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Plausible 3D Face Wrinkle Generation
Using Variational Autoencoders
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Abstract—Realistic 3D facial modeling and animation have been increasingly used in many graphics, animation, and virtual reality
applications. However, generating realistic fine-scale wrinkles on 3D faces, in particular, on animated 3D faces, is still a challenging
problem that is far away from being resolved. In this article we propose an end-to-end system to automatically augment coarse-scale
3D faces with synthesized fine-scale geometric wrinkles. By formulating the wrinkle generation problem as a supervised generation
task, we implicitly model the continuous space of face wrinkles via a compact generative model, such that plausible face wrinkles can
be generated through effective sampling and interpolation in the space. We also introduce a complete pipeline to transfer the
synthesized wrinkles between faces with different shapes and topologies. Through many experiments, we demonstrate our method can
robustly synthesize plausible fine-scale wrinkles on a variety of coarse-scale 3D faces with different shapes and expressions.

Index Terms—Face modeling, wrinkle synthesis, deep generative models, variational autoencoders

1 INTRODUCTION

EALISTIC three-Dimensional (3D) facial animation has
Rattracted many attentions in both academia and indus-
try in recent decades [1], [2], [3], due to the emergence of its
versatile applications in virtual reality, films, games, educa-
tion, training, and so on. Despite numerous progresses
made, creating 3D face models with rich details is still non-
trivial, which requires not only coarse-scale facial features
but also subtle fine-scale facial features like wrinkles. Such
geometric details often convey important characteristics,
and significantly affect the visual appearance of the face.
But geometric details like wrinkles have been often under-
explored in many popular face modeling methods [4], [5],
[6]. Indeed, manually crafting wrinkles using 3D modeling
packages is often non-trivial, cumbersome, and labor-inten-
sive; this task could become even almost infeasible when
dealing with animated faces.

High-end face performance capture techniques are able
to reconstruct high quality facial details but significantly
rely on structured light and photo-metric stereo for face
scanning [3], which is often limited in a controlled environ-
ment and/or involves non-trivial intrusive setups. Recent
techniques can extract such geometric details from monocu-
lar video [3], [7], [8], [9], [10], but they require substantial
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computational time, and are generally sensitive to face
poses and lighting conditions of the input video. More
importantly, the above methods, including high-end facial
performance capture and monocular video based methods,
cannot be used to add geometric wrinkles to novel 3D face
models, which substantially limits their practical applica-
tions in movie/game industries. To tackle this issue,
researchers started to explore flexible alternatives such as
sketch based wrinkle generation [11]. However, it is non-
trivial for users, in particular, novices, to manually draw
plausible wrinkles on 3D face models using such methods.
Furthermore, manually preserving the consistency of the
drawn wrinkles across animated facial frames could quickly
become overwhelming or maybe even an impossible task.
Clearly, there are several challenges standing in front of
an ideal realistic 3D wrinkle generation method: (1) It
should not rely on any prior knowledge of wrinkles for a
coarse-scale target face model, that is, wrinkles of the target
coarse-scale face model in other expressions may be unob-
served but need to be plausibly predicted. (2) It should be
sufficiently generalized to handle a variety of 3D face mod-
els with different identities and expressions. This is non-
trivial since the shape and topology of target face models
might be dramatically different from a standard face model.
(3) It should be capable of preserving the wrinkle consis-
tency during animation. In other words, animated wrinkles
are expected to be spatially and temporally consistent.
Inspired by the above challenges, in this paper we propose
a novel 3D face wrinkle synthesis approach using a deep gen-
erative model, and also introduce a complete wrinkle transfer
pipeline that can be robustly applied to a variety of 3D face
models with different identities and expressions. Specifically,
to obtain the training data, we first employ a recent monocular
video based capture method [10] to acquire geometric wrin-
Kles as displacements along per-vertex normals. Then, by for-
mulating the wrinkle generation problem as a supervised
generation task, we implicitly model the continuous space of
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face wrinkles via a compact generative model such that plau-
sible face wrinkles can be generated through effective sam-
pling and interpolation in the space. In addition, in order to
generate wrinkles on a variety of novel target faces, we also
design a complete pipeline to faithfully transfer the wrinkles
from the reference face to various target face models.

The main contributions of our work can be summarized
below:

e We introduce the first deep generative model for
directly synthesizing 3D geometric wrinkles on
novel target coarse-scale 3D faces. It also can handle
wrinkle generation on animated 3D faces, while pre-
serving the spatial and temporal consistencies of the
wrinkles across frames.

e We introduce a complete pipeline to faithfully trans-
fer geometric wrinkles from the reference face to
novel target faces. In this way, our approach can be
used to generate geometric wrinkles on 3D faces
with different shapes and expressions.

2 RELATED WORK

In this section, we briefly review recent research efforts
that are most related to this work, including facial perfor-
mance capture, variational autoencoders, and wrinkle syn-
thesis. For comprehensive surveys on facial animation and
modeling, readers are referred to recent relevant surveys
[1], [2], [3].

Face Performance Capture. Researchers employ structured
light and photometric stereo [12] or attach markers on the
face [13], [14] to acquire the dynamic deformation of 3D
facial performance. The above methods are able to obtain 3D
facial models with geometric details, but inevitably involve
complex intrusive setups for subjects. Later, researchers
exploited stereo images [15], [16], [17], [18] or light-weight
binocular cameras [19], but these methods are limited to the
requirement of binocular video footages or depth data. In
recent years direct reconstruction from monocular video [7],
[9], [20], [21] becomes increasingly popular due to its low
cost setup and compatibility with various legacy video foot-
ages. Follow-up works [8], [22] build controllable face rigs
and appearance from video for animation. All the above
methods, however, require intensive off-line processing.

