statistic for the regressor 

corresponding to each individual trial. The t-statistic provides a more sensitive measure than beta 

values when searching for information within the brain (Misaki et al., 2010) and downweights 

noisy voxels, allowing them to have a smaller influence on results. Trialwise response estimates 

were extracted from our regions of interest (ROIs) averaged within each ROI and submitted to 

further analysis. 

https://paperpile.com/c/ObhI6g/i3oVZ/?noauthor=1
https://paperpile.com/c/ObhI6g/6mXMS
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ROIs 

 The ROIs for the present analysis are the same ones used in a previous study from our lab 

investigating interactions among PM regions (Cooper et al., 2021). The ROIs were created using 

a combination of cortical ROIs from the ‘Default A’ and ‘Default C’ subnetworks from the 

Schaefer Atlas (Schaefer et al., 2018) and a hippocampal ROI from a probabilistic parcellation 

(Ritchey et al., 2015). These anatomical ROIs were combined with a meta-analytic map 

generated using Neurosynth (Yarkoni et al., 2011) using the search term “episodic”. Functional 

peaks from this map within regions of the PM network were selected and ROIs were drawn 

around these peaks such that they were of equal size and each contained 100 contiguous voxels. 

These ROIs were additionally constrained to the left hemisphere because cortical memory 

retrieval effects are often found to be strongest in the left hemisphere of the brain, which was 

also evident in the meta-analytic map used to create the ROIs. The final set of ROIs included the 

posterior hippocampus (pHipp), the parahippocampal cortex (PHC), the retrosplenial cortex 

(RSC), the precuneus (Prec), posterior cingulate cortex (PCC), posterior angular gyrus (pAG), 

anterior angular gyrus (aAG), and the medial prefrontal cortex (MPFC). We previously 

examined the functional connectivity of these ROIs in an independent dataset (Cooper et al., 

2021). In a community detection analysis, we found evidence for subnetwork organization of the 

PM network, including a ventral PM subnetwork including RSC, PHC, and pAG and a dorsal 

PM subnetwork including the MPFC, pHipp, Prec, PCC, and aAG. Although there exist multiple 

possible subnetwork organizations of the PM network, we were motivated by these previous 

findings to examine a ventral-dorsal subnetwork architecture. We additionally note that this 

subnetwork grouping appears to align with correlations among the ROIs observed in the current 

dataset (see Table 1). 

https://paperpile.com/c/ObhI6g/Bm9wg
https://paperpile.com/c/ObhI6g/W0Ms
https://paperpile.com/c/ObhI6g/bqr1T
https://paperpile.com/c/ObhI6g/cR29
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Multilevel Structural Equation Modeling 

 The present study took a multilevel structural equation modeling (SEM) approach to 

investigate functional heterogeneity in the PM network. Multilevel SEM allows for the 

estimation of latent constructs and for modeling of structural paths amongst those latent 

constructs in datasets that have a nested structure. This approach is optimal for the current 

dataset that contains observations of ROI activity across trials that are nested within subjects. In 

our data, trials are the level-1 units and subjects are the level-2 units. Because of the nested 

structure, the data have two sources of variation: one due to the difference between trials within 

subjects and the other due to the difference between subjects. For the neural data, the former 

represents where the BOLD response estimate (i.e., the t value) is relative to that subject’s own 

average across all trials and the latter represents where each subject’s average t value compared 

to other subjects' average t values. Our primary interest was in modeling within-subject, trial-to-

trial variability. The between-subject variability in the neural data could represent meaningful 

differences in individual characteristics, but we did not have a-priori hypotheses about these 

individual differences in the present sample. Therefore, in the multilevel model for the neural 

data (see below), the between-subject model is specified only so that this source of variability is 

accounted for and therefore the statistical validity of the within-subject model is not 

compromised. For the behavioral data, the two sources of variation represent differences in 

overall memory quality on a trial-to-trial basis and differences in overall accuracy across trials on 

a subject-to-subject basis. 

All modeling was performed using Mplus software version 8.2 (Muthén & Muthén, 1997-

2017). Models were determined to have acceptable levels of model fit if they displayed the 

following fit indices: root mean squared error of approximation (RMSEA) < .06, comparative fit 

https://paperpile.com/c/ObhI6g/ar5c
https://paperpile.com/c/ObhI6g/ar5c
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index (CFI) > .95, and a standardized root mean squared residual (SRMR1) < .08 (Hu & Bentler, 

1999). For SRMR, a separate index was calculated for the within cluster (i.e., within subject) and 

between cluster (i.e., between subject) levels. The models were estimated using the MLR 

(maximum likelihood with robust standard errors) and the WLSMV (weighted least squares 

means and variances adjusted) estimators in Mplus. The cutoff values cited above are ones that 

are commonly applied in the SEM literature. We note that these values were originally 

determined based on simulations of SEMs on continuous variables estimated using a maximum 

likelihood estimator, whereas our behavioral data contains binary variables and all of our models 

that contain the behavioral variables use the WLSMV estimator. A recently published report by 

Xia and Yang (2019) suggests that models fit on categorical data using an estimator similar to 

MPlus’s WLSMV estimator may be overly optimistic when using traditional fit index cutoffs. In 

the absence of alternative model fit thresholds, we interpret our results with respect to traditional 

model fit index thresholds. We do, however, use caution and carefully examine all statistics 

available to make a judgment with respect to model fit. For a summary of all of the models fit in 

the current manuscript, see Appendix A. 

