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Abstract— The performance of a model predictive controller
depends on the accuracy of the objective and prediction model
of the system. Although significant efforts have been dedi-
cated to improving the robustness of model predictive control
(MPC), they typically do not take a risk-averse perspective.
In this paper, we propose a risk-aware MPC framework,
which estimates the underlying parameter distribution using
online Bayesian learning and derives a risk-aware control
policy by reformulating classical MPC problems as Bayesian
Risk Optimization (BRO) problems. The consistency of the
Bayesian estimator and the convergence of the control policy
are rigorously proved. Furthermore, we investigate the consis-
tency requirement and propose a risk monitoring mechanism
to guarantee the satisfaction of the consistency requirement.
Simulation results demonstrate the effectiveness of the proposed
approach.

I. INTRODUCTION

For general, complex, and safety-critical control prob-
lems, model predictive control (MPC) [1] techniques have
shown significant impact on both industrial and research-
driven applications. Driven by the advances in the field of
machine learning, many learning-based techniques have been
developed to facilitate the MPC controller design [2], [3].
Bayesian MPC [4], [5] has been proposed to utilize rein-
forcement learning techniques for offline or episodic learning
tasks. However, for online, single-execution learning tasks,
few approaches provide principled mechanisms to monitor
the risk during the online learning process and guarantee the
convergence of the MPC controller.

In this paper, we propose a risk-aware MPC frame-
work for online, single-execution learning tasks based on
Bayesian learning. We estimate the posterior distribution
of the unknown parameters according to the sequentially
collected data based on online Bayesian learning algorithms.
Taking advantage of the estimated posterior distribution of
the unknown parameters, we propose to take the distribu-
tional uncertainty into consideration and enhance classical
MPC problems by reformulating them as Bayesian Risk
Optimization (BRO) problems. BRO [6], [7] is a stochastic
optimization framework dealing with parametric uncertainty
in the underlying distribution, which optimizes a risk func-
tional applied to the posterior distribution of the unknown
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distributional parameter. The risk-aware control policy is
derived by considering the worst-case and coherent risk
measures (see [8] for introduction to coherent risk measures)
in BRO. We design a Bayesian risk-aware MPC algorithm
based on sequential Monte Carlo sampling (particle filter) [9]
of the parameter distribution, which is practically feasible.

The consistency of Bayesian estimator with i.i.d. data has
been well studied [10]. However, online Bayesian MPC deals
with conditionally independent data. In our previous work
[11], we have proved Bayesian consistency under condi-
tionally independent observations, where the measurement
distribution is conditionally independent with respect to the
state. In this paper, we prove Bayesian consistency under
conditionally independent transitions, where the transition
kernel is conditionally independent with respect to the state
and action. We also extend the consistency proof from finite
parameter space in our previous work [11] to infinitely
countable parameter space. We further prove the convergence
of the risk-aware control policy based on the consistency of
Bayesian estimator.

We investigate the consistency requirement for Bayesian
estimation and propose a risk monitoring mechanism to
guarantee the satisfaction of the consistency requirement.
The risk monitoring mechanism utilizes the credible interval
of the parameter distribution as an indicator of risk, and adds
extra excitation into the control policy when the risk cannot
be efficiently decreased. Simulation results are presented to
explain the consistency requirement intuitively and justify
the effectiveness of the risk monitoring mechanism.

Finally, we reveal some connections between the consis-
tency requirement of Bayesian estimation and the persis-
tent excitation condition of adaptive control. We make a
comparison with some adaptive control methodologies, such
as Model Reference Adaptive Control [12], and Concurrent
Learning Adaptive Control [13], and explore the underlying
similarity between those conditions.

II. PROBLEM FORMULATION

Consider a nonlinear system with unknown parameter:

xk+1 = f(xk, uk, θ
∗) + wk,

where xk ∈ Xn is the state at time k, uk ∈ Up is the
control input at time k, θ∗ ∈ Θq is the unknown parameter,
and wk ∈ Xn is the zero-mean independent and identically
distributed (i.i.d.) noise.

