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Abstract— In this paper, a constrained cooperative Kalman
filter is developed to estimate field values and gradients along
trajectories of mobile robots collecting measurements. We
assume the underlying field is generated by a polynomial partial
differential equation with unknown time-varying parameters.
A long short-term memory (LSTM) based Kalman filter, is
applied for the parameter estimation leveraging the updated
state estimates from the constrained cooperative Kalman filter.
Convergence for the constrained cooperative Kalman filter has
been justified. Simulation results in a 2-dimensional field are
provided to validate the proposed method.

I. INTRODUCTION

Many spatial-temporal fields can be described by partial
differential equations (PDEs). However, it is often difficult to
obtain explicit analytic solution for these PDEs [1]. We need
to estimate the field and gradient information in applications
such as modeling congested freeway traffic [2], monitoring
Arctic sea ice [3], and tracking dynamic pollutant plume
propagation [4]. Mobile sensor networks are promising for
data collection [5]–[9] to estimate PDE states.

In earlier literature, static sensors have been applied to
explore PDE fields and the parameters are identified by
solving inverse problems of PDEs [10]. The inverse problem,
however, can be difficult to solve. Recently, model predictive
control [11] and adaptive observer [12] have also been
studied for parameter identification in PDE models. The two-
stage method can be applied to this problem as well [13],
with the first stage of estimating field value and gradient
and the second stage of identifying PDE parameters using
least square method. In our previous works [7], [9], [14],
constrained cooperative Kalman filter has been used for
state estimation and recursive least square method has been
applied to iteratively estimate of unknown parameters.

While our previous works mainly consider the advection-
diffusion PDEs with constant coefficient, this paper addresses
more general PDE models with unknown time-varying pa-
rameters. Similar to our previous works [7], [9], [14], a
bootstrap structure of state filter and parameter estimation
algorithm is proposed. For state estimation, the information
dynamics are derived, and a constrained cooperative Kalman
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filter has been proposed. The major difference from our
previous works is that the PDE is treated as constraint on the
states of the information dynamics. This new structure allows
the constrained cooperative Kalman filter to be applied to a
class of polynomial PDEs, not just the advection-diffusion
PDEs. Another contribution is that an LSTM based Kalman
filter revised from our previous work [15] is applied to
estimate the PDE parameters, fusing the latest state estimate
from the constrained Kalman filter with previous parameter
estimates. According to [16], we can prove convergence for
the constrained cooperative Kalman filter by showing the un-
constrained filter is convergent. Since the PDEs are treated as
constraints, the convergence analysis is decoupled from the
parameter estimation since the estimated parameters does not
appear in the unconstrained filter. These new contributions
provide a more general framework for cooperative filtering
and parameter identification using mobile sensor networks.

II. PROBLEM FORMULATION

In this section, we formulate the estimation problem of
field parameter and field information along trajectory using
mobile sensor networks for a spatial-temporal varying con-
centration field in d-dimensional space where d ∈ N,d ≥ 2.

We assume that the field can be described by the following
PDE in a spatial domain Ω⊆ Rd

∂ z(r, t)
∂ t

=
M

∑
i=1

θi(t)ψi(z(r, t),∇z(r, t),∇2z(r, t)), (1)

where r ∈ Ω represents location, t ∈ R+ represents time,
z(·, ·) : Rd×R+→ R is the concentration function, ∇ is the
gradient operator, and ∇2 is the Laplacian operator. The PDE
is a M-th polynomial function, and ψi(·) is the ith order
polynomial with time-varying unknown parameter θi(t). One
of our goals in this work is to estimate θi(t).

The equation (1) has the initial condition z(r,0) = z0(r)
for r ∈ Ω, and the boundary condition z(r, t) = zb(r, t) for
r ∈ ∂Ω, where z0(r) and zb(r, t) are arbitrary initial condition
and Dirichlet boundary condition, respectively.

Since mobile robots collect discrete measurements at each
time step instead of continuous ones, the continuous PDE
model (1) can be discretized using finite difference method
at time step tk k ∈ N as ∂ z(r,t)

∂ t

∣∣∣
t=tk
≈ z(r,k+1)−z(r,k)

δ t , where δ t

is the sampling interval. By finite difference method, (1) will
have the following discretization,

z(r,k+1)≈ z(r,k)+δ t
M

∑
i=1

θi(k)ψi(z(r,k),∇z(r,k),∇2z(r,k))

= z(r,k)+δ tΨᵀ(z(r,k),∇z(r,k),∇2z(r,k))Θ(k), (2)
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where Ψ(·) = [ψ1(·), · · · ,ψM(·)]ᵀ and Θ(k) =
[θ1(k), · · · ,θM(k)]ᵀ ∈ RM .

