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Fig. 1. The dynamic formation of a double-bubble with intricate flow patterns, simulated by our proposed method. With the appropriate treatment of surface

tension near the junction, two bubbles spontaneously settle into meeting angles of ≈ 120
◦ , recovering what is known as the Plateau border.

We present the Moving Eulerian-Lagrangian Particles (MELP), a novel mesh-

free method for simulating incompressible fluid on thin films and foams.

Employing a bi-layer particle structure, MELP jointly simulates detailed, vig-

orous flow and large surface deformation at high stability and efficiency. In

addition, we design multi-MELP: a mechanism that facilitates the physically-

based interaction between multiple MELP systems, to simulate bubble clus-

ters and foams with non-manifold topological evolution. We showcase the

efficacy of our method with a broad range of challenging thin film phenom-

ena, including the Rayleigh-Taylor instability across double-bubbles, foam

fragmentation with rim surface tension, recovery of the Plateau borders,

Newton black films, as well as cyclones on bubble clusters.
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1 INTRODUCTION

Fluid thin films: soap lamellae, bubble clusters, and foam networks,

exhibit remarkably complex geometry and dynamics due to the cou-

pled interaction between the interfacial flow, surface deformation,

and topological evolution. On the level of lamellae, these fluid sys-

tems are intriguing for their sophisticated, swirling color patterns

jointly created by the turbulent flow dynamics and light interfer-

ence [Belcour and Barla 2017; Glassner 2000; Iwasaki et al. 2004;

Jaszkowski and Rzeszut 2003; Smits and Meyer 1992]. On the level

of foams, surface tension evolves these liquid lamellae into topo-

logically complicated networks with meticulously-connected, non-

manifold borders according to Plateau’s laws [Kraynik et al. 2004;

Rosen and Kunjappu 2012; Saye and Sethian 2013; Thomas et al.

2015; Weaire and Phelan 1996]. The interleaving complexities be-

tween both levels render the full-scale simulation of incompressible

fluid on thin films and foams particularly challenging.

The challenge of simulating thin films and foams can be divided

into three aspects Ð the 1) turbulent flow, 2) deforming geometry, and

3) evolving, non-manifold topology. Tackling these demanding tasks,

a vast literature in computer graphics and computational physics

has been devoted to devising effective geometric data structures and

PDE solvers to capture the vivid flow details on dynamic membranes.

For instance, researchers have constructed numerical algorithms to

generate highly detailed surface flow on fixed spherical domains

[Hill and Henderson 2016; Huang et al. 2020; Yang et al. 2019], to

model the topological evolution of foams using dynamic meshes

[Ishida et al. 2020, 2017], and to simulate bubble deformation and

burstingwith particles [Wang et al. 2020, 2021]. Despite the inspiring

progress, developing an integrated algorithm that can jointly 1)

capture the surface flow details at a high (pixel-level) resolution and

2) accommodate the complex geometric and topological evolution,
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remains a recalcitrant technical gap that hinders thin film/foam

simulation from advancing to the next level of visual authenticity.

Responding to these multifaceted challenges, we design the Mov-

ing Eulerian-Lagrangian Particle (MELP) method: a novel, mesh-free

method that can stably and efficiently simulate 1) complex, turbulent

flow at a high level of detail, 2) aggressive shape deformation under

surface tension, and 3) accurate evolution of non-manifold topolo-

gies according to Plateau’s laws. Our system is powered by two core

innovations. First, we discretize fluid thin films using two collabo-

rating particle sets: a sparse set of Eulerian particles for dynamic

interface tracking and PDE solving, and a fine set of Lagrangian par-

ticles for material and momentum transport. This separation of tasks

between deformation tracking and flow tracking enables enhanced

performance on both fronts. The Eulerian particles can maintain a

stable, uniform discretization despite the turbulent surfacial flow,

as they can advect only with normal velocities, and freely redis-

tribute in the tangent plane; the Lagrangian particles become more

computationally affordable as they are responsible for advection

only, and can thus be deployed at larger amounts to track out more

sophisticated and accurate flow patterns.

Secondly, we design multi-MELP, a meshless, multi-region track-

ing mechanism that enables the physically-based interaction among

multiple MELP systems to simulate complex foam dynamics with

evolving topology. The key innovation is the soft-handling of the

non-manifold junctions. For instance, a triple-junction is not mod-

eled with a singular edge, but with three manifold interfaces tracked

by three MELP systems. The coupled dynamics of the junction is

computed by a surface tension sharing mechanism. Multi-MELP is

conveniently extended from MELP, inherits MELP’s capacities in

resolving high-quality interfacial flow, develops bubble clusters and

foams entirely on-the-fly, and recovers Plateau’s laws accurately.

We summarize our main contributions as:

(1) A novel, bi-layer particle representation (MELP) for solving

dynamic PDEs on moving thin films that achieves state-of-

the-art fineness and visual realism.

(2) A novel, mesh-free approach to modeling foam junctions

(multi-MELP) that enables dynamic, on-the-fly foam forma-

tion according to Plateau’s laws.

(3) The versatile simulation of complex phenomena, e.g. large

foam clusters with hundreds of regions, Rayleigh-Taylor flow

across Plateau borders, as well as Newton black films.