Preliminary Analyses 

 Prior to performing our multilevel SEM analysis, we verified the necessity of a multilevel 

analysis by calculating intraclass correlations (ICCs) for each of our variables of interest and by 

fitting a “null” model designed to test if there is any structure in the between-subjects covariance 

matrix (see Jak et al., 2013). The ICC is a statistic that reflects the proportion of variance of a 

variable that can be attributed to individual differences amongst our subjects. Datasets that 

 
1 In multilevel models, SRMR at the between-cluster level may be large because the observed variances are small, 

not necessarily because there is a large extent of misfit. 

https://paperpile.com/c/ObhI6g/p8R6
https://paperpile.com/c/ObhI6g/p8R6
https://paperpile.com/c/ObhI6g/NuQJ/?noauthor=1
https://paperpile.com/c/ObhI6g/4Pff/?prefix=see
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contain variables that have ICCs close to 0 will not see an additional benefit from multilevel 

modeling. In the null model, a saturated (i.e., a model that estimates parameters for all possible 

variances and covariances amongst variables) was specified for the within-subject covariance 

structure, and a null model in which all of the variances and covariances are constrained to be 

zero was specified for the between-subject covariance structure. If this model fails to 

satisfactorily fit the data, it suggests that the between-subject variances need to be allowed in the 

model and therefore calls for a two-level model. If the ICCs are greater than 0.1 or the null 

model fits the data poorly, we will conclude that multilevel modeling is required for our dataset. 

Measurement Models 

 After verifying the necessity of multilevel modeling, we examined the measurement 

structure underlying our eight ROIs. We tested two measurement models: a single-factor model 

for the integrated PM network hypothesis and a two factor model for the two subnetworks 

hypothesis. In the single-factor model, the eight PM network regions loaded onto a single latent 

factor at the within-subject level. We did not impose any restriction at the between-subject level 

because we did not have a-priori hypotheses about the nature of the between-subject variability 

in neural data. In the two factor model, RSC, PHC, and pAG loaded on one factor representing 

the ventral posterior medial network (vPMN), and MPFC, pHipp, Prec, PCC, and aAG loaded on 

the other factor representing the dorsal posterior medial network (dPMN) (see Figure 1). Again, 

we did not impose any restriction at the between-subject level. For the measurement models for 

neural data, the MLR estimator was used. 

 We next fit a two level categorical factor model to the behavioral data. This model 

contained a single latent factor that loaded onto each of our memory measures (i.e., scene 

position memory, object color memory, and sound valence memory). We placed restrictions on 
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this model such that it had cross-level metric invariance – the factor loadings for level 1 (i.e., 

within-subjects, across trials) of the model were set equal to the corresponding factor loadings 

for level 2 (i.e., between-subjects, across subjects) of the model. These restrictions were placed 

on the model for two reasons. First, the cross-level metric invariance model facilitates the 

interpretation of the latent construct at both levels as being the within-subjects and between-

subjects components of the same underlying construct. In this context, the level 1 latent variable 

represents overall memory for each episode whereas the level 2 latent variable represents 

participant’s overall memory ability. Second, the cross-level metric invariance model limits the 

number of free parameters in the model, avoiding possible estimation problems common to 

overparameterized models (see Jak, 2019). Because the behavioral variables were binary, the 

WLSVM estimator in MPLUS was used to estimate this model. This behavioral model with 

cross-level metric invariance was then stitched together with the neural model to form our final 

measurement model. 

Structural Models 

 After establishing good-fitting measurement models, the neural and behavioral models 

were stitched together to form a single model (see Figure 1). We subsequently fit a series of 

models to the data to quantify the contribution of the PM network (or PM subnetworks) to 

memory quality and whether any of the regions made a region-specific contribution to memory 

quality over and above their network (or subnetwork) contribution. For these models, the 

WLSMV estimator was used. The baseline structural model contained a structural path from the 

PM Network (or PM subnetworks) latent variable(s) to the memory quality latent variable at the 

within-subjects level. After fitting the baseline model, a series of models were fit to test for 

region-specific contributions (i.e., one at a time). Each of these models included an additional 

https://paperpile.com/c/ObhI6g/Z7L7/?prefix=see
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structural path from the region to memory quality. This direct path reflects the predictive effect 

of the region after accounting for its participation in the network (or subnetwork). In a secondary 

set of analyses, we examined paths between the neural variables and memory outcomes for each 

individual event feature, allowing memory features to covary but removing the latent variable for 

overall memory quality.
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 mean sd min max ICC Correlations 

      RSC PHC pAG aAG pHipp Prec PCC MPFC SCENE COLOR 

RSC 0.049 0.170 -0.567 0.808 0.138           

PHC -0.028 0.181 -0.763 1.048 0.155 0.324          

pAG -0.007 0.315 -1.292 1.232 0.138 0.296 0.330         

aAG 0.188 0.352 -1.346 1.648 0.184 0.296 0.119 0.295        

pHipp 0.077 0.156 -0.614 1.182 0.022 0.191 0.184 0.135 0.276       

Prec 0.116 0.215 -0.923 0.971 0.123 0.326 0.265 0.247 0.356 0.285      

PCC 0.144 0.218 -0.614 1.044 0.142 0.282 0.173 0.189 0.418 0.283 0.410     

MPFC 0.135 0.279 -1.176 1.308 0.036 0.162 0.101 0.066 0.342 0.285 0.282 0.402    

SCENE 0.675 0.468 0.000 1.000 0.205 0.194 0.130 0.086 0.050 0.051 0.094 0.055 -0.026   

COLOR 0.724 0.447 0.000 1.000 0.135 0.070 0.046 0.024 0.046 0.032 0.081 0.061 -0.033 0.251  

SOUND 0.758 0.429 0.000 1.000 0.118 0.091 0.070 0.034 0.039 0.066 0.099 0.078 0.021 0.229 0.170 

Table 1: Descriptive statistics for variables of interest. Neural measures (RSC-MPFC) are the mean t-value across all voxels within that ROI from the single-trial 

estimation step. Behavioral measures (SCENE, COLOR, SOUND) are binary, coded such that 1 = correct and 0 = incorrect. Correlations between neural 

measures are Pearson’s Correlation Coefficients. Correlations between the behavioral and neural variables are Point-Biserial Correlations Coefficients. All 

descriptive statistics, excluding the ICCs, were calculated ignoring the nested structure. pHipp = posterior hippocampus, Prec = precuneus, PCC = posterior 

cingulate cortex, MPFC = medial prefrontal cortex, PHC = parahippocampal cortex, RSC = retrosplenial cortex, aAG = anterior angular gyrus, pAG = posterior 

angular gyrus, SCENE = Scene Position Correct, COLOR = Object Color Correct, SOUND = Sound Valence Correct, sd = standard deviation, ICC = interclass 

correlation coefficient. 
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Results 