For any feedback control policy ψ = (ψ(0), . . . , ψ(T−1))
where each ψ(k) : Xn → Up maps from the state xk to the
control input uk, its performance can be characterized by a
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finite-horizon cost

Jψθ∗ =
1

T

[
T−1∑
k=0

c(xk, uk) + cT (xT )

]
s.t. uk = ψ(k)(xk),

xk+1 = f(xk, uk, θ
∗) + wk,

where c(xk, uk) is the stage cost function for state xk and
control input uk, and cT (xT ) is the terminal cost function.

Let W be the joint probability distribution of the random
noise process [w0, w1, · · · , wT−1], then the stochastic MPC
problem is defined as

min
ψ

EW [Jψθ∗ ]. (1)

Due to the existence of the unknown parameter θ∗ in the
nonlinear system, simultaneous identification and control are
needed to solve this problem. Taking the Bayesian estimation
approach, the unknown parameter θ∗ is estimated by a
random vector θ ∈ Θq which obeys π : Θq → [0, 1] such
that π(θ∗) is the probability that θ is the true parameter θ∗.

Viewing the unknown parameter θ∗ as a random vector
introduces extra parameter uncertainty into this stochastic
MPC problem. To explore the middle ground between op-
timistically ignoring the distributional uncertainty of the
parameter and pessimistically fixating on the worst-case
scenario, we take the distribution of the unknown parameter
π(θ) into consideration and reformulate this stochastic MPC
problem using the BRO framework:

min
ψ
Rπ(θ)

[
EW [Jψθ ]

]
, (2)

where Rπ(θ) is a risk functional taken with respect to π(θ),
which accounts for the uncertainty in the estimation of the
unknown parameter θ∗, for example, mean-variance, Value
at Risk (VaR), and Conditional Value at Risk (CVaR) [6].
Remark. Different from the nested formulation in general
multi-stage optimization problems (see [14]), where the risk
functional is taken for each stage, here we only take the
risk functional for the whole horizon. The reason that we
can simplify this problem and reduce the computational
complexity is owed to the receding horizon property of
MPC. MPC uses current estimated model to optimize the
finite-horizon performance but only the first stage action is
executed. Then new observations will be used to refine the
estimation. We take advantage of this property to avoid the
update of estimation at each stage in the nested formulation.

We propose to utilize Bayesian learning to estimate the
distribution of the unknown parameter π(θ) online and
design a risk-aware control policy based on the reformulated
stochastic MPC problem.

III. BAYESIAN RISK-AWARE MPC
A. Bayesian Update

Let x0:k be the states from time 0 to k, and u0:k be the
corresponding control inputs from time 0 to k. Since the
system is Markovian,

Pr(xk|θ, x0:k−1, u0:k−1) = Pr(xk|θ, xk−1, uk−1).

We define πk(θ) = Pr(θ|x0:k, u0:k) as the posterior
distribution of θ at time k. Therefore,

πk(θ) = Pr(θ|x0:k, u0:k) = Pr(θ|x0:k, u0:k−1),

followed by the fact that the control input uk does not affect
the information on θ until an observation of the new state
xk+1 is taken.

According to the Bayesian rule,

Pr(θ|x0:k, u0:k) = Pr(θ|x0:k, u0:k−1)

=
Pr(θ, xk|x0:k−1, u0:k−1)

Pr(xk|x0:k−1, u0:k−1)

=
Pr(xk|θ, x0:k−1, u0:k−1)Pr(θ|x0:k−1, u0:k−1)

Pr(xk|x0:k−1, u0:k−1)

=
Pr(xk|θ, xk−1, uk−1)Pr(θ|x0:k−1, u0:k−1)∫
Pr(xk|θ, xk−1, uk−1)Pr(θ|x0:k−1, u0:k−1)dθ

.