To meet the demand of real-time applications, real-time
facial tracking systems have been developed using struc-
tured light [23]. Such methods offline fit a reference face
model for an individual first and then do online tracking for
expression transfer. Many methods have also been pro-
posed to combine depth information from a single RGB-D
camera [24], [25], [26] to track facial deformations in real-
time. Based on regression algorithms, Cao et al. [27] pro-
posed a real time face tracking method to capture coarse 3D
facial geometry from a single monocular camera. Their fol-
low up work [28] learns displacement patches from cap-
tured texture to predict medium-scale geometry details.
Recently, many deep learning methods have been proposed
to reconstruct facial performance from input images or
video [29], [30]. To achieve fine-scale facial geometric details
comparable to offline qualities, Ma and Deng proposed a
novel hierarchical reconstruction method [10] to reconstruct
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high resolution facial geometry and appearance in real-time
based on a single monocular RGB video clip.

Variational Autoencoders. Deep learning models have been
increasingly used for computer graphics applications in
recent years. For example, multi-view Convolutional Neural
Networks (CNNs) [31] render 3D points clouds or meshes
into depth maps, which are suitable to be processed by
CNNs. Tatarchenko et al. [32] utilize the encoder-decoder
architecture to predict multi-views of a given object in 2D
space. The framework of variational autoencoders (VAE)
[33] provides a principal method for jointly learning deep
latent variable models and corresponding inference models
using stochastic gradient descent.

Many works have been done to extend the VAE models
for graphics applications. Researchers apply 3D CNN to
variational autoencoders such that 3D volumetric objects
are embedded into a compact space [34]. Nash and Williams
[35] proposed the ShapeVAE model to generate point coor-
dinates and normals based on different parts of an object. Li
et al. [36] proposed the GRASS model, a generative recursive
autoencoder for shape structures. Tan et al. [37] use mesh
variational autoencoders to generate high quality deform-
able models with rich details. Ranjan et al. [38] proposed a
mesh autoencoder which is able to produce deformed face
meshes via sampling and interpolation in the latent space.
Recently, Saito et al. [39] proposed a fully automatic single-
view 3D hair reconstruction method based on the VAE
framework. Gao et al. [40] generate 3D shapes as structured
deformable meshes based on the VAE framework. Simi-
larly, Mo et al. [41] proposed the StructureNet to learn a gen-
erative autoencoder of shape structures based on graph
neural networks.

In this work, our generative model predicts plausible
face wrinkles using variational autoencoders with convolu-
tional layers. Because CNNs are originally designed to pro-
cess images, researchers often have to parameterize their
problems into regular grid representations for graphics
applications. As such, we convert wrinkles into a tensor,
which is suitable to be processed by CNNs.

Wrinkle Synthesis. Face wrinkles are strongly related to
physical muscles of the face. Hence, several methods have
been proposed to generate wrinkles under specific face
deformations by using simplified physical models of facial
structures. Zhang et al. [42] proposed a mass-spring system
to simulate the elastic dynamics of expressive facial wrin-
Kles. Their follow-up work [43], [44] describes a subsequent
multi-layer deformation model to synthesize facial expres-
sions. Some researchers aimed at accurate reconstruction of
age-related skin wrinkles [45], [46]. All the above methods
are typically computationally complex, and heavily rely on
non-trivial tuning of physical parameters.

In recent years, geometric modeling methods have attra-
cted increasing attentions for wrinkle synthesis. Researchers
proposed a curvature driven model using controllable ener-
gies to control various wrinkle shapes [47], [48]. Cutler et al.
[49] proposed a method to generate wrinkles on animated
characters, but users have to manually place a set of shape
points on the character. However, with the above methods, it
is still less intuitive for users to estimate the parameters to
achieve realistic facial wrinkles for a specific expression,
besides involved with painstaking manual efforts. In light of



DENG ETAL.: PLAUSIBLE 3D FACE WRINKLE GENERATION USING VARIATIONAL AUTOENCODERS

3115

step2 step3

coarse-scale target faces

neutral the deformed target neutral face

deforminto T reference face

target expression
face with
generated wrinkles

target expression Face

reference face

with the target
expression

a i
k. 3 T, optimization ©f
A > > |  ident
- reference face
- -

S, u

2
A T, N To b
ector [ concatenmte ] Tensor [\ subdivision | ———T_,,, H
* w, \ .. ;

Sn

optimized K
expression

scheme of step 1
ect 1 - A,

W,

Wrinkle

VAE-Wrinkle
Embedding 4‘
Network

T

Fig. 1. Pipeline illustration of our wrinkle synthesis and transfer pipeline. It consists of three main steps: (1) deform the reference face with the target
face expression to obtain S., (2) synthesize the wrinkles on the deformed reference fac,e with the optimized identity and expression vectors, S, .,
and (3) transfer the wrinkles from &, to the subdivided target expression face model 7, and obtain the final target expression face with the trans-

ferred wrinkles, 7/, ..
the above issue, Kim et al. [11] proposed a sketch based wrin-
kle generation method, which gives users capability to
directly design and control the amount and shapes of wrin-
kles on 3D face models. But drawing well-placed sketch
curves on 3D meshes is non-trivial, and it becomes even more
difficult for users to draw consistent wrinkles for different
expressions or for animations.

It is noteworthy that the method by Ma et al. [50] can also
add wrinkles to 3D face models based on polynomial dis-
placement maps, but there are several significant differen-
ces between it and our work: (1) Except the captured
subject’s face, their method [50] cannot be generalized or
applied to any other face models, without acquiring new
data or training new models. In contrast, our work allows
users to straightforwardly apply our trained model to other
face models without extra data acquisition efforts. (2) Their
method [50] needs to capture fine-scale geometry/texture
and motion capture data of the subjects simultaneously as
training data, while our method does not need simulta-
neously acquired facial mocap data. Because of the above
significant differences, it is difficult to perform a fair com-
parison between our work and the method in [50].