Suppose a group of N mobile robots are deployed in the
field described by (1) and take discrete measurements of the
field concentration. Denote the location of agent i at time
step tk as rk

i and the noisy measurement p(rk
i ,k) taken by

this agent at (rk
i ,k) can be written as

p(rk
i ,k) = z(rk

i ,k)+ni, (3)

where ni ∈R is an i.i.d. Gaussian noise. Define the center of
the mobile robots at tk as rk

c and rk
c =

1
N ∑

N
i=1 rk

i . Another goal
is to estimate field concentration z(rc, t) and corresponding
gradient ∇z(rc, t) along trajectory.

In order to solve this parameter estimation and state
estimation problem, we will follow a two-step procedure:
1) We will estimate the field information z(rc, t),∇z(rc, t)
based on the measurements collected by mobile robots. 2)
The time-varying unknown parameter θi(t) will be estimated
using the estimated states at time t.

III. INFORMATION DYNAMICS

In this section, we will introduce the information dynamics
at rk

c and the general form of corresponding discretization.
First we introduce some simplified notations,

zk,k = z(rk
c ,k), zk−1,k−1 = z(rk−1

c ,k−1), zk,k+1 = z(rk
c ,k+1).

By applying finite difference method, we can get
dz
dt and ∂ z

∂ t as dz
dt ≈

zk,k−zk−1,k−1
δ t , ∂ z

∂ t ≈
zk,k+1−zk,k

δ t ,
where δ t is the sampling interval. Then we can
obtain dz

dt −
∂ z
∂ t ≈

1
δ t

(
2zk,k− zk−1,k−1− zk,k+1

)
and

dz
dt −

∂ z
∂ t = 1

δ t (r
k
c − rk−1

c )ᵀ∇zk−1,k−1, leading to(
2zk,k− zk−1,k−1− zk,k+1

)
= (rk

c − rk−1
c )ᵀ∇zk−1,k−1. Since

zk,k = zk−1,k +(rk
c− rk−1

c )ᵀ∇zk−1,k, we should have

zk,k+1 =2zk,k− zk−1,k−1− (rk
c− rk−1

c )ᵀ∇zk−1,k−1 (4)

=2zk−1,k− zk−1,k−1 +(rk
c− rk−1

c )ᵀ∇zk−1,k−1 +h.o.t..

By ignoring the higher order term, (4) can be written as

zk,k+1 = 2zk−1,k− zk−1,k−1 +(rk
c− rk−1

c )ᵀ∇zk−1,k−1. (5)

We also have that dz
dt ≈

zk,k+1−zk−1,k
δ t , ∂ z

∂ t ≈
zk,k+1−zk,k

δ t . Sim-
ilarly, we can get dz

dt −
∂ z
∂ t = 1

δ t

(
−zk−1,k + zk,k

)
= 1

δ t (r
k
c −

rk−1
c )ᵀ∇zk−1,k. Thus, we have the following two relationships

zk,k =zk−1,k +(rk
c− rk−1

c )ᵀ∇zk−1,k (6)

zk,k+1 =2zk−1,k−2(rk
c− rk−1

c )ᵀ∇zk−1,k− zk−1,k−1 (7)

+(rk
c− rk−1

c )ᵀ∇zk−1,k−1

Define state variable x(k) = [zk−1,k−1,∇zk−1,k−1,zk−1,k,
∇zk−1,k]

ᵀ, and we can get the following state equation

x(k+1) = A(k)x(k)+U(k)+ e(k), (8)

where A(k) ,

 0 0 1 (rk
c−rk−1

c )ᵀ

0 Id×d 0 0
−1 (rk

c−rk−1
c )ᵀ 2 −2(rk

c−rk−1
c )ᵀ

0 0 0 I

, U(k) , 0
∇2zk−1,k−1(rk

c−rk−1
c )

0
∇2zk−1,k(rk

c−rk−1
c )

 and e(k) is the noise term.