We define q(·) as the probability density function that sat-
isfies

∫
A
q(xk; θ, xk−1, uk−1)dxk = Pr(A|θ, xk−1, uk−1),

where A is an arbitrary measurable set. Then q(·) is the tran-
sition kernel of the nonlinear system, which is determined
by the transition function f(·) and noise wk−1. Therefore,
the posterior distribution of θ is updated as

πk(θ) =
q(xk; θ, xk−1, uk−1)∫

q(xk; θ, xk−1, uk−1)πk−1(θ)dθ
πk−1(θ). (3)

For the majority of the systems in control field, the noise is
assumed to be Gaussian white noise, which naturally satisfies
the following assumption.

Assumption III.1. The transition kernel q(x′; θ, x, u) is
continuously differentiable in x′ and has bounded first order
derivative in x′.

With the above assumption, we can easily show that the
transition kernel q(x′; θ, x, u) is bounded, then the integra-
tion in (3) is finite since

∫
π(θ)dθ = 1. Thus the posterior

distribution is well-defined.
Since the parameter space Θ is continuous, the posterior

distribution of θ in general does not have an analytical
form. In practice, approximations are necessary. Therefore,
we utilize some sampling-based approaches, such as particle
filter, to approximate the Bayesian update in (3). Let there be
Ns equally-weighted particles approximating the distribution
πk−1(θ). We update the weights based on the transition
kernel q(xk; θ, xk−1, uk−1), and resample with those updated
weights to obtain Ns new equally-weighted particles to
approximate the distribution πk(θ).

B. Risk-Aware Control Policy

Based on the posterior distribution πk(θ), we can design
a risk-aware control policy according to the reformulated
stochastic MPC problem.

If the risk functional is chosen as the worst-case measure,
VaR, or a coherent risk measure such as CVaR, (2) can be
rewritten as a Distributionally Robust Optimization (DRO)
[15] problem with an appropriately chosen ambiguity set D:

min
ψ

max
θ∈D

EW [Jψθ ]. (4)
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The dual of the minimax problem (4) is obtained by
interchanging the ‘min’ and ‘max’ operators, which is

max
θ∈D

min
ψ

EW [Jψθ ]. (5)

The optimal value of dual problem (5) is always less than
or equal to the optimal value of the primal problem. And
under certain regularity conditions, the optimal values of
problems (4) and (5) are equal to each other.

Assumption III.2. The state space X , input space U and
parameter space Θ are compact. The objective function
EW [Jψθ ] is convex in ψ and concave in θ.

With the above assumption, it is possible to establish
the desirable no duality gap property according to Sion’s
Minimax Theorem [16]. For detailed derivation of the mini-
max theorem applied to multistage stochastic programming,
Markov Decision Processes or stochastic control, we refer
the readers to [17], [18] and [19]. Therefore, the solution of
problem (2) is equivalent to the solution of problem (5).

We consider to utilize Credible Interval to construct the
ambiguity set D. The Credible Interval (CI) Cγ of a posterior
probability distribution is a continuous subset within the
space of a random vector. The probability that the value of
the random vector falls with that subset is γ ∈ [0, 1], i.e.,
Pr(θ ∈ Cγ) = γ. In practice, we can take the (1 − γ)/2
and (1 + γ)/2 quantile of π(θ) as the lower and upper
end of Cγ . More specifically, suppose we rank the samples
θ1, · · · , θNs

from π(θ) in ascending order. The lower end of
Cγ is θd(1−γ)Ns/2e, and the upper end of Cγ is θd(1+γ)Ns/2e.

Now we can utilize Cγ to construct the ambiguity set D.
For example, for worst-case measure we could set D = C1;
for VaR with α risk level, we could set D = Cα. For coherent
risk measures, the construction of the ambiguity set is more
involved; we refer the readers to [20] for the equivalence
between optimizing a coherent risk measure and constructing
the corresponding DRO.

Our control policy is chosen to minimize the worst case
cost over all the parameters θ in the ambiguity set D. For
each θ ∈ D, we first solve a stochastic MPC problem:
minψ EW [Jψθ ]. There are many principled approaches, such
as scenario tree search and dynamic programming, that can
find the optimal solution ψ∗θ for each θ. Then we find the
value θr that gives the worst performance among all θ ∈ D.
Our risk-aware control policy ψr is then selected as

ψr = ψ∗θr . (6)

Since MPC has receding horizon, we only apply the first
stage control policy as the control input uk = (ψr)(0)(xk).

