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Cooperative Filtering and Parameter Estimation for Polynomial PDEs using
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Abstract—1In this paper, a constrained cooperative Kalman
filter is developed to estimate field values and gradients along
trajectories of mobile robots collecting measurements. We
assume the underlying field is generated by a polynomial partial
differential equation with unknown time-varying parameters.
A long short-term memory (LSTM) based Kalman filter, is
applied for the parameter estimation leveraging the updated
state estimates from the constrained cooperative Kalman filter.
Convergence for the constrained cooperative Kalman filter has
been justified. Simulation results in a 2-dimensional field are
provided to validate the proposed method.

I. INTRODUCTION

Many spatial-temporal fields can be described by partial
differential equations (PDEs). However, it is often difficult to
obtain explicit analytic solution for these PDEs [1]. We need
to estimate the field and gradient information in applications
such as modeling congested freeway traffic [2], monitoring
Arctic sea ice [3], and tracking dynamic pollutant plume
propagation [4]. Mobile sensor networks are promising for
data collection [5]-[9] to estimate PDE states.

In earlier literature, static sensors have been applied to
explore PDE fields and the parameters are identified by
solving inverse problems of PDEs [10]. The inverse problem,
however, can be difficult to solve. Recently, model predictive
control [11] and adaptive observer [12] have also been
studied for parameter identification in PDE models. The two-
stage method can be applied to this problem as well [13],
with the first stage of estimating field value and gradient
and the second stage of identifying PDE parameters using
least square method. In our previous works [7], [9], [14],
constrained cooperative Kalman filter has been used for
state estimation and recursive least square method has been
applied to iteratively estimate of unknown parameters.

While our previous works mainly consider the advection-
diffusion PDEs with constant coefficient, this paper addresses
more general PDE models with unknown time-varying pa-
rameters. Similar to our previous works [7], [9], [14], a
bootstrap structure of state filter and parameter estimation
algorithm is proposed. For state estimation, the information
dynamics are derived, and a constrained cooperative Kalman

The research work is supported by ONR grants N00014-19-1-2556
and N0O0014-19-1-2266; AFOSR grant FA9550-19-1-0283; NSF grants
CNS-1828678, S&AS-1849228, GCR-1934836, and CMMI-1917300;
NRL grants NO0173-17-1-GOO1 and NOO0173-19-P-1412; and NOAA
grant NA16NOS0120028. Zigiao Zhang and Fumin Zhang are with
the School of Electrical and Computer Engineering, Georgia Institute
of Technology, Atlanta, GA 30318, USA. Wencen Wu is with the
Computer Engineering Department of San Jose State University, San
Jose, CA 95192, USA. Email: zigiao.zhang@gatech.edu,
wencen.wu@sjsu.edu, fumin@gatech.edu

978-1-6654-5197-0/$31.00 ©2022 AACC

filter has been proposed. The major difference from our
previous works is that the PDE is treated as constraint on the
states of the information dynamics. This new structure allows
the constrained cooperative Kalman filter to be applied to a
class of polynomial PDEs, not just the advection-diffusion
PDEs. Another contribution is that an LSTM based Kalman
filter revised from our previous work [15] is applied to
estimate the PDE parameters, fusing the latest state estimate
from the constrained Kalman filter with previous parameter
estimates. According to [16], we can prove convergence for
the constrained cooperative Kalman filter by showing the un-
constrained filter is convergent. Since the PDEs are treated as
constraints, the convergence analysis is decoupled from the
parameter estimation since the estimated parameters does not
appear in the unconstrained filter. These new contributions
provide a more general framework for cooperative filtering
and parameter identification using mobile sensor networks.

II. PROBLEM FORMULATION

In this section, we formulate the estimation problem of
field parameter and field information along trajectory using
mobile sensor networks for a spatial-temporal varying con-
centration field in d-dimensional space where d € N,d > 2.

We assume that the field can be described by the following
PDE in a spatial domain Q C R4

M
az((grt,t) =Y 6:(0)yi(z(r,1), Vz(r,t),V2(r1)), (1)
=1

where r € Q represents location, ¢+ € Ry represents time,
7(+,-) : RY x Ry — R is the concentration function, V is the
gradient operator, and V? is the Laplacian operator. The PDE
is a M-th polynomial function, and y;(-) is the ith order
polynomial with time-varying unknown parameter 6;(z). One
of our goals in this work is to estimate 6;(¢).