IV. MEASUREMENT EQUATION

The field concentration can be locally approximated by a
Taylor series up to second order as

z(rk−1
i ,k−1)≈ z(rk−1

c ,k−1)+(rk−1
i − rk−1

c )ᵀ∇z(rk−1
c ,k−1)

+
1
2
(rk−1

i − rk−1
c )ᵀH(rk−1

c ,k−1)(rk−1
i − rk−1

c ), (9)

z(rk
i ,k)≈ z(rk−1

c ,k)+(rk
i − rk−1

c )ᵀ∇z(rk−1
c ,k)

+
1
2
(rk

i − rk−1
c )ᵀH(rk−1

c ,k)(rk
i − rk−1

c ). (10)

Let Z(k) = [z(rk−1
1 ,k − 1), · · · ,z(rk−1

N ,k − 1),z(rk
1,k), · · · ,

z(rk
N ,k)]

ᵀ be the vector of true field values. Define

C(k),



1 (rk−1
1 −rk−1

c )ᵀ 0 0
...

...
...

...
1 (rk−1

N −rk−1
c )ᵀ 0 0

0 0 1 (rk
1−rk−1

c )ᵀ

...
...

...
...

0 0 1 (rk
N−rk−1

c )ᵀ

 , (11)

and D(k) ,



1
2 ((r

k−1
1 −rk−1

c )
⊗
(rk−1

1 −rk−1
c ))ᵀ

...
1
2 ((r

k−1
N −rk−1

c )
⊗
(rk−1

N −rk−1
c ))ᵀ

1
2 ((r

k
1−rk−1

c )
⊗
(rk

1−rk−1
c ))ᵀ

...
1
2 ((r

k
N−rk−1

c )
⊗
(rk

N−rk−1
c ))ᵀ

, where
⊗

is the

Kronecker product. The Taylor expansions (9) for all sensors
near rk

c can be rewritten in a vector form as

Z(k) =C(k)x(k)+D(k)H(k), (12)

where H(k) is a column vector obtained by rearranging
elements of the Hessian H(rk−1

c ,k−1).
Supposing Ĥ(k) represents the estimate of the vector form

Hessian H(k) at rk
c , equation (3) can be remodeled as

P(k) =C(k)x(k)+D(k)Ĥ(k)+D(k)ε(k)+n(k), (13)

where P(k) = [p(rk−1
1 ,k−1), · · · , p(rk−1

N ,k−1), p(rk
1,k), · · · ,

p(rk
N ,k)]

ᵀ is the measurement vector, ε(k) represents the er-
ror in Hessian estimation, and n(k) is the vector of Gaussian
noise ni in (3). For the estimation of Hessian matrices, we
will follow the procedure of cooperative estimation in [17],
and we will not discuss the details of how to get Ĥ(k).

V. BOOTSTRAP STRUCTURE OF ESTIMATION

In this section, we will construct a bootstrap algorithm
for state estimation and parameter estimation. As shown in
Fig. 1, the proposed algorithm is composed of two parts, a
constrained cooperative Kalman filter for state estimation and
an LSTM-based Kalman filter (LSTM-KF) for parameter es-
timation. At time step tk, the constrained cooperative Kalman
filter updates the state estimation x̂(k) by incorporating the
previous parameter estimation Θ̂(k−1) from the LSTM-KF.
Then the LSTM-KF updates the parameter Θ̂(k) according
to the updated state estimation x̂(k).
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Fig. 1. Bootstrap structure of the proposed algorithm

A. Constrained Cooperative Kalman Filter

We construct a constrained Kalman filter for state estima-
tion. The idea is to use information dynamics as the state
equation, build the connection between state and measure-
ment as measurement equation, and include approximated
PDE model as constraint for this system.

Before introducing the constrained cooperative Kalman
filter, we need to linearize the PDE constraint (2) around
state variable x(k) =

[
zk−1,k−1,∇zk−1,k−1,zk−1,k,∇zk−1,k

]ᵀ.
At x(k), (2) can be rewritten as follows,

F(k),zk−1,k− zk−1,k−1 (14)

−δ tΨ(zk−1,k−1,∇zk−1,k−1,∇
2zk−1,k−1)

ᵀ
Θ̂(k−1),

where zk−1,k−1,∇zk−1,k−1,∇
2zk−1,k−1,zk−1,k are treated as in-

dependent variables during linearization. After taking partial
derivative of left hand side of (14) w.r.t. x(k), we can

obtain J(k),


∂

∂ zk−1,k−1
F(k)

∂

∂∇zk−1,k−1
F(k)

∂

∂ zk−1,k
F(k)

∂

∂∇zk−1,k
F(k)


ᵀ

=


∂

∂ zk−1,k−1
F(k)

∂

∂∇zk−1,k−1
F(k)

1
0


ᵀ

. And the

linearized model at x(k) can be written as

J(k)(x− x(k))−F(k) = 0. (15)

Assumption V.1 We assume that the noises e(k),ε(k),n(k)
are i.i.d. Gaussian noise with zero mean, and with constant
covariance matrix, i.e. E[e(k)eᵀ(k)] = W, E[n(k)nᵀ(k)] = R
and E[ε(k)εᵀ(k)] = Q.