Preliminary Analyses 

 The ICCs were larger than 0.1 for the neural measures, except for pHipp whose ICC was 

.022 and MPFC whose ICC was .036. The null model for the neural data did not fit the data well 

(Model 1: 𝝌2 = 2951.578, df = 36, p < .001, RMSEA = 0.144, CFI = 0.000, SRMRwithin = 0.047, 

SRMRbetween= 0.352, AIC = -10496.752, BIC = -10221.064). Thus, we concluded that multilevel 

modeling was appropriate for our neural data. For the behavioral measures, the ICCs ranged 

from .118 to .205, indicating that about 10 to 20% of the variance in the memory measures are 

due to between-subjects differences. The null model resulted in adequate fit to the data (Model 2: 

𝝌2 = 20.882, df = 6, p < .01, RMSEA = 0.025, CFI = 0.958, SRMRwithin = 0.000, SRMRbetween= 

0.634). However, the fit statistics for the behavioral null model were obtained with the WLSMV 

estimator (because the behavioral memory measures were binary) and applying the same criteria 

for the WLSMV fit statistics have been shown to be less sensitive to discover model-data misfit 

(Xia & Yang, 2019). Thus, considering the large ICC values and the limitation in the 

performance of the WLSMV fit statistics, we concluded that adopting a multilevel model was 

also appropriate for the behavioral data. 

Measurement Models 

 The one factor model for the neural data resulted in the following fit statistics (Model 3: 

𝝌2 = 290.442, df = 20, p < .001, RMSEA = 0.059, CFI = 0.905, SRMRwithin = 0.063, 

SRMRbetween= 0.005, AIC = -12584.469, BIC = -12208.530). The two factor model fit the data 

https://paperpile.com/c/ObhI6g/NuQJ
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well and better than the one factor model (Model 4: 𝝌2 = 90.096, df = 19, p < .001, RMSEA = 

0.031, CFI = 0.975, SRMRwithin = 0.035, SRMRbetween= 0.003, AIC = -13145.343, BIC = -

12763.138). To further compare model fits, we examined the estimated correlation between the 

two latent factors in the two factor model and compared the estimated communality values of the 

two models. We reasoned that additional evidence in favor of the two factor model would be 

seen if the correlation between the latent factors was estimated to be low-moderate and if the 

estimated communality values were all equivalent or higher for the two factor model relative to 

the one factor model. We note that the correlation between the vPMN and dPMN latent variables 

was high, but not perfect (r = 0.630 or ~39.7% of variance shared) and the communality values 

in the two factor model were all equivalent or higher compared with the one factor model (see 

Table 2). Taken together, these results suggest that a two factor model was a better model for the 

neural data. 

 One Factor Two Factor 

param est se pval est se pval 

pHipp 0.188 0.024 < 0.001 0.193 0.025 < 0.001 

Prec 0.397 0.039 < 0.001 0.395 0.039 < 0.001 

PCC 0.437 0.029 < 0.001 0.479 0.024 < 0.001 

MPFC 0.251 0.030 < 0.001 0.286 0.032 < 0.001 

PHC 0.177 0.027 < 0.001 0.344 0.030 < 0.001 

RSC 0.231 0.036 < 0.001 0.391 0.035 < 0.001 

aAG 0.472 0.030 < 0.001 0.485 0.032 < 0.001 

pAG 0.215 0.038 < 0.001 0.363 0.036 < 0.001 

Table 2: Communality Values. Communality value estimates from the One Factor and Two 

Factor measurement models. All of the estimated communality values are equivalent or higher in 

the Two Factor model compared with the One Factor model. param = parameter, est = estimate 

se = standard error, pval = p value. pHipp = posterior hippocampus, Prec = precuneus, PCC = 

posterior cingulate cortex, MPFC = medial prefrontal cortex, PHC = parahippocampal cortex, 

RSC = retrosplenial cortex, aAG = anterior angular gyrus, pAG = posterior angular gyrus. 
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 For the behavioral data, the two level categorical single factor model with equality 

constraints on the factor loadings across levels fit the data well (Model 5: 𝝌2 = 0.163, df = 2, p < 

.9218, RMSEA = 0.000, CFI = 1.00, SRMRwithin = 0.001, SRMRbetween= 0.022). This model has 

cross-level metric invariance, meaning that the latent variables at each level can be interpreted as 

the within-subject and between-subject components, respectively, of the same construct “overall 

memory quality.” Cross-level metric invariance additionally allowed us to calculate the 

proportion of variance in the overall memory quality factor that is attributable to individual 

differences and trial-to-trial differences. The memory quality factor had an ICC of .329, meaning 

that 32.9% of the variability in memory quality comes from individual differences and 67.1% of 

the variability comes from trial-to-trial differences. This is advantageous for our purposes, since 

our primary interest was explaining trial-to-trial variability in memory quality. 