2 RELATED WORKS

Film simulation. The simulation of thin film lamellae (e.g. soap

bubbles or membranes with boundaries) has drawn great research

interest across physics and graphics. On one hand, researchers have

derived reduced governing equations [Chomaz 2001; Couder et al.

1989] and PDE solvers [Saye and Sethian 2013] to model the thin

film evolution on spherical-coordinate grids [Hill and Henderson

2016; Huang et al. 2020], level-sets [Zheng et al. 2009], meshes [Da

et al. 2015, 2016; Ishida et al. 2020, 2017; Saye and Sethian 2013, 2016;

Wang and Chern 2021; Zhu et al. 2014], particles [Wang et al. 2020],

or using a hybridization of meshes and points [Chen et al. 2021;

Hyde et al. 2020]. On the other hand, the iridescent color patterns of

thin films can be physically computed using thin film interference

[Glassner 2000; Iwasaki et al. 2004; Jaszkowski and Rzeszut 2003] to

create convincing visual effects. One central challenge for thin film

(lamella) simulation is to jointly simulate the interfacial flow and

the membrane deformation. In particular, our work is motivated by

Ishida et al. [2020, 2017] and Wang et al. [2021], both of which unify

thin film deformation with thickness evolution.

Foam simulation. In the simulation of foams Ð multiple bubbles

connected via non-manifold junctions, the main challenge transi-

tions to modeling the dynamics of the junctions. Extensive research

efforts have been devoted to the theoretical understanding [Cohen-

Addad et al. 2013] and numerical validation [Saye and Sethian 2013]

of the dynamics and equilibrium states of these junctions. In geo-

metric processing, researchers explore non-manifold differential

operators that can accommodate PDE solving on foam structures

[Sharp and Crane 2020]. Saye and Sethian [2013] construct a compre-

hensive framework that takes into account the thickness evolution

on a microscopic scale. In computer graphics, researchers have also

developed continuum-based approaches to model the macroscopic

behavior of foam materials [Ram et al. 2015; Yue et al. 2015]. In this

paper, we focus on simulating wet foam structures to simultaneously

resolve the flow details and topological evolution.

Eulerian-Lagrangian methods. The MELP method is built upon

multiple lines of previous work in hybrid Eulerian-Lagrangian simu-

lation. Our design is motivated by PIC/FLIP [Zhu and Bridson 2005],

MPM [Stomakhin et al. 2013], and vortex methods [Koumoutsakos

2005] among others. Unlike traditional methods, whose Eulerian

components remain static in the world space, both the Eulerian and

Lagrangian components in MELP move based on physical veloci-

ties to track a dynamic, codimensional fluid domain. In this regard,

MELP is also motivated by arbitrary Lagrangian-Eulerian (ALE)

methods [Hirt et al. 1974; Sahu et al. 2020], along with other moving

Eulerian methods such as translational grids [Cohen et al. 2010;

English et al. 2013] and Eulerian solids [Levin et al. 2011].

Moving surface. We build the mathematical foundation of MELP

upon the theory of moving surface calculus [Afas 2018; Grinfeld

2013; Grinfeld et al. 2012], which decouples a dynamic interface’s

normal and tangential motions with a secondary reference frame.

This line of research encompasses a broad range of physical applica-

tions ranging from basic fluid systems [Grinfeld 2010a,b,c; Grinfeld

et al. 2009; Morgenroth et al. 2020], fluid and electron bubbles [Grin-

feld 2009; Svintradze 2019], burning [You and Yang 2020], to mag-

netostatic systems [Grinfeld and Grinfeld 2017]. The MELP method

employs the normal coordinate system originated from the moving

surface calculus to advance the Eulerian particles.

3 CONTINUUM MODEL

3.1 Geometry

Lamellae. As depicted on the left of Figure 2, a thin film lamella is

a layer of fluid trapped between two air-liquid interfaces. We refer

to one of the interfaces as the base surface 𝑆𝐵 , which is assumed

to be a connected, orientable Riemannian 2-manifold in R3. A base

surface may be open with boundary (e.g. a disk) or closed (e.g. a

bubble). The orientability allows a continuous field n : 𝑆𝐵 → 𝑆2

of outward-pointing, unit normal vectors to be defined. For a disk,
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Fig. 6. Different frames of a deforming half bubble with black spots.

4.4 Dynamics Computation

4.4.1 Normal Dynamics. Similar to Ishida et al. [2020], we assume

that the normal velocity 𝒖⊥ is constant in an E particle 𝐸’s control

column, i.e. 𝒖⊥
𝐸
=

1

𝑉𝐸

∫
𝐸
𝒖⊥𝑑𝑉 . Therefore

𝐷𝒖
⊥
𝐸

𝐷𝑡 ≈
1

𝑉𝐸

∫
𝐸
𝐷𝒖
⊥

𝐷𝑡 𝑑𝑉 . We

then need to integrate the right-hand side of the normal component

in Equation 5. For the term
𝜕𝑝
𝜕𝑧 , whose expression is given by Equa-

tion 4, integrating over the control column of 𝐸 yields 𝑎𝐸 · (𝑝out−𝑝in).