The equation (1) has the initial condition z(r,0) = zo(r)
for r € Q, and the boundary condition z(r,¢) = z(rt) for
r € dQ, where zo(r) and z,(r,¢) are arbitrary initial condition
and Dirichlet boundary condition, respectively.

Since mobile robots collect discrete measurements at each
time step instead of continuous ones, the continuous PDE
model (1) can be discretized using finite difference method

at time step #; k € N as # ~ w, where 0t
=t

is the sampling interval. By finite ]Hifference method, (1) will
have the following discretization,

z2(rk+1) = z(r,k) + ot % 6;(k)wi(z(r k), Vz(r, k),sz(r, k))
i=1

= 2(r,k) + 8% (z(r,k), Vz(r, k), V22(r,k))O(k), )



where  W() = [yi(),-
[61(k),---,0m(k)]T € RM,
Suppose a group of N mobile robots are deployed in the
field described by (1) and take discrete measurements of the
field concentration. Denote the location of agent i at time

ﬂwM(')]T

step #; as r¥ and the noisy measurement p(rf,k) taken by
this agent at (¥, k) can be written as
p(ri k) = 2(rf k) + i, 3)

where n; € R is an i.i.d. Gaussian noise Deﬁne the center of
the mobile robots at #; as ¥ and r¥ = =y LyN | /. Another goal
is to estimate field concentration z(r.,7) and corresponding
gradient Vz(r.,t) along trajectory.

In order to solve this parameter estimation and state
estimation problem, we will follow a two-step procedure:
1) We will estimate the field information z(r.,t),Vz(re,t)
based on the measurements collected by mobile robots. 2)
The time-varying unknown parameter 6;(z) will be estimated
using the estimated states at time ¢.

III. INFORMATION DYNAMICS

In this section, we will introduce the information dynamics
at ¥ and the general form of corresponding discretization.
First we introduce some simplified notations,

2ok = 2(re, k), zh-1 1 = 2 k= 1), zigen = 2(rg k1),
By applying finite difference method, we can get
dz a9z dz Gk "Zk—1k—1 07~ Zhk+l "k
@ and G oas G R T, 5N 5
where Or is the sampling interval. Then we can
: d dz . 1
obtain T — §F ~ 3 (2zk,k—zk_1j<_1 —zk7k+1) and
d | - .
% — (Tf = E(}'Jg — rlc{ 1)-krvzk,kl,k1,], 1ead1ng to
(ZZk,k_Zkfl,kfl _Zk,k+l> = (rg — 1" )TVzk,l_rk,l. Since

)TVzk_1k, we should have

NIV 4
“NTVz 141 +hot.

K k-1
Zf = k14 + (re — ¢
k
Tkt =22k — U 1h1 — (FF—1%
=22k 1k — Th—14— 1+ (k=

By ignoring the higher order term, (4) can be written as

-1
Tkl =281k — Zh-pet + (=Y TVG ()
dz o Zkktl—Zh—lk 0z o Fhkt] “TKk Qi
We also have that §; ~ 57 R P 5 Sim
dz _dz _ 1 k

ilarly, we can get § — 9 = 5 (fzk_l‘,k +zk’k) = Et(r -
rk_l)TVZk_l - Thus, we have the following two relationships

)TVZk 1k 6)

NV ki —ze1x1 (D)

Tk =Zh— 1k+(r —r

Lk k+1 :ZZk—Lk - 2(’{( -

+ (k=) Ve
Define state variable x(k) = [zx—1x—1,VZk—1k—1:Zk—14
Vzr—14]T, and we can get the following state equation
x(k+1) = A(k)x(k) + U (k) +e(k), €]
0 0 1 (T
A 0 1d><d 0 0 A
where A(k) = ke rk 1 (ke | U(k) =
0 0 I
2 Ork rk—l
v z"*”"lo( < )| and e(k) is the noise term.