 After finding good fitting neural and behavioral measurement models, we proceeded to 

fit a joint measurement model by stitching the two factor neural model and the cross-level metric 

invariance behavioral model together (see Figure 1; Model 6). At the between subjects level, the 

regions were allowed to covary with one another and also allowed to covary with the between-

subject memory quality factor. This joint measurement model fit the data adequately (Model 6: 

𝝌2 = 534.782, df = 59, p < .001, RMSEA = 0.046, CFI = 0.974, SRMRwithin = 0.034, 

SRMRbetween= 0.043). The key parameter estimates for the within-subjects part of this model are 

reported in Table 3. This is the model that we then incorporated into our SEM linking the neural 

and behavioral variables. 
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Figure 1: Measurement Model. A graphical representation of our combined measurement model 

including both neural and behavioral variables (Model 6), following the graphing conventions of 

E. Kim and colleagues (2016). Our measurement model contained two latent variables for the 

neural data at the within-subjects level, a single latent variable for the behavioral data at the 

within-subjects level, and a single latent variable representing the behavioral data at the between-

subjects level. The factor loadings for the Memory latent variable were set equal across the 

levels. At the between subject level, the eight neural variables were allowed to covary with one 

another and with the Memory factor. See Table 3 for standardized parameters of the within-

subjects part of the model. vPMN = ventral posterior medial network, dPMN = dorsal posterior 

medial network, Memory = overall memory quality, pHipp = posterior hippocampus, Prec = 

precuneus, PCC = posterior cingulate cortex, MPFC = medial prefrontal cortex, PHC = 

parahippocampal cortex, RSC = retrosplenial cortex, aAG = anterior angular gyrus, pAG = 

posterior angular gyrus, Scene = scene position feature correct, Color = object color feature 

correct, Sound = sound valence feature correct.  

https://paperpile.com/c/ObhI6g/S5aZ/?noauthor=1
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paramHeader param est se pval 

vPMN.BY RSC 0.627 0.006 < 0.001 

 PHC 0.567 0.008 < 0.001 

 pAG 0.608 0.007 < 0.001 

dPMN.BY MPFC 0.516 0.006 < 0.001 

 pHipp 0.437 0.008 < 0.001 

 Prec 0.647 0.007 < 0.001 

 PCC 0.685 0.004 < 0.001 

 aAG 0.711 0.005 < 0.001 

Memory.BY SCENE 0.707 0.057 < 0.001 

 COLOR 0.465 0.044 < 0.001 

 SOUND 0.460 0.030 < 0.001 

dPMN.WITH vPMN 0.634 0.008 < 0.001 

Memory.WITH vPMN 0.200 0.025 < 0.001 

 dPMN 0.102 0.026 < 0.001 

Table 3: Measurement Model Standardized Parameter Estimates. Select standardized parameter 

estimates in the within-subject level model (Model 6). This table was created using the R 

package MplusAutomation (Hallquist & Wiley, 2018). Parameter headers (paramHeader) follow 

standard Mplus syntax, where the BY keyword indicates a loading parameter (lambda λ) and the 

WITH keyword indicates a covariance parameter (theta θ). param = parameter, est = estimate, se 

= standard error, pval = p value. See Figure 1 caption for abbreviations. 

Structural Models 

Overall Memory Quality Models 

 We next estimated a series of structural models to tease apart network and region specific 

contributions to overall memory. In the first model (Model 7), each of the two subnetworks was 

allowed to have a structural path to overall memory quality. In this baseline model, the vPMN 

uniquely (i.e., when statistically controlling for the dPMN) predicted the overall quality with 

which events were remembered while the dPMN did not (see Figure 2). When modeled 

https://paperpile.com/c/ObhI6g/oxGA
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separately, however, both the vPMN (𝛽 = 0.190, S.E. = 0.021, p < 0.001) and the dPMN (𝛽 = 

0.170, S.E. = 0.022, p < 0.001) predicted Memory Quality (i.e., in models that included only one 

of the two paths). Models estimating region-specific contributions to overall memory quality are 

depicted in Figure 2 and structural path parameter estimates for these models are reported in 

Table 4. Of the PM network regions, only the MPFC displayed a statistically significant region-

specific ability to predict Memory Quality when controlling for its participation in its PM 

subnetwork (see Table 4; alpha = 0.05, FWE corrected for multiple comparisons). Inspection of 

the parameter estimates from this alternate model (Model 07MPFC) suggests that the MPFC had a 

negative relationship with Memory Quality when controlling for its participation in the dPMN. 

The absence of other region-specific effects suggests that the contributions of the other PM 

regions were well described by the subnetwork level effects.
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Title paramHeader param est se pval 

Model 07pHipp MEMQ.ON PHIPP 0.059 0.030 0.048 

Model 07Prec MEMQ.ON PREC 0.110 0.045 0.016 

Model 07PCC MEMQ.ON PCC 0.066 0.081 0.420 

Model 07MPFC MEMQ.ON MPFC -0.158 0.037 < 0.001 

Model 07PHC MEMQ.ON PHC 0.097 0.090 0.282 

Model 07RSC MEMQ.ON RSC 0.026 0.045 0.575 

Model 07aAG MEMQ.ON AAG 0.047 0.057 0.415 

Model 07pAG MEMQ.ON PAG -0.063 0.051 0.218 

Table 4: Key Parameter Estimates from Region-Specific Models. Table reports the key 

parameter estimates for the family of models delineating region-specific contributions. This table 

was created using the R package MplusAutomation (Hallquist & Wiley, 2018). Parameter 

headers (paramHeader) follow standard Mplus syntax, where the ON keyword indicates a path 

parameter (𝛽). param = parameter, est = estimate, se = standard error, pval = p value. See Figure 

1 caption for abbreviations. Listed p values are uncorrected for multiple comparisons.

