
Autonomous Robots
https://doi.org/10.1007/s10514-022-10058-5

Method of evolving junction on optimal path planning in flows fields

Haoyan Zhai1 ·Mengxue Hou2 · Fumin Zhang2 · Haomin Zhou1

Received: 17 December 2021 / Accepted: 15 August 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We propose an algorithm using method of evolving junctions to solve the optimal path planning problems with piece-wise
constant flow fields. In such flow fields, we prove that the optimal trajectories, with respect to a convex Lagrangian in the
objective function, must be formed by piece-wise constant velocity motions. Taking advantage of this property, we transform
the infinite dimensional optimal control problem into a finite dimensional optimization and use intermittent diffusion to solve
the problems. The algorithm is proven to be complete. At last, we demonstrate the performance of the algorithm with various
simulation examples.

Keywords Optimal path planning · Intermittent diffusion · Method of evolving junctions

1 Introduction

Autonomous Underwater Vehicles (AUVs) are a class of
submerged marine robots capable of performing persistent
missions in the ocean. Over the last few decades, AUVs have
been widely applied to various applications, including ocean
sampling (Leonard et al., 2010; Smith et al., 2010), surveil-
lance and inspection (Ozog et al., 2016), and many more.
Since most of the applications require the AUVs to execute
long-term missions in unknown and dynamic oceanic envi-
ronments with minimum human supervisions, their success
is highly dependent on the level of autonomy of the AUVs.

For robots operating in complex and dynamic environ-
ments, path planning is one of the crucial and fundamental
functions to achieve autonomy. In short, the task is finding
a feasible or optimal path, under the influence of a dynamic
flow field, for an AUV to reach a predefined target point.

B Haomin Zhou
hmzhou@math.gatech.edu

Haoyan Zhai
haoyanzhai@gmail.com

Mengxue Hou
mhou30@gatech.edu

Fumin Zhang
fzhang37@gatech.edu

1 Department of Mathematics, Georgia Institute of Technology,
North Ave., Atlanta, GA 30332, USA

2 Department of Electrical and Computer Engineering, Georgia
Institute of Technology, North Ave., Atlanta, GA 30332, USA

Path planning has been studied extensively in robotics over
the years. Several popular algorithms that have been applied
to underwater vehicle navigation include graph based meth-
ods such as the A* method (Rhoads et al., 2012; Pereira
et al., 2013; Kularatne et al., 2018, 2017) and the Slid-
ing Wavefront Expansion method (SWE) (Soulignac, 2011),
probability based methods like the Rapidly exploring Ran-
dom Trees (RRTs) (LaValle, 1998; Kuffner and LaValle,
2000; Gammell et al., 2018; Chen et al., 2019; Shome et
al., 2020), and methods that approximate the solution of HJ
(Hamilton-Jacobi) equations, such as the Level Set Method
(LSM) (Sethian, 1999; Lolla, 2016).

When the A* method is applied for an AUV, the contin-
uous flow field is discretized into grid cells. At each step, it
compares the cost of going from the current position to its
neighboring cells so as to identify a path with the lowest cost.
However, when the resolution, which is inverse proportional
to the cell size, is not high enough, it may fail to find a fea-
sible path even if there exists one. The SWE addresses the
incompleteness issue of A* by introducing the sliders, which
are points that slide on the boundary of cells, as the nodes in
the graph search problem. As all feasible path connecting the
starting and target position canbe formedby a sequence of the
sliders, the path planning problem is converted to a Mixed
Integer Optimization problem (MIP) on cell sequence and
slider positions. The advantage of SWE is that it can find a
feasible solution if one exist. However, if the cost of travel-
ing in each cell depends on slider positions, then the SWE
methodmay not be able to find the optimal solution. RRT and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-022-10058-5&domain=pdf

Autonomous Robots

RRT* explore the flow field by using random sampling, with
a bias towards the unexplored area (Karaman and Frazzoli,
2011; Noreen et al., 2016). Like many other probabilistic
based methods, RRTs provide, guaranteed in the asymptotic
sense, a globally optimal solution only when the samples are
dense enough. Methods to improve the convergence rate of
RRT and RRT* have been introduced (Janson et al., 2015;
Gammell et al., 2018). LSM computes a propagating front,
incorporating both flow and vehicle speeds, to approximate
the solution of the HJ equation. Then the optimal path is
computed by back tracking along the normal direction of
the wavefront from the destination position. LSM can plan
a shortest time path over time-varying flow field, usually at
the cost of longer computational time.

Using a regular grid to discretize the flowfield can result in
unnecessary large number of cells, which increases the com-
putational burden of the planning methods. Since the flow
speed in adjacent position is usually similar, the flow field
can be partitioned into piece-wise constant subfields, within
each the flow speed is a constant vector (Hou et al., 2019;
Kularatne et al., 2017; Kaiser et al., 2014; Ser-Giacomi et
al., 2015). Taking advantage of the flow field partitioning,
we can parameterize a path by the index of cells crossed by
the path, and the intersection points between the path and
the boundaries of regions. In this way, the original path plan-
ning problem in the continuous flow field is reduced to a
finite dimensional MIP, with the decision variables being
the index of cells crossed by the path, and the intersec-
tion points between the path and the boundaries of regions.
Because of the coupling between the integer and continuous
variable, the optimization problem is high dimensional, and
is computationally expensive to solve. Existing works fol-
lowing this approach solves the MIP in a bi-level approach
(Kularatne et al., 2017; Soulignac, 2011). The lower-level
solver computes the minimum-cost continuous variable in
each partitioned cell using convex optimization approaches,
and then the upper-level solver optimizes the integer variable
by the A* algorithm, with the branch cost of the decision tree
being the optimal solution derived from the lower-level con-
troller. However, because of the decoupling between the cell
sequence and the intersection points, such algorithms cannot
guarantee optimality of the solution, without imposing more
assumptions on the problem (Sinha et al., 2017).

In this paper,we present the interleaved branch-and-bound
depth-first search with intermittent diffusion (iBnBDFS-ID)
method for computing time and energy optimal paths for
vehicles traveling in the partitioned flow field. Different
from existing strategies that solves the MIP using a bi-level
approach (Kularatne et al., 2018, 2017; Soulignac, 2011),
we solve the MIP in an interleaved way, with guaranteed
optimality. When a cell sequence connecting the start and
the destination is found by the depth-first search (DFS), the
intersection position between the optimal path and the cell

boundary curves is computed by the intermittent diffusion
(ID) method (Li et al., 2017). For large search tree with
high branching factor, DFS has shown to be computationally
impractical (Forrest et al., 1974). To address this challenge,
we propose a novel branch-and-bound (BnB) DFS method
that reduces the number of nodes to be searched in the deci-
sion tree, and hence reduces the computational cost in solving
the problem. The key insight is thatwe can find a lower bound
of the the stage cost induced from traveling in one partitioned
cell. Leveraging the lower bound, we compute a lower bound
on the cost-of-arrival, and stop the DFS at the current node if
lower bound on its cost-of-arrival exceeds the best solution
found so far. Therefore, this work proposes a novel method to
solve the AUV path planning problem, as an instance ofMIP,
without excessive demand on computing resources. Contri-
butions of our work are as follows:

1. Optimal solution structureWe prove that for vehicle trav-
eling in partitionedflow regions, the structure of the global
optimal path is a piece-wise constant velocity motion, if
the objective function is given as the total traveling time
or the total energy consumption (modeled by a quadratic
function).

2. Interleaved solver for MIP We propose a novel com-
putationally efficient method to solve the path planning
method in the partitioned flow field, as an instance of the
MIP, and proved completeness of the algorithm. Differ-
ent from the existing works that decouples the process of
optimizing the cell sequence assignment and the intersec-
tion position (Kularatne et al., 2017; Soulignac, 2011), our
method optimizes the cell sequence assignment and the
intersection position between the path and the cell bound-
aries at the same time. By incorporating a BnB technique
in the DFS, the method avoids exhaustive search through
the full decision tree. Hence it solves the planning prob-
lem with low computation cost.

We evaluate the performance of the proposed algorithm
through simulation of AUV path planning in both simulated
and realistic oceanflowfields, and compare its computational
cost and solution quality with the LSM and A* method. The
proposedmethod achieves comparable path cost, and has sig-
nificantly lower computation cost compared with the LSM
andA*method.Moreover, we provide time complexity anal-
ysis of the proposed algorithm, which gives insights on its
computation cost with respect to different levels of partition-
ing.

In the next section, we present the formulation of the prob-
lem in the optimal control framework and the assumptions
used in the paper. In Sect. 3, we show how to transform the
original problem into the finite dimensional optimization,
and provide the algorithm. In Sect. 4, proof of the complete-

123

Autonomous Robots

ness of the algorithm is offered, accompanied with several
numerical experiments in Sect. 5. At last, we end our paper
with a brief conclusion.