Vi p (k=)

IV. MEASUREMENT EQUATION

The field concentration can be locally approximated by a
Taylor series up to second order as

LGN S VEE G S D RN (A A LA Z AN S )

1, . _ _ _ _
R = ETHGE = D0 =D, o)
2(rf k) m 2(re™ k) + (rf =) TV(re k)
1
+ 5 = DTH LR =) (10)
Let Z(k) = [z(ri 1k — 1), z(r k= 1),2(75 k),
z(r%,,k)]T be the vector of true field values. Define
LA A T0 o
P NG D L
Cky=1,"™ 7, LAy | an
0 0 1 (k=

and D(k) = 7«1 , where @ is the

%((%%”)@(%%"))T,
Kronecker product. The Taylor expansions (9) for all sensors

near ¥ can be rewritten in a vector form as

Z(k) = C(k)x(k)+D(k)H (k), (12)
where H(k) is a column vector obtained by rearranging
elements of the Hessian H(r*~! k—1).
Supposing A (k) represents the estimate of the vector form
Hessian H (k) at %, equation (3) can be remodeled as
P(k) = C(k)x(k) + D(k)H (k) + D(k)e(k) +n(k), ~ (13)
where P( ) [ (rk ! k )7"'7p(’§/71,k71)7p(r]l(7k)7"'7
p(r&,k)]T is the measurement vector, (k) represents the er-
ror in Hessian estimation, and n(k) is the vector of Gaussian
noise n; in (3). For the estimation of Hessian matrices, we
will follow the procedure of cooperative estimation in [17],
and we will not discuss the details of how to get H(k).

V. BOOTSTRAP STRUCTURE OF ESTIMATION

In this section, we will construct a bootstrap algorithm
for state estimation and parameter estimation. As shown in
Fig. 1, the proposed algorithm is composed of two parts, a
constrained cooperative Kalman filter for state estimation and
an LSTM-based Kalman filter (LSTM-KF) for parameter es-
timation. At time step #, the constrained cooperative Kalman
filter updates the state estimation £(k) by incorporating the
previous parameter estimation ®(k — 1) from the LSTM-KF.
Then the LSTM-KF updates the parameter ®(k) according
to the updated state estimation £(k).
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Fig. 1. Bootstrap structure of the proposed algorithm

A. Constrained Cooperative Kalman Filter

We construct a constrained Kalman filter for state estima-
tion. The idea is to use information dynamics as the state
equation, build the connection between state and measure-
ment as measurement equation, and include approximated
PDE model as constraint for this system.

Before introducing the constrained cooperative Kalman
filter, we need to linearize the PDE constraint (2) around
state variable x(k) = [zk—1 k-1, VZk—14-1, 214 Vak—14]) -
At x(k), (2) can be rewritten as follows,

(14)
1),

where Zk_l)k_l,vzk_lvk_l , szk—l,k—hzk—l,k are treated as in-
dependent variables during linearization. After taking partial

derivative of left hand side of (14) w..t. x(k), we can
2

F(k) 22414 — Zk—14-1
— 1Y (141, Ve 141, Vo 14-1)TO(k —

W”’” 0 1T
b N 79%(71‘](71“1{) B % lk 1
obtain J(k) = 2 79%]( ——F(® | . Andthe
91k (k) 1
0
BVzk,l,k F<k)

linearized model at x(k) can be written as
J(k)(x—x(k)) — F(k) = 0. (15)

Assumption V.1 We assume that the noises e(k),e(k),n(k)
are i.i.d. Gaussian noise with zero mean, and with constant
covariance matrix, i.e. E[e(k)eT(k)] =W, E[n(k)nT (k)] =R
and E[e(k)eT (k)] = O.

The constrained cooperative Kalman filter can be con-
structed using 6 steps:
(1) One-step state prediction
(k) =Ak— D& (k—1)+U(k—

A

X

1),

where %' (k—1) is the constrained state estimate from
previous time step, and £~ (k) is the one-step state prediction.
(2) Error covariance of £~ (k)

R (k)=A(k—1)R" (k—

(16)

DAT(k—1) +W.

1)+ (17)

(3) Optimal gain

K(k) =R (k)CT(k)[C(k)R™ D(k)QDT (k) +R] ™!