We assign 𝑝out to be the atmospheric pressure 𝑝atm. If the lamella

is open (disk), then we assign 𝑝in = 𝑝atm. If the lamella is closed

(bubble), we compute the enclosed pressure using the ideal gas law

as: 𝑝in = 𝑛0𝑅𝑇 /𝑉 with 𝑛0 being the enclosed molar mass and 𝑉 the

enclosed volume, which we compute as:

𝑉 =

∑︁

𝐸∈E

𝜁 ·
1

3
𝑎𝐸 (𝑂 − 𝐸), 𝜁 =

{
1, (𝑂 − 𝐸) · n𝐸 ≥ 0,

−1, otherwise,
(11)

where 𝑂 is an arbitrarily selected point in R3 [Zhang et al. 2001].

Similarly, we integrate 𝛿𝐼 (𝜎0 − 𝑅𝑇 Γ)𝐻 and 𝒇⊥ext over the control

column as 2𝑎𝐸 (𝜎0 − 𝑅𝑇 Γ)𝐻𝐸 and 𝑉𝐸𝒇
⊥
ext respectively. Hence we

obtain the expression for
𝐷𝒖
⊥
𝐸

𝐷𝑡 as:

𝐷𝒖⊥
𝐸

𝐷𝑡
=

𝑝in − 𝑝out

𝜌𝜂𝐸
n𝐸 +

2(𝜎0 − 𝑅𝑇 Γ)𝐻𝐸

𝜌𝜂𝐸
n𝐸 +

𝒇⊥ext
𝜌

. (12)

4.4.2 Tangential Dynamics. Following the temporal discretization

scheme proposed by Huang et al. [2020], the thin film evolution

along the tangential directions can be approximated as




𝒖⊤ − 𝒖⊤
∗

Δ𝑡
= −

2𝑅𝑇

𝜌𝜂∗
∇𝑠Γ +

1

𝜌
𝒇⊤ext,

Γ − Γ∗

Δ𝑡
= −Γ∗∇ · 𝒖⊤,

𝜂 − 𝜂∗

Δ𝑡
= −𝜂∗∇ · 𝒖⊤,

(13)

where 𝒖⊤
∗
, Γ∗ and 𝜂∗ are the respective quantities after advection,

which we collect in the L2E step.

Reorganizing Equation 13 yields an implicit equation of Γ:

( −
1

Δ𝑡Γ∗
)Γ + (Δ𝑡

𝑅𝑇

𝜌
∇

1

𝜂∗
) · ∇𝑠Γ + (Δ𝑡

𝑅𝑇

𝜌

1

𝜂∗
)∇2𝑠 Γ

= ∇ · 𝒖⊤
∗
−

1

Δ𝑡
+ Δ𝑡 (∇

1

𝜌
· 𝒇⊤ext +

1

𝜌
∇ · 𝒇⊤ext) .

(14)

We solve this equation using the Implicit Incompressible SPH

method with a relaxed Jacobi scheme with relaxation parameter

𝜔 = 0.2. Once Γ is solved, we evaluate for each 𝐸 ∈ E the tangential

acceleration in Equation 5 as:

𝐷𝒖⊤
𝐸

𝐷𝑡
= −

2𝑅𝑇

𝜌𝜂𝐸
∇𝑠Γ +

1

𝜌
𝒇⊤ext . (15)

Then, 𝒖⊥
𝐸
and 𝒖⊤

𝐸
are updated using a symplectic Euler step with Δ𝑡 .

Algorithm 4 E2L transfer

1: for each particle 𝐿 ∈ L do

2: Compute 𝒖𝐿 according to Equation 16

3: Compute B𝐿 according to Equation 17

4: Compute D𝐿 according to Equation 18

5: end for

4.5 E2L Transfer

For each 𝐿 ∈ L, it collects three quantities from nearby E particles:

the velocity 𝒖𝐿 , affine state B𝐿 , and inertia-like tensor D𝐿 as:

𝒖𝐿 =

∑︁

𝐸∈NE (𝐿)

𝑊̂ (𝐸, 𝐿) · 𝒖𝐸 , (16)

B𝐿 =

∑︁

𝐸∈NE (𝐿)

𝑊̂ (𝐸, 𝐿) · ⊤𝐿 (𝒖𝐸 ) ⊗ ⊤𝐿 (𝒙𝐸 − 𝒙𝐿), (17)

D𝐿 =

∑︁

𝐸∈NE (𝐿)

𝑊̂ (𝐸, 𝐿) · ⊤𝐿 (𝒙𝐸 − 𝒙𝐿) ⊗ ⊤𝐿 (𝒙𝐸 − 𝒙𝐿) . (18)

4.6 E Advance

Similar to the mesh velocity in Sahu et al. [2020], we define an

E velocity: 𝒖E , carried by individual E particles, to govern their

movements. In the normal direction, 𝒖E needs to coincide with the

material velocity 𝒖⊥
𝐸
, while tangentially, 𝒖E can use arbitrary veloc-

ities to maintain uniform distribution. We ensure this by setting:

𝒖E𝐸 (𝑡) = 𝒖⊥𝐸 (𝑡) + ⊤𝐸 (𝒖
E
𝐸 (𝑡 − 1)), (19)

which takes the tangential component of the previous 𝒖E
𝐸
and add

to it the current normal velocity. Using 𝒖E
𝐸
we advance the positions

of the E particles using a symplectic Euler step with Δ𝑡 , updating

the tracked interface. We also update the local frames R𝐸 and metric

tensors 𝑔𝐸 . Then, we redistribute the E particles to maintain uni-

form distribution. In particular, similar to particle shifting based on
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Fick’s law of diffusion, we compute a shifting velocity 𝒖E𝐸 to prompt

particles to flow from high concentration regions to low concentra-

tion ones. Using number density 𝛿 to gauge the concentration, the

problem translates to solving for a constant particle density on the

surface with pseudo-pressure 𝐶:

−Δ𝑡2 (−𝛿∗∇2𝑠𝐶) = 𝛿 − (𝛿∗ + Δ𝑡 (−𝛿∗∇ · 𝒖E )), (20)

where 𝛿∗ and 𝛿 stand for the current and average number density

of E particles; and Δ𝑡 stands for the temporal step size for redis-

tribution. Equation 20 is solved using IISPH as with Equation 14.

The full redistribution procedure is documented in Algorithm 5,

where 𝛽 is the redistribution strength, and 𝜑 the threshold deciding

whether the distribution is satisfactory. We set 𝛽 to be the reciprocal

of the largest value of ∇𝑠𝛿 , and set 𝜑 to be 3. The while loop in

Algorithm 5 has a maximum number of iterations of 10. In practice,

most advance steps require only one step of redistribution.

4.7 L Advance

As described in Algorithm 7,L particles advect with 𝒖𝐿 using a sym-

plectic Euler step with Δ𝑡 . They will be projected onto 𝑆𝐵 defined

by E with a Moving Least-Squares (MLS)-based approach.

Algorithm 5 E redistribution

1: Initialize 𝒖E to 0

2: while
|𝛿max−𝛿min |
|E |

≥ 𝜑 do

3: Solve 𝐶 implicitly using Equation 20

4: for each particle 𝐸 ∈ E do

5:
𝐷𝒖
E
𝐸

𝐷𝑡 ← −𝛽∇𝑠𝐶

6: 𝒖E𝐸 ← 𝒖E𝐸 + Δ𝑡
𝐷𝒖
E
𝐸

𝐷𝑡

7: 𝒙𝐸 ← 𝒙𝐸 + Δ𝑡𝒖
E
𝐸

8: end for

9: Update local frames and metric tensors

10: Update 𝛿 according to Equation 9

11: end while

12: for each particle 𝐸 ∈ E do

13: 𝒖E
𝐸
← 𝒖E

𝐸
+ 𝒖E𝐸

14: end for

Algorithm 6 E Advance

1: for each particle 𝐸 ∈ E do

2: Update 𝒖E
𝐸
with Equation 19

3: Update 𝒙𝐸 using symplectic Euler with Δ𝑡

4: end for

5: Update local frames and metric tensors

6: Redistribute E with Algorithm 5

Algorithm 7 L Advance

1: for each particle 𝐿 ∈ L do

2: Update 𝒙𝐿 with 𝒖𝐿 using symplectic Euler with Δ𝑡

3: 𝒙𝐿 ← Proj(𝐿)

4: end for

4.8 MELP Implementation Details

SPH. Following Wang et al. [2021], we adopt SPH-based, surface

differential operators as:





(∇𝑠𝑞)𝐸 =

∑︁

𝐸′∈NE (𝐸)

𝑎𝐸′ (𝑞𝐸′ − 𝑞𝐸 ) ∇𝑠𝑊 (𝐸, 𝐸
′),

(∇𝑠 ·𝒘)𝐸 =

∑︁

𝐸′∈NE (𝐸)

𝑎𝐸′⊤𝐸 (𝒘𝐸′ −𝒘𝐸 ) · ∇𝑠𝑊 (𝐸, 𝐸
′),

(∇2𝑠𝑞)𝐸 =

∑︁

𝐸′∈NE (𝐸)

𝑎𝐸′ (𝑞𝐸′ − 𝑞𝐸 )
2|∇𝑠𝑊 (𝐸, 𝐸

′) |

|𝒙𝐸 − 𝒙𝐸′ |
.

(21)

where ∇𝑠𝑊 is the surface gradient of the 2D kernel function𝑊 ,

which can be approximated as ∇𝑠𝑊 = 𝑔∇𝑊 [Wang et al. 2020]. In

practice, we approximate 𝑔 with I2×2 with no apparent degradation

in performance. For both𝑊 and𝑊 , we use the Quintic spline kernel

with radius 𝑟 = 4 · Δ𝑥 , where Δ𝑥 reflects the E particle separation.

We handle particle insufficiency near solid boundaries with several

layers of boundary particles with the same fineness as E. We also

make use of the XSPH artificial viscosity [Schechter and Bridson

2012] with viscosity parameter 0.99 to stabilize 𝒖E .