2 Problem statement

We consider the vehicle moving in the space � ⊂ R
d with

dimension d, equipped with a dynamic ẋ = u + v, where u
is the environment flow velocity, and v is the vehicle velocity
or the control variable, satisfying v ∈ U , providing thatU is a
compact space such that ‖v‖ ≤ V , where V is the max speed
of the vehicle. We further assume that by taking advantage
of existing methods on ocean flow field partitioning (Hou et
al., 2019, 2021), the flow field is divided into finite number
of convex regions {Rα}α∈IR by boundary curves (surfaces if
is in Rd , d ≥ 3) { fαβ}(α,β)∈I . Here

I = {(α, β) ∈ IR × IR : dim(∂Rα ∩ ∂Rβ) = d − 1},

where dim(S) returns the dimension of the set S and ∂S is the
boundary of S, and fαβ(x) = 0 is the (d − 1)-dimensional
compact boundary of the region Rα and Rβ (can be denoted
as ∂Rα and ∂Rβ respectively). Let x denote a point on the
boundary, we can parameterize the cell boundary by defining
a piece-wise diffeomorphism

x(λ) : D ⊂ R
d−1 −→ {

y : fαβ(y) = 0
}
,

where D is a (d−1)-dimensional unit ball. Also within each
region, we suppose that the flow velocity u is a constant
vector. Hence we can denote the flow velocity in each region
Rα separately by uα . The vehicle needs to be controlled from
an initial position x0, crossing different regions and finally
reaching the target position x f .

Since there could be infinitely many feasible paths linking
x0 and x f , a cost function is introduced to measure the travel
expense with respect to different potential trajectories. We
denote the cost function to be

J (v, T) =
∫ T

0
L(v(t))dt, (1)

letting γ (t) be a continuous pathwith γ (0) = x0, γ (T) = x f

and γ̇ (t) = u+v. In this paper, we discuss the problem with
the cost function specifically being the total travel time, that
is L(x, v) = 1 and the kinetic energy combining a constant
running cost, in which case L(x, v) = ‖v‖2 + C where C
and ‖v‖ are not simultaneously 0 for all x ∈ � because of
technical issueswhichwill be discussed in Sect. 4.2. Our goal
is to find the optimal control function v(t) with minimum

cost, and can be expressed as the following problem:

min
v,T

∫ T

0
L(v)dt

s.t . ẋ = v + u,

x(0) = x0,

x(T) = x f ,

max
t∈[0,T] ‖v‖ ≤ V

(2)

There may not exist a feasible solution to (2), in the case
where the flow speed is larger than the vehicle speed. To
guarantee existence of a feasible solution, we assume that
the flow speed is lower than the maximum vehicle speed V .

In the next section, wewill concretely discuss ourmethod,
the idea of which is to seek a way to change the infinite
dimensional optimal control problem into a finite dimen-
sional optimization problem.

3 Ourmethod

All possible trajectories will continuously pass through a
sequence of regions. Since the flow velocity u is a constant
vector in each region, we have the following theorem that
will be proved in the Appendix:

Theorem 3.1 In the optimal solution for

min
v,T

∫ T

0
L(v)dt

s.t . ẋ = f (v + u),

x(0) = x0,

x(T) = x f ,

max
t∈[0,T] ‖v‖ ≤ V .

where u is a constant vector and f is invertible, the velocity
v is a constant vector.

WithBellman’s principle, it is the fact that the optimal path
should be formed via a piece-wise constant velocity motion.
Thus, we restrict the velocity of the vehicle in each region to
be a constant. Further, the regions are convex, therefore, the
straight line path always lies inside each of the cell crossed
and the path is continuous.Nowwecan introduce the notation
vi to be the vehicle velocity in the i th cell crossed.

Because of Theorem 3.1, we can parameterize solution to
(2) by i) the cell sequence that the path goes through, and ii)
the position where the path intersects with the cell bound-
aries. We assume that the initial and the terminal position in
(2) are on the boundary of the partitioned cells. In general
this can be achieved by incorporating a fixed rule to partition

123

Autonomous Robots

Fig. 1 Example of parameterizing a feasible path in the partitioned
domain by the cell sequence and the junction position. The purple tri-
angles are the junction position. The path goes through 3 cells. Index
of 3 cells are c1 = 1, c2 = 2, c3 = 4. On the boundary f12 and f24
there are two junctions, position of which is parameterized by λ1 and
λ2 (Color figure online)

the cells containing x0 and x f into two separate cells, with
the new generated boundary going through x0 and x f .

Let C = {c1, c2, . . . , cn} denote a sequence of the index
of cells that a path travels through, ci ∈ IR,∀i ∈ [1, n]. We
define the junction set {xi }ni=0 to be the intersections between
a trajectory and the cell boundaries. The junction xi is on the
boundary between the two regions indexed as ci and ci+1.
The junction x0 is the initial junction and the destination x f

is the last junction e.g. xn = x f . For each region Ri , the
entrance junction is xi−1 and the exit junction is xi . Fig. 1
shows illustration of parameterizing a feasible path using
junctions and the cell sequence.

Given the above mentioned parameterization to feasible
trajectories, to solve the planning problem, we need to i)
determine the sequence of regions that the optimal path goes
through, and ii) compute the optimal position of intersection
position between the trajectory and the cell boundaries. In
this section, we propose a novel method to solve the planning
problem. The key idea of themethod is based on two insights.
First, we only need to determine the cell sequence when the
vehicle reaches cell boundary. Each assignment of visited cell
sequence will produce a branch of a decision tree, with each
branch in the tree representing a cell that the vehicle crosses.
The decision tree contains a finite number of branches, and
a feasible solution must be a path from the root of the tree to
the target position. Second, the optimal junction position can
be easily computed if we fix the assignment of cell sequence.

3.1 Minimize total travel time

When minimizing total travel time is the goal, we further let
the vehicle move in maximum speed V . Let uci denote the
flow speed in the cell indexed by ci . Then the cost function

can be converted in the format below:

J (v, T , C) =
∫ T

0
ds = T =

n∑

i=1

gti (xi , xi−1, ci),

where gti is the travel time in region Rci and is expressed as:

gti = ‖xi − xi−1‖
‖vi + uci ‖

.

Since flow and vehicle velocities are constant in each cell,
the motion must be in straight line, meaing that xi−xi−1

‖xi−xi−1‖ =
vi+uci‖vi+uci ‖ , and it leads to:

vi + uci = xi − xi−1

‖xi − xi−1‖‖vi + uci ‖. (3)

We start from the following equality:

(
vi + uci

)T [
(uci + vi) − 2uci + (uci − vi))

] = 0,

and inserting (3) into it yields:

‖vi + uci ‖2 − 2(xi − xi−1)
T uci

‖xi − xi−1‖ ‖vi + uci ‖
+ ‖uci ‖2 − V 2 = 0.

This leads to the following expression:

‖vi + uci ‖ = (xi − xi−1)
T uci

‖xi − xi−1‖

±
((

(xi − xi−1)
T uci

‖xi − xi−1‖
)2

+ V 2 − ‖uci ‖2
) 1

2

.

To minimize the travel time, we take the plus sign so that

‖vi + uci ‖ = (xi − xi−1)
T uci

‖xi − xi−1‖ +
((

(xi − xi−1)
T uci

‖xi − xi−1‖
)2

+ V 2 − ‖uci ‖2
) 1

2
(4)

and have the travel time in region Rci as

gti = 1

‖uci ‖2 − V 2

(
(xi − xi−1)

T uci −
√(

(xi − xi−1)T uci
)2 + ‖xi − xi−1‖2(V 2 − ‖uci ‖2)

)
.

At last, since xi is on the boundary of the regions indexed by
ci and ci+1, we have the smooth parameterization of each xi

123

Autonomous Robots

as xi = xi (λi) where λi ∈ D ⊂ R
d−1, transforming finally

the cost function to be

J (λ1, · · · , λn−1, C) =gt1(x1(λ1), x0, c1)

+ gtn(xn−1(λn−1), x f , cn)

+
n−1∑

i=2

gti (xi (λi), xi−1(λi−1), ci).

and the problem is changed to a finite dimensional optimiza-
tion problem

min
λi∈D,ci∈IR ,i=1,··· ,n−1

J (λ1, · · · , λn−1, C). (5)

3.2 Minimize energy

If the cost function is the kinetic energy with a constant run-
ning cost C ≥ 0

J (v, T) =
∫ T

0
‖v‖2 + Cdt,

we first consider the constant velocity motion in each region
Ri within time ti . Fixing the entrance and exit junctions xi−1

and xi , we can derive vehicle speed as

vi = xi − xi−1

ti
− uci ,

and

‖vi‖2 = ‖xi − xi−1‖2
t2i

+ ‖uci ‖2 − 2(xi − xi−1)
T uci

ti
. (6)

The cost function in the specific region Rci can be rewritten
as

J (ti) =
∫ ti

0
‖vi‖2 + Cds

= ‖xi − xi−1‖2
ti

+ (‖uci ‖2 + C)ti

− 2(xi − xi−1)
T uci

≥ 2
√

‖uci ‖2 + C‖xi − xi−1‖
− 2(xi − xi−1)

T uci

(7)

with equality holds at

t∗i,1 = ‖xi − xi−1‖√‖ui‖2 + C
. (8)

Hence, if the maximum vehicle speed is large enough, that
is,

V 2 ≥ ‖xi − xi−1‖2
t∗2i,1

+ ‖uci ‖2 − 2(xi − xi−1)
T uci

t∗i,1
, (9)

we can find the optimal vehicle forward speed by replacing
ti in (6) with the optimal solution in (8):

‖vi‖2 = 2‖uci ‖2 + C − 2(xi − xi−1)
T uci

‖xi − xi−1‖
√

‖uci ‖2 + C .