It is worth noticing that this risk-averse approach naturally
incorporates randomness and robustness into the designed
control policy, which provides both excitation required for
system parameter identification and robustness for system
performance. Different from typical MPC control laws which
additionally add randomness as an “exploration” term into
the estimated “exploitation” term, our proposed approach
can internally leverage exploration and exploitation. The

Bayesian posterior distribution quantifies the uncertainty in
the estimation of the unknown parameter. The policy starts
with relatively large randomness to enable more exploration
of the system parameter space, and gradually decreases
the randomness as the parameter estimation becomes more
accurate.

The introduction of CI also gives us the ability to monitor
the risk of the control policy online. Let Cγ be the set
{θ ∈ Θq : θd(1−γ)N/2e ≤ θ ≤ θd(1+γ)N/2e}. Then its volume
|Cγ | =

∏q
i=1 |θid(1+γ)N/2e − θid(1−γ)N/2e| (θi represents

the ith dimension of θ), can be used as an indicator of
how concentrated the posterior distribution is on θ∗. This
also provides us the potential to design a risk monitoring
mechanism to ensure Bayesian consistency based on |Cγ |,
which will be shown in Section IV-C.

We design a Bayesian risk-aware MPC algorithm based
on particle filter, which is presented as Algorithm 1.

Algorithm 1: Bayesian Risk-Aware MPC
Initialize prior π0(θ) with uniform probability
distribution over the parameter space Θ

Create Ns particles S1:Ns
0 with equal weights 1

Ns
,

which samples from π0(θ), i.e. Si0 ∼ π0(θ)
Initialize state x0, input u0 = 0, iterator k = 1
while |Cγ | > ε do

Take an observation of xk
Compute the weights
W i
k ∝ q(xk;Sik−1, xk−1, uk−1)

Resample {W i
k, S

i
k−1} to obtain Ns new

equally-weighted particles { 1
Ns
, Sik}

Take the (1− γ)/2 and (1 + γ)/2 quantile of the
emipirical distribution (particles) to form Cγ

Calculate the control policy according to (6)
Decide the control input uk = (ψr)(0)(xk)
k := k + 1

end

IV. CONVERGENCE ANALYSIS

Due to technical challenges of analyzing the continuous
parameter space, we analyze the consistency and conver-
gence of our proposed approach by assuming that the pa-
rameter space Θ is discrete but consists of infinite number of
candidates, which can approximate the continuous parameter
space with arbitrary precision. We also assume that the
approximation error of particle filter is negligible.

A. Consistency of the Bayesian Estimator

Definition IV.1. The Bayesian estimator is (strongly) con-
sistent if πk(θ), the posterior distribution of θ, converges to
the degenerated distribution δθ∗(θ) that concentrates on the
true parameter value θ∗, with probability 1.

To prove the consistency of the Bayesian estimator, we
first prove Lemma IV.1 based on Assumption IV.1.

Assumption IV.1. The prior distribution π0(θ) has non-zero
probability at θ∗.
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Lemma IV.1. The marginal transition kernel
q̂(xk;xk−1, uk−1) =

∑
θ πk−1(θ)q(xk; θ, xk−1, uk−1)

converges to the true transition kernel q(xk; θ∗, xk−1, uk−1),
i.e., limk→∞ q̂(xk;xk−1, uk−1) = q(xk; θ∗, xk−1, uk−1),
with probability 1.

Proof. Let Fk = σ {(xs−1, xs), s ≤ k} be the σ−filtration
generated by the past observed states. According to (3),
the estimated probability of the true parameter satisfies the
following equation,

log πk(θ∗) = log πk−1(θ∗) + log
q(xk; θ∗, xk−1, uk−1)

q̂(xk;xk−1, uk−1)
.