Figure 2: Path Diagram. Path diagram representing the within-subject level of our two level 

baseline model (i.e., Model 7) with standardized parameter estimates (standard error in 

parentheses). The dotted line depicts the additional region-specific contribution path added in the 

region-specific family of models detailed in Table 4. See Figure 1 caption for abbreviations. * = 

p < .05, ** = p < .01, *** = p < .001.

https://paperpile.com/c/ObhI6g/oxGA
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Memory Feature Models 

Our primary aim was to examine the region-specific and network-level contributions of 

PM regions to overall memory quality during retrieval. Our experimental design, however, also 

afforded us the opportunity to examine their contributions to the retrieval of different memory 

features (i.e., scene perspective, object color, sound valence). To examine this, we updated our 

joint measurement model so that the behavioral measures simply covaried with one another 

instead of loading onto a common factor. This updated measurement model fit the data well 

(Model 8: 𝝌2 = 683.198, df = 37, p < .001, RMSEA = 0.067, CFI = 0.965, SRMRwithin = 0.030, 

SRMRbetween= 0.000). Using this measurement model, we then fit a series of structural models to 

examine the network-level and region-specific contributions to each of the features of our events 

(see Figure 3). Key parameter estimates from this family of models can be found in Table 5. The 

baseline model (Model 9; see Figure 3) suggests that there were statistically significant network-

level contributions of the vPMN and the dPMN to scene feature memory, such that the vPMN 

contributed positively to scene memory whereas the dPMN contributed negatively. No other 

network-level effects were statistically significant, although it is worth noting that in contrast to 

its negative relationship with scene memory, the dPMN trended toward positive relationships 

with sound memory. Interestingly, the parameter estimates for the covariances amongst the 

residuals of the behavioral variables suggest that there remains a joint “holistic” remembering 

property that is not explained by PM network activity (see Appendix B for a full table of model 

parameters). The results from a family of models containing region-specific paths from each 

region to each memory feature (see Figure 3, Table 5) suggest that the MPFC made a region-

specific negative contribution to object color memory. No other regions made a region-specific 

contribution after controlling for family-wise error using a Bonferroni correction.  
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Figure 3. Memory Feature Model Path Diagram. Path diagram representing our feature specific 

memory model (Model 9) capturing network-level and region-specific contributions to feature 

memory. The baseline model contained paths from each subnetwork latent variable to each 

memory feature (i.e., 6 in total, solid lines). The region-specific models contained all of the paths 

from the baseline model with the addition of paths from a single region to each memory feature 

(i.e., 3 additional paths, dotted lines), iterated across the entire set of regions. See Table 5 for 

parameter estimates. 

Model paramHeader param est se pval 

Model 9 COLOR.ON VPMN -0.004 0.047 0.933 

 COLOR.ON DPMN 0.041 0.050 0.417 

 SOUND.ON VPMN 0.006 0.043 0.882 

 SOUND.ON DPMN 0.114 0.059 0.052 

 SCENE.ON VPMN 0.277 0.043 0.000 

 SCENE.ON DPMN -0.147 0.040 0.000 

Model 9pHIPP COLOR.ON PHIPP 0.015 0.024 0.544 

 SOUND.ON PHIPP 0.038 0.032 0.234 

 SCENE.ON PHIPP 0.045 0.033 0.163 

Model 9PREC COLOR.ON PREC 0.073 0.049 0.135 

 SOUND.ON PREC -0.001 0.040 0.971 
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 SCENE.ON PREC 0.061 0.087 0.485 

Model 9PCC COLOR.ON PCC 0.026 0.050 0.600 

 SOUND.ON PCC 0.014 0.078 0.863 

 SCENE.ON PCC 0.083 0.126 0.511 

Model 9MPFC COLOR.ON MPFC -0.096 0.027 0.000 

 SOUND.ON MPFC -0.040 0.036 0.272 

 SCENE.ON MPFC -0.089 0.038 0.020 

Model 9PHC COLOR.ON PHC 0.012 0.105 0.907 

 SOUND.ON PHC -0.004 0.094 0.966 

 SCENE.ON PHC 0.052 0.046 0.261 

Model 9RSC COLOR.ON RSC -0.027 0.055 0.616 

 SOUND.ON RSC 0.008 0.043 0.847 

 SCENE.ON RSC 0.062 0.046 0.177 

Model 9PAG COLOR.ON PAG 0.025 0.060 0.674 

 SOUND.ON PAG -0.004 0.037 0.923 

 SCENE.ON PAG -0.079 0.033 0.016 

Model 9AAG COLOR.ON AAG 0.013 0.066 0.845 

 SOUND.ON AAG -0.056 0.053 0.285 

 SCENE.ON AAG 0.047 0.089 0.596 

Table 5. Memory Feature Models: Parameter Estimates. Key parameter estimates from a family 

of memory feature specific models. Statistically significant path estimates that survive a 

Bonferroni correction are highlighted in yellow. This table was created using the R package 

MplusAutomation (Hallquist & Wiley, 2018). Parameter headers (paramHeader) follow standard 

Mplus syntax, where the ON keyword indicates a path parameter from the variable listed in the 

“param” column to variable listed in the “paramHeader” column. param = parameter, est = 

standardized estimate, se = standard error, pval = p value. See Figure 1 caption for abbreviations. 

See Figure 3 for path diagram. Listed p values are uncorrected for multiple comparisons. 

Discussion 

 In the current study, we examined heterogeneity in the function of the PM network using 

a multilevel SEM framework. Our measurement models indicated that a two factor model with 

latent factors representing ventral and dorsal subnetworks was the best model for our neural data 

https://paperpile.com/c/ObhI6g/oxGA
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compared to a single-factor model grouping all PM regions together. Our structural models 

indicated that the contributions of individual regions of the PM network to memory quality are 

largely subsumed by subnetwork-level contributions, with the exception of the MPFC which 

made a unique, region-specific contribution to memory quality. Interestingly, the region-specific 

contribution of the MPFC was found to be negative, such that less MPFC activation (when 

controlling for subnetwork membership) was associated with more accurate recollections. 

