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Abstract— We propose a new concept named sub-
schedulability to relax schedulability conditions on task sets
in the context of scheduling and control co-design. Sub-
schedulability is less conservative compared to schedulablity
requirement with respect to network utilization. But it can still
guarantee that all tasks can be executed before or within a
bounded time interval after their deadlines. Based on the sub-
schedulability concept, we derive an analytical timing model to
check the sub-schedulability and perform online prediction of
time-delays caused by real-time scheduling. A modified event-
triggered contention-resolving MPC is presented to co-design
the scheduling and control for the sub-schedulable control tasks.
Simulation results are demonstrated to show the effectiveness
of the proposed method.

I. INTRODUCTION

Networked Control Systems (NCSs) are connected by
communication networks with limited bandwidth. When
multiple systems are running concurrently and need to utilize
the shared channel in NCSs at the same time, collisions may
occur. The collisions in the network among multiple systems
is resolved by real-time scheduling, which determines the
sequence of accessing the shared channel for the systems.

From the 1970s, significant progress has been made in the
real-time scheduling theory [1]. When dealing with real-time
systems, the first question that needs to be answered from
the real-time scheduling point of view is whether a system is
schedulable under certain scheduling strategy. Schedulability
means that each task in a real-time system can be executed
before its deadline. Research on schedulability was initiated
by the work [2]. In this work, Liu and Layland introduced
an idea of critical instant analysis to study the worst case
when all scheduling tasks are requested at the same time. At
the critical time instant, a task set will endure the longest
response time. Hence, a task set will be schedulable if they
are schedulable at the critical time instant. By extending
the critical instant analysis, extensive research has been
conducted to improve the schedulability tests in Liu and
Layland’s work [3]–[5]. However, schedulability might be
overly restrictive for NCSs. From the point of view of control
theory, the completion time of certain tasks can exceed its
deadline, as long as such time delay does not violate the
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stability of the system or dramatically degrade the control
performance. Therefore, the schedulability requirement is a
conservative condition for NCSs. The well-known schedul-
ing strategies, such as Rate Monotonic Scheduling (RMS),
Earliest Deadline First (EDF) [2], and First Come First
Serve (FCFS) scheduling algorithms [6], [7] are designed
in the sense of maximizing the number of tasks that satisfy
schedulability. However, they are not designed to achieve an
optimal control performance.

Recent works showed encouraging results by co-designing
the scheduling and control to optimize the scheduling poli-
cies for control purposes [8]–[14]. In our previous work [15],
we developed an event-triggered contention-resolving Model
Predictive Control (MPC) method to co-design scheduling
and control in NCSs. The timing of critical events, which is
when contentions happen, is modeled by a dynamic timing
model and the significant moments when events occur can be
computed analytically using the timing model. At each sig-
nificant moment, contention-resolving MPC is triggered and
can dynamically assign priorities and computes the optimal
control command. Such event-triggered mechanism allows us
to find the optimal solution to the co-design problem with-
out excessive computation. We applied contention-resolving
MPC to NCSs [16], traffic intersection [17], [18], and human
and robot collaboration systems [19]. The performance of the
contention-resolving MPC showed significant improvement
compared to the results with classical scheduling methods.
However, all of our previous work assumed that the systems’
schedulability can be satisfied under a set of scheduling
policies so that optimal control and scheduling can be found.
But in reality, schedulability is a conservative condition
for NCSs and there are many cases where systems are
unschedulable regardless of the scheduling policies.

In this paper, we relax schedulability condition to a new
and less conservative condition, sub-schedulability. The real-
time tasks that are unschedulable but sub-schedulable can
still be executed within a finitely bounded time interval after
its deadline. The contributions of this paper are as follows.
1. We establish a generalized analytical timing model for the
real-time systems with this new sub-schedulabilty require-
ment. The timing models for systems with schedulability
condition from our previous work is a special case of the
generalized analytical timing model.
2. We unify the definition of significant moments for pre-
emptive and non-preemptive systems, and derive the timing
model using the unified significant moment definition. We
discover that the difference between preemptive and non-
preemptive systems only appears at the significant moments
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and only occurs to the selection rule of next system which
will occupy the shared network. This discovery enables us
to develop a unified timing model which can be applied to
both preemptive and non-preemptive systems.
3. Based on this unified timing model, we modify the
contention-resolving MPC design to incorporate the sub-
schedulability test, which significantly extends the applica-
tion of contention-resolving MPC to a larger scope of NCSs.
The new contention-resolving MPC can find the optimal
priority assignment in the sense of control performance met-
ric, meanwhile satisfying the sub-schedulability requirement.
The proposed method is validated through simulations.