3 APPROACH OVERVIEW

Our wrinkle synthesis approach can be conceptually decom-
posed into the following two main modules: (i) VAE-Wrinkle
Embedding Network (VAE-WEN) construction, and (2)
wrinkle synthesis and transfer, described below.

VAE-WEN Construction. First, based on an in-house col-
lected 3D facial wrinkles dataset (Section 4), which is directly
extracted from high quality monocular face video [10], we
transform the wrinkles data into tensors (called wrinkle ten-
sors), which are suitable to be processed by CNNs. Then, we
build a deep learning based model to transform the wrinkle
tensors into compact latent representations, and thus plausi-
ble new wrinkles can be sampled and interpolated in the
latent space (called VAE-WEN) (Section 5).

Wrinkle Synthesis and Transfer. Given a coarse-scale target
expression face (without wrinkle details) as well as its corre-
sponding coarse-scale neutral face as the input, the wrinkle
synthesis and transfer module (Section 6) is designed to first
synthesize wrinkles on the reference face and then faithfully
transfer the wrinkles to the target expression face. Techni-
cally, it can be further decomposed into the following three
steps. Fig. 1 illustrates the pipeline of the wrinkle synthesis
and transfer module.

o Step 1 (deform the reference face with the target expres-
sion): Via a registration process, we first deform the
reference face, .S, to resemble the target neutral face,
T,, and the target expression face, T, as much as
possible, and then we further extend the deforma-
tion transfer algorithm [51] to deform the reference
face to have the same expression as the target expres-
sion face, and obtain S..

e Step 2 (wrinkle synthesis): Through the constructed
bilinear face model, where each face can be compactly
characterized as the combination of an identity vector
and an expression vector, we employ a two-steps opti-
mization process to generate the optimized identity
vector, wiq, and the optimized expression vector, we,.
Then, taking both w;q and w.,, as the input, our con-
structed VAE-WEN can synthesize fine-scale wrinkles
on the deformed reference face with the optimized tar-
get expression. We denote the resulting face as S'SM,.

e Step 3 (wrinkle transfer): Through adaptive subdivi-
sion and a similar transfer scheme as in the above
step 1, we can transfer the fine-scale wrinkles from
S'HU, (resulted from the step 2) to the subdivided tar-
get expression face, T: The final output of step 3is a
subdivided target expression face with synthesized
fine-scale wrinkles, denoted as T

etw*

4 WRINKLE DATA ACQUISITION

To train our model, we need to collect a large set of 3D geo-
metric wrinkles on faces with various shapes and expressions.
In this work we employ one of recent facial performance cap-
ture methods [10] to reconstruct 3D geometric wrinkles
directly from high resolution monocular video.

Specifically, we used publicly available face video datasets
([52] and [53]) and down-sampled all the videos to 10 fps. We
obtained a total of 30,457 video frames of 50 individuals with
various expressions. We split the data into a training set
(27,446 frames) and a test set (3,011 frames). Given a monocu-
lar front face video, we first fit the FaceWareHouse bilinear
face model [4] to the input video by estimating camera param-
eters, an identity vector, an expression vector, and head pose.
The FaceWareHouse bilinear face model is created by using
facial geometry of 150 subjects with 47 facial expressions. All
data can be assembled into a rank-3 data tensor 7" (11K verti-
cesx 150 identities x 47 expressions). Then we use N-mode
singular value decomposition (SVD) to decompose the tensor.
The N-mode SVD process is represented as
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Fig. 2. 3D geometric wrinkle data acquisition process in this work.

T xo UL x3 UL = C, o

exp =
where T is the data tensor, and C is called the core tensor.
The N-mode SVD helps to “rotate” the data tensor and sort
the variances of C in a decreasing order for each mode. This
allows us to truncate the insignificant components of C' and
obtain a reduced model of the dataset to approximate the
original data tensor as

T~ Cr X2 Ij’id X3 Ucz‘pv (2)

where C. is the reduced core tensor produced by retaining
the top-left corner of the original core tensor, Uid and Um, are
the truncated matrices from U;; and U,,, by removing the
trailing columns. We call C. the bilinear face model from the
FaceWareHouse dataset. With C,, any facial expression of a
subject can be approximated by tensor contraction

T T
V = C,. X9 W;q X3 11)617)7 (3)

where w]; and w/,, are the identity vector (50 x 1) and the

expression vector (25 x 1), respectively. To this end, we
obtained one identity vector for each individual and one
expression vector for each video frame. Then, by employing
the hierarchical reconstruction and displacements refinement
algorithms [10], we can augment the initially reconstructed,
coarse-scale face mesh with geometric wrinkle details. Finally,
we stored the extracted wrinkles as 1024 x 1024 wrinkle ten-
sors. A 2D wrinkle tensor in this work is defined as per-vertex
displacements along vertex normals, which are stored in a 2D
format using the UV coordinates of the vertices, and the gaps
between non-zero elements are bilinearly interpolated. Mean-
while, we also stored the identity vector (i.e., identity weights)
and the expression vector (i.e., expression weights) used in the
bilinear face model [4] that is associated with each stored
wrinkle tensor. This wrinkle data acquisition process is illus-
trated in Fig. 2.

5 VAE-WRINKLE EMBEDDING NETWORK

In this section, we first describe our network architecture,
including variational autoencoders and a wrinkle embed-
ding network. After that, we evaluate the loss functions
used in our VAE network.