Local Frame and Projection. At time 𝑡 , a particle 𝐸 ∈ E computes

R𝐸 as follows: 1) perform PCA on N E (𝐸) and set the normalized

eigenvector with the smallest eigenvalue as n′, 2) set n′ = −n′ if

0 > n
′·n(𝑡−1), 3) construct an intermediate frameR′ = (e1

′, e2
′, n′)

where e1
′ is an arbitrary vector perpendicular to n

′ and e2
′
=

n
′× e1

′, 4) in the tangent plane, use 2D SPH to compute ∇𝐸𝑧 = ( 𝜕𝑧𝜕𝑢 ,
𝜕𝑧
𝜕𝑣 )

𝑇 and let e1 = R
′(1, 0, 𝜕𝑧𝜕𝑢 )

𝑇 , e2 = R
′(0, 1, 𝜕𝑧𝜕𝑣 )

𝑇 , n = e1 × e2.

Finally, R𝐸 = (e1, e2, n). A particle 𝐿 ∈ L computes R𝐿 as follows:

1) compute the average of {n𝐸 |𝐸 ∈ N
E (𝐿)} weighted by𝑊 (𝐿, 𝐸),

set the normalized result to n 2) construct a frame R𝐿 = (e1, e2, n)

where e1 is an arbitrary vector perpendicular to n and e2 = n × e1.

For particle 𝐴 ∈ L ∪ E, we compute ⊥𝐴 (𝒘) = (𝒘 · n𝐴)n𝐴 and

⊤𝐴 (𝒘) = 𝒘− ⊥𝐴 (𝒘). We compute Proj(𝐴) as follows: given local

frame R𝐴 , on the tangent plane run MLS with data samples {𝒙𝐵 =

(𝑢𝐵, 𝑣𝐵, 𝑧𝐵) |𝐵 ∈ N
E (𝐴)}, fitting 𝑧 as a function of (𝑢, 𝑣). Then let 𝑧

denote the function evaluated at (0, 0)𝑇 , and set 𝒙𝐴 ← 𝒙𝐴 − 𝑧n𝐴 .

Newton Black Films and Rim Surface Tension. Both effects enter

the dynamic system through 𝒇ext. The Newton Black Films (black

spots) are extremely thin regions on a soap film, where destructive

light interference makes them appear black. We prefix a number of

seeders in space that mark nearby L particles as B particles, whose

color will be set to black. The B particles receive an additional

surface tension force from the B-L interface as if B is a second

fluid phase. This force is computed using a VOF approach, where

E particles estimate the fraction of nearby B particles, and then

compute surface tension following Akinci et al. [2013]. The rim

surface tension along the rim’s normal direction nrim is given by

𝑓𝜎,rim = 2𝜎 + (2𝜎 (𝜋 −1)𝑅rim)/𝑟𝑐 [Bush and Hasha 2004] where 𝑅rim
reflects the thickness of the rim and 𝑟𝑐 reflects the size of the thin

film. We assume 𝑟𝑐 ≫ 𝑅rim, hence 𝑓𝜎 is dominated by the first term,

so 𝑓𝜎,rim ≈ 2𝜎 . We estimate the rim’s normal direction following

Akinci et al. [2013] as (nrim)𝐸 = 𝑟
∑
𝐸′∈NE (𝐸) 𝑎𝐸′∇𝑠𝑊 (𝐸, 𝐸

′).
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right of Figure 10, we devise a probabilistic scheme to directly mi-

grate L particles from one region to another region, conserving the

transported quantities. For each L particle 𝑄 ∈ 𝐿𝐾 , let 𝑃 denote

its nearest E neighbor. For each tuple (𝑆,𝛾𝑃,𝑆 ) that 𝑃 stores, we

compute two probability scores 𝐶1,𝐿𝑆 and 𝐶2,𝐿𝑆 for 𝑄 as follows:

𝐶1,𝐿𝑆 = 𝜓1 · (1 −min(1,
| (𝒙𝑄 + Δ𝑡𝒖𝑄 ) − 𝒙Proj𝐿𝑆 (𝑄)

|

|𝒙𝑄 − 𝒙Proj𝐿𝑆 (𝑄)
|

)), (27)

𝐶2,𝐿𝑆 = 𝜓2 · (1 −min(1,
ΓProj𝐿𝑆

(𝑃 )

Γ𝑃
)), (28)

where𝜓1 and𝜓2 are the transport strength parameters. In computing

𝐶1,𝐿𝑆 , 𝒙𝑄 +Δ𝑡𝒖𝑄 is the position of𝑄 at the next timestep, 𝒙Proj𝐿𝑆 (𝑄)

is the nearest point to 𝑄 on 𝐿𝑆 . If 𝒖𝑄 is driving 𝑄 towards 𝐿𝑆 , then

this score would be high and vice versa. In computing 𝐶2,𝐿𝑆 , we

compute the ratio of Γ between 𝐿𝑆 and 𝐿𝐾 , If 𝐿𝑆 has a significantly

lower surfactant concentration than 𝐿𝐾 , a high probability score

would ensue. We let 𝐿𝐺 denote the region with the largest sum of

the two probabilities, let 𝐶𝐺 denote that sum, and move L particle

𝑄 from 𝐿𝐾 to 𝐿𝐺 at probability min(1,𝐶𝐺 ).