(10)

Hence, if (9) holds, we let the vehicle move in the speed of
‖vi‖ in (10).

However, if the (9) does not hold, we set the vehicle speed
to be the maximum speed V and the cost function is reduced
to be J = (V 2 + C)t∗i,2 where

t∗i,2 = 1

‖uci ‖2 − V 2

(
(xi − xi−1)

T uci −
((

(xi − xi−1)
T uci

)2

+ ‖xi − xi−1‖2(V 2 − ‖uci ‖2)
) 1

2
)

,

(11)

which is a root of

(‖uci ‖2 − V 2)t2i − 2(xi − xi−1)
T uci ti + ‖xi − xi−1‖2 = 0.

Thus the energy spent in each region is

gei (xi , xi−1) =
⎧
⎪⎨

⎪⎩

2
√

‖uci ‖2 + C‖xi − xi−1‖
− 2(xi − xi−1)

T ui
if (9) holds

(V 2 + C)t∗i,2 otherwise

By using the same parametrization as in the time-optimal
planning, we finally have the problem to be a finite dimen-
sional optimization formulated as

min
λi∈D,ci∈IR ,i=1,··· ,n−1

J (λ1, · · · , λn−1, C) (12)

where

J (λ1, · · · , λn−1, C) = ge1(x1(λ1), x0, c1)

+ gen(xn−1(λn−1), x f , cn)

+
n−1∑

i=2

gei (xi (λi), xi−1(λi−1), ci).

Furthermore, gti and gei has the following properties:

123

Autonomous Robots

Proposition 3.1 If there exists a feasible trajectory from
xi−1 to xi in Ri and V �= ‖ui‖, then gti (xi , xi−1, ci) and
gei (xi , xi−1, ci) are differentiable.

We give the proof of this property in the Appendix. With
this proposition, we can take the derivative of the objective
function, which is pivotal for applying the Intermittent Dif-
fusion method described in Sect. 3.3.2.

3.3 Construction of decision tree

We introduce a tree structured graph to model how the
sequence of cell that the path crosses affects the total cost. In
the tree, each node represents a boundary curve that contains
a junction point. To construct the decision tree, we first define
two boundary curves fc1,c2 , fc3,c4 as adjacent if

{c1, c2} ∩ {c3, c4} �= ∅, (13)

indicating that the two curves are two boundaries of the same
cell.

3.3.1 Decision tree traversal

Starting from the boundary curve containing the initial posi-
tion, which is the root node, a directed decision tree can
be formed by connecting the adjacent boundary curves in
the domain. The branch generation stops when the node is
the boundary curve containing the destination position. Each
node in the decision tree represents a boundary curve that
a feasible path will go through. A connected path in the
decision tree, starting from the root node to the target node
represent a sequence of cells that a feasible path will cross.
Fig. 2 shows the decision tree constructed from a partitioned
workspace.

The construction of the entire decision tree is not neces-
sary, and is time-consuming. However, for the purpose of
clearly presenting the concept of the planning method, we
will discuss how the tree can be fully constructed, and then
present the branch pruning technique. We construct the deci-
sion tree iteratively using the depth-first search method. Let
nc represent the current node. At each step, we search for all
the boundary curves adjacent to the current node, and call
the current node as the predecessor of the new node. Since
the optimal path will not visit one boundary curve more than
one time, the optimal cell sequence should not include loops.
Hence, when searching for the adjacent nodes to be expanded
next, wewill not expand an adjacent node of nc if it is already
visited. This node generation process terminates when the
target node is visited.

By constructing the decision tree we can find all the cell
sequences connecting the root and the terminal node. For
one cell sequence, the MIP (5) and (12) reduces to a finite

dimensional non-convex optimization problemover the junc-
tion positions. Next we show how this optimization problem
can be solved using the Intermittent Diffusion method.

3.3.2 Intermittent Diffusion

Theobjective functions in (5) and (12) are both differentiable.
Hencewe use the Intermittent Diffusion (ID) to get the global
minimizer (Chowet al., 2013), the key idea ofwhich is adding
white noise to the gradient flow intermittently. Namely, we
solve the following stochastic differential equation (SDE) on
the configuration space

dλ = −∇ J (λ)dθ + σ(θ)dW (θ) (14)

where λ = (λ1, · · · , λn−1) ∈ Dn−1 and W (θ) is the stan-
dardBrownianmotion. The diffusion is a piece-wise constant
function defined by

σ(θ) =
N∑

i=1

σi I[Si ,Ti](θ)

whereσi are constant and I[Si ,Ti](θ) is the characteristic func-
tion on interval [Si , Ti] with 0 ≤ S1 < T1 < S2 < T2 <

· · · < SN < TN < SN+1 = T .
Thus, if σ(θ) = 0, we obtain the gradient flow back while

when σ(θ) �= 0, the solution of (14) has positive probability
to escape the current local minimizer. The theory of ID indi-
cates that the solution of (14) visits the global minimizer of J
with probability arbitrarily close to 1 if mini |Ti − Si | is large
enough, which is guaranteed by Theorem 6.1 in Appendix.

We use the forward Euler discretization to discretize the
above SDE and get

λk+1 = λk − h∇ J (λk) + σkξ
k
√
h. (15)

The constant h is the step size, σk is the coefficient chosen
to add the intermittent perturbation and ξ k ∼ N (0, 1) is a
Gaussian random variable. In practice, the global minimizer
can be reached by tuning the white noise strength σk as well
as setting the total evolution round N long enough.

We summarize the ID algorithm in Algorithm 2 with the
objective function being (5) or (12).

3.3.3 Branch cost lower bound

We leverage a BnB technique to prune the branches in the
decision tree, in order to save the computation cost in both
nodegeneration and solving for the optimal junctionposition.
We approach this problem by leveraging the lower bound
of the decision tree branch cost. In the decision tree, each
branch represents a path segment connecting the junction on

123

Autonomous Robots

one boundary to the junction on one of its adjacent bound-
ary. Hence, the branch cost of the decision tree represents the
stage cost generated fromgoing fromone junction to another.
However, since the optimal junction position is unknown
whenwe construct the decision tree, the exact optimal branch
cost cannot be calculated. Hence we introduce the lower
bound of the branch cost, and use the DFSBnB technique
(Poole and Mackworth, 2010) to prune some of the branches
in the tree. For the time-optimal and energy-optimal plan-
ning, we find the upper bound of the branch cost as follows.
Let us define the maximum and minimum distance between
two junctions xi−1 and xi ,

dmax = max
xi ,xi−1

‖xi − xi−1‖,
s.t. fci ,ci+1(xi) = 0, fci−1,ci (xi−1) = 0,

dmin = min
xi ,xi−1

‖xi − xi−1‖,
s.t. fci ,ci+1(xi) = 0, fci−1,ci (xi−1) = 0.

We can find a lower bound on the minimum time spent on
the path segment,

gti ≥ 1

V 2 − ‖uci ‖2
(‖xi − xi−1‖V

−
√

‖xi − xi−1‖2‖uci ‖2 − ((xi − xi−1)T uci)
2)

− (xi − xi−1)
T uci)

≥ 1

V 2 − ‖uci ‖2
(dminV − ‖(xi − xi−1)‖‖uci ‖

+ ‖(xi − xi−1)
T uci ‖ − (xi − xi−1)

T uci)

≥ dmin

V + ‖uci ‖
� gti,lb.

(16)

This lower bound is the travel time when the vehicle travels
in the largest possible total speed V + ‖uci ‖, which is the
situation that uci is in the same direction as the shortest path
segment from xi−1 to xi .