5.1 Network Architecture

Variational Autoencoders. Our approach is based on the varia-
tional autoencoder (VAE), which has become one of widely
used generative models in recent years. A classic VAE
model consists of an encoder Ey(z), and a decoder Dy(z).
The encoder Ey(z) encodes an input z into a latent space as
a latent vector z, while the decoder Dy(z) can generate an
output z' from a given latent vector z. Different from the
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vanilla autoencoder which approximates Ey(x) by using a
deterministic function, VAE uses a posterior distribution
q(z|z) to approximate Ey(z) such that VAE is able to gener-
ate new data z' by sampling z from a prior distribution
py(z|z). We train the encoding and decoding parameters 6
and ¢ using stochastic gradient variational Bayes (SGVB)
algorithm [33] as follows:

0%, ¢" = arg Hel%pn E. k() [—l0g pg (] 2)]

+ Dy (Ey(z)[p(2)),

)

where Dy; denotes the Kullback-Leibler divergence, which
measures the difference between Ey(x) and p(z). Specifi-
cally, assuming p(z) is a standard Normal distribution
N(0,1) as a prior, and a posterior Gaussian distribution
Ey(z) ~ N(z,,diag(z,)), then the Kullback-Leibler diver-
gence Dy; is formulated as

Du(N (24, diag(z,))|N(0,1)) =

1
52(2(2” + 2,2“ - 109(7%27,1) —-1).

i

(5)

To make all operations differentiable for back-propagation,
the latent vector z is to be sampled through a reparameteri-
zation trick [33] as

2=z, +€® 2,6~ N(0,1), (6)

where © is an element-wise matrix multiplication operator,
and z, and z, are the multi-dimensional outputs of Ey(z).

VAE Architecture. To obtain the space of human face
wrinkles, we train our VAE network using the extracted
wrinkle tensors (Section 4). Specifically, we reshape each
wrinkle tensor as 1024 x 1024 x 1 before feeding it into the
encoder. The encoder is to encode the input wrinkle tensors
into a latent space 2, and z, with 128 dimensional parame-
ters. Then, we sample z from z, and z, using the re-parame-
terization trick introduced in [33]. The latent vector can be
used as the input of the decoder and reverted to a 1024 x
1024 x 1 tensor. Fig. 3 illustrates our network architecture.

Loss Functions. We utilize two loss functions to train the
network weights. The first one is the reconstruction loss
denoted as L,¢con, which aims to minimize the reconstruc-
tion error between the input wrinkle tensor and the output
of the decoder. The second one is the KL divergence loss
denoted as Lgp. For reconstruction, we use the L1 loss
between the elements of the input wrinkle tensor I and the
decoder-generated wrinkle tensor O, because it leads to less
smoothing results compared to L2, given by

£7‘econ = ]l\fz Z HILI - OlJHl7 (7)
i

where N denotes the total number of the elements in a wrin-
kle tensor. But the wrinkle details from the VAE network
are typically over-smoothed. To address this issue, we
apply a wrinkle edge-aware weighting scheme on the wrin-
Kkle tensor to make the generation of wrinkles more sensitive
to wrinkle edges
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! > > wiglli; -0
T3

Lyccon = N 777j||17

(®
w;, j =log (OlGi‘j + 10)

For an input wrinkle tensor I, we have G,,,, as the derivative
of I with respect to the row direction and G as the deriva-
tive of I with respect to the column direction. After that, we
set each element of G, G (i, j) = max(Grow(?,7), Gea(t, 7)) The
log function in Eq. (8) aims to balance the weights between
large and small wrinkles. « is a constant, which scales G into
a proper range. In our experiments we set o = 1000.
Our final loss function is defined as follows:

9)

‘CVAE = wrecon£rcnon + EKL-

The VAE encoder and decoder networks have similar archi-
tectures, with kernel size = 5, stride = 2, and padding = 1 for
all of convolution layers. After each convolution layer, we
add a batch normalization layer, leaky ReLU activation func-
tion, and a dropout layer, except the last layer of the decoder,
which is followed by a Tanh activation function. We set
Wrecon t0 100, the keep probability of the dropout layer to 0.8,
and B in the leaky ReLU activation to 0.2. We trained the
VAE network for 50 epochs with the Adam solver. The batch
size is 6, and the learning rate is set to 1074,

Wrinkle Embedding Network (WEN). The latent vectors of
wrinkles form a space. To achieve wrinkle synthesis, we
train a WEN to predict the wrinkle latent vector z in the
space from face features. As described in Section 4, for each
face, we generate its identity vector and its expression vec-
tor and then concatenate them together to form a face fea-
ture vector. The goal of the WEN is to map a given face
feature vector y to the wrinkle latent space z. We use fully
connected networks to build the WEN. The WEN F takes a
face feature vector y as input and predicts the latent space
vector Z. The loss function is used to minimize the distance
between the encoder output z and the WEN’s output 2,
defined as below:

Lr=lz— 2, (10)

The WEN consists of four 1024-dimensional, fully connected
layers. Each layer is followed by batch normalization, leaky

ReLU activation, and dropout layer. Similar to the VAE net-
work, we set the keep probability of the dropout layer to 0.8,
and 0.2 for learky ReLU activation function. We trained our
WEN for 75 epochs with the Adam solver. The batch size is
12, and the learning rate is set to 1073.