6 EXPERIMENTS AND RESULTS

6.1 Numerical Validation

Plateau Border. Plateau’s laws prescribe that soap films always

meet in groups of threes, along edges that create three dihedral

angles of arccos(− 1

2
) = 120

◦ each. These edges are commonly re-

ferred to as the Plateau borders. These Plateau borders then meet

in groups of fours, creating angles of arccos(− 1

3
) ≈ 109.47◦ each.

With the surface tension sharing mechanism, our method accurately

recovers both rules. As shown in Figure 11, we verify our approach

on a double-bubble, a triple-bubble, and a quadruple-bubble. In

each setup, the bubbles are initially separated, and the borders are

developed dynamically upon contact. As reported in Table 2, the

measured dihedral angles deviate from the analytical value with

≤ 2% error, while the edge angles deviate with ≤ 5% error, which

testifies to the efficacy of our framework.

Curvature of Partition Surface. When two bubbles with different

radii Ð the larger being 𝑅1 and the smaller being 𝑅2 Ð form a

double-bubble, the smaller bubble will protrude into the larger one,

creating a spherical partition surface with radius 𝑅𝑃 =
𝑅1𝑅2
𝑅1−𝑅2

and

curvature 𝜅𝑃 =
1

𝑅𝑃
.This is due to the three-way balance of Young-

Laplace pressures and air pressures, which is handled naturally by

our algorithm. We validate with 6 testing setups, where one bubble

has a fixed radius 𝑅1 = 0.05m, and the other one has a varying radius

𝑅2 among {0.4𝑅1, 0.5𝑅1, 0.6𝑅1, 0.7𝑅1, 0.8𝑅1, 0.9𝑅1}. As showcased

in Figure 12, the smaller 𝑅2 is, the more curved the partition surface

becomes. The numerical results are documented in Table 3 and

plotted on the top-left of Figure 13, as they conform well to the

analytical values with ≤ 3.5% error.

Surface Area Minimization. The standard double-bubble, shown

in Figure 22, is a minimal surface with the steady-state surface area

𝑎 given by: 𝑎 = 27𝜋 ( 𝑉̂
9𝜋 )

2

3 with 𝑉 being the enclosed volume of

each region. We verify our method’s ability to recover this with two

bubbles of radius 0.05m, initially separated, that are dynamically

Table 2. Numerical results to validate multi-MELP’s adherence to Plateau’s

laws. The pairs are labeled corresponding to Figure 11.

Plateau Border Testing

Set-up Double-Bubble Triple-Bubble

Pairs 1Ð2 1Ð3 2Ð3 1Ð2 1Ð3 2Ð3

Angle 118.62 122.30 119.06 120.84 118.96 120.20

Error 1.167% 1.917% 0.833% 0.7% 0.867% 0.167%

Set-up Quadruple-Bubble

Pairs 1Ð2 1Ð3 1Ð4 2Ð3 2Ð4 3Ð4

Angle 106.26 107.82 114.74 113.52 110.74 103.99

Error 2.93% 1.51% 4.81% 3.70% 1.16% 5.00%

Fig. 11. Left: in a double and a triple-bubble, three pieces of lamellae meet

at ≈ 120
◦ angles along the border. Right: in a quadruple bubble, 6 partition

surfaces (highlighted) form 4 borders (red arrows) meeting at ≈ 109
◦ angles.

fused into a double-bubble via contact. The initial surface area would

be 𝑎 = 0.0628m2 and the expected final surface area would be

𝑎 = 0.0594m2. As reflected in Figure 13, before the merge occurs at

𝑡 ≈ 3s, the total area oscillates around 𝑎, which then stabilizes to 𝑎

with periodic oscillation.

Drainage under Gravity. When a piece of thin film is placed ver-

tically, gravitation creates a tendency for the fluid to flow down-

wards. Near the bottom where fluid amasses, more surfactant will

occupy the fluid-air interface, creating a Marangoni acceleration to

counteract the gravitational acceleration, eventually reaching an

equilibrium. The steady-state thickness profile is derived by Couder

et al. [1989] as 𝜂 (𝑧) = 𝜂0𝑒
−

𝜌𝑔𝜂0𝑧

2(𝜎0−𝜎 ) where 𝜂0 is the film thickness

when laid flat. Setting 𝜂0 = 400𝑛𝑚, we verify our method’s corre-

spondence to the analytical solution on the top-right of Figure 13.

Additionally, the exponential thickness variation creates Newton’s

interference fringes with gradually thinning color stripes towards

the bottom, which is depicted on the left of Figure 16.

6.2 Comparison with Single-Layer Particle Method

As with the previously proposed single-layer particle method [Wang

et al. 2021], MELP is also connectivity-free and hence shares the

convenience in handling codimension transitions and simulating

complex scenes like thin film bursting. However, the separation of

tasks with our bi-layer design ensures that the simulation domain
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Fig. 15. Comparison of the simulated flow quality of our proposed MELP method (top) and Wang et al. [2021] (bottom).

Fig. 16. Left: Newton’s interference fringes under gravity. Right: comparison

with Wang et al. [2021]: top-left: initial set-up; top-right: converged result

of MELP; bottom-left: diverged result of Wang et al. [2021], bottom-right:

converged result of Wang et al. [2021] with reduced parameters.