Feature specific analyses revealed that the dissociation between vPMN and dPMN was driven 

largely by their distinct contributions to memory for scene information, compared to object color 

or sound valence information. Together, these results reveal new insights into how memory 

outcomes can be explained by a combination of network-level and region-specific factors. 

Our results support the presence of dissociable subnetworks within the PM network 

(Andrews-Hanna et al., 2010; Barnett et al., 2021; Buckner & DiNicola, 2019; Cooper et al., 

2021). Previous studies have shown evidence for highly-related subnetworks during rest 

(Andrews-Hanna et al., 2010; Barnett et al., 2021) and during movie-watching (Cooper et al., 

2021). Our results extend these findings, showing evidence that a similar subnetwork 

organization explains the trialwise involvement of PM regions during retrieval of multi-feature 

events. Our models also showed that the coactivation of the vPMN makes contributions to 

memory quality that go above and beyond those made by coactivation of the dPMN (see Figure 

2). The vPMN has previously been shown to modulate its connectivity in response to event 

transitions, and individual differences in episodic memory ability have been linked to dynamic 

changes in vPMN connectivity during movie watching (Cooper et al., 2021). The vPMN regions 

have also been shown to represent similar information during a memory-guided decision making 

task (Barnett et al., 2021). The vPMN is strongly related to episodic retrieval and 

https://paperpile.com/c/ObhI6g/hZwuU+mCyjT+2Pna+Bm9wg
https://paperpile.com/c/ObhI6g/hZwuU+mCyjT+2Pna+Bm9wg
https://paperpile.com/c/ObhI6g/hZwuU+2Pna
https://paperpile.com/c/ObhI6g/Bm9wg
https://paperpile.com/c/ObhI6g/Bm9wg
https://paperpile.com/c/ObhI6g/Bm9wg
https://paperpile.com/c/ObhI6g/2Pna
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autobiographical remembering, while portions of the dPMN have been linked to mentalizing 

about the mental states of others (Andrews-Hanna, Saxe, et al., 2014; Andrews-Hanna, 

Smallwood, et al., 2014). Additional evidence suggests that the vPMN may be particularly 

responsive to remembering and orienting towards visual-spatial information and the dPMN 

towards people (Peer et al., 2015; Silson et al., 2019) and the thematic elements of 

autobiographical remembrances (Gurguryan & Sheldon, 2019). 

The fact that the vPMN in our dataset was uniquely related to overall memory quality 

could be reflective of our experimental design, which required the recollection of fine grained 

visual-spatial details. At least two other aspects of our results seem to support this conclusion. 

First, memory for the scene feature—which in our experimental design requires the recollection 

of the fine grained visual-spatial details—loaded most strongly onto our overall memory quality 

factor (see Table 3). Second, the vPMN significantly contributed only to scene feature memory 

in our memory feature models (see Table 5). The specific role of the vPMN in supporting scene 

memory is consistent with recent frameworks proposing that the anterior hippocampus and 

anterior regions of the neocortex support memory for coarse, gist-level, schematic details in 

memory whereas posterior regions of the hippocampus and the neocortex— including PHC, 

RSC, and posterior AG— support memory for fine grained perceptual details, especially spatial 

details (Robin & Moscovitch, 2017; Sekeres et al., 2018; Sheldon et al., 2019). In contrast, the 

dPMN was negatively correlated with scene memory and tended to be positively related to sound 

memory, which may have been mediated by relatively coarse representations of the sound 

valence that were sufficient to drive memory for this feature. 

When taking into consideration the covariance among PM network regions, we did not 

find much evidence for independent, region-specific contributions, suggesting that the network-

https://paperpile.com/c/ObhI6g/sIWt+BPJo
https://paperpile.com/c/ObhI6g/sIWt+BPJo
https://paperpile.com/c/ObhI6g/GOfk+qqCO
https://paperpile.com/c/ObhI6g/B1RN
https://paperpile.com/c/ObhI6g/FYnU+DYoy+94pt
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level effects could adequately account for their roles in predicting memory outcomes. 

Nevertheless, we had expected that there might be more region-specific effects, based on 

evidence that many of these regions play specialized roles in recollection. There are several 

reasons for why we did not see the region-specific effects that we had hypothesized. One 

possibility is that there is something unique about our experimental paradigm that did not allow 

us to observe region-specific contributions. For example, the hippocampus may have emerged as 

making a region-specific contribution if we had operationalized our measure of memory success 

to more specifically target the hippocampus’ proposed function. The hippocampus’ contribution 

to predicting overall memory success may be subsumed by the network level contribution, but 

this may not be the case if the measure was more specific to successful pattern completion, for 

instance. Another possibility lies in how we modeled the neural response. In the current report, 

we modeled the neural response by assuming that it was transient, starting at the presentation of 

the memory cue during our ‘remember’ periods. Previous research suggests that the memory-

related neural response in the angular gyrus is not transient with respect to the onset of recall, but 

is instead sustained throughout the duration of the recall period (Vilberg & Rugg, 2012, 2014). It 

is possible that modeling a sustained response throughout the recall period would allow for the 

identification of region-specific contributions of the angular gyrus. Our experimental design only 

allowed for 4 seconds for recall, so the responses captured here are likely to be similar to the 

transient responses seen in Vilberg & Rugg (2012, 2014). As an additional test of this possibility, 

all of our models were rerun using single trial estimates modeling the entire 4-second retrieval 

period. The key results of the current report remained unchanged. Another possible explanation 

is that the identification of region-specific contributions within our framework assumes that the 

operations and representations of individual regions can be decoupled. However, in a typically 

https://paperpile.com/c/ObhI6g/RoaEY+OGzMT
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functioning brain, the activity of two brain regions may be highly correlated if the involvement 

of one brain region depends on the output of the other, even if they are performing otherwise 

separate functions. Thus, although the current results suggest strong evidence for network-level 

effects in the context of the typically functioning brain, the roles of individual brain regions may 

be better revealed in studies documenting the consequences of region-specific disruptions, such 

as studies of patients with focal brain damage (Corkin, 2002; Moscovitch & Winocur, 1992), or 

in electrophysiological studies that can resolve fine temporal differences in information 

processing among regions in the same network (Fox et al., 2018; Treder et al., 2021). 