5.2 Evaluation

We compared our wrinkle edge-aware reconstruction loss
function (Eq. (8)) with the L1 loss function (Eq. (7)) for VAE
model and WEN model. For a fair comparison, we used the
same architecture and parameters, except different loss
functions, for training. We tested two trained models on our
test set (total 3,011 face frames, each of which has a 1024 x
1024 wrinkle tensor). We use the per-element error to evalu-
ate each model performance. Table 1 shows the per-element
euclidean errors when using the VAE and WEN models,
with either our proposed wrinkle edge-aware loss function
or the L1 loss function, to generate wrinkle tensors based on
our test set. We can clearly see that in both the VAE and
WEN models, our wrinkle edge-aware loss function can
generate more accurate wrinkle tensors than the L1 loss
function. Fig. 4 shows a comparison example, which dem-
onstrates that the generated results by our wrinkle edge-
aware loss function match the ground-truth data closely,
whereas the L1 loss function leads to less accurate and over-
smoothed results. We circle two regions (red and black) in
this example, and there exist obvious visual differences
between our wrinkle edge-aware loss function and the L1
loss function.

TABLE 1
Per-Element Euclidean Errors When Using Our VAE and WEN
Models, With Either Our Proposed Wrinkle Edge-Aware
Loss Function or the L1 Loss Function, to Generate
Wrinkle Tensors From Our Test Set

Model Mean Error 4+ SD Median Error
VAE with our proposed Loss 5.43 £4.91 3.96
VAE with L1 Loss 7.85 +8.79 6.32
WEN with our proposed Loss ~ 5.81 +5.10 4.27
WEN with L1 Loss 8.45 +9.03 6.86

The unit of the per-element errors in this table is 1075
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Fig. 4. Comparison of different training loss functions. (a) Is the heat map
between the wrinkle generated by the deep learning model trained with
our wrinkle edge aware loss function and the ground truth. (b) Is the
heat map between the wrinkle generated by the deep learning model
trained with L1 loss and the ground truth. (c) Is the 3D face applied with
the wrinkle tensor generated by the VAE-WEN with our wrinkle edge-
aware loss function. (d) Is the 3D face applied with the wrinkle tensor
generated by the VAE-WEN with L1 loss function. (e) Is the 3D face
applied with the ground truth wrinkle tensor.

6 WRINKLE SYNTHESIS AND TRANSFER

Since the number of vertices and the topology of different
faces are varied, and our wrinkle tensors are generated
based on the geometry of the reference face, we cannot
directly apply our wrinkle tensor onto novel target face
models. To this end, we design a complete pipeline for
wrinkle synthesis and transfer, described below. Notations
used in this section are summarized in Table 2.

6.1 Deform the Reference Face With Target
Expression

In order to transfer the wrinkle on the reference face to a tar-
get face, we take inspiration from the deformation transfer
method [51] that can retarget the deformation of one mesh
to another, not constrained by the number of vertices and
topology, assuming a few point-to-point correspondences
are provided. The transfer maintains the target mesh iden-
tity and keeps a proper scaling of deformation. Therefore,
before deformation transfer, we need to do mesh registra-
tion between the reference face and the target face.

Different from [51] that builds the triangle correspond-
ences between the source and the target meshes through
vertex-wise correspondences, in this work we introduce a
different scheme. First, using the vertex-wise correspond-
ences, we deform the reference neutral face .S, into the target
neutral face 7, and the target expression face 7, respec-
t1vely, and obtam two meshes S, and S.. Note that S,, (or
Se) has the same geometric topology as S but its shape
closely approximates T, (or 7,), and thus S, and S, do not
maintain the identity of S.

To obtain the deformed reference face S, that has the
expression of T, while maintains the S identity, we solve
the following minimization problem:
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TABLE 2
Notations Used in Section 6

Notation Explanation

the reference neutral face

S, deformed into the target neutral face

S, deformed into the target expression face

the deformed reference face with the target expression
reference face constructed based on optimized
feature vectors (identity and expression vectors))
etw S, applied with the generated wrinkles

the target neutral face

the target expression face

the adaptively subdivided version of 7T,

T; deformed into S,

T; deformed into S‘Hw

target expression face with the generated wrinkles

>

>

P By

t

arg min Z | M, — M, 2, (11)

1.0

where M, is the affine transformation matrices for all trian-
gles between S,L and S(, M, is the affine transformation
matrices between the reference neutral face S,, and the to-
be-solved reference expression face S, (with the new vertex
positions 0 ... 0y).

We also compared our transfer scheme with the original
scheme in [51]. For a fair comparison, we used the same
input face models and markers. Fig. 5 shows a comparison
example of two different transfer schemes. Its left side uses a
target face [5] that has 3,448 vertices and 6,736 triangles, and
its right side uses a target face [54] that has 28,588 vertices
and 56,572 triangles. The comparisons in Fig. 5 clearly show
that our method can outperform the method in [51] for both
of the face meshes with a total of six expressions. In particu-
lar, the deformation transfer method in [51] fails to preserve
the expressions on the right target face that has many more
vertices and triangles than the FaceWareHouse reference
face model (5,639 vertices and 10,988 triangles). The reason is
that, since the deformation transfer method [51] computes
the triangle face correspondences between the source and
target meshes, in the case of the right target face in Fig. 5, a
target triangle may correspond to multiple source triangles,
which could lead to the lack of necessary constraints in linear
systems. In contrast, our method builds the linear systems to
be one-to-one correspondences between source triangles and
target triangles. This ensures that our systems have stronger
constraints and thus produce more accurate deformations.

To validate the necessity of deformation transfer in our
framework, we did a comparison experiment, where we
directly used the non-rigid registration result S’L as the input
of step 2. The comparison results are shown in Fig. 6. From
Fig. 6, we can clearly observe that our framework with the use
of deformation transfer obtains much better results than our
framework without the use of deformation transfer (i.e.,
directly use non-rigid registration results). The main reason is
that, our training data are generated by using the FaceWare-
House face model; if we directly use non-rigid registration
results, the identity of the deformed source mesh cannot be
preserved, which could lead to poor results in the WEN
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Sumner et al. [52]
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Fig. 5. Comparisons of two deformation transfer schemes. The extended deformed face scheme in our approach can generate more accurate facial
expression deformations than the original deformation transfer algorithm [51], in particular, if the target face mesh has many more vertices/triangles

than the reference face model (i.e., the right example).

model. Therefore, it falls short of generating target face
meshes with desired wrinkle details.