6.3 Examples

The detailed specifications of all the examples simulated by our

proposed system, including the computational resources used, are

provided in Table 5. Photorealistic rendering is carried out in Hou-

dini with meshes reconstructed from the simulated particles. The

color is computed from thin film interference using ColorPy [Kness

2008] with CIE Standard Illuminant D65. For physical fidelity we

limit the CFL number to be strictly less than 1, which does not reflect

the numerical capacity of our model. For dynamic scenes involving

multiple bubbles, we are limited to CFL number = 0.33 due to the

explicit handling of the multi-region interaction.

Giant Bubble. As depicted in Figure 19, a deformed bubble is ini-

tialized by applying displacement mapping to a sphere of radius

0.1m, using 2-octave Perlin noise with frequency = 5 and scale

= 0.06. The thickness field is also initialized with Perlin noise, man-

ifesting in the initial, smooth color gradient. The flow is driven by a

heat source below the bubble that creates an upward motion. Conse-

quently, the bubble displays a golden tint at the bottom (𝜂 ≈ 350nm)

and a green tint at the top (𝜂 ≈ 500nm). An external force later

punctures the bubble from the right, causing the thin film to retract

under the rim surface tension. The bursting, which takes place in

a smaller timescale than the deformation or flow, is simulated at a

15× slow motion, which is handled automatically by our program.

Deforming Rectangle with Black Spots. As depicted in Figure 17,

we initialize a rectangular thin film with length = 0.16m and height

= 0.09m. A constant thickness gradient is initially imposed, with

thickness 𝜂 ≈ 500nm at the top and 𝜂 ≈ 250nm at the bottom, which

is the slightly perturbed using Perlin noise. Such a configuration

creates the Rayleigh-Taylor instability that causes the turbulent flow.

An out-of-plane sweeping force is applied to prompt the deforma-

tion. Black spots are seeded periodically at the bottom.

Deforming Half Bubble. As depicted in Figure 6, a half-bubble

of radius 0.05m is initialized, with the initial thickness variation

generated in the same way as the giant bubble. The flow is driven by

a heat source located below the half bubble. The gentle deformation

is propelled by a horizontal sweeping wind. Black spots are seeded at

the bottom boundary periodically, similar to the rectangle example.

Bubbles of Different Sizes. As shown in Figure 21, a bubble of

radius 0.025m, another one of radius 0.05m, and a half bubble of
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radius 0.1m are simulated, in order to verify our system’s ability to

handle large size differences. The two bubbles are put into contact

first, forming a double-bubble, with the smaller one protruding

into the larger one. Afterwards, an external acceleration drives the

double-bubble into the half bubble. The downwards momentum

causes the double-bubble to slide down the half bubble. As it slides

down, it also tilts counter-clockwise, which decreases the angle

it forms with the half bubble. The sliding motion is counteracted

by the surface tension’s tendency to restore 120◦ angles, and the

system gradually settles into an equilibrium.

Dynamic Reorganization of 4 Bubbles. It is known that the three-

way Plateau border is the only stable equilibrium for multiple thin

films to convene. However, unstable equilibriums exist Ð for in-

stance, when four bubbles meet at a cross shape to create an edge

that joins four surfaces with dihedral angles of 90◦ each. Such an

unstable equilibrium should morph into a stable Plateau border

given a small perturbation. With this experiment, we test our sys-

tem’s ability to recreate this phenomenon. As depicted in Figure 20,

we initialize four bubbles in a rectangular formation, with initial

velocities driving them to the center. Upon contact, they naturally

form 4 partition surfaces, meeting along the central edge at 90◦

angles. However, the surface tension is slightly varied among the

four bubbles, causing a small asymmetry in the force balance. Un-

der this perturbation, a new partition surface is gradually pulled

out from the initial edge, developing into two Plateau borders with

≈ 120
◦ angles. Once this new configuration stabilizes, we delete one

of the partition surfaces to have the right two bubbles merge into a

single one, which is later punctured from the top-right. The momen-

tum caused by the thin film retraction is coupled to the dynamics

computation of the remaining double-bubble.

Rayleigh-Taylor Instability on a Double-Bubble. As depicted in

Figure 1, two bubbles of radius 0.5m are initially separated and

aligned vertically. The top one has thickness 𝜂 ≈ 500nm and the

bottom one has 𝜂 ≈ 250nm, as they are tinted purple and blue

reflecting their respective thickness values. With initial velocities

towards the center, two bubbles collide and develop into a double-

bubble with a shared surface in between. At the same time, material

transfer between both bubbles begins. As fluid is transferred from

top to bottom under gravity, Rayleigh-Taylor instability is created,

and the thinner fluid in the lower region is propelled to the upper

one in exchange. Eventually, the bottom region becomes thick and

the top region becomes thin, causing the tints to reverse, where the

lower region appears purple and the upper one appears blue.

Foam Mountain. This example puts to test our system’s caliber

in stably handling bubble clusters or foams at a much larger scale.