The one region in which we found a region-specific effect was the MPFC. The MPFC has 

been commonly described as part of the PM network (Ritchey & Cooper, 2020; Rugg & Vilberg, 

2013) and is thought to support the formation and retrieval of gist level, schema-based 

representations (Robin & Moscovitch, 2017; Schlichting & Preston, 2015; Sekeres et al., 2018; 

van Kesteren et al., 2012). Our results indicated that, after accounting for MPFC’s participation 

in the dPMN subnetwork, the MPFC had a region-specific negative relationship with memory 

quality. The negative relationship between MPFC and memory success is not without precedent, 

with fMRI experiments of memory encoding often finding that less MPFC activation is 

associated with greater subsequent memory, particularly for objective compared to subjective 

memory judgments (Maillet & Rajah, 2014). This MPFC activation is thought to be associated 

with mind-wandering or off-task thoughts (Christoff et al., 2009) which interferes with the 

formation of a lasting memory trace. The current experiment, however, was primarily focused on 

retrieval where previous reports have indicated a positive relation between MPFC activity and 

measures of subjective memory success (H. Kim, 2016; McDermott et al., 2009; Spaniol et al., 

2009). One possible explanation of this surprising result is that it reflects the role of the MPFC in 
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schema based memory. Our experimental design relies on participants arbitrarily associating 

event elements at a fine level of detail. If participants were relying on a schema to meet our task 

demands, this could potentially lead to decreased performance on the fine-grained memory 

measures in our experiment. However, in the absence of any independent measures of schema 

use in our experiment, another plausible interpretation is that the observed negative relationship 

may be the result of a statistical artifact. In the current study, the MPFC was only weakly 

correlated with the quality with which events were remembered, but was still positively 

correlated with other regions of the network (see Table 1). It was only after controlling for its 

subnetwork participation that we saw a strong negative contribution to memory. Thus, the result 

seen here could be the result of a conditioning-on-a-collider bias, also known as Berkson’s 

paradox (Berkson, 1946; Lübke et al., 2020). In this paradox, two variables that, in reality, do 

not have a statistical association are induced to have a negative association by statistically 

controlling for a variable that they both cause. In the current scenario, it could be the case that 

MPFC activation and memory quality are (at least in part) correlated with increases in PM 

network coactivation, but memory quality and MPFC activation are not related to one another. 

 The SEM methodology applied in the current report has a number of distinct advantages. 

Firstly, the current SEM approach has an advantage over previous reports of brain-behavior 

correlations in that it can simply and simultaneously capture the network-level and region-

specific contributions of brain regions to behavioral phenomena. Second, the current report 

expanded upon previous deployments of this methodology (Bolt et al., 2018) by applying a 

multilevel SEM to simultaneously model within-subjects and between-subjects variation in the 

BOLD response, seeking to relate trial-by-trial, within-subjects variability in BOLD response to 

trial-by-trial variability in memory while controlling for individual differences. Thirdly, our 

https://paperpile.com/c/ObhI6g/0ZKs+Om1Q
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dataset has a distinct advantage over previous studies of episodic remembering because it 

incorporates multiple measures of the quality of retrieval of an episode. This allowed us to model 

overall memory quality as a latent variable loading onto our measures of memory for 3 different 

features of each episode. By operationalizing memory success in this way, we were able to 

capture trial-to-trial variability in the joint remembering of event features. This is key, because 

holistic recollection is thought to be a key characteristic separating episodic remembering from 

other forms of memory (Tulving, 1983). 

 Our SEM approach is related to, but distinct from, other methods for relating regions and 

networks to episodic remembering. For example, previous studies have used data-driven, 

hierarchical clustering methods to parcellate PMN subnetworks (Andrews-Hanna et al., 2010; 

Barnett et al., 2021; Cooper et al., 2021), but did not relate trialwise coactivation within those 

subnetworks to episodic remembering. Another set of related methodological approaches is 

effective connectivity approaches. Specifically, some effective connectivity approaches also use 

SEM, but they use SEM to attempt to test hypothetical models of the underlying causal relations 

amongst regions of interest (e.g., McIntosh & Gonzalez-Lima, 1994; see McIntosh & Protzner, 

2012 for review). The latent variable modeling approach applied here, in contrast, does not 

attempt to make such causal inferences. Instead, our approach uses a latent variable to capture 

the coactivation seen within a network and relates this coactivation to a behavioral variable of 

interest. Lastly, the current approach is conceptually similar to partial least squares (PLS) 

analyses (Krishnan et al., 2011; McIntosh et al., 1996; McIntosh & Lobaugh, 2004). PLS 

involves maximizing the covariation between signal extracted from voxels of the brain and 

behavior, extracting latent variables reflecting distributed coactivation across the brain that 

explains variance in some behavior of interest. The SEM approach used in the current report is 
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similar to PLS in that it also estimates a latent variable using the covariation of regional 

activation profiles, but has the advantage of being exclusively hypothesis driven and 

computationally and conceptually simpler. Many PLS applications (but not all Krishnan et al., 

2011), in contrast, are data driven in nature. Additionally, PLS typically operates on all of the 

voxels collected during the course of an experiment, whereas the current approach operates on a 

set of hypothesized ROIs. 

 The current report makes an important contribution to the literature on the role of the PM 

network in episodic remembering. It does, however, have its limitations. Our multilevel approach 

allowed us to model trialwise neural activation and behavioral profiles while controlling for 

individual differences. Multilevel SEM, however, also allows researchers to build models of 

individual differences in neural activation and behavior beyond simply controlling for this 

important source of variability. We did not attempt to model individual differences in the current 

report in large part because our dataset would be underpowered to do so. Future research could 

utilize larger sample sizes to model individual differences related to particular participant 

characteristics (see Bolt et al., 2018 for an SEM application to individual differences). 