6.2 Wrinkle Synthesis
To generate wrinkles on the target expression face model
via our VAE-WEN, we need to first extract the identity vec-
tor and the expression vector from the target expression
face. As we do not have any ground-truth wrinkles for the
target expression face (only have the 3D coarse-scale target
expression face), we cannot directly obtain the two vectors
using the method in [10].

To address this problem, we first solve the following opti-
mization problem to obtain the optimized identity vector w;q

. T T 2
arg ILIIH E : ||C7‘,i X2 Wig X3 Wyeytral — Vtmarker,i” ) (12)
id -
i

(a) (b) ()

Fig. 6. Result comparisons with/without the deformation transfer step.
Column (a) shows two different target expression faces. Column (b)
shows the generated result by our pipeline with our proposed deforma-
tion transfer scheme. Column (c) shows the generated result by our
pipeline without deformation transfer.

where C, is the bilinear face model built from the FaceWare-
House dataset [4], wycuira is the expression vector of the ref-
erence neutral face S, and V4,1 is the set of user-specified
vertices used in deformation transfer.

After we obtain w4, we can further solve the optimized
expression vector w.,. We solve a similar optimization
problem as follows:

. T T 2
arg min E |Cri X2 w;y X3 Wy, — Vinarkeril|” (13)
cxp

After we obtain w;; and ., for the target expression
face, we just need to feed w;q and w,,, into our constructed
VAE-WEN, and its output is the generated wrinkle tensor,
W,, for the target expression face.

6.3 Wrinkle Transfer

Due to the shape difference between the reference face and
the target expression face 7;, we cannot directly apply the
above W, onto T,. In this work, we use a scheme similar to
the one in Section 6.1 for wrinkle transfer, described below.
Assume S, is the face model resulted from applying W,

on the deformed reference face model S, that is constructed
based on the w;q and 1., (obtained in Section 6.2). Different
from the coarse-scale expression transfer scenario in Sec-
tion 6.1, at this step we need to transfer the fine-scale wrin-
kles from Se+w toT.,.

To make the linear systems (refer to Section 6.1) more sen-
sitive to wrinkles, we first adaptively subdivide the target
expression face 7. The used subdivision criterion is based on
the wrinkle level on each triangle face. Specifically, as
described in Section 4, the wrinkle at each vertex v; is repre-
sented as the displacement (denoted as d,,) at the vertex along
its normal direction. Then, if all the three wrinkle displace-
ments at the three vertices of a triangle (assuming v;1, vi2, and
v;3) are larger than a threshold (assuming the used face
meshes are triangle meshes), that is, max(d,,,, du,,, dv,) >
we then iteratively subdivide this triangle using the loop
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Transfer
wrinkles
—_—

adaptive
subdivision
—_—

Reference face with
generated wrinkles

Transfer
wrinkles

Target expression face

Fig. 7. A comparison of our method with/without wrinkle subdivision. Our
method with wrinkle subdivision (blue arrows) can better preserve wrin-
kle details on the resulting face than our method without wrinkle subdivi-
sion (green arrow). The subdivided triangles are visualized in red.

subdivision method [55]. To this end, we can obtain the subdi-
vided target expression face, 7' .

Then, we first deform 7| into the above reconstructed
face 52 to obtain T;,; and we also deform T; into .§e+w to
obtain Té 1o After that, we solve a similar optimization
problem as in Eq. (11). For clarity, we describe it as follows:

arg min > I = My . (14)

Different from Eq. (11), in Eq. (14), M, denotes the affine
transformation matrices of all the triangles between 7’ and
Tl,,; and M;. denotes the affine transformation matrices of
all the triangles between 7. and the to-be-solved target
expression face with the wrinkles 77 1 (with the new vertex
positions o ... 5,). T, ., 18 the final output of our approach.
Fig. 7 shows a comparison of our method with/without
wrinkle subdivision. As shown in this figure, our method
with wrinkle subdivision can better preserve the wrinkle
details on the resulting face than our method without wrin-
kle subdivision. In addition, Fig. 8 shows the intermediate
faces generated by our approach during this process.
Wrinkle Transfer for Animation. If we directly apply the
above method to transfer wrinkles between two animated

(@) (b) (© (d)

Fig. 8. The intermediate faces generated by our approach during the
wrinkle transfer process. Column (a) shows the reference face S,; Col-
umn (b) shows the reference face with wrinkles, S,,,; Column (c) shows
the target expression face, T.; and Column (d) shows the final transfer
result

? Tetw®
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9:9
-
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Fig. 9. A wrinkle transfer comparison between using Eq. (14) and using
Eqg. (15). (a) shows the wrinkles on two consecutive frames are trans-
ferred using Eq. (14), (b) shows the wrinkles on the same two continuous
frames are transferred using Eq. (15).

faces, temporal inconsistency of the wrinkles between con-
secutive frames could occur (refer to Fig. 9a). The reason is
that the above optimization equation (Eq. (14)) is indepen-
dently solved for each frame, which cannot guarantee the
continuity of the solution across consecutive frames. To
address this issue, we change the above optimization equa-
tion to the following Eq. (15) that considers not only the
wrinkle transfer objective function but also the transferred
wrinkle consistency between two consecutive frames (the
second regularization term in Eq. (15))

arg min > [M, — M{P+ XYM - M 05

Here M; = denotes the obtained affine transformation
matrices at the previous frame. In our experiments, we
experimentally set the weight A = 0.2.