The constrained cooperative Kalman filter can be con-
structed using 6 steps:
(1) One-step state prediction

x̂−(k) = A(k−1)x̃+(k−1)+U(k−1), (16)

where x̃+(k − 1) is the constrained state estimate from
previous time step, and x̂−(k) is the one-step state prediction.
(2) Error covariance of x̂−(k)

R−(k) = A(k−1)R+(k−1)Aᵀ(k−1)+W. (17)

(3) Optimal gain

K(k) = R−(k)Cᵀ(k)[C(k)R−(k)Cᵀ(k)+D(k)QDᵀ(k)+R]−1.
(18)

(4) Updated unconstrained state estimate

x̂+(k) = x̂−(k)+K(k)(P(k)−C(k)x̂−(k)−D(k)Ĥ(k)).
(19)

(5) Error covariance of x̂+(k)

(R+(k))−1 = (R−(k))−1 +Cᵀ(k)[D(k)QDᵀ(k)+R]−1C(k).
(20)

(6) Updated constrained state estimate

x̃+(k) =x̂+(k)+ J(k)ᵀ[J(k)Jᵀ(k)]−1F̂(k), (21)

where x̂+(k) = [ẑ+k−1,k−1,∇ẑ+k−1,k−1, ẑ
+
k−1,k,∇ẑ+k−1,k]

ᵀ and
F̂(k) = ẑ+k−1,k − ẑ+k−1,k−1 −
δ tΨ(ẑ+k−1,k−1,∇ẑ+k−1,k−1,∇

2ẑ+k−1,k−1)
ᵀΘ̂(k − 1). This is

because J(k)(x̃+(k)− x̂+(k))− F̂(k) = 0 according to (15).

B. Parameter Estimation

Since the unknown parameter Θ(k) is time-varying, recur-
sive least square method [14] cannot be applied to estimate
non-constant parameters. If there is no plenty of history
data, random walk model [18] may be applied for parameter
estimation. In our case, we are considering the scenario when
there is abundant history data of estimated parameters. For
example, models for underwater and atmospheric environ-
ments are usually complicated and require heavy compu-
tation complexity to be run online [19], [20]. There exist
cloud computing models [21], [22] for data assimilation in
these environments, and such models contain large amounts
of history data which can be used for training purposes and
initialization of neural networks.

Long short-term memory (LSTM) is a variant of recurrent
neural networks, and it can build both long-term dependen-
cies and short-term relationships of sequential data [23], [24].
The time-varying unknown parameter θi(k) can be viewed as
sequential data and we consider using the LSTM to predict
θi(k) using historical data from cloud computing model.

Assume the dynamics of Θ(k) can be described by
Θ(k) = g(Θ(k−1),Θ(k−2), · · · ,Θ(k−L)), where g(·) is an
unknown function and constant L ∈ N+ describes the time
dependency of parameter Θ.

By applying LSTM to approximate function g(·), we can
obtain Θ̂(k) = gLST M(Θ̂(k−1),Θ̂(k−2), · · · ,Θ̂(k−L)).

Next we will apply an LSTM-based Kalman filter from
our previous work [15] to update the LSTM prediction by
incorporating the estimated z,∇z,∇2z.

Θ̂
−(k) = gLST M(Θ̂+(k−1),Θ̂+(k−2), · · · ,Θ̂+(k−L)),

P−
θ
(k) = G(k−1)P+

θ
(k−1)G(k−1)ᵀ+Wθ (k−1),

Kθ (k) = P−
θ
(k)Ψ̂(k)[Ψ̂ᵀ(k)P−

θ
(k)Ψ̂(k)+Rθ (k)]−1,

Θ̂
+(k) = Θ̂

−(k)+Kθ (k)(pθ (k)− Ψ̂
ᵀ(k)Θ̂−(k)),

P+
θ
(k)−1 = P−

θ
(k)−1 + Ψ̂(k)Rθ (k)−1

Ψ̂
ᵀ(k), (22)

where pθ (k) = (ẑk−1,k− ẑk−1,k−1)/δ t, Wθ is the covariance
for state estimation error, and Rθ is the covariance for
measurement noise. The matrix G(k−1) is defined as G(k−
1) = [IM×M, 0M×(LM−M)]. The vector Ψ̂(k) is defined as
Ψ̂(k) = Ψ(ẑk−1,k,∇ẑk−1,k,∇