Additionally, the current analysis was focused on a set of a-priori ROIs that were the same 

across individuals. Although this is a good starting point and is a strategy often adopted by 

researchers, recent research in high-precision functional mapping suggests that individually 

defined ROIs may provide more accurate insights into network organization and function 

(Buckner & DiNicola, 2019; Gilmore et al., 2021). Finally, although our memory measures 

captured multiple aspects of each episode (specifically, memory for multiple episodic features), 

they may not have adequately captured the functioning of core alliances within the PM network 

(Ritchey & Cooper, 2020). 

https://paperpile.com/c/ObhI6g/ZHYz/?prefix=but%20not%20all
https://paperpile.com/c/ObhI6g/ZHYz/?prefix=but%20not%20all
https://paperpile.com/c/ObhI6g/U6fy/?prefix=see&suffix=for%20an%20SEM%20application%20to%20individual%20differences
https://paperpile.com/c/ObhI6g/mCyjT+ws9G
https://paperpile.com/c/ObhI6g/3KCa


NETWORK CONTRIBUTIONS TO RECOLLECTION 

38 

 In conclusion, the brain is simultaneously composed of large scale brain networks and 

individual regions composing those networks. Here we demonstrate the importance of 

considering both network and regional levels of analysis when studying brain-behavior 

relationships, finding evidence in favor of a specific subnetwork organization of the PM network 

in its relation to episodic memory outcomes. Future work should continue to characterize the PM 

network by examining how these levels of analysis differentially support the various 

subprocesses and representations underlying episodic recollection.  
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Appendix A 

Model Description Estimator Chi-square (df) RMSEA CFI SRMR_W SRMR_B 

Preliminary         

1 Neural 

Preliminary 

MLR 2951.578 (36), p<.001 .144 .000 .047 .352 

2 Behavioral 

Preliminary 

WLSMV 20.882 (6), p=.002 .025 .958 .000 .634 

Measurement models         

3 One Factor 

Neural 

MLR 290.442 (20), p<.001 .059 .905 .063 .005 

4 Two Factor 

Neural 

MLR 90.096 (19), p<.001 .031 .975 .035 .003 

5 Latent Variable 

Behavioral 

WLSMV 0.163 (2), p=.922 .000 1.000 .001 .022 

6 Stitched Model WLSMV 534.782 (59), p<.001 .046 .974 .034 .043 

8 Stitched Model 

Without 

Behavioral 

Latent Variable 

WLSMV 683.198 (37), p < .001 .067 .965 .030 .000 

Structural models         

7 Behavioral 

Latent Variable 

WLSMV See Table 4 and Figure 2 

9 Without 

Behavioral 

Latent Variable 

WLSMV See Table 5 and Figure 3 

Appendix A Table A1: Summaries of all models included in the manuscript along with their 

model fit indices. The preliminary models were used to establish the appropriateness of the 
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multi-level modeling approach for the neural (Model 1) and behavioral (2) data. The 

measurement models characterized the loading of individual measures onto their corresponding 

latent variables, separately for the neural (3, 4) and behavioral (5) data. Measurement models 

were stitched together into combined models with (6) and without (8) the latent variable for 

overall memory quality. Finally, structural models were used to test the paths connecting the 

neural and behavioral latent variables with each other and with the individual measures, for both 

the overall memory quality (7) and memory feature (9) analyses. 

Appendix B 

paramHeader param est se pval 

VPMN.BY RSC 0.627 0.006 < 0.001 

 PHC 0.567 0.008 < 0.001 

 PAG 0.608 0.007 < 0.001 

DPMN.BY MPFC 0.516 0.006 < 0.001 

 PHIPP 0.438 0.008 < 0.001 

 PREC 0.647 0.007 < 0.001 

 PCC 0.685 0.004 < 0.001 

 AAG 0.711 0.005 < 0.001 

SCENE.ON VPMN 0.277 0.043 < 0.001 

 DPMN -0.147 0.040 < 0.001 

COLOR.ON VPMN -0.004 0.047 0.933 

 DPMN 0.041 0.050 0.417 

SOUND.ON VPMN 0.006 0.043 0.882 

 DPMN 0.114 0.059 0.052 

DPMN.WITH VPMN 0.634 0.008 < 0.001 

SCENE.WITH COLOR 0.340 0.025 < 0.001 

 SOUND 0.313 0.026 < 0.001 

COLOR.WITH SOUND 0.232 0.026 < 0.001 

Variances VPMN 1 0 999 

 DPMN 1 0 999 

 PHIPP 0.809 0.007 < 0.001 

 PREC 0.581 0.009 < 0.001 

 PCC 0.531 0.006 < 0.001 
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 MPFC 0.734 0.006 < 0.001 

 PHC 0.679 0.009 < 0.001 

 RSC 0.607 0.008 < 0.001 

 AAG 0.495 0.007 < 0.001 

 PAG 0.630 0.008 < 0.001 

Appendix B Table B1: Parameter estimates for the within-subjects part of our feature specific 

memory model (Model 9; see manuscript Figure 3). This table was created using the R package 

MplusAutomation (Hallquist & Wiley, 2018). Parameter headers (paramHeader) follow standard 

Mplus syntax, where the ON keyword indicates a path parameter from the variable listed in the 

“param” column to variable listed in the “paramHeader” column, the BY keyword indicates a 

loading parameter (lambda λ), and the WITH keyword indicates a covariance parameter (theta 

θ). param = parameter, est = standardized estimate, se = standard error, pval = p value. See 

Figure 1 caption for abbreviations. See Figure 3 for path diagram. 
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