Also, in order to ensure the same topology of the subdi-
vided frames in an animation sequence, when making a
subdivision decision for a triangle, as long as the maximum
of the wrinkle displacements on the three vertices of the
same triangle in all the animation frames is larger than a
threshold (that is, max;—y_|p|(dy,, , duyy, diyy) > €), we will do
subdivision for this triangle in all the animation frames. In
this way, the subdivided faces in all the animation frames
are guaranteed to have the same topology. Fig. 9 shows a
wrinkle transfer comparison for animations using Eq. (15)
and using Eq. (14). From this figure, we can observe the
result based on Eq. (15) can produce more temporally con-
sistent wrinkles than the result based on Eq. (14).

7 RESULTS

In this section, we show experimental results by our
approach. First, we show novel fine-scale wrinkle generation
results on coarse-scale faces with different shapes and expres-
sions. The used coarse-scale faces are directly reconstructed
from our bilinear face model. Second, we show wrinkle
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Fig. 10. Wrinkle synthesis results by our approach on target faces with
different shapes and expressions. The column (a) shows the target neu-
tral face for each row, and each column from (b)-(d) shows the synthe-
sized wrinkles for different target faces with the same expressions. Each
row from (1) to (3) shows the synthesized wrinkles for different expres-
sions on the same target face. As highlighted in the red boxes, for the
same expression in the same facial regions, our method can automati-
cally generate distinct wrinkle patterns for different target faces.

transfer results by our approach, that is, transfer synthesized
fin-scale wrinkles from the reference face to various coarse-
scale target face models that cannot be reconstructed from our
bilinear face model.

Fig. 10 shows some generated wrinkle results on coarse-
scale faces with different shapes and expressions. Note that
all the coarse-scale faces in this figure are reconstructed
using our bilinear face model. In this figure, each row shows
the synthesized wrinkles for different expressions on the
same target face, and each column shows the synthesized
wrinkles for different target faces with the same expression.
As highlighted in the red boxes, for the same expression in
the same facial regions, our method can automatically gen-
erate distinct wrinkle patterns for different target faces.

Fig. 11 shows comparisons between the coarse-scale
expression faces and the corresponding expression faces
augmented with synthesized fine-scale wrinkles by our
approach. From each column pair (i.e., (a) versus (b)), we
can clearly observe that the expression face augmented with
the synthesized fine-scale wrinkles by our approach appear
more visually realistic and expressive.

Fig. 12 shows some wrinkle transfer results by our
approach. If the given target 3D faces cannot be recon-
structed from our FaceWareHouse bilinear face model, we
used our wrinkle transfer pipeline to transfer the synthesized
wrinkles to such target faces. In this figure, the row (1) shows
wrinkle transfer results for different expressions on a given
target face model obtained from Paysan et al. [54], and the
row (2) show wrinkle transfer results for different expres-
sions on a given target face obtained from Huber ef al. [5].
Both of the target faces in this case cannot be reconstructed
from the FaceWareHouse bilinear face model [4]. Each
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Fig. 11. Comparisons of coarse-scale target expression faces (a) and the
corresponding expression faces augmented with the synthesized fine-
scale wrinkles by our approach (b). Each row shows a different target
face. From each (a)-(b) pair, we can clearly see the target expression
faces augmented with our synthesized fine-scale wrinkles are visually
more realistic and expressive than the corresponding coarse-scale faces.

(a)-(b) column pair shows the comparison between a coarse-
scale target expression face and the corresponding one aug-
mented with the transferred wrinkles by our approach.

Fig. 13 shows multiple synthesized wrinkle results by
our approach given an input target expression face. Specifi-
cally, to generate multiple wrinkle results by using our
WEN network, we added small random noise to the feature
vector of the input target expression face. Therefore, our
approach can generate multiple plausible wrinkles for the
user to make a selection.

Fig. 14 shows the results of two randomly selected faces
that are outliers of the distribution of our WEN model. It
shows that our method has limited generalization capability
to generate wrinkle details on the outlier faces. In these case,
our approach can generate some wrinkles around the eyes
and mouth regions.

Wrinkle Interpolation. Since our method can encode wrin-
kle tensors into a compact latent space, new wrinkle tensors
can also be obtained via interpolation. Specifically, given
multiple face feature vectors, we first compute the corre-
sponding latent vectors in the latent space. After that, an
interpolated vector can be generated via the weighted aver-
aging of the latent vectors. Finally, we can generate the cor-
responding interpolated wrinkle tensor by using the WEN
decoder. Fig. 18 shows bi-linear wrinkle interpolation
results. The faces at the positions (1,1) and (1,5), as well as
the positions (5,1) and (5,5), have the same identity but dif-
ferent expressions. The faces at the positions (1,1) and (5,1),
as well as the positions (1,5) and (5,5), have the same exp-
ression but different identities. Rows (2)-(4) and columns
(2)-(4) show interpolated results.

7.1 Comparisons

We also compared the results by our approach with the
ground truth and those by existing approaches. Fig. 15 shows
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Fig. 12. Wrinkle transfer results by our approach. The target expression faces in the row (1) are obtained from Paysan et al. [54], and the target
expression faces in the row (2) are obtained from Huber et al. [5]. Each (a)-(b) column pair shows the comparison between a coarse-scale target
expression face and the corresponding one augmented with the transferred wrinkles by our approach.

the results of three randomly selected faces in the test set. It
shows that our method is able to reconstruct almost the same
facial wrinkles, compared to the original extracted wrinkles
by [10]. Also, it shows that our WEN model encodes the wrin-
Kkle tensors into a compact space, and plausible new wrinkle,
as shown in this figure, can be well sampled and interpolated.