(18)

(K)CT (k) +

(4) Updated unconstrained state estimate

27 (k) =% (k) + K (k) (P(k) — C(k)&™ (k) — D(k)

& A(k)).
(19)
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(5) Error covariance of £* (k)

(R* (k)™ = (R (k)) ™' +CT(k)[D(k)QDT (k) +R]~'C(k).

(20)
(6) Updated constrained state estimate
(k) =27 (k) +J (k)T (k)JT (k)]
where £ (k) = [zlj—lk—l’Vzlj—l,k—l’%j—l,k’Vzlj—l,k]T and
k) ST
5"1'(2:71,/(71’V2;1,k717sz/:qu)T@(k — 1).  This
because J (k) (%" (k) — £+ (k)) — F (k) = 0 according to (15).

B. Parameter Estimation

Ry, @D

is

Since the unknown parameter ®(k) is time-varying, recur-
sive least square method [14] cannot be applied to estimate
non-constant parameters. If there is no plenty of history
data, random walk model [18] may be applied for parameter
estimation. In our case, we are considering the scenario when
there is abundant history data of estimated parameters. For
example, models for underwater and atmospheric environ-
ments are usually complicated and require heavy compu-
tation complexity to be run online [19], [20]. There exist
cloud computing models [21], [22] for data assimilation in
these environments, and such models contain large amounts
of history data which can be used for training purposes and
initialization of neural networks.

Long short-term memory (LSTM) is a variant of recurrent
neural networks, and it can build both long-term dependen-
cies and short-term relationships of sequential data [23], [24].
The time-varying unknown parameter 6;(k) can be viewed as
sequential data and we consider using the LSTM to predict
0;(k) using historical data from cloud computing model.

Assume the dynamics of O(k) can be described by
Ok) =g(®k—1),0(k—2),--- ,0(k—L)), where g(-) is an
unknown function and constant L € N describes the time
dependency of parameter ®.

By applying LSTM to approximate function g(-), we can
obtain O(k) = grsrm(O(k—1),0(k—2),--- ,O(k—L)).

Next we will apply an LSTM-based Kalman filter from
our previous work [15] to update the LSTM prediction by
incorporating the estimated z, Vz, V2z.

(:)_(k)ZgLSTM(®+(k—1)»®+(k—2)a“'a®+(k—L))»
Py (k) =G(k —1)P+(k—1)G(k—1)T+We(k—1),
Ko (k) = Py (k)P (k) [T (k)Py (k)P(k) + R (k)] ",
O (k) = O (k) + Ko (k)(po (k) — T (k)O (k)),
@%ﬂ=%m +W (k)R (k)P (k), (22)

where pg (k) = (zkfl,k — Zk—14-1)/0t, Wy is the covariance
for state estimation error, and Rg is the covariance for
measurement noise. The matrix G(k— 1) is defined as G(k —
1) = [Iuxm, Oprx(zv—my]- The vector W(k) is defined as
li’(k) = ‘P(ék_l’k,ka_l’k,V22k_11k), and it is a polynomial
vector that contains all the polynomials {y;(-)}¥, in (1) at
(814> V2k—14, V?2k—1 ). Field estimate % 4 and gradient
estimate VZ;_1 x can be obtained from state estimate %(k) and
szk,l‘,k can be estimated according to Hessian estimation.



VI. CONVERGENCE ANALYSIS

In this section, we will study the sufficient conditions for
the convergence of the unconstrained system. The analysis
is composed of two parts: uniformly complete controllability
and uniformly complete observability. Since the parameter ®
does not appear in the unconstrained system, the convergence
analysis for the unconstrained system is decoupled from the
parameter estimation. If the unconstrained Kalman filter is
convergent, then the convergence of the constrained Kalman
filter can be guaranteed [16].

Let ®(k, j) be the state transition matrix from time #; to

tr, where k > j. Then, ®(k, j) = A(k— D)A(k—2)---A(j) =
®~1(j,k), and we can have the following lemma.