Taking expectation on both sides, we have that

E[log πk(θ∗)]

=E[log πk−1(θ∗)] + E
[
log

q(xk; θ∗, xk−1, uk−1)

q̂(xk;xk−1, uk−1)

]
=E[log πk−1(θ∗)]

+ E
[
E
[
log

q(xk; θ∗, xk−1, uk−1)

q̂(xk;xk−1, uk−1)
|xk−1, uk−1,Fk−1

]]
=E[log πk−1(θ∗)] + E[dk−1]

where dk−1 = DL(q(xk; θ
∗, xk−1, uk−1)||q̂(xk;xk−1, uk−1))

is the relative entropy (Kullback–Leibler divergence) [21]
between q(xk; θ∗, xk−1, uk−1) and q̂(xk;xk−1, uk−1). Then
the expectation of dk−1 can be represented as follows,

E[dk−1] = E[log πk(θ∗)]− E[log πk−1(θ∗)].

For any n, taking summation over k from 1 to n on both
sides, we have
n∑
k=1

E[dk−1] = E[log πn(θ∗)]−log π0(θ∗) ≤ − log π0(θ∗) <∞,

where the last inequality holds according to Assumption IV.1.
Therefore, take n→∞ and we get

∞∑
k=1

E[dk−1] ≤ − log π0(θ∗) <∞.

By Markov Inequality, we know that for any ε > 0,

∞∑
k=0

Pr[dk ≥ ε] ≤
1

ε

∞∑
k=0

E[dk] <∞.

We can then apply Borel-Cantelli Lemma and show that
P (dk ≥ ε, i.o.) = 0, which further implies limk→∞ dk = 0,
with probability 1.

Moreover, since dk ≥ 0, by Tonelli’s Theorem, we have

E

[ ∞∑
k=0

dk

]
=
∞∑
k=0

E[dk] ≤ − log π0(θ∗).

Since
∑∞
k=0 dk has bounded expectation, it must be finite

with probability 1.
Note that the total variation distance between two distribu-

tions is related to the relative entropy by Pinsker’s Inequality:

||q(xk; θ∗, xk−1, uk−1)− q̂(xk;xk−1, uk−1)||TV ≤
√

2dk−1,

where

||q(xk; θ∗, xk−1, uk−1)− q̂(xk;xk−1, uk−1)||TV =

sup
xk

|q(xk; θ∗, xk−1, uk−1)− q̂(xk;xk−1, uk−1)|.

Letting k →∞, by the convergence of dk, we have

lim
k→∞

∫
xk

|q(xk; θ∗, xk−1, uk−1)− q̂(xk;xk−1, uk−1)|dxk = 0,

with probability 1.
According to Dominated Convergence Theorem, we fur-

ther have∫
xk

lim
k→∞

|q(xk; θ∗, xk−1, uk−1)− q̂(xk;xk−1, uk−1)|dxk = 0.

Moreover, since

|q(xk; θ∗, xk−1, uk−1)− q̂(xk;xk−1, uk−1)| ≥ 0

and q(xk; θ∗, xk−1, uk−1)− q̂(xk;xk−1, uk−1) is continuous
in xk, then for any xk,

lim
k→∞

|q(xk; θ∗, xk−1, uk−1)− q̂(xk;xk−1, uk−1)| = 0,

which means

lim
k→∞

q̂(xk;xk−1, uk−1) = q(xk; θ∗, xk−1, uk−1), (7)

with probability 1.

Now we prove that the posterior distribution of θ con-
verges to the distribution δθ∗(θ) based on Assumption IV.2.

Assumption IV.2. For any (xk, xk−1, uk−1) and K ⊆ N,
{q(xk; θi, xk−1, uk−1)}i∈K are linearly independent, i.e., if∑

i∈K
ciq(xk; θi, xk−1, uk−1) = 0

holds for all (xk, xk−1, uk−1), then ci = 0 for all i ∈ K.

Theorem IV.2. The posterior distribution of θ converges to
the distribution δθ∗(θ), i.e. limk→∞ πk(θ) = δθ∗(θ), with
probability 1.