Fig. 16 shows that our method can even produce results
with less artifacts than [10] for some cases. The method in
[10] could produce some artifacts when the input video
clips have non-frontal head poses, fast head movement,
weak lighting, etc. Also, users have to adjust multiple
parameters to produce satisfactory results, which is time-
consuming and labor-intensive. In contrast, our method
can generate realistic wrinkles through sampling and
interpolating the latent space in seconds, without the
above limitations.

Fig. 17 shows comparison examples between our method
and the ground truth data [19]. It shows our method can
produce plausible wrinkle details, although our method
cannot produce the same wrinkles as the ground truth.

(@) Q g a

(b) a O O
Fig. 13. Three different wrinkle results are generated by our approach
based on an input target expression face. The row (a) shows the gener-

ated wrinkles on the target expression face, and the row (b) shows the
same generated wrinkles on the reference face.

7.2 User Study

We conducted a user study to evaluate the results produced
by our proposed wrinkle synthesis and transfer framework.
We recruited 20 participants (7 female and 13 male; 23 to
37 years old) to participate in our user study. 6 faces with
wrinkles synthesized by our approach (in Fig. 12) were
shown to each participant one by one. For each shown face,
the participants need to answer the following questions
using a 5-likert scale: 1 (not at all), 2 (slightly), 3 (normally),
4 (well enough), and 5 (pretty well).

1)  Expressiveness: How expressive are the wrinkles on
the face?

2)  Matchedness: How are the wrinkles on the face
matched with face shape and expression?

3)  Realism: How realistic are the wrinkles?

4)  Overall: How do you evaluate the overall quality of
the wrinkles on the face?

5)  Coherence: How spatially and temporally coherent
are the wrinkles on the face?

Fig. 19 shows the user study result. From this figure, we

can see most (more than 90 percent) of the participants

0.08
0.07
0.06

0.05

003

0.02

0.01

0.00
(a) (b) (<)

Fig. 14. Example results of our approach when the input faces are out-
liers of the distribution of our WEN model. Column (a) shows the ran-
domly selected, outlier faces; Column (b) shows the resulting faces by
our approach; Column (c) shows the corresponding heat-maps (i.e., (b)
column - (a) column) to illustrate the wrinkles.
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Fig. 15. The result on three randomly selected faces in the test set by our
method, compared to the original extracted wrinkles by [10].

e Qo
20 Qo

Ma and Deng [10] Our Method

Fig. 16. Examples that show our method can produce wrinkles with less
artifacts, compared to the work of [10]. The red rectangle highlights the
artifact around the face boundary.

20 mm

0omm

Valgaerts et al. [19] Ours Valgaerts et al. [19] Ours

Fig. 17. Comparisons between our method and the reconstructed mesh
(considered as the ground-truth) by the binocular method [19]. The top
row shows the input image and the corresponding per-vertex error map.
The bottom row shows the mesh comparisons.

gave either 4 (well enough) or 5 (pretty well) ratings on
the synthesized wrinkles, in terms of all the five meas-
ures. We also show the mean and standard deviations of
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Fig. 18. Bi-linear wrinkle interpolation results. The faces at the positions
(1,1) and (1,5), as well as the positions (5,1) and (5,5), have the same
identity but different expressions. The faces at the position (1,1) and
(5,1), as well as the positions (1,5) and (5,5), have the same expression
but different identities.

Expressiveness
Matchedness
Realism
Overall

Coherence

N ot ot all [ Siiohtly S Normally I Well enough [ Pretty Well

Fig. 19. Obtained votes count for our five questions. The numbers on the
bars represent percentile.

TABLE 3
The Mean/Standard Deviation and Median
Scores Obtained in the Study

Measure mean =+ SD median
Expressiveness 4.45 4+ 0.59 4.5
Matchedness 4.15 + 0.48 4.0
Realism 4.25 +0.62 4.0
Overall 4.3 +0.64 4.0
Coherence 4.5 +0.59 5.0

the obtained ratings in Table 3. The average scores in
terms of all the five measures are more than 4 (well
enough). In particular, our methods obtained about
4.5 mean/median scores on both expressiveness and
coherence measures. The study outcomes validate that
our method can synthesize plausible wrinkles on given
coarse-scale faces.
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8 DISCUSSION AND CONCLUSION

In this paper we present a VAE-based generative model to
automatically synthesize fine-scale geometric wrinkles on
novel coarse-scale 3D faces. We also introduce a complete
pipeline to transfer fine-scale wrinkles between 3D faces
with different topologies and shapes.

Our approach has the following limitations. First, since
semantic meaning is not associated to each element of the
latent vector in our model. Thus, our approach cannot pro-
vide users high-level intuitive controls over the generation
of fine-scale wrinkles (e.g., control the shapes and positions
of wrinkles). Second, our method synthesizes wrinkles
based on the geometric shapes and expressions of target
faces. However, in reality, besides the shape and expression,
the wrinkles on the human face can also depend on other
factors including age and gender. Third, as a data-driven
method, the effectiveness of our method is essentially deter-
mined by the employed training dataset. Since our used
training dataset only includes 50 different identities, if the
shape of an input target face is significantly deviated away
from the distribution of the face shapes in the training data,
our model may generate less satisfactory wrinkles. Also, the
training wrinkle data used in this work were extracted from
monocular videos. Therefore, the extract wrinkles may not
be as accurate as those by multi-view capture methods.

In the future, we plan to add novel high-level user con-
trols over the wrinkle generation process as well as intui-
tively edit the synthesized or transferred geometric wrinkles
on 3D faces. Such systems would be practically useful for
numerous applications.
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