Lemma VL1 For ®(k,j) as defined above and
C(k) as defined in (11), we can have ®(k,j) =
j—15+1 I‘Plz kaj ¢(1)4 ‘ 1*(’;*1 I¢{2 Jgk ¢({)4
[/—k b k=1 o |’ Pk = k—j fzigzd JokA1 95y |
o 0 0 o)) (O 0 0 0 I

C()®(j.k) = [EC@;( o2l
where 12 - ,H( Dt = 7T e =
(’JCFI rk 2>T - Z[ j+1( R éﬁl réiz)T’
032 = Zl:j+l( —l+1 )( - é 2) 034 = E;c;}ﬂ(k_
Dt =T 9 = —(k—j+ Do — (j — k)¢an,
Oy = —(k—j+1)01a — (j k) 34, 03 = —(k— j)d12 —
(J—k+ D¢z, 93 = ( = )01 = (j —k+1)93, and
Ntk 9y (] =) J=k 914
CP) = | : L (CR) = | |,
Fkj @yt (rdy k)T Jk o
k—j 9% JRAL @yt (r] =T
(Cq’)z] = N (C‘P)zz = : :
k=J 03 JkA T Oyt (=T

Lemma VL2 For a matrix B € R™", if each element of
B is bounded, then each element of BBT and BTB is also
bounded.

A. Uniformly Complete Controllability

Definition VI.3 The proposed unconstrained cooperative
filter is uniformly completely controllable if there exist T >0,
M >0, and Ay > 0 such that the controllability Grammian
Q:(kvk_rl) Z/ =k—1 ( a])W(D(kv.])T satisfies AIIZ(dJrl) <
C(k,k—11) < Aalyqy for all k > 1y, where Iyqyy) is the
identity matrix in Rz("Jrl)XZ(d“).
Proposition VI.4 The proposed unconstrained cooperative
filter is uniformly completely controllable if the following
conditions are satisfied:

(Cdl) The covariance matrix W is bounded, i.e., A1 <
W < M4l for some constants Az, Aq > 0.

(Cd2 ) The speed of each agent is umformly bounded, i.e.,
| — || < As for all time j, for i=1,--- N, and for some
constcmt As > 0.

Proof: Based on (Cdl), the controllability Gram-
mian satisfies lgzj iz, Pk, )P (K, j) < C(kk— 1) <
142‘,}»:,{41 D(k, j)DT(k,j) for any k,7; such that k > 7;. If

we can find uniform bounds for ®(k, j)®T(k,j), then the
upper and lower bounds for the controllabiligy Grammian
can also be found.

First we will show the existence of an upper bound. Ac-
cording to (Cd2), the agents’ speed is bounded by A5, which
implies the speed of formation center re is also bounded
since for any [ || —r” l||—HN -y Xl =
Nl T (=i ])||§NZ lIrf =i 1IIS/IS

This implies that each element of ®(k,j) is bounded
and each element of ®(k,j)®T(k,j) is also bounded by
Lemma VI.2. Therefore, there exists A¢ > 0 such that
D(k, j)®T(k,j) < Aelyas1y for j € [k — 71,k]. Then by
defining A, = 4716 > 0 we can get C(kk— 1) <
MY p o @k, DT (K, ) < MatTidshygs) = Aalaari)-

Next we want to derive the positive lower bound for
®(k, j)®T(k, j). Since it is hard to derive the explicit form
of the eigenvalues of ®(k,j)PT(k, j), we want to show the
eigenvalues are positive.

We are able to obtain det(A(l)) = 1. Then
according to the definition of ®(k,j), we can have
det(®(k,j)) = Hk 1det( (I)) = 1. This means that
det(®(k, OT(k, /) = det(®(k,j)(det(@(k, j)T) = 1.
Thus, we can obtain []%,eig,(®(k, )®T(k,j)) =
det(®(k, j)@T(k,j)) = 1, which implies the eigenvalues are
all non-zero value. Since ®(k, j)DT(k, j) is real, symmetric
and positive semi-definite, this means the eigenvalues
are all positive. Hence, there exists A7 > 0 such that
Mgy < @k, j)®T(k,j) for all j € [k — 71,k]. Then
by defining A; = A311A; > 0 we can have C(k,k—1;) >
MY o Pk NPT (K, j) < B3Tidrhygsr) = Mbyasr)-

Therefore, there exist Aj,A2 > 0 such that A1l 441 <
&(k,k — 1) < Aalygy41y for all k> 71 and the uniformly
complete controllability has been proved. [ ]

B. Uniformly Complete Observability

In this part, we analyze the observability of the state
dynamics (8) with the measurement (13).