II. PROBLEM FORMULATION

We consider N control systems sharing a priority-based
network. The dynamic equation of i-th control system for
i=1, 2, ..., N is ẋi(t)=fi(xi(t), ui(t)) and yi(t)=gi(xi(t)).
Each control system will have recurring requests to utilize the
shared network to complete its control tasks and we assume
that only one system can use the shared network at any time.
The recurring requests, also named as tasks, for system i
are denoted by {τi[1], τi[2], ..., τi[k], ...}, where k ≥ 1 is
the task index. The task τi[k] is generated at a time instant
αi[k]. We denote Ti[k] to be the amount of time between
two successive requests from system i, i.e., Ti[k] = αi[k+
1]− αi[k]. The amount of time for task τi[k] to occupy the
network is denoted by Ci[k]. The completion time when task
τi[k] finishes using the shared network is denoted as γi[k].

A. Priority-based Scheduling
If there is only one system requesting to use the shared

network, the completion time γi[k] equals αi[k] +Ci[k].
However, if multiple systems request to use the shared
network at the same time, then a contention will occur
among them and the equality γi[k] = αi[k]+Ci[k] will not
hold. In this case, each system i is assigned with a unique
priority number pi(t) and contentions can be resolved by
comparing the priorities pi. The priority is in a tuple P(t)=
(p1(t), ..., pi(t), ..., pN (t)) ∈ P({1, ..., N}), where pi(t) is
the priority assigned to system i at time t and P({1, ..., N})
denotes the set of all permutations of {1, ..., N}. We have
pi(t)<pj(t) if and only if system i is assigned higher priority
than system j at time t. The value of pi(t) is a positive
integer in {1, . . . , N}, such that pi(t) ̸=pj(t) if i ̸=j.

By the definition of priority assignment, the system with
the highest priority (smallest pi(t)) will obtain the access
to the shared network when a contention occurs. The com-
pletion times of lower prioritized tasks are delayed by the
higher prioritized tasks. We introduce the delay δi[k] so that
αi[k]+Ci[k]+δi[k] is the task completion time for all i and
k, i.e. γi[k]=αi[k]+Ci[k]+δi[k].

B. Sub-schedulability
Based on the task time instants introduced above, the

schedulability can be defined as
Definition 1: For a system i to be schedulable on an

arbitrary time interval [t1, t2], the inequality γi[k]≤αi[k+1]
must be satisfied for all k satisfying t1≤αi[k]≤ t2.

Fig. 1. An example of 3 systems where system 3 is not schedulable but
sub-schedulable. The up-pointing arrows represent time instants αi[k] and
the down-pointing arrows represent γi[k].

Schedulability means that all tasks can be executed
before its deadline. In our previous work [15], we as-
sume the schedulability requirement is satisfied when let-
ting the task characteristic parameters

∑N
i=1 maxk(Ci[k])≤

mini mink Ti[k]. However, schedulability can be easily vio-
lated if the occupation time of one task is relatively long or
the period of tasks from one system is small. For example,
consider 3 systems compting for one network within the time
[0, 12], with (C1[k], C2[k])=(0.5, 1), (T1[k], T2[k], T3[k])=
(3, 4, 6) for all k≥1, C3[1]=4 and C3[2]=2.5, as illustrated
by Figure 1. Let the priority assignment be p1(t) = 1,
p2(t) = 2, and p3(t) = 3 for any t ∈ [0, 12]. Due to the
occupation times of systems 1 and 2, system 3 has the
longest time delay, which make task τ3[1]’s completion time
γ3[1]=7>α3[2]=6. Therefore, system 3 is unschedulable.

Remark 1: From networked control point of view, schedu-
lability is not a “must have” condition. If we ignore the
schedulability and let task τ3[1] finish its execution and then
let the task τ3[2] start execution after the completion of τ3[1].
All the tasks from all three systems can still be executed
within the time interval [0, 12]. The shared network even has
1 unit time as idle time in the end. This example shows that
schedulability is a very conservative condition. Therefore,
we propose a less conservative condition for NCSs.