Proof. Note that

q(xk; θ∗, xk−1, uk−1)− q̂(xk;xk−1, uk−1)

=[1− πk−1(θ∗)]q(xk; θ∗, xk−1, uk−1)

−
∑
θ 6=θ∗

πk−1(θ)q(xk; θ, xk−1, uk−1).
(8)

Note that for any t > 0, (πt(θ1), πt(θ2), · · · ) is infinitely
dimensional bounded vector with all components sum up to
1, we can take a subsequence {πtk} such that for each com-
ponent j, {πtk(θj)} converges to a limit which is denoted
by π∞(θj), which is also known as weak convergence (of a
deterministic sequence).

Next, we will show that π∞(θ) is a normalized vector.
Note that for any j ∈ N, limtk→∞ πtk(θj) = π∞(θj), which
is equivalent to

∀εj > 0, ∃N ∈ N, s.t.∀n ≥ N, |π∞(θj)− πn(θj)| ≤ ε.
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Therefore, we have

−εj < π∞(θj)− πn(θj) < εj , j = 1, 2, · · · (9)

According to the Bayesian update rule, we know∑∞
j=1 πn(θj) = 1. It then follows that ∀ε > 0, take εj = ε

2j

and sum over (9) for all j ∈ N, we get

−(
ε

21
+

ε

22
+ · · · ) <

∞∑
j=1

π∞(θj)− 1 < (
ε

21
+

ε

22
+ · · · ),

which indicates ∀ε > 0, |
∑∞
j=1 π∞(θj) − 1| < ε, and it

implies that
∑∞
j=1 π∞(θj) = 1. So the limit is also a valid

probability simplex.
Since every weakly convergent sequence in L1 is strongly

convergent (cf. Chapter 2 in [22]), we can take any conver-
gent subsequence {πtk} with limit (p∗1, p

∗
2, · · · ).

Since X and U are also compact, from this subsequence,
we could take a further subsequence {πτk} such that {xτk}
converges to x∞, and uτk converges to u∞. Then take limit
over (8) along {τ1, τ2, · · · }, and by (7), we have

[1− π∞(θ∗)]q(·; θ∗, x∞, u∞)−
∑
θ 6=θ∗

π∞(θ)q(·; θ, x∞, u∞) = 0,

with probability 1.
According to Assumption IV.2, for any convergent subse-

quence, 1−π∞(θ∗) = 0, π∞(θ) = 0 ∀θ 6= θ∗, which further
implies

lim
k→∞

πk(θ) = δθ∗(θ),

with probability 1.

Therefore, the strong consistency of the Bayesian estima-
tor is proved.
Remark. Note that the above strong consistency of the
Bayesian estimator indicates that for almost every sample
path of observations, the posterior distribution πk(θ) con-
verges to δθ∗ . Even though the Bayesian consistency with
non i.i.d. data has been studied in [23], the assumptions in
these general results are often abstract (such as existence of
testing function sequence) and hard to verify in practice. On
the other hand, our Bayesian consistency result is built on
assumptions (in particular Assumption IV.2) that are easy to
verify and have a nice interpretation, which will be discussed
in details in Section IV-C.

B. Convergence of the Control Policy

Based on the consistency guarantee of Theorem IV.2, we
can prove the convergence of our proposed risk-aware control
policy.

Theorem IV.3. The risk-aware control policy converges to
the true optimal control policy, i.e. limk→∞ ψrk = ψ∗θ∗ , with
probability 1.

Proof. Since limk→∞ πk(θ) = δθ∗(θ) w.p. 1 according to
Theorem IV.2, for any ε > 0 and M > 0, there must exist
K > 0, such that for k > K, we have

|πk(θ∗)− δθ∗(θ∗)| ≤ ε

M
,w.p. 1.

Then we have 1 − ε
M ≤ πk(θ∗) ≤ 1. For any confidence

level 0 < γ < 1, we can find a small enough ε > 0 such that
γ < 1− ε

M . Therefore, the CI in Algorithm 1 only contains
θ∗, i.e. Cγ = {θ∗}. According to control policy (6),

ψr = ψ∗θr = ψ∗θ∗ .

Therefore, limk→∞ ψrk = ψ∗θ∗ , with probability 1.