For uniformly complete observability, the following suffi-
cient conditions are established for a moving formation.

Definition V1.5 The proposed unconstrained cooperative
filter is uniformly completely observable if there exist T) >
0, A >0, and Ay > 0 such that the observability Gram-
mian D(k.k — 1) = ¥y, ®T(j,K)CT(/)[D(j)QDT()) +
RI'C(j)®(j,k) satisfies Ashygs1) < O (kk—2) < Aoly(q 1)
for all k> 1.

Proposition V1.6 The proposed unconstrained cooperative
filter is uniformly completely observable if (Cd2) and the
following conditions are satisfied:

(Cd3) The number of agents N satisfies N > d.

(Cd4) The covariance matrices R and Q are bounded,
i.e., Mol <R < Ayl and 0 < Q < Al for some constants
Mo, A1, A2 > 0.

(Cd>5) The distance between each agent and the formation
center is umformly bounded from both above and below, i.e.,
Az < ||r’_ . | < Mg for all j, for i=1,2,...,N, and
for some constants Ay3,A14 > 0.
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(Cd6) There exists a constant time difference 1, and for
all k > Ty, there exists a time instance j) € [k— Ty, k|, as well

as two sets of agents indexed by {i1,--- iz}, {igs1,- i2a}
respectively, such that ("111171 — ) (r'i’d'*1 —r Y are
linearly independent, and (rl' —rl'™1), ... (rl) = rih

ld+1
are linearly independent.

Proof:

Based on (Cd5), each element in D(j) is
bounded. According to (Cd5), there exist Aj5,A16 > 0
such that A;sI < D(j)ODT(j) + R < Al for any
J € [k — 12,k]. Then the observability Grammian satisfies
Mg B o, @TGLRCT(HC()D(j k) < Ok — 1) <
Ais' Dk ®T(LKCT()C()P(j:k) for any k.7 such
that k > 1.

From (Cd2) and (Cd6), we can know that each el-
ement of C(j)®(j,k) is bounded, which implies that
each element of ®T(j,k)CT(j)C(j)P(j,k) is also bounded
by Lemma VIL.2. Therefore, there exists A;7 > 0 such
that ®T(j,K)CT())C())R(.K) < Azhasn) for j € [k -
Tp,k]. Then by defining A9 = llglrgﬂln > 0 we can
get O(kk— ) < Aj5' Ky, @T(1K)CT()HC()D(j.k) <
A5 Arhasr) = Aobyai).-

According to Lemma VL1, the matrix C(j)®(j,k)
can be simplified using elementary column operations

S L
o Lo A T o 5 (cay
as COHIBGK) = |7 5 7 | 2 (€O
_6 0 | (rﬁ,*.f_l)T_
Consider the two sets of agents {i1, - iz}, {id+11, e ,izd}lg
1,---,N} given by (Cd6). Since (r/'/7' — /171,
1
.. ’(rl{;q — ré‘fl) are linearly independent. This means
(=T

that the matrix € RV*? is composed of

-1 -1
(rljvl —ret )T
d linearly independent column vectors, and the d column
1
€ RV*1. Thus, the matrix
i

vectors are independent of

Lo =T
€ RV*@+) is composed of (d + 1)

1 (rlj;,lil—r(]..lil)T
linearly independent column vectors.
~We can use similar approach to show the matrix
(=T

€ R¥*(@+1) is composed of (d 4 1) linearly
—1

Ly = )T
ir_ldepNendent column vectors. Thus, the matrix (C®)’ has full
column rank.