Definition 2: (task sub-schedulability) For task τi[k] from
system i, let 0≤∆i[k]≤∆ be the smallest number such that
γi[k]≤αi[k+1]+∆i[k] is satisfied, where ∆ a constant upper
bound to guarantee a task won’t be delayed for infinitely
long. We say τi[k] is sub-schedulable with ∆.

Definition 3: (system sub-schedulability) For a system i,
let ∆i be the smallest number such that ∆i[k] ≤ ∆i ≤ ∆
for all k satisfying t1 ≤αi[k]≤ t2, where t1 and t2 are the
starting and ending time instants of an arbitrary time interval
[t1, t2]. Then we say system i is sub-schedulable on [t1, t2].

Definition 4: The deadline extension for the NCS, de-
noted as ∆, is defined as ∆=maxi ∆i.

Remark 2: The schedulability condition is a special case
of sub-schedulability condition with ∆ = 0.

The sub-scehdulability gives more flexibility for schedul-
ing. If a task τi[k] missed its original deadline, then it still
has a time duration ∆ as a buffer. If Ti[k+1] is large enough,
then τi[k+1] can still meet it deadline.

With the definition of sub-scehdulability, system 3 shown
in Figure 1 is sub-schedulable with ∆3=1, ∆1=∆2=0 and
∆=1. And if we swap the priority assignment be p1(t)=1,
p2(t)=3, and p3(t)=2 for t ∈ [0, 12], then system 2 has the
longest time delay and it is sub-schedulable with ∆2=2.5,
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∆1=∆3=0 and ∆=2.5, which shows that δi[k], γi[k] and
∆i are functions of priorities P(t).

C. Co-design Problem

Here we formulate the scheduling and control co-design
problem with sub-schedulability requirement instead of
schedulability, which will compute optimal priority assign-
ments P∗(t) = (p∗1(t), ..., p

∗
N(t)) and an optimal control

command u∗(t)=(u∗
1(t), ...u

∗
N(t)) on a time interval [t0, tf ]

solving the following cost function

min
P(t),u(t)

N∑
i=1

Vi

(
xi(t), ui(t),P(t)

)
(1)

where the cost functions Vi for i = 1, 2, ..., N incorporate
the control effort and tracking error. The control command
is updated at each time instant when a task is completed.
Hence, each controller follows zeroth-order-hold (or ZOH)
mechanism. With ZOH, the continuous-time control ui(t) is
a piece-wise constant function of the form

ui(t)=ui[k]∈Ui, t∈
[
γi[k](P(t0∼ t)), γi[k+1](P(t0∼ t))

)
,

where Ui is a compact set representing the control constraint
and P(t0∼ t) represents all priority assignments P(t1) for all
t1∈ [t0, t). As mentioned in Section II-A, the task completion
time γi[k] depend on the priority assignment among the
systems. Therefore, the notation γi[k](P(t0∼ t)) represents
γi[k] is an implicit function of the priority assignment. The
priority assignment and control design are coupled through
γi[k] and it calls the need of a timing model.

III. TIMING MODEL

We developed a Significant Moment Analysis (SMA)
method to analyze the timing when contentions occur. The
contentions will only occur at the task request time αi[k] or at
the completion time γi[k]. Therefore, αi[k] and γi[k] are the
significant moments. In this section, we derive an analytical
timing model for both preemptive and non-preemptive NCSs
with sub-schedulability requirement based on SMA.

A. Timing States

We follow the definition of the timing state variable
Z(t) = (D(t), R(t), O(t), ID(t)) from [20]. The deadline
variables D(t) = (d1(t), ..., dN (t)) denote how long after
time t the next task will be generated for each system. The
remaining time variable R(t)=(r1(t), ..., rN (t)) denote how
much time is remained at t for each system to complete
its most recent task. The dynamic response time variable
O(t)=(o1(t), ..., oN (t)) denote how long the completion of
the most recently generated task has been delayed from its
generation time to t. The index variable ID(t) denotes the
index of the control system which is occupying the shared
network at time t. By convention, if no control system is
occupying the resource at time t, then ID(t) = 0 and r0(t)=
0. In addition, we redefine timing parameters in continuous
time domain as Ci(t) =Ci[k] and Ti(t) = Ti[k] where k is
the largest integer satisfying αi[k]≤ t and αi[1]= t0.