Similarly, given (7) we find a lower bound, denoted as
gei,lb on the energy spent in one cell,

gei,lb = max{2dmin

√
‖u2ci + C‖ − 2dmax‖uci ‖, 0}. (17)

3.3.4 Branch-and-Boundmethod

We use the DFS algorithm to iteratively generate the nodes,
starting from the root and terminates when it reaches the
destination node. After the first cell sequence connecting the
root with the destination node is found, we use ID algorithm
to compute the optimal junctions that result in the minimum
total travel cost (Line 12). To avoid traversing all feasible
cell sequences, the algorithm maintains the lowest-cost path

to the target found so far, and its cost. At each step of node
generation, for each of the adjacent cellmi of the current node
nc, we compute a lower bound of the total cost of arrival, from
the root to vi ,

fg(mi) = fg(nc) + gi,lb, (18)

where for the time-optimal planning, gi,lb = gti,lb is com-
puted by (16), and for the energy-optimal planning, gi,lb =
gei,lb is computed by (17). If fg(mi) is larger than the lowest-
cost path found so far, then all the path that goes through
the cell boundary represented by mi cannot be the optimal
solution, since its total cost will be larger than the lowest-cost
path found so far. Thus we stop the DFS from mi to its child
nodes, and go to the next adjacent cell of nc to continue the
search (Line 24).

Algorithm 1: Main algorithm
Data: initial position x0, final position x f , partitioned cell

{Rα}α∈IR
Output: optimal junction position x(λopt)

1 visited ← {FALSE};
2 C ← {};
3 CostArrival = 0;
4 TotalCost_ub = 0;
5 Start node s = [c0, c1], goal node d = [cn, cn+1];
6 λopt = findAllCellSeq(s, d, visited, C, adjacency, fg(s),

TotalCost_ub);
7

8 Function findAllCellSeq(nc, d, visited, C, fg(nc),
TotalCost_ub):

9 visited(nc) = TRUE;
10 C.append(nc);
11 if nc = d then
12 λ = Intermittent_Diffusion(C);
13 if J (λ) < TotalCost_ub or TotalCost_ub = 0 then
14 TotalCost_ub ← J (λ);
15 λopt = λ;
16 end
17 end
18 else
19 for all adjacent node {m j }Mj=1 of nc do
20 if visited(m j) = FALSE then
21 Compute g j,lb using (16) or (17);
22 Compute fg(m j) using (18);
23 if fg(m j) > TotalCost_ub and TotalCost_ub �= 0

then
24 continue;
25 end
26 findAllCellSeq(m j , d, visited, C, fg(m j) + g j,lb,

TotalCost_ub);
27 end
28 end
29 C.pop;
30 visited(u) = FALSE;
31 end

123

Autonomous Robots

Fig. 2 (Left):Example of a partitioned space. The domain is partitioned
into 6 cells. the red line represents one feasible path from the start to the
destination position, with the junctions represented by the purple tri-
angles. (Right): The entire decision tree for this partitioned space. The
root node shown by the green circle is the boundary curve containing
the starting position, and the terminal node (yellow circle) represents

the boundary curve containing the destination node. For each node, it
is connected to its child node if it is an adjacent boundary to its child.
The red nodes represent the nodes with no unvisited neighboring nodes.
The red path in the graph corresponds to the cell sequence crossed by
the feasible path shown on the left figure (Color figure online)

Algorithm 2: Intermittent Diffusion
Data: cell sequence C
Output: the optimal junction position λ∗ given the fixed cell

sequence C
1 Initialize λ0 = 0;
2 Set evolution step number N ;
3 Choose threshold ε;
4 for i = 1, · · · , N do
5 Choose perturbation duration Ti ;
6 Choose perturbation intensity σi ;
7 for j = 1, · · · , Ti do
8 Update λi using (15);
9 end

10 Set σi = 0;
11 while not converges do
12 Update λi using (15);
13 end
14 end
15 Set λ∗ = argmini≤N J (λi);

3.4 Complexity analysis

In this subsection, we conduct the time complexity analysis
of the proposed algorithm, and compare it with other graph
search algorithms, such as the A*method. Let us assume that
the flow field forecast is available on N×N grid points in the
domain, and the OPEN set of A* algorithm is implemented
using a heap data structure. Then each iteration of A* node
expansion has a worst case running time of O(logmN 2),
where m is the number of neighbors to be expanded for
each node, and there are N 2m nodes in the OPEN set in
the worst case. Hence the worst case running time of A* is
O(mN 2 log(mN 2). For the proposed algorithm, we assume

the domain is partitioned into K number of cells in total, and
each boundary curve has the number of adjacent boundaries
no more than B. We first derive the worst case running time.
If the computation of Algorithm 2 can be performed in a
constant time, and the depth of optimal solution is D. Then
the worst case running time of Algorithm 1 can be found by
considering the scenario that each branch of the decision tree
has to be searched at each iteration of decision tree expan-
sion. This leads to the worst case time complexity O(BD).
To make the worst case running time of iBnBDFS compara-
ble to that of A*, we let BD ≤ mN 2 logmN 2. As the depth
of the decision tree D of the proposed algorithm must be
smaller than the total number of partitions K in the domain,
the above inequality leads to

K ≤ 2
log N

log B
+ logm + log logmN 2

log B
.

Although the second term on the right hand side depends
on N , it is much smaller than log N

log B . Hence the worst-case
computation time of the iBnBDFS algorithm can be lower
or comparable to that of A* if K ≤ 2 log N

log B . Since the worst
case iBnBDFS running time is the same as the worst case of
the brute force DFS method, this is a conservative bound.

4 Completeness

In this section, we demonstrate that Algorithm 1 is complete
if L(v) is a convex function of v.

123

Autonomous Robots

Theorem 4.1 If the flow field is piece-wise constant and

max
α∈IR

‖uα‖ < V , (19)

let Q be the set of global minimizers, U be a neighborhood
of Q. Then for any ε > 0, there exists T0, N0, σ0 such that if
Ti > T0, σi < σ0 (for i = 1, 2, · · · , N) and N > N0 where
Ti , σi , N are parameters in Algorithm 2, P(λopt ∈ U) ≥
1− ε, where λopt is the optimal solution found by Algorithm
1. Thus, Algorithm 1 is complete.

The idea is that by Bellman principle, optimal trajectory
admits an optimal sub-structure property, that is, any piece
of the optimal trajectory is also optimal for the sub-problem.
By applying this principle, we consider the path segment in
each single region, and try to construct a solution ψ with
two types of objective function described in Sect. 2, for the
Hamilton-Jacobi-Bellman equation (HJB)

ψt (x, t) + H(x,∇ψ(x, t)) = 0 (20)

where

H(x, p) = max‖v‖≤V

{
pT (v + u) − L(x, v)

}
.

is the Hamiltonian and

ψ(x, t) = min
v

{ ∫ t

0
L(γ, v)ds : γ̇ = v + u, γ (0) = x0,

γ (t) = x, max
s∈[0,t] v(x) ≤ V

}

is the value function. Since the original problem takes the
minimum over all possible time, we take mint ψ(x, t) to get
the optimizer in the given region and claim that the corre-
sponding motion gives a global optimal for the sub-problem
in the single region. Hence in the following we give opti-
mality proof of solution of the sub-problem in each constant
flow region. Given the optimal solution of the sub-problem in
each constant flow region, proof of Theorem 3.1 is provided
in the Appendix.

4.1 Total travel time

L(x, v) = 1 for total travel time minimization. To construct
the value function at the point (x, t), we introduce the maxi-
mum speed constant velocity motion in the region with flow
velocity u, that is, in this region, the vehicle moves in straight
line from x0 to x with velocity v + u and ‖v‖ = V , ‖v + u‖
is given by (4). We claim that

Lemma 4.2 In a constant flow field, the maximum speed
straight line motion is optimal if we minimize the total travel

time

min
v,T

∫ T

0
dt

s.t . ẋ = v + u,

x(0) = x0,

x(T) = x f ,

max
t∈[0,T] ‖v‖ ≤ V .

4.2 Quadratic energy with a constant running cost

Lemma 4.3 In a constant flow field, the minimizer of energy
optimal problem

min
v,T

∫ T

0
‖v‖2 + Cdt

s.t . ẋ = v + u,

x(0) = x0,

x(T) = x f ,

max
t∈[0,T] ‖v‖ ≤ V

is the constant velocity motion in the speed of ‖v‖, where

‖v‖ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
C + 2‖u‖2

−
√
C + ‖u‖2 2(x − x0)T u

‖x − x0‖
)1/2 if (9) holds

V otherwise

.

Remark 4.1 When (9) does not hold, the minimizer of the
energy optimal problem is the same as theminimizer of travel
time optimal one. Hence, if the constant running cost C is
large enough, solving the energy optimal problem is equiva-
lent to solving the travel time optimal problem.

Based on the proof of Lemmas 4.2 and 4.3, we can have
the following theorem, which tells the optimal path structure
within each constant flow region, given entrance and exit
locations.

Theorem 4.4 In each constant flowregion, given the entrance
and exit locations, the vehicle motion defined in Lemmas 4.2
and 4.3 solves the HJB equation

ψt (x, t) + max
v

{∇ψ(x, t)T (u + v) − L(x, v)} = 0

for L = 1 and L = ‖v‖2 +C respectively. Moreover, among
all the solutions of the above HJB, motion in these two lem-
mas gives the path with shortest time/minimum energy. Thus,
we have the optimal solution of the sub-problem in each
region.