2ẑk−1,k), and it is a polynomial
vector that contains all the polynomials {ψi(·)}M

i=1 in (1) at
(ẑk−1,k,∇ẑk−1,k,∇

2ẑk−1,k). Field estimate ẑk−1,k and gradient
estimate ∇ẑk−1,k can be obtained from state estimate x̂(k) and
∇2ẑk−1,k can be estimated according to Hessian estimation.
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VI. CONVERGENCE ANALYSIS

In this section, we will study the sufficient conditions for
the convergence of the unconstrained system. The analysis
is composed of two parts: uniformly complete controllability
and uniformly complete observability. Since the parameter Θ

does not appear in the unconstrained system, the convergence
analysis for the unconstrained system is decoupled from the
parameter estimation. If the unconstrained Kalman filter is
convergent, then the convergence of the constrained Kalman
filter can be guaranteed [16].

Let Φ(k, j) be the state transition matrix from time t j to
tk, where k > j. Then, Φ(k, j) = A(k−1)A(k−2) · · ·A( j) =
Φ−1( j,k), and we can have the following lemma.

Lemma VI.1 For Φ(k, j) as defined above and
C(k) as defined in (11), we can have Φ(k, j) =[

j−k+1 φ12 k− j φ14
0 Id×d 0 0

j−k φ32 k− j+1 φ34
0 0 0 I

]
, Φ( j,k) =

 1+k− j φ ′12 j−k φ ′14
0 Id×d 0 0

k− j φ ′32 j−k+1 φ ′34
0 0 0 I

,

C( j)Φ( j,k) =
[
(CΦ)11 (CΦ)12
(CΦ)21 (CΦ)22

]
,

where φ12 = ∑
k−1
l= j+1(k − l)(rl−1

c − rl−2
c )ᵀ, φ14 =

(rk−1
c − rk−2

c )ᵀ − ∑
k−2
l= j+1(k − l − 1)(rl−1

c − rl−2
c )ᵀ,

φ32 = ∑
k
l= j+1(k− l + 1)(rl−1

c − rl−2
c )ᵀ, φ34 = −∑

k−1
l= j+1(k−

l)(rl−1
c − rl−2

c )ᵀ, φ ′12 = −(k − j + 1)φ12 − ( j − k)φ32,
φ ′14 = −(k − j + 1)φ14 − ( j − k)φ34, φ ′32 = −(k − j)φ12 −
( j − k + 1)φ32, φ ′34 = −(k − j)φ14 − ( j − k + 1)φ34, and

(CΦ)11 =

 ]1+k− j φ ′12+(r j−1
1 −r j−1

c )ᵀ

...
...

1+k− j φ ′12+(r j−1
N −r j−1

c )ᵀ

, (CΦ)12 =

 j−k φ ′14
...

...
j−k φ ′14

,

(CΦ)21 =

 k− j φ ′32
...

...
k− j φ ′32

, (CΦ)22 =

 j−k+1 φ ′34+(r j
1−r j−1

c )ᵀ

...
...

j−k+1 φ ′34+(r j
N−r j−1

c )ᵀ

.

Lemma VI.2 For a matrix B ∈ Rm×n, if each element of
B is bounded, then each element of BBᵀ and BᵀB is also
bounded.

A. Uniformly Complete Controllability

Definition VI.3 The proposed unconstrained cooperative
filter is uniformly completely controllable if there exist τ1 > 0,
λ1 > 0, and λ2 > 0 such that the controllability Grammian
C(k,k−τ1) = ∑

k
j=k−τ1

Φ(k, j)WΦ(k, j)ᵀ satisfies λ1I2(d+1) ≤
C(k,k− τ1) ≤ λ2I2(d+1) for all k > τ1, where I2(d+1) is the
identity matrix in R2(d+1)×2(d+1).

Proposition VI.4 The proposed unconstrained cooperative
filter is uniformly completely controllable if the following
conditions are satisfied:

(Cd1) The covariance matrix W is bounded, i.e., λ3I ≤
W ≤ λ4I for some constants λ3,λ4 > 0.