The mathematical evolution rules for Z(t) within a time
interval [t0, tf ] lead to a timing model. The timing model is
analytical, which can compute fast and support the imple-
mentation of the co-design in real time.

B. Timing Model

We divide [t0, tf ] into sub-intervals by the unified signif-
icant moments. We denote tw and tw+1 as two successive
unified significant moments which satisfy the property that
the generation or completion of tasks only occur at tw or
tw+1, but not at any other time instant within (tw, tw+1). In
Figure 1, time instants t1 to t13 are significant moments of
the example, and how to compute the significant moments is
as follows. Initially, we set t0 as the first significant moments.

Then use mathematical induction, we can compute other
significant moments iteratively based on the value of timing
states. Assume we have computed the significant moment
tw. If the shared network is not occupied by any system
at time tw, i.e. 1− sgn(ID(tw)) = 1, where sgn(q) = 1 if
q > 0 and sgn(q) = 0 if q = 0, then the difference between
two successive task generating times is defined by tw+1−
tw≤min {d1(tw), ..., dN (tw), tf−tw}. If the shared network
is occupied by task ID(tw) at time tw, i.e. sgn(ID(tw)) =
1, then in addition to the requirement that tw+1 − tw ≤
min {d1(tw), ..., dN (tw), tf−tw}, the difference tw+1 − tw
should be less or equal to rID(tw) so that the task completion
time tw + rID(tw) is not less than tw+1. Here rID(t) is a
simplified notation for the remaining time rID(t)(t) of timing
state variable ID at any t. Summarizing the above two cases

tw+1= tw+[1−sgn(ID(tw))]min{d1(tw), ..., dN (tw),tf−tw}
+sgn(ID(tw))min{rID(tw), d1(tw), ..., dN (tw), tf−tw} (2)

After we divide the optimization horizon into sub-interval
[tw, tw+1) of significant moments. The evolution of Z(t)
within any sub-interval can be derived as follows:

At time tw, the changes of the state vector
(di(tw), ri(tw), oi(tw)) are the same for both preemptive
and non-preemptive system, which depend on whether an
new task of τi is generated at tw. If a new task of τi is
generated at tw, i.e., di(t−w)=0, where t−w denotes the limit
from left, then (di(t), ri(t), oi(t)) is updated as

di(tw)=Ti(tw), ri(tw)=ri(t
−
w) + Ci(tw), oi(tw)=0. (3)

Note if the old task of τi is not completed at t−w , i.e., ri(t−w)>
0, the remaining time ri(t

−
w) will be added to the occupation

time Ci(tw) of the new task because of sub-schedulability
condition. If the old task of τi is completed, i.e., ri(t−w)=0,
then the remaining time of the new task is reset to be Ci(tw).
If no task of τi is generated at tw, we have that di(t−w) > 0,
the state vector holds its values from t−w to tw

di(tw)=di(t
−
w), ri(tw)=ri(t

−
w), oi(tw)=oi(t

−
w). (4)

The only difference occurs in timing state ID(tw) at tw.
For preemptive system, ID(tw) is updated to be the system
that has the highest priority, ID(tw)=argmini∈Λ(tw) pi(tw),
when Λ(tw) ̸=∅. The set Λ(tw)={i∈{1, ..., N} : ri(tw)>0}
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is the set of all indices of control systems which request the
shared network at tw. If Λ(tw) is empty, then ID(tw) = 0.
For non-preemptive system, if the task that was previously
occupying the shared network has not completed the occupa-
tion at time tw, i.e., rID(t−w)>0, then ID(tw) is the same as
ID(t−w) because of non-preemptiveness. If the previous task
ID(t−w) completed the occupation of the shared network at
time tw, i.e., rID(t−w) = 0, then ID(tw) needs to switch to
the task which has the highest priority. Combining these two
cases, the evolution rule is ID(tw)=ID(t−w) sgn(rID(t

−
w))+

argmini∈Λ(tw) pi(tw)[1−sgn(rID(t
−
w))].