123

Autonomous Robots

Fig. 3 (Left): Time optimal path planned by the proposed method.
(Right): Energy optimal path planned by the proposed method. In both
plots, boundaries of the jet flow are denoted by the colored surfaces.
The flow speed in the domain is represented by the blue arrows. The

optimal path is marked by black line, while the marker position denotes
junction points computed by the proposed method (Color figure online)

4.3 A general convex Lagrangian

In general, if we only assume the Lagrangian L = L(v) is a
convex function and the dynamics is ẋ = f (u + v) where f
is invertible and 0 is in the range of f (there exists some y
with ‖y‖ < +∞ such that f (y) = 0), we can have similar
optimal path within a constant flow field and the result is
stated in Theorem 3.1.

5 Simulation results

In this section,we provide simulations to validate the strength
of the proposed method. First, the time-optimal and energy-
optimal path planning examples with vehicle travel in simple
canonical time flow field are presented. This example serves
as a benchmark example wherein, we compare the solution
obtained by our algorithm to solution derived from other path
planning methods. Then we present a path planning example
of using the proposed method to plan the time-optimal and
energy-optimal path in a realistic ocean surface flow field.
This simulation is intended to verify the performance of the
proposed method in a highly complicated and strong real
ocean flow field.

5.1 Jet flow in 3D space

For this benchmark example, we present path planning using
the proposed method in a jet flow in 3D space. The domain

consists of three regions, divided by two boundary surfaces,
z = 10 and z = 15. In the region where z ∈ (0, 10), the flow
speed is (0.5, 0, 0). There is strong jet flow in the region
where z ∈ (10, 15) with flow speed (2, 1, 0). The flow speed
is zero in the region where z ∈ (15, 20). The starting position
is assigned at the origin, while the goal position is assigned
at (0, 0, 20).

The left figure in Fig. 3 shows the time-optimal path
planned by the proposed method. The time-optimal solu-
tion is compared with the time-optimal path planned by the
LSM and the A* method. The comparison result is shown
in Table 1. In this comparison, assuming the path segment
xi+1 − xi travels from the boundary surface fαiβi to reach
the boundary surface fαi+1βi+1 , we define θi as the angle
between path segment xi+1 − xi and the boundary surface
fαiβi . γi is defined as the angle between the projection of
xi+1 − xi on the boundary surface fαiβi and the x-axis of
fαiβi , θi ∈ (0, 90◦], γi ∈ (−180◦, 180◦]. From the table, θi
and γi computed from the proposed method and the LSM are
similar, with approximately 1◦ difference. Travel time of the
optimal path planned by the proposed method and LSM are
also approximately the same. Since A* method discretizes
the domain and only search for the optimal path on the grid
points, comparing the angles of the planned path between the
proposed algorithm and A* would yield little or no insight
in performance of the algorithms. Thus we only compare
their optimal total cost. The value found by the A* method
is 7.1298, which is comparable to the optimal solution found

123

Autonomous Robots

Table 1 Comparison between using the proposed method, LSM for
time-optimal path planning

Proposed method LSM

θ1 82.7924 83.5659

θ2 62.0255 63.3118

θ3 73.7397 73.8027

γ1 −136.0775 −135.6592

γ2 30.2293 30.2407

γ3 −161.6199 −161.2246

Total cost 6.9096 6.9826

by the proposed algorithm. This shows that the proposed
algorithm converges to the optimal solution.

The energy-optimal path is shown in the right figure of
Fig. 3. The energy-optimal path when C = 10 is exactly the
same as the time-optimal path. As the assigned C decreases,
the energy cost is attached relatively more weight in the cost
function. Therefore, the vehicle tends to save more energy to
go with the flow in the bottom region and the jet flow region.
Thus, the energy-optimal path deviates from the time-optimal
path as C decreases.

5.2 Surface ocean flow

In this section we present path planning simulation of an
underwater glider traveling in real ocean surface flow field
near Cape Hatteras, North Carolina, a highly dynamic region
characterized by confluent western boundary currents and
convergence in the adjacent shelf and slope waters. While
deployed, the glider is subject to rich and complex current
fields drivenby a combination and interaction ofGulf Stream,
wind, and buoyancy forcing, with significant cross-shelf
exchange on small spatial scales that is highly challenging
for planning algorithms. While the energy efficiency of the
glider’s propulsion mechanism permits endurance of weeks
to months, the forward speed of the vehicles is fairly limited
(0.25-0.30 m/s), which can create significant challenges for
navigation in strong currents. Use of a thruster in a so-called
“hybrid” glider configuration can increase forward speed to
approximately 1 m/s Ji et al. (2019), but at great energetic
cost. The continental shelf near Cape Hatteras is strongly
influenced by the presence of the Gulf Stream, which period-
ically intrudes onto the shelf, resulting in strong and spatially
variable flow that can be nearly an order ofmagnitude greater
than the forward speed of the vehicle (2+ m/s). Due to the
high flow speed, we consider the deployment of a hybrid
underwater glider in this simulation, and consider the vehi-
cle speed V = 1 m/s.

The input flow map for path planning is given by a 1-
km horizontal resolution version of the Navy Coastal Ocean

Fig. 4 Surface ocean flow field on May 27, 2017, 00:00 UTC at Cape
Hatteras, NC

Model (NCOM) (Martin, 2000) made available by J. Book
and J. Osborne (Naval Research Laboratory, Stennis Space
Center). The domain contains 130 × 130 grid points. One
snapshot of the dynamic flow field is shown in Fig. 4. We
partition the flow field using the algorithm proposed in Hou
et al. (2019), and choose the number of partitioned cells using
the “Elbow criterion” Shi et al. (2021). The domain is parti-
tioned into 19 cells according to the “Elbow criterion”.

We perform 3 sets of simulation, with each set contains 10
test cases. The start and destination position are chosen such
that the distance between the two points is 40, 100, or 130 km.
For the 3 set of simulations, the computation cost and total
travel cost is averaged over the 10 test cases. To verify perfor-
mance of the proposed algorithm, we compare its simulation
result with the A* and the LSM. BothA* and LSM run on the
130×130 rectangular grid cells. To avoid the incompleteness
issue of A* (Kularatne et al., 2018; Soulignac, 2011), in the
node generation process of A*, we consider each grid point
have 16 neighboring nodes. The planned path of each test
case is shown in Figs. 5, 6, and 7. Since the input to the pro-
posed algorithm is the partitioned flow field, while the input
to the LSM and the A* algorithm is the grid represented flow
field, thus the optimal path computed by the proposed algo-
rithm is different from the result of LSM and A*. However,
as shown in Fig. 8, solution quality of the proposed algorithm
is comparable to that of the A* and the LSM. Note that even
though the proposed algorithm computes the planned path
in the partitioned flow field, we compute the total travel cost
of the vehicle tracking the planned path in the original flow
field given by NCOM.

For all 3 sets of simulation, the proposed algorithm takes
less computation time to compute the optimal solution to the

123

Autonomous Robots

Fig. 5 Optimal path when d = 40 km. The colored cells represent
the partitioned cells. (Left): Time optimal path planned by the pro-
posed method, the A* method and the LSM. (Right): Energy optimal
path planned by the proposed method, when C takes different value.

The optimal path is marked by colored line, while the marker position
denotes junction points computed by the proposedmethod (Color figure
online)

Fig. 6 Optimal path when d = 100 km. (Left): Time optimal path planned by the proposed method, the A* method and the LSM. (Right): Energy
optimal path planned by the proposed method, when C takes different value

minimum-time planning problem, when the flow field is par-
titioned into 19 cells according to the Elbow criterion. Even
though the total cost of the optimal solution found by the pro-
posed algorithm is slightly larger, about 2%−9% larger than
that of theA* andLSM, it takesmore than 40% lower compu-
tation cost than the A* and the LSM. The proposed algorithm
takes significantly less computation time in the simulation

sets with shorter distance between the start and the destina-
tion node. The reason is that with smaller d, the decision tree
is shallow, and the proposed algorithm only need to search
through a small number of nodes to find the optimal solu-
tion. In addition, we increase the number of partitions to 39
and 59 cells, to demonstrate how the computation cost of the
proposed algorithm scales with respect to the level of parti-

123

Autonomous Robots

Fig. 7 Optimal path when d = 130 km. (Left): Time optimal path planned by the proposed method, the A* method and the LSM. (Right): Energy
optimal path planned by the proposed method, when C takes different value

Fig. 8 Comparison between using the proposed method and existing
algorithms for time-optimal path planning. We compare the LSM and
the A* method with the proposed algorithm, in the cases when the flow
field is partitioned into 19, 39 and 59 cells. The bar is showing the com-
putation time and total cost of each algorithm. The computation time is

normalized by the largest computation time among all the algorithms
(the largest computation time is normalized as 1), and the total cost
is also normalized by the largest among all the algorithms (the largest
total cost is normalized as 1). (Left): 40 km case; (Middle): 100 km case;
(Left): 130 km case

tion. The proposed algorithm takes more time to compute the
optimal solution as the number of partitions increases. Even
though the more detailed partition gives improved solution
quality, the improvement is marginal. Hence in order for the
proposed algorithm to achieve good performance, it is desir-
able to choose the proper level of partitioning for the best
trade-off between solution quality and computation cost.