Remark. The stability of the closed-loop system is closely
related with the stability of the nominal MPC problem. The
analysis of the stability properties of the closed-loop system
is beyond the scope of this paper and will appear in our later
works.

C. Consistency Requirement

The hidden consistency requirement in Assumption IV.2
can be interpreted as: (1) The system is distinguishable, i.e.,
the candidate parameters θi must be distinguishable to ensure
that the transition kernels q(·; θi, x, u) are linearly indepen-
dent for the entire space of (x, u). (2) The choice of xk
and uk is informative, i.e., the data space (xk, uk) expands
enough to ensure that the transition kernels q(·; θi, x, u) are
linearly independent for the subspace (xk, uk).

We propose a risk monitoring mechanism to guarantee the
satisfaction of the consistency requirement. As mentioned in
Section III-B, we use the volume of CI |Cγ | to indicate the
risk of parameter estimation. When we monitor that |Cγ |
does not decrease for several iterations, we may infer that
the algorithm gets “stuck” in some local region. Therefore,
the algorithm needs more “excitation” to leave that region
and explore more informative data.

Note that for a general continuous non-constant and non-
periodic function, the values of the function are often dis-
tinguishable if the distance of the variables is large enough.
Thus, we can choose to add an extra noise, which can be
chosen as a Gaussian white noise, into the calculated control
input to provide enough “excitation”.

Therefore when the risk cannot be sufficiently decreased,
we utilize a risk monitoring mechanism to replace the control
input in Algorithm 1 as uk = (ψr)(0)(xk) + vk, where vk is
an i.i.d. Gaussian white noise.

V. SIMULATION RESULTS AND DISCUSSION

Consider the following system:

xk+1 = cos(θ∗)xk + sin(θ∗)uk + wk,

where θ∗ = π
4 is the unknown system parameter, and wk is

i.i.d Gaussian white noise with variance 1.
Assuming the control objective is to make the system

state reach a predefined location a, consider a one-step MPC
problem, where the cost function is chosen as

VaRπ(θ)
[
EW [Jψθ ]

]
= VaRπ(θ)

[
(cos(θ)x+ sin(θ)u− a)2 + u2] .

We solve this control problem using Algorithm 1. We choose
16 candidates of θ ranging from 0 to 2π with equal interval,
the number of particles Ns = 200 and γ = 0.8.

Fig.1(a) shows a case when the posterior parameter distri-
bution does not converge to the true parameter. The reason of
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this failure is due to the fact that the consistency requirement
is not satisfied. The control input uk lies very closely to
0, which provides little excitation to the term sin(θ) of the
system. θ is not distinguishable if only the evaluation of the
term cos(θ) is provided.

Fig.1(b) shows that the posterior parameter distribution
converges to the true parameter given that the consistency
requirement is satisfied. The risk monitor triggers additional
excitation to the control input when |Cγ | remains large
for several iterations, which ensures the satisfaction of the
consistency requirement.

(a) When the consistency requirement is not satisfied, the posterior
parameter distribution does not converge to the true parameter .

(b) When the consistency requirement is satisfied, the posterior pa-
rameter distribution converges to the true parameter.

Fig. 1: The influence of the consistency requirement to the
convergence of the posterior parameter distribution.

We compare the consistency requirement of Bayesian
risk-aware MPC with some adaptive control methodologies,
such as Model Reference Adaptive Control (MRAC), and
Concurrent Learning Adaptive Control (CLAC), and explore
the underlying similarity between those conditions. MRAC
adaptive laws can guarantee parameter consistency if and
only if the plant states are Persistently Exciting (PE) [12].
For CLAC, a verifiable condition on the linear independence
of the recorded data is sufficient to guarantee parameter
consistency [13]. Those conditions focus on either system
state or recorded data. Different from those approaches,
Bayesian risk-aware MPC requires that the transition ker-

nels for different parameters, which are determined by the
transition function and noise, are linearly independent in the
data space.

Despite different perspectives, the hidden explanation of
all those conditions is that, the collected data for identifica-
tion should be expanded enough toward the parameter space
to provide “sufficient exploration” of the parameter space.
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