(Cd2) The speed of each agent is uniformly bounded, i.e.,
‖r j

i −r j−1
i ‖≤ λ5 for all time j, for i= 1, · · · ,N, and for some

constant λ5 > 0.

Proof: Based on (Cd1), the controllability Gram-
mian satisfies λ3 ∑

k
j=k−τ1

Φ(k, j)Φᵀ(k, j) ≤ C(k,k − τ1) ≤
λ4 ∑

k
j=k−τ1

Φ(k, j)Φᵀ(k, j) for any k,τ1 such that k > τ1. If

we can find uniform bounds for Φ(k, j)Φᵀ(k, j), then the
upper and lower bounds for the controllabiligy Grammian
can also be found.

First we will show the existence of an upper bound. Ac-
cording to (Cd2), the agents’ speed is bounded by λ5, which
implies the speed of formation center rc is also bounded
since for any l ‖rl

c − rl−1
c ‖ = ‖ 1

N ∑
N
i=1 rl

i − 1
N ∑

N
i=1 rl−1

i ‖ =
1
N ‖∑

N
i=1(r

l
i − rl−1

i )‖ ≤ 1
N ∑

N
i=1 ‖rl

i − rl−1
i ‖ ≤ λ5.

This implies that each element of Φ(k, j) is bounded
and each element of Φ(k, j)Φᵀ(k, j) is also bounded by
Lemma VI.2. Therefore, there exists λ6 > 0 such that
Φ(k, j)Φᵀ(k, j) ≤ λ6I2(d+1) for j ∈ [k − τ1,k]. Then by
defining λ2 = λ4τ1λ6 > 0 we can get C(k,k − τ1) ≤
λ4 ∑

k
j=k−τ1

Φ(k, j)Φᵀ(k, j)≤ λ4τ1λ6I2(d+1) = λ2I2(d+1).
Next we want to derive the positive lower bound for

Φ(k, j)Φᵀ(k, j). Since it is hard to derive the explicit form
of the eigenvalues of Φ(k, j)Φᵀ(k, j), we want to show the
eigenvalues are positive.

We are able to obtain det(A(l)) = 1. Then
according to the definition of Φ(k, j), we can have
det(Φ(k, j)) = ∏

k−1
l= j det(A(l)) = 1. This means that

det(Φ(k, j)Φᵀ(k, j)) = det(Φ(k, j)(det(Φ(k, j)ᵀ) = 1.
Thus, we can obtain ∏

6
i=1 eigi(Φ(k, j)Φᵀ(k, j)) =

det(Φ(k, j)Φᵀ(k, j)) = 1, which implies the eigenvalues are
all non-zero value. Since Φ(k, j)Φᵀ(k, j) is real, symmetric
and positive semi-definite, this means the eigenvalues
are all positive. Hence, there exists λ7 > 0 such that
λ7I2(d+1) ≤ Φ(k, j)Φᵀ(k, j) for all j ∈ [k − τ1,k]. Then
by defining λ1 = λ3τ1λ7 > 0 we can have C(k,k− τ1) ≥
λ3 ∑

k
j=k−τ1

Φ(k, j)Φᵀ(k, j)≤ λ3τ1λ7I2(d+1) = λ1I2(d+1).
Therefore, there exist λ1,λ2 > 0 such that λ1I2(d+1) ≤

C(k,k− τ1) ≤ λ2I2(d+1) for all k > τ1 and the uniformly
complete controllability has been proved.

B. Uniformly Complete Observability

In this part, we analyze the observability of the state
dynamics (8) with the measurement (13).

For uniformly complete observability, the following suffi-
cient conditions are established for a moving formation.

Definition VI.5 The proposed unconstrained cooperative
filter is uniformly completely observable if there exist τ2 >
0, λ8 > 0, and λ9 > 0 such that the observability Gram-
mian O(k,k − τ2) = ∑

k
j=k−τ2

Φᵀ( j,k)Cᵀ( j)[D( j)QDᵀ( j) +
R]−1C( j)Φ( j,k) satisfies λ8I2(d+1)≤O(k,k−τ2)≤ λ9I2(d+1)
for all k > τ2.

Proposition VI.6 The proposed unconstrained cooperative
filter is uniformly completely observable if (Cd2) and the
following conditions are satisfied:

(Cd3) The number of agents N satisfies N > d.
(Cd4) The covariance matrices R and Q are bounded,

i.e., λ10I ≤ R ≤ λ11I and 0 ≤ Q ≤ λ12I for some constants
λ10,λ11,λ12 > 0.