The Energy optimal path is shown in Figs. 5, 6, and 7. The
proposed algorithm generates same results when C = 1e03
and C = 20. In these cases, the running cost is much larger
than the vehicle speed. Thus the energy-optimal planned path
is identical to the time-optimal path. When C = 2e − 3, the

running cost is much less than vehicle speed. In this case,
instead of making use of the strong jet flow, the proposed
method plans a path different from the time-optimal one.

6 Conclusion

In this paper, we propose a new method using Method of
Evolving Junctions to solve the AUV path planning problem
in an arbitrary flow field with the dynamics being ẋ = u + v

where u is the flow field and v is the vehicle velocity. Taking
advantage of the explicit solution in constant flow field being

123

Autonomous Robots

straight line motion, we partition the flow field into piece-
wise constant vector field and transform the optimal control
problem into a finite dimensional optimization, using Inter-
mittent Diffusion method to get the global minimizer. In this
way, we can get rid of the system error induced by discretiz-
ing the continuous space. Also, our method can be trivially
extended to high dimensional general vehicle path planning
problems in the same time complexity without making fur-
ther assumption.

Acknowledgements The authors would like to thank the support from
NSF Grants DMS-1830225, ONR Grant N00014-21-1-2891, ONR
Grants N00014-19-1-2556 and N00014-19-1-2266; AFOSR Grant
FA9550-19-1-0283; NSF Grants CNS-1828678, S&AS-1849228 and
GCR-1934836; NRL Grants N00173-17-1-G001 and N00173-19-P-
1412 ; and NOAA Grant NA16NOS0120028.

Appendix

In this appendix, we give proofs for the properties related to
Algorithm 1.

Firstwepresent proof ofTheorem4.1. Theproof leverages
the following theorem in Chow et al. (2013).

Theorem 6.1 Let Q be the set of global minimizers, U be
a small neighborhood of Q and λopt the optimal solution
obtained by the ID process. Then for any given ε > 0, there
exists τ > 0, σ0 > 0 and N0 > 0 such that if Ti − Si > τ ,
σi < σ0 (for i = 1, · · · , N) and N > N0,

P(λopt ∈ U) ≥ 1 − ε.

Then we provide completeness proof of Algorithm 1.

Proof of Theorem 4.1 The proof includes two steps. First, we
show that the decision tree returns all cell sequences with
total cost less than or equal to the lowest-cost path found so
far. Thenwe prove that given a fixed cell sequence, the global
minimizer can be found by Algorithm 2.

The DFS algorithm, which avoids repeated states in the
graph, is complete in finite state spaces (Russell and Norvig,
2002). In a static flow field divided into convex regions, the
optimal path will not visit a cell boundary curve more than
one time. Hence, the optimal path connecting the root and
the target node in the decision tree does not contain loops.
Therefore, the BnBDFS returns all cell sequences with total
cost less than or equal to the lowest-cost found so far.

Next we show that the ID algorithm is complete. We
combine Theorem 4.4, together with Bellman principle, to
show that the global optimal path must be in the structure of
constant motion within each flow region. To prove that the
proposed algorithm is convergent, we only need to show that
there exists a global minimizer λ∗ = (λ∗

1, · · · , λ∗
K), around

which there is a closed neighborhood U ⊂ ∏K
i=1 Di such

that vol(U) > 0 (vol is the product Lebesgue measure in∏K
i=1 Di) and for all λ ∈ U , the gradient flow λ̇ = −∇ J (λ)

converges to λ∗. If this condition holds, we can follow the
proof of intermittent diffusion and get the desired results.

To this end, if there exists such U that vol(U) > 0 and
for all λ ∈ U , we have J (λ) ≤ J (μ) for arbitrary μ ∈ S for
some S ⊂ U , then the proof is done. Now if the global
minimizers are isolated, then given any global minimizer
λ∗ = (λ∗

1, · · · , λ∗
K), since J is continuous differentiable,

we can have a closed neighborhood U ⊂ ∏K
i=1 Di with

vol(U) > 0 (within the neighborhood, the dimension of
the domain does not change) such that J (λ) > J (λ∗) and
∇ J (λ) �= 0 for all λ ∈ U\{λ∗}, then the gradient flow start-
ing at λ ∈ U converges to λ∗.

Therefore, we prove the algorithm is complete. ��
Proof of Lemma 4.2 We write the value function as

ψ(x, t) = ‖x − x0‖
‖v + u‖ .

To make the problem complete, we define ψ(x, t) = +∞
if the vehicle cannot reach x in time t , which gives the final
value function to be

ψ(x, t) =
{ ‖x−x0‖‖v+u‖

‖x−x0‖‖v+u‖ ≤ t
+∞ otherwise

.

If only the reachable part is considered, from the above equa-
tion, we can calculate ψt = 0 and

∇ψ = 1

‖v + u‖2
(
‖v + u‖ x − x0

‖x − x0‖
− ‖x − x0‖∇‖v + u‖

)
.

(21)

We can rewrite v = v0 +v⊥ and V 2 = ‖v0‖2 +‖v⊥‖2 if we
denote

v0 = (x − x0)

‖x − x0‖
(x − x0)T v

‖x − x0‖ ,

v⊥ =
(
I − (x − x0)

‖x − x0‖
(x − x0)T

‖x − x0‖
)

v,

where I is the identity matrix. And u can be decomposed
in the same manner u = u0 + u⊥. It is easy to see that
v⊥ = −u⊥ since (v + u)/‖v + u‖ = (x − x0)/‖x − x0‖.
Then, we see that ‖v + u‖ = ‖v0‖ + ‖u0‖ and

√(
(x − x0)T u

‖x − x0‖
)2

+ V 2 − ‖u‖2

=
(
‖u0‖2 + ‖v0‖2 + ‖v⊥‖2 − ‖u0‖2 − ‖u⊥‖2

)1/2

=‖v0‖.

123

Autonomous Robots

Hence, we have

∇‖v + u‖

=∇
⎛

⎝ (x − x0)T u

‖x − x0‖ +
√(

(x − x0)T u

‖x − x0‖
)2

+ V 2 − ‖u‖2
⎞

⎠

=‖v + u‖
‖v0‖ ∇ (x − x0)T u

‖x − x0‖
= ‖v + u‖

‖x − x0‖‖v0‖
(
I − (x − x0)

‖x − x0‖
(x − x0)T

‖x − x0‖
)
u

= ‖v + u‖
‖x − x0‖‖v0‖u

⊥.

Taking ∇‖v + u‖ back to (21) and noticing that v⊥ = −u⊥,
we reduce the gradient to be

∇ψ =
(

x − x0
‖x − x0‖ − u⊥

‖v0‖
)

1

‖v + u‖ = v

‖v0‖‖v + u‖ .

With the above equation, the Hamiltonian is

H = sup
v̂:‖v̂‖≤V

(
∇ψT (v̂ + u) − 1

)

= sup
v̂:‖v̂‖≤V

{
vT

‖v0‖
v̂ + u

‖v + u‖
}

− 1

= 1

‖v + u‖

(

sup
v̂:‖v̂‖≤V

{
vT v̂

‖v0‖
}

+ ‖u0‖ − ‖u⊥‖2
‖v0‖

)

− 1

= 1

‖v + u‖
(

V 2

‖v0‖ + ‖u0‖ − ‖u⊥‖2
‖v0‖

)
− 1

= 1

‖v + u‖ (‖v0‖ + ‖u0‖) − 1 = 0,

which leads to the conclusion that the value function induced
by the maximum speed constant velocity motion solves the
Hamilton-Jacobi equation, thus is the optimalmoving pattern
in a constant flow speed region since mint ψ = ψ . ��

Meanwhile, using the same notation and logic, we can
give the proof of Proposition 3.1:

Proof of Proposition 3.1 First we show that the objective
function is well-defined if there exists a feasible trajectory,
and ‖uci ‖ ≤ V . If (xi − xi−1)

T uci ≤ 0, unless V > ‖uci ‖,
there does not exists a feasible path. Therefore,

(xi − xi−1)
T uci <

√(
(xi − xi−1)T uci

)2 + ‖xi − xi−1‖2(V 2 − ‖uci ‖2).