If we define an indicator parameter 1sys where 1sys=0 if
the shared network is preemptive and 1sys =1 if it is non-
preemptive. Then the change of ID(tw) for both preemptive
and non-preemptive systems can be summarized as:

ID(tw) = ID(t−w) sgn(rID(t
−
w))1sys

+ argmin
i∈Λ(tw)

pi(tw)
[
1− sgn(rID(t

−
w))1sys

]
. (5)

On the sub-interval (tw, tw+1), the changes of timing state
are the same for preemptive and non-preemptive systems and
have been derived in [15]. Here we briefly recap the results.
Let tw+ϵ be any arbitrary time instant within (tw, tw+1). If
ID(tw) ̸=0, the evolution rules for system ID(tw) are

dID(tw+ϵ)=dID(tw)−ϵ, rID(tw+ϵ)=rID(tw)−ϵ
and oID(tw+ϵ)=oID(tw)+ϵ

(6)

For a control system i where i ̸= ID(tw), we have

di(tw + ϵ) = di(tw)− ϵ, ri(tw + ϵ) = ri(tw)

and oi(tw + ϵ) = oi(tw) + sgn(ri(tw))ϵ. (7)

The unified timing model with sub-schedulability consists of
(2)−(7). For simplicity, we use the notation H(·) to represent
the unified analytical timing model

Z(t)=H
(
t;Z(t0), (αi, Ci, Ti)i=1,...,N ,1sys,P(t0∼ t)

)
.

The functionality of this model is that given the initial Z(t0),
the parameters Ci[k] and Ti[k] for all i and k, parameter 1sys

indicating preemption or non-preemption, and the value of
P(t0∼ t), it can compute the value of Z(t) for any time t.

C. Instantaneous sub-schedulability

Similar as instantaneous schedulability, we can define the
instantaneous sub-schedulability as

Definition 5: Tasks from system i are instantaneously sub-
schedulable during time interval [t1, t2] if ri(t)≤di(t) + ∆
for any t∈ [t1, t2].
Based on the significant moments, the instantaneous sub-
schedulability can only be checked for finitely many times.

Lemma 1: Tasks are instantaneously sub-schedulable at
any time t ∈ [t1, t2] if ri(t

−
w) ≤ di(t

−
w) + ∆ is satisfied at

any significant moment tw∈ [t1, t2].
Proof: Based on equations (6) and (7), we must have di(tw−
ϵ)+∆−ri(tw−ϵ) = di(t

−
w)+ ϵ+∆− ri(tw − ϵ) ≥ di(t

−
w))+

ϵ+∆−[ri(t−w))+ϵ] = di(t
−
w)+∆−ri(t

−
w). Hence if ri(t−w)≤

di(t
−
w) + ∆, then ri(tw−ϵ)≤di(tw−ϵ)+∆. □

Fig. 2. Illustration of how to compute the time duration that exceeds the
task deadline.

This Lemma implies that if we want to check whether
a system is sub-schedulable or not, all we need to do
is to check whether it is instantaneously sub-schedulable
right before the significant moments. The instantaneous sub-
schedulability condition is sufficient and necessary and only
requires finite many checks within a finite time interval.

Using the values of timing state at significant moment, we
can also compute the task deadline extension ∆i[k].

Lemma 2: At a significant moment tw, for system i =
ID(t−w), if ri(tw−1)>Ci(tw−1) and ri(t

−
w)<Ci(t

−
w), then

∆i[k]= tw−d(t−w)−[Ci(t
−
w)−r(t−w)]−αi[k+1] where k is the

largest index such that αi[k + 1]≤ tw. Otherwise ∆i[k]=0.
Proof: To compute how long a task completion exceeds its
deadline, we first need to identify when a task completion
exceeds its deadline using the timing states. If a task com-
pletion exceeds its deadline, then its remaining time will be
added on to the remaining time of its next task, which results
in ri(tw)> Ci(tw) for at least one significant moment tw.
Secondly, we need to compute γi[k]. Based the definition of
significant moments, only one system can occupy the shared
network between two successive significant moments, which
is system ID(tw). Then for a system i = ID(t−w), if we
have ri(tw−1) > Ci(tw−1) and ri(t

−
w) < Ci(t

−
w), it means

that system i has a previous incomplete task accumulated
with current task at significant tw−1 and it finishes executing
the previous task within time interval (tw−1, tw). Within
(tw−1, tw), as illustrated by Figure 2, the amount of time
which is used to execute the current task is Ci(t

−
w)−ri(t

−
w).