(Cd5) The distance between each agent and the formation
center is uniformly bounded from both above and below, i.e.,
λ13 ≤ ‖r j−1

i − r j−1
c ‖ ≤ λ14 for all j, for i = 1,2, ...,N, and

for some constants λ13,λ14 > 0.
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(Cd6) There exists a constant time difference τ2, and for
all k > τ2, there exists a time instance j1 ∈ [k−τ2,k], as well
as two sets of agents indexed by {i1, · · · , id},{id+1, · · · , i2d}
respectively, such that (r j1−1

i1
−r j1−1

c ), · · · ,(r j1−1
id
−r j1−1

c ) are
linearly independent, and (r j1

id+1
− r j1−1

c ), · · · ,(r j1
i2d
− r j1−1

c )
are linearly independent.

Proof:
Based on (Cd5), each element in D( j) is

bounded. According to (Cd5), there exist λ15,λ16 > 0
such that λ15I ≤ D( j)QDᵀ( j) + R ≤ λ16I for any
j ∈ [k− τ2,k]. Then the observability Grammian satisfies
λ
−1
16 ∑

k
j=k−τ2

Φᵀ( j,k)Cᵀ( j)C( j)Φ( j,k) ≤ O(k,k − τ2) ≤
λ
−1
15 ∑

k
j=k−τ2

Φᵀ( j,k)Cᵀ( j)C( j)Φ( j,k) for any k,τ2 such
that k > τ2.

From (Cd2) and (Cd6), we can know that each el-
ement of C( j)Φ( j,k) is bounded, which implies that
each element of Φᵀ( j,k)Cᵀ( j)C( j)Φ( j,k) is also bounded
by Lemma VI.2. Therefore, there exists λ17 > 0 such
that Φᵀ( j,k)Cᵀ( j)C( j)Φ( j,k) ≤ λ17I2(d+1) for j ∈ [k −
τ2,k]. Then by defining λ9 = λ

−1
15 τ2λ17 > 0 we can

get O(k,k− τ2) ≤ λ
−1
15 ∑

k
j=k−τ2

Φᵀ( j,k)Cᵀ( j)C( j)Φ( j,k) ≤
λ
−1
15 τ2λ17I2(d+1) = λ9I2(d+1).
According to Lemma VI.1, the matrix C( j)Φ( j,k)

can be simplified using elementary column operations

as C( j)Φ( j,k) →



1 (r j−1
1 −r j−1

c )ᵀ 0 0

...
...

...
...

1 (r j−1
N −r j−1

c )ᵀ 0 0

0 0 1 (r j
1−r j−1

c )ᵀ

...
...

...
...

0 0 1 (r j
N−r j−1

c )ᵀ


, (CΦ)′.

Consider the two sets of agents {i1, · · · , id},{id+1, · · · , i2d}⊆
{1, · · · ,N} given by (Cd6). Since (r j1−1

i1
− r j1−1

c ),

· · · ,(r j1−1
id
− r j1−1

c ) are linearly independent. This means

that the matrix

 (r
j1−1
1 −r

j1−1
c )ᵀ

...
(r

j1−1
N −r

j1−1
c )ᵀ

 ∈ RN×d is composed of

d linearly independent column vectors, and the d column

vectors are independent of

[
1
...
1

]
∈ RN×1. Thus, the matrix 1 (r

j1−1
1 −r

j1−1
c )ᵀ

...
...

1 (r
j1−1
N −r

j1−1
c )ᵀ

 ∈ RN×(d+1) is composed of (d + 1)

linearly independent column vectors.
We can use similar approach to show the matrix 1 (r

j1
1 −r

j1−1
c )ᵀ

...
...

1 (r
j1
N −r

j1−1
c )ᵀ

 ∈ RN×(d+1) is composed of (d +1) linearly

independent column vectors. Thus, the matrix (CΦ)′ has full
column rank.