Since ‖uci ‖2 − V 2 < 0, we have t∗i > 0. On the other hand,
if (xi − xi−1)

T uci > 0, we can have two cases: V > ‖uci ‖,

which shares the same conclusion as the first case, and V <

‖uci ‖. In the latter circumstance, since ‖uci ‖2 −V 2 > 0 and

(xi − xi−1)
T uci >

√(
(xi − xi−1)T uci

)2 + ‖xi − xi−1‖2(V 2 − ‖uci ‖2),

it is still true that t∗i > 0.
Meanwhile, When (xi − xi−1)

T uci > 0, t∗i > 0 still holds
if V = ‖uci ‖ and actually

t∗i = lim
V 2−‖uci ‖2→0

1

‖uci ‖2 − V 2

(
(xi − xi−1)

T uci

−
√(

(xi − xi−1)T uci
)2 + ‖xi − xi−1‖2(V 2 − ‖uci ‖2)

)

= ‖xi − xi−1‖2
2(xi − xi−1)T uci

> 0.

However, if (xi − xi−1)
T uci ≤ 0, V = ‖uci ‖ becomes a

singular point since there is no feasible path. Thus, in this
case, we cannot formally solve the problem.

Since gti (xi , xi−1) = gti (xi − xi−1) and gei (xi , xi−1) =
gei (xi − xi−1), we only need to consider the differentibility
of

g(a) =
{
g1(a) if (10) holds
g2(a) otherwise

where

g1(a) = 2
√

‖uci ‖2 + C‖a‖ − 2aT uci

= 2‖a‖
(√

‖uci ‖2 + C − ‖u0ci ‖
)

,

g2(a) = V 2 + C

‖uci ‖2 − V 2

(
aT uci

−
√

(aT uci)
2 + ‖a‖2(V 2 − ‖uci ‖2)

)

= (V 2 + C)‖a‖
‖u0ci ‖ + ‖v0‖ .

First of all, when equality in (10) holds, we have

√
‖uci ‖2 + C = ‖u0ci ‖ ± ‖v0‖

�⇒
√

‖uci ‖2 + C = ‖u0ci ‖ + ‖v0‖.
(22)

We take the plus sign since
√‖uci ‖2 + C ≥ ‖uci ‖. Mean-

while from (10) and (22), we can derive the following
equation

V 2 + C = 2‖v0‖(‖u0ci ‖ + ‖v0‖).

123

Autonomous Robots

Therefore, g(a) is continuous. Similar calculations shows
that

∇g1 = 2

(
(

√
‖uci ‖2 + C)

a

‖a‖ − uci

)
= v0 − u⊥

ci = 2v,

∇g2 = V 2 + C

‖v0‖‖v + uci ‖
v = 2v,

which gives us the desired result. ��
Proof of Lemma 4.3 In the case ofminimumenergy planning,
L(x, v) = ‖v‖2 + C where C ≥ 0 is a constant running
cost. To calculate the optimal solution for the vehicle running
from x0 to the target x in a constant flow velocity field, we
again study the constant speed straight line motion. However
in this circumstance, the vehicle may no longer travel with
maximum speed, hence we take the travel time in the region
into consideration. Suppose that the the vehicle moves from
x0 to x in time t , we set the vehicle velocity to be

v = x − x0
t

− u,

assuming that

‖v‖2 = ‖x − x0‖2
t2

+ ‖u‖2 − 2(x − x0)T u

t
≤ V 2. (23)

Then the value function is

ψ(x, t) = (‖v‖2 + C)t

= ‖x − x0‖2
t

− 2(x − x0)
T u + (C + ‖u‖2)t .

Further we take

ψ(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

‖x − x0‖2
t

− 2(x − x0)
T u + (C + ‖u‖2)t

‖v‖ ≤ V

+∞ otherwise

.

Then by direct calculation with the finite part of ψ , we have

ψt = C + ‖u‖2 − ‖x − x0‖2
t2

, (24)

∇ψ = 2(x − x0)T u

t
− 2u, (25)

‖∇ψ‖2 = 4‖x − x0‖2
t2

+ 4‖u‖2 − 8(x − x0)T u

t
(26)

The Hamilton-Jacobi equation is in the form of

ψt + sup
v:‖v‖≤V

{
∇ψT (v + u) − ‖v‖2 − C

}
= 0. (27)

To solve the optimization part of (27), we denote

F(v) = ∇ψT (v + u) − ‖v‖2 − C

and calculate its critical point as

v∗ = 1

2
∇ψ,

which means that the optimal is

H = sup
v:‖v‖≤V

F(v) = 1

4
‖∇ψ‖2 + ∇ψT u − C (28)

and by (25), we have

‖v∗‖2 = 1

4
‖∇ψ‖2 = ‖x − x0‖2

t2
+ ‖u‖2 − 2(x − x0)T u

t
≤ V 2,

(29)

which leads to the fact that F(v∗) = supv:‖v‖≤V F(v). Let
us take (25),(26) into (28) and the result is

H = ‖x − x0‖2
t2

− ‖u‖2 − C . (30)

Combining (24) and (30) finally results in the constructed ψ

being the solution of (27).
Based on the solution ψ , we further find the minimizer

over time t and solve the minimization problem as follow:

min
t≥0

ψ = min
t≥0

(‖v‖2 + C)t

=‖x − x0‖2
t

− 2(x − x0)
T u + (C + ‖u‖2)t .

It is easy to see that the global minimizer of ψ over t is

t∗ = ‖x − x0‖√
C + ‖u‖2

and the corresponding minimum is

ψ∗ = 2‖x − x0‖
√
C + ‖u‖2 − 2(x − x0)

T u. (31)

Thus, if t∗ is reachable, that is, using (23), we have

‖v(t∗)‖2 = C + 2‖u‖2 −
√
C + ‖u‖2 2(x − x0)T u

‖x − x0‖ ≤ V 2

the optimal is given as (31).

123

Autonomous Robots

On the other hand, if ‖v(t∗)‖ > V , the global minimizer
t∗ is on longer in the domain of our problem. In this case, we
notice that ‖v‖2 is decreasing on the interval

[
t∗, (x − x0)T u

‖x − x0‖2
]

,

and is increasing on

[
(x − x0)T u

‖x − x0‖2 ,+∞
)

.

Also by noticing that limt→+∞ ‖v‖2 = ‖u‖2 ≤ V 2, we
conclude that there exists t0 > t∗ when t ≥ t0 > t∗, ‖v‖ ≤
V . Meanwhile, when t > t∗, ψ is monotone increasing with
respect to t . Hence, to get the minimum, we should take the
time t = t0, where ‖v(t0)‖ = V . By taking the equality in
(23), we have then

(‖u‖2 − V 2)t2 − 2(x − x0)
T ut + ‖x − x0‖2 = 0,

from which we have

t0 = 1

‖u‖2 − V 2

(
(x − x0)

T u

−
√(

(x − x0)T u
)2 + ‖x − x0‖2(V 2 − ‖u‖2)

)
,

and mint ψ = (V 2 + C)t0. ��
Proof of Theorem 3.1 Denoting g(w) to be the inverse of f
such that if w = f (u + v) then u + v = g(w), we will show
that

ψ(x, t) =
{
t L
(
g
(x−x0

t

)− u
) ‖g (x−x0

t

)− u‖ ≤ V
+∞ otherwise

satisfies theHJBequation (20). First of all, theHessianmatrix
H(v) is positive definite for all ‖v‖ ≤ V since L is convex.
Therefore, for any v1, v2 in the domain, there exists ξ such
that

∇vL(v1) = ∇vL(v2) + H(ξ)(v2 − v1).

Further if ∇vL(v1) = ∇vL(v2), then H(ξ)(v2 − v1) = 0.
Because of the positive definite property forH, we have v2 =
v1, which implies that ∇vL(v) is one-to-one.

Then we do the following calculation on the non-infinity
part of ψ

ψt = L

(
g

(
x − x0

t

)
− u

)

−
[
∇vL

(
g

(
x − x0

t

)
− u

)]T
∇wg

(
x − x0

t

)
x − x0

t
,

(32)

∇ψ =
[
∇wg

(
x − x0

t

)]T
∇vL

(
g

(
x − x0

t

)
− u

)
.

(33)

Since L is convex, we further have the relaxed optimization

max
v

{∇ψT (v + u) − L(v)}

is a convex problem and get the condition for the optimal v∗
to be

[∇v f (u + v∗)
]T ∇ψ = ∇vL(v∗)

�⇒∇ψ = [∇wg(f (u + v∗))
]T ∇vL(v∗).

Combining this with (33), we have

v∗ = g

(
x − x0

t

)
− u, (34)

and ‖v∗‖ ≤ V holds. Thus, v∗ is the maximizer of
H(x,∇ψ). Taking (32), (33) and (34), we have

ψt + ∇ψT (v∗ + u) − L(v∗) = 0,

implying that (20) holds. At last notice that

lim
t→∞ L

(
g

(
x − x0

t

)
− u

)
= L(g(0) − u) < ∞,

since 0 is in the range of f . We have that

lim
t→∞ t L

(
g

(
x − x0

t

)
− u

)
= ∞.

Thus, we have t∗ > 0 such that given x ,

t∗ = argmint≥0 ψ(x, t).