The time instant tw − [Ci(t
−
w)− ri(t

−
w)] is when system i

starts to execute the current task τi[k + 1], i.e., finishes
executing the previous task τi[k], which is exactly γi[k].
Therefore, γi[k]= tw−[Ci(t

−
w)−ri(t

−
w)]. Then based on the

definition of ∆i[k], we have ∆i[k] = γi[k]−αi[k + 1] =
tw−Ci(t

−
w)+ri(t

−
w)−αi[k+1]. □

By the definition of the state variable O(t), we have
δi[k]=oi(αi[k + 1]−)−Ci[k]+∆i[k], for all k and i.

We can now rigorously formulate the contention-resolving
MPC design problem introduced in Section II using the tim-
ing model, which turns out as a mixed integer optimization:

min
P(t),u(t)

N∑
i=1

Vi

(
xi(t), ui(t),P(t)

)
(8a)

s.t. Z(t)=H
(
t;Z(t0), (αi, Ci, Ti)i=1,...,N ,1sys,P(t0∼ t)

)
,

∆i[k] = tw − Ci(t
−
w) + ri(t

−
w)− αi[k + 1],

δi[k] = oi(αi[k + 1]−)− Ci[k] + ∆i[k],

γi[k] = αi[k] + Ci[k] + δi[k] for k=1, ..., Ki; (8b)

∆i[k] ≤ ∆ for k=1, ..., Ki; (8c)
ẋi(t) = fi(xi(t), ui(t)), yi(t) = gi(xi(t)),

with ui(t)=ui(t0), t∈ [γi[0], γi[1]) and (8d)

ui(t)=ui[k] for all t ∈ [γi[k], γi[k + 1]), k=1, ..., Ki
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Fig. 3. Decision tree to solve the co-design problem for preemptive
scheduling within a finite time window.

where Ki is the largest index k satisfying γi[k+1] < tf and
we define γi[0] = t0 for all i.

IV. CONTENTION-RESOLVING MPC

We convert the co-design problem (8) into a path planning
problem that can be solved using a decision tree. First, we
use the unified timing model to determine when contentions
occur by checking the following condition:

Condition 1: A contention starts at time t if and only if t
is a significant moment tw by (2) that satisfies

N∑
i=1

sgn(ri(tw)) ≥ 2 and
N∑
i=1

sgn(ri(t
−
w)) ≤ 1.

This condition means that at most one system requests the
shared network at t−w and at least two systems request at tw,
which means a contention starts at tw.

Based on the contention times, we can construct a decision
tree. The tree construction process is the same as what we
presented in our previous work in [15]. Figure 3 shows an
example of decision tree. In the decision tree, each leaf
represents a contention time satisfying Condition 1. At each
contention time, there are only a finite number of tasks
competing for the resource. Therefore, there are finitely many
possible priority assignments and we use branches to present
them. For example, at time tc1 where 1 is the index and the
subscription c is the symbol presenting it is a contention time,
two systems have a contention so there are two branches
coming out of leaf 1 representing two different priority
assignments. Under each priority assignment, the systems
will have unique scheduling behavior until the next time a
contention occurs. We will generate new leaves and split
branches again. And keep the process until time reach to tf .
Then using this decision tree, we can present all the possible
combination of the priority assignments.

A. Sub-schedulability (Feasibility) Test

When constructing the decision tree, it may expand a
branch with its associated fixed priority assignment Pm

which will unavoidably lead to ∆i[k]>∆ for some i and k,
violating the sub-schedulability constraint (8c), represented
as the red crosses in Figure 3. Then we should prune this
infeasible branch.

At any contention time tcl , we can use Algorithm 1 to
perform the dynamic sub-schedulability test over the time

interval
[
tcl , t

c
j

]
where tcj is the next contention time of tcl .

At the beginning of any sub-interval, it calculates the end
of the current sub-interval as shown in Lines 7. Then it
utilizes the dynamic timing model in (8) with the determined
priority assignment Pm to obtain the values of the timing
state variables at the end of the current sub-interval, as
indicated by Line 8. The sub-schedulability of τi, where
i = 1, ..., N , is evaluated within [tw, t

−
w+1] according to the

formula in Lemma 2, as shown in Lines 9−13. The variable
dsi[w] indicates the dynamic sub-schedulability test result
of τi within [tw, t

−
w+1]: when τi is sub-schedulable within

[tw, t
−
w+1], dsi[w] = 1; otherwise, dsi[w] = 0. The set DSi =

{ dsi[1], dsi[2], · · · } contains the dynamic schedulability test
results of τi within all sub-intervals within

[
tcl , t

c
j

]
. The NCS

is sub-schedulable if and only if all elements in DSi are 1.