Since column operations does not change the column
rank of the original matrix, the matrix C( j1)Φ( j1,k)
also has full column rank. This means that the matrix
Φᵀ( j1,k)Cᵀ( j1)C( j1)Φ( j1,k) is invertible and has

full rank, which implies Φᵀ( j1,k)Cᵀ( j1)C( j1)Φ( j1,k)
is positive definite. Then the summation matrix
∑

k
j=k−τ2

Φᵀ( j,k)Cᵀ( j)C( j)Φ( j,k) is strictly positive
definite. Hence, there exists λ18 > 0 such that
λ18I2(d+1) ≤ ∑

k
j=k−τ2

Φᵀ( j,k)Cᵀ( j)C( j)Φ( j,k) for all
k > τ2. Then by defining λ8 = λ18λ

−1
16 > 0 we can have

O(k,k − τ2) ≥ λ18 ∑
k
j=k−τ2

Φᵀ( j,k)Cᵀ( j)C( j)Φ( j,k) ≥
λ18λ

−1
16 I2(d+1) = λ8I2(d+1).

Therefore, there exist λ8,λ9 > 0 such that λ8I2(d+1) ≤
O(k,k− τ2) ≤ λ9I2(d+1) for all k > τ2 and the uniformly
complete observability has been proved.

According to Theorem 7.4 in [25], the convergence of the
unconstrained cooperative Kalman filter can be guaranteed
by uniformly complete controllability and observability.

In [16], convergence for Kalman filter with linear and
nonlinear state equality constraint has been studied. Similar
approach can be applied to the convergence analysis of our
constrained filter. In (21), the constrained state estimate x̃+

can be viewed as the projection of unconstrained estimate
x̂+ onto the space of constraint F̂ = 0. Denote x as the
true state value. Then according to Theorem 4 in [16],
‖x− x̃+‖2 ≤ ‖x− x̂+‖2, where ‖ · ‖2 is the l2 norm. Since
the unconstrained cooperative Kalman filter is convergent,
the constrained cooperative Kalman filter is also convergent.

Remark VI.7 The estimated parameter Θ̂ only appears in
the PDE constraint and is not included in either the state
equation or the measurement equation. Therefore, the way
we setup the information dynamics helps separate the state
estimation and parameter estimation, and makes it easy to
generalize to different PDE models with different parameters
that need to be estimated.

VII. SIMULATION RESULT

In this section, we present a simulation in R2 that demon-
strates the proposed algorithm enables the mobile sensor
network to estimate state and parameter along trajectory. A
group of four agents with a square-shape formation (shown
in Fig.2) are employed in the PDE field for 600 time steps
with sampling interval δ t = 0.1s.

Fig. 2. The formation of the mobile sensor network consisting of 4 agents.

The four agents have the same velocity v(k) defined as

v(k),


[1, 0]ᵀ, 0≤ k ≤ 150,
[0, 1]ᵀ, 151≤ k ≤ 300,
[−1, 0]ᵀ, 301≤ k ≤ 450,
[0, −1]ᵀ, 451≤ k ≤ 600.

.

The 2D field satisfies the PDE ∂ z
∂ t = θ(t)z(r, t), where

θ(t) = cos(t)−e−t

sin(t)+e−t+2 . Assume we have no knowledge of θ(t)
but we can obtain history estimation to train the LSTM.
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Suppose we have 1000 sequential data points of θ(t), and
the constant L is 10. Then we have 990 input-output pairs
that can be split into 800 training data pairs and 190 testing
data pairs. The network has one single LSTM layer of 200
units and is trained with learning rate of 0.005. The trained
LSTM network will be applied to (22) to estimate θ(t)
based on state estimation from (16)-(21). The constrained
cooperative Kalman filter will update the state estimation
based on estimated θ and new measurements.

Fig. 3. State estimation of field value zc(a), gradient ∇zc = [∇zc,x,∇zc,y]
ᵀ

(b)(c) and parameter estimation of θ (d) at formation center rc along
trajectory.

Fig.3 shows the evolution of state and parameter estima-
tion at the formation center rc along trajectory. Compared
with the true values (red dashed lines), the state estimations
(blue solid lines) have the same trend as the true values.
The RMSE for field value zc is 0.0770, and the RMSE for
gradient estimation ∇zc is [0.0356, 0.0260]ᵀ. This means that
the proposed algorithm is capable of providing accurate state
estimation. The comparison between estimated parameter θ̂

and true value θ is shown in Fig.3 (d). The RMSE for
parameter estimation is 0.1577. We can observe that the
estimated parameter follows the same trend as the true value,
and relative large estimation error usually appears around the
local maximum or minimum.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we propose a constrained cooperative
Kalman filter for state estimation using mobile sensor net-
works within a polynomial PDE field with provable conver-
gence. Meanwhile, an LSTM-based Kalman filter has been
applied to provide parameter estimation. In the future, we
will look into applications such as source seeking, level curve
tracking, predator avoidance, etc.
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