Thus, v∗ = g((x − x0)/t∗) − u gives us a constant velocity
motion. ��

References

Chen, Y., He, Z., & Li, S. (2019). Horizon-based lazy optimal RRT for
fast, efficient replanning in dynamic environment. Autonomous
Robots, 43(8), 2271–2292.

Chow, S.N., Yang, T.S., & Zhou, H.M. (2013). Global optimizations by
intermittent diffusion. In: Chaos, CNN,Memristors and Beyond: A
Festschrift for LeonChuaWithDVD-ROM, composed by Eleonora
Bilotta. World Scientific, pp. 466–479.

Forrest, J., Hirst, J., & Tomlin, J. A. (1974). Practical solution of large
mixed integer programming problems with umpire. Management
Science, 20(5), 736–773.

123

Autonomous Robots

Gammell, J. D., Barfoot, T. D., & Srinivasa, S. S. (2018). Informed sam-
pling for asymptotically optimal path planning. IEEETransactions
on Robotics, 34(4), 966–984.

Hou,M., Cho, S., & Zhou, H., et al. (2021). Bounded cost path planning
for underwater vehicles assisted by a time-invariant partitioned
flow field model. Frontiers in Robotics and AI , 8.

Hou, M., Zhai, H., & Zhou, H., et al. (2019). Partitioning ocean flow
field for underwater vehicle path planning. In: OCEANS 2019-
Marseille, IEEE, pp. 1–8.

Janson, L., Schmerling, E., Clark, A., et al. (2015). Fast marching tree:
A fast marching sampling-based method for optimal motion plan-
ning in many dimensions. The International Journal of Robotics
Research, 34(7), 883–921.

Ji, D. H., Choi, H. S., Kang, J. I., et al. (2019). Design and control of
hybrid underwater glider. Advances in Mechanical Engineering,
11(5), 1687814019848.

Kaiser, E., Noack, B. R., Cordier, L., et al. (2014). Cluster-based
reduced-order modelling of a mixing layer. Journal of Fluid
Mechanics, 754, 365–414.

Karaman, S., & Frazzoli, E. (2011). Sampling-based algorithms for
optimal motion planning. The International Journal of Robotics
Research, 30(7), 846–894.

Kuffner, J., & LaValle, S. (2000). RRT-connect: An efficient approach
to single-query path planning. In: IEEE International Conference
on Robotics and Automation.

Kularatne, D., Bhattacharya, S., & Hsieh, M. A. (2017). Optimal path
planning in time-varying flows using adaptive discretization. IEEE
Robotics and Automation Letters, 3(1), 458–465.

Kularatne, D., Bhattacharya, S., & Hsieh, M. A. (2018). Going with the
flow: A graph based approach to optimal path planning in general
flows. Autonomous Robots, 42(7), 1369–1387.

LaValle, S. M. (1998). Rapidly-exploring random trees: A new tool for
path planning. Tech. rep.: Department of Computer Science, Iowa
State University.

Leonard, N. E., Paley, D. A., Davis, R. E., et al. (2010). Coordinated
control of an underwater glider fleet in an adaptive ocean sam-
pling field experiment inMonterey Bay. Journal of Field Robotics,
27(6), 718–740. https://doi.org/10.1002/rob.20366.

Li, W., Lu, J., Zhou, H., et al. (2017). Method of evolving junctions: A
new approach to optimal control with constraints. Automatica, 78,
72–78.

Lolla, S.V.T. (2016). Path planning and adaptive sampling in the coastal
ocean. PhD thesis, Massachusetts Institute of Technology,.

Martin, P.J. (2000).Description of the navy coastal oceanmodel version
1.0. , Tech. Rep. NRL/FR/7322–00-9962, Naval Research Lab.

Noreen, I., Khan, A., & Habib, Z. (2016). Optimal path planning using
RRT* based approaches: a survey and future directions. Interna-
tional Journal of Advanced Computer Science and Applications,
7(11), 97–107.

Ozog, P., Carlevaris-Bianco, N., Kim, A. Y., et al. (2016). Long-term
mapping techniques for ship hull inspection and surveillance using
an autonomous underwater vehicle. Journal of Field Robotics, 33,
265–289.

Pereira, A. A., Binney, J., Hollinger, G. A., et al. (2013). Risk-aware
path planning for autonomous underwater vehicles using predic-
tive ocean models. Journal of Field Robotics, 30(5), 741–762.
https://doi.org/10.1002/rob.21472.

Poole, D. L., & Mackworth, A. K. (2010). Artificial Intelligence: foun-
dations of computational agents. Cambridge University Press.

Rhoads, B., Mezic, I., & Poje, A. C. (2012). Minimum time heading
control of underpowered vehicles in time-varying ocean currents.
Ocean Engineering, 66(1), 12–31.

Russell, S., & Norvig, P. (2002). Artificial intelligence: a modern
approach.

Ser-Giacomi, E., Rossi, V., López, C., et al. (2015). Flow networks: A
characterization of geophysical fluid transport. Chaos: An Inter-
disciplinary Journal of Nonlinear Science, 25(3), 036404.

Sethian, J. A. (1999). Level set methods and fast marching methods:
Evolving interfaces in geometry, fluid mechanics. Computer Vison
and Material Science: Cambridge University Press.

Shi, C.,Wei,B.,Wei, S., et al. (2021). (2021)Aquantitative discriminant
method of elbow point for the optimal number of clusters in clus-
tering algorithm. EURASIP Journal on Wireless Communications
and Networking, 1, 1–16.

Shome, R., Solovey, K., Dobson, A., et al. (2020). dRRT*: Scalable
and informed asymptotically-optimal multi-robot motion plan-
ning. Autonomous Robots, 44(3), 443–467.

Sinha, A.,Malo, P., &Deb, K. (2017). A review on bilevel optimization:
from classical to evolutionary approaches and applications. IEEE
Transactions on Evolutionary Computation, 22(2), 276–295.

Smith, R. N., Chao, Y., Li, P. P., et al. (2010). Planning and imple-
menting trajectories for autonomous underwater vehicles to track
evolving ocean processes based on predictions from a Regional
Ocean Model. The International Journal of Robotics Research,
29(12), 1475–1497.

Soulignac, M. (2011). Feasible and optimal path planning in strong cur-
rent fields. IEEE Transactions on Robotics, 27(1), 89–98. https://
doi.org/10.1109/tro.2010.2085790.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article
under a publishing agreementwith the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and appli-
cable law.

Haoyan Zhai received the B.S.
degree from Zhejiang University
in 2014, and the Ph.D. in mathe-
matics degree from Georgia Insti-
tute of Technology in 2019. His
research interests include optimal
transport, and stochastic differen-
tial equations with applications in
robotics and machine learning.

123

https://doi.org/10.1002/rob.20366
https://doi.org/10.1002/rob.21472
https://doi.org/10.1109/tro.2010.2085790
https://doi.org/10.1109/tro.2010.2085790

Autonomous Robots

Mengxue Hou received the B.S.
degree from Shanghai Jiao Tong
University in 2016. She has been
pursuing a Ph.D. degree from the
School of Electrical and Com-
puter Engineering, Georgia Insti-
tute of Technology, since 2016.
Her research interests include con-
trol theory and robotics.

Fumin Zhang received the B.S.
and M.S. degrees from Tsinghua
University, in 1995 and 1998, and
the Ph.D. degree from the Depart-
ment of Electrical and Computer
Engineering, University of Mary-
land, College Park, in 2004. He
joined the School of ECE, Geor-
gia Institute of Technology as a
Professor in 2007. He was a Lec-
turer and Postdoctoral Research
Associate in the Mechanical and
Aerospace Engineering
Department, Princeton University
from 2004 to 2007. His research

interests include marine autonomy, mobile sensor networks, and
unmanned systems.

Haomin Zhou received the B.S. in
mathematics from Peking Univer-
sity, the M. Phil. in applied math-
ematics from the Chinese Univer-
sity of Hong Kong, and the Ph.D.
in computational mathematics from
University of California, Los Ange-
les. He was a postdoctoral scholar
at California Institute of Technol-
ogy for three years. He has been
a faculty member in the School of
mathematics at Georgia Institute
of Technology since 2003. His
research interests include optimal
transport, inverse problems, and

stochastic differential equations with applications in robotics and
machine learning.

123

	Method of evolving junction on optimal path planning in flows fields
	Abstract
	1 Introduction
	2 Problem statement
	3 Our method
	3.1 Minimize total travel time
	3.2 Minimize energy
	3.3 Construction of decision tree
	3.3.1 Decision tree traversal
	3.3.2 Intermittent Diffusion
	3.3.3 Branch cost lower bound
	3.3.4 Branch-and-Bound method

	3.4 Complexity analysis

	4 Completeness
	4.1 Total travel time
	4.2 Quadratic energy with a constant running cost
	4.3 A general convex Lagrangian

	5 Simulation results
	5.1 Jet flow in 3D space
	5.2 Surface ocean flow

	6 Conclusion
	Acknowledgements
	Appendix
	References