Algorithm 1 Dynamic Sub-schedulability Test

1: tw = tcl ;
2: for each τi do DSi = [ ];
3: while tw < tcj do
4: for each τi do
5: if di(t−w) = 0 then di(tw) = Ti(tw);
6: else di(tw) = di(t

−
w);

7: Compute tw+1 using (2);
8: Z(t−w+1)=H

(
t−w+1;Z(t−w), (αi, Ci, Ti),1sys,Pm

)
;

9: Compute ∆i[k] using Lemma 2;
10: for each τi do
11: if ∆i[k] ≤ ∆ then dsi = 1;
12: else dsi = 0;
13: DSi = {DSi, dsi};
14: w = w + 1;

B. Search for Optimal Solution
To determine the optimal path and control law, we define

a cost for each branch. Along each branch between tcl and
tcj , since the priority assignment Pm are determined, we can
calculate the significant moments using the timing model.
Then the branch cost wl,j is defined as minimum of the sub-
optimization problem formulated by (12) with determined
Pm over [tcl , t

c
j ]. For this sub-optimization problem, only the

control law u(t) needs to be designed. The optimal control
design is embedded in the branch cost calculation. This
sub-optimization problem can be solved by standard model
predictive control. And based on the decision tree, the mixed
integer optimization problem in (12) can now be converted
to the problem of finding a path from t0 to tf such that the
whole cost along the path is lowest. In [15], we presented
a contention-resolving MPC algorithm that leverages the A-
star algorithm to search for an optimal path in the decision
tree. The search algorithm only efficiently generates a subtree
without losing optimality.

V. SIMULATION RESULTS

We simulate an NCS consisting of four scalar systems
in MATLAB. The first three are linear systems ẋi(t) =
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Fig. 4. Outputs of four scalar systems. The red and blue solid lines show
the output under optimal priority assignment and EDF, respectively. The
dashed lines show the control ui computed by the MPC in each case.

aixi(t)+ui(t), i= 1, 2, 3 with (a1, a2, a3) =
(
1, 6

5 ,
4
3

)
. The

forth system is nonlinear ẋ4(t) = x2
4(t)+u4(t). The initial

conditions are xi(0)=1 and ui(0)=0 for each i. The control
constraints are ui(t)∈ [−4, 4] for i=1, ..., 4. The output of
each plant is the state xi(t). The time horizon [t0, tf ] for
the simulation is from 0 to 6 seconds. The cost function is
Vi(xi(0), 0) =

1
2

∫ 6

0

{
x2
i (t) + 0.0001u2

i (t)
}
dt+x2

i (6). The
four plants are all stabilizable from the initial condition if
no contention exists. We set parameters (C1, C2, C3, C4) =
(0.4, 0.3, 0.3, 0.3) and (T1, T2, T3, T4) = (1, 1.25, 1.5, 2) in
seconds for all k. Under such task parameters, the total
occupation time from all tasks is 0.4×6+0.3×(5+4+3)=6,
which mean there will be no idle time in the shared network.

Under such condition, the only schedulable priority as-
signment is assigned under EDF. However, as shown by
Figure 4, systems 3 and 4 are unstable under EDF, because
these most unstable systems have lower priorities and longer
delays. Therefore, for this example, there is no feasible
priority assignment which can guarantee both schedulability
and stability. However, if we relax the schedulability to
sub-schedulability requirement, then all four systems can
be stabilized. We set ∆ = mini Ci = 0.3, which means all
tasks must start the execution before or at the deadline. Then
the optimal priority assignment in the sense of minimizing
the cost function, can be computed using our proposed
contention-resolving MPC with sub-schedulability. The net-
work occupation result scheduled by the optimal priority
assignments is shown by Figure 5. We can see only the
first task from system 1 exceed its deadline for 0.3 second.
The outputs of the four systems under optimal priorities are
presented in Figure 4. Under the optimal priority assignment,
all systems can be stabilized because the optimal priority
assignment slightly sacrifices the performance of system 1 by
assigning system 1 the lowest priority, the nonlinear system 4
with the highest priority, and the most unstable linear system
3 with second highest priority from 0 to 0.9s.
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