Since column operations does not change the column
rank of the original matrix, the matrix C(j;)®(j1,k)
also has full column rank. This means that the matrix
DT(j1,k)CT(j1)C(j1)®(j1,k) is invertible and has
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full rank, which implies ®T(j;,k)CT(j;)C(j1)P(j1,k)

is positive definite. Then the summation matrix
le‘»:k42 DT(j,k)CT(/)C(j)D(j,k) is strictly positive
definite. Hence, there exists A3 > 0 such that

Mshrn) < i o ®TGLHCT()C()D(j,k)  for  all
k > 1. Then by defining Ag = 118)‘1_61 > 0 we can have
Ok — 1) > AisYh o, ®T(LOCT()C(HP(LK) >
1181176]12(,/”1) = 2{8]2((1+1)'

Therefore, there exist Ag,Ao > 0 such that Aglyyy1) <
O(k,k — 1) < Agly(g41y for all k> 7, and the uniformly
complete observability has been proved.

|

According to Theorem 7.4 in [25], the convergence of the
unconstrained cooperative Kalman filter can be guaranteed
by uniformly complete controllability and observability.

In [16], convergence for Kalman filter with linear and
nonlinear state equality constraint has been studied. Similar
approach can be applied to the convergence analysis of our
constrained filter. In (21), the constrained state estimate ¥
can be viewed as the projection of unconstrained estimate
#* onto the space of constraint £ = 0. Denote x as the
true state value. Then according to Theorem 4 in [16],
[lx—%F|2 < ||x—£t]||2, where || -||2 is the I, norm. Since
the unconstrained cooperative Kalman filter is convergent,
the constrained cooperative Kalman filter is also convergent.

Remark VI.7 The estimated parameter 6 only appears in
the PDE constraint and is not included in either the state
equation or the measurement equation. Therefore, the way
we setup the information dynamics helps separate the state
estimation and parameter estimation, and makes it easy to
generalize to different PDE models with different parameters
that need to be estimated.

VII. SIMULATION RESULT

In this section, we present a simulation in R? that demon-
strates the proposed algorithm enables the mobile sensor
network to estimate state and parameter along trajectory. A
group of four agents with a square-shape formation (shown
in Fig.2) are employed in the PDE field for 600 time steps
with sampling interval 6 = 0.1s.

T2

Fig. 2. The formation of the mobile sensor network consisting of 4 agents.

The four agents have the same velocity v(k) defined as

(L, o], 0 <k <150,
T <k<
o) 2 [0, 1]T, 151_k_300,'
[—1,0]T, 301 <k <450,
[0, —1]T, 451 <k < 600.

The 2D field satisfies the PDE % = 6(t)z(r,t), where
0(t) = mi;iz Assume we have no knowledge of 0(¢)

but we can obtain history estimation to train the LSTM.



Suppose we have 1000 sequential data points of 0(¢), and
the constant L is 10. Then we have 990 input-output pairs
that can be split into 800 training data pairs and 190 testing
data pairs. The network has one single LSTM layer of 200
units and is trained with learning rate of 0.005. The trained
LSTM network will be applied to (22) to estimate 0(r)
based on state estimation from (16)-(21). The constrained
cooperative Kalman filter will update the state estimation
based on estimated 6 and new measurements.
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Fig. 3. State estimation of field value zc(a), gradient Vz. = [Vzcy, Vze,]T
(b)(c) and parameter estimation of 6 (d) at formation center r. along
trajectory.

Fig.3 shows the evolution of state and parameter estima-
tion at the formation center r, along trajectory. Compared
with the true values (red dashed lines), the state estimations
(blue solid lines) have the same trend as the true values.
The RMSE for field value z. is 0.0770, and the RMSE for
gradient estimation Vz, is [0.0356, 0.0260]T. This means that
the proposed algorithm is capable of providing accurate state
estimation. The comparison between estimated parameter 6
and true value 6 is shown in Fig.3 (d). The RMSE for
parameter estimation is 0.1577. We can observe that the
estimated parameter follows the same trend as the true value,
and relative large estimation error usually appears around the
local maximum or minimum.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a constrained cooperative
Kalman filter for state estimation using mobile sensor net-
works within a polynomial PDE field with provable conver-
gence. Meanwhile, an LSTM-based Kalman filter has been
applied to provide parameter estimation. In the future, we
will look into applications such as source seeking, level curve
tracking, predator avoidance, etc.
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