As depicted in Figure 18, three hundred bubbles, whose radii are

randomly selected between 0.008m to 0.012m, are poured down from

five "faucets" of bubbles located above. Bubbles that land within

the container gradually build up a honeycomb structure Ð a foam

mountain. Bubbles that collide with the container are automatically

deleted. Once the bubbles have stopped pouring, and the cluster

stabilized, we sporadically delete bubbles at random. The remaining

bubbles reorganize by contracting inwards to fill the gaps.

Fig. 17. Different frames of a deforming rectangular film with black spots.

Fig. 18. 300 bubbles falling into a container, forming a foam mountain.

Cyclones on 13 Bubbles. As shown in Figure 9, 13 bubbles with

radii from 0.0435m to 0.06m, and thickness from 400nm to 600nm

are initialized. Their centroids are initialized by FCC packing with

uniform random offsets. Under initial velocities towards the center,

these bubbles come into contact and spontaneously settle into stable

Plateau borders. A heat source is deployed at the bottom, causing

fluid to flow from the bottom to the top, which manifests in the

stratification of color, with the thinnest region at the bottom being

dark gold (≈ 180 nm) and the thickest region at the top being purple

(≈ 550nm). This heat-driven convection gradually develops into

"cyclones" on the bubble surfaces. The bottom row of Figure 9 docu-

ments the reorganization process Ð one partition surface between

two bubbles is deleted, creating a bubble that is larger than all the

others. The bubbles around it reorganize and merge to achieve a

new equilibrium.
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Fig. 21. Interaction among bubbles of different sizes, showcasing our system’s ability to restore the equilibrium states.

Table 4. Performance comparison between the single-layer method in Wang et al. [2021] and MELP.

MELP vs. [Wang et al. 2021]: Computational Cost

Name Real Parameter CFL Number Number of Particles Time/Iter (s) Iter/Frame Time/Frame (s)

[Wang et al. 2021] Equilibrium ✓ 0.033 4200 0.07 55.9 3.91

[Wang et al. 2021] Equilibrium ✗ 0.1 4200 0.07 3.8 0.27

MELP Equilibrium ✓ 0.99 16800 L + 1050 E 0.33 1.06 0.35

[Wang et al. 2021] Flow ✗ 0.1 40000 0.47 24.91 11.71

MELP Flow ✓ 0.99 693900 L + 6900 E 3.1 2.25 6.98

Table 5. The catalog of experiments with the MELP method. [A] represents a computer with AMD Ryzen(TM) ThreadRipper 3990X, and [B] represents a

computer with Intel(R) Core(TM) i9-9980XE.

MELP: Catalog of Examples

Name CFL number Number of E Number of L Ratio Time/Iter (s) Using Depicted In

Giant Bubble 0.99 163842 2621442 1:16 30.2 A Figure 19

Deforming Rectangle with Black Spots 0.99 159367 2557467 1:16 24.6 B Figure 17

Deforming Half Bubble 0.99 81921 5242884 1:64 63.3 B Figure 6

Two Bubbles Contact 0.99 20480 0 - 0.72 A Figure 22

Bubbles of Different Sizes 0.33 33280 0 - 1.32 A Figure 21

Dynamic Reorganization of Four Bubbles 0.99 40960 0 - 1.45 A Figure 20

R-T Instability on a Double-Bubble 0.99 81924 4772266 1:58 55.7 A Figure 1

Foam Mountain 0.33 192311 0 - 9.1 A Figure 18

Cyclones on 13 Bubbles 0.99 133146 2129946 1:16 13.3 A Figure 9
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A DERIVATION OF THE MOMENTUM EQUATION

Since the transportation of physical quantities on a moving surface

𝑆𝐵 is independent of the velocity field outside 𝑆𝐵 , we may as well

assume that the surface 𝑆𝐵 is immersed in a continuous 3D veloc-

ity field. Assuming 𝑆𝛿 is an arbitrary Lagrangian material surface

element on 𝑆𝐵 , the physical quantity defined on 𝑆𝛿 satisfies the

following transportation equation [Wu et al. 2006]

d

d𝑡

∫

𝑆𝛿

𝐹d𝑆 =

∫

𝑆𝛿

(
D𝐹

D𝑡
+ n · B · n𝐹

)
d𝑆, (29)

where 𝐹 is either a scalar or a vector, and B = I(∇ · 𝒖) − (∇𝒖)𝑇

is the divergence-free surface-deformation tensor with I being the

identity matrix.

Setting 𝐹 = 𝜌𝜂 in Equation 29 and using the mass conservation:

d

d𝑡

∫

𝑆𝛿

𝜌𝜂d𝑆 = 0, (30)

we obtain ∫

𝑆𝛿

(
D𝜌𝜂

D𝑡
+ n · B · n𝜌𝜂

)
d𝑆 = 0. (31)

From the classical Newton’s second law, the rate of change of

fluid momentum of a material surface element 𝑆𝛿 must be balanced

by the total body force 𝒇𝐿 exerted over 𝑆𝛿 and tangential stress Π

exerted on its boundary 𝜕𝑆𝛿 . Assigning 𝐹 = 𝜌𝜂𝒖 in Equation 29, the

integral momentum balance reads
∫

𝑆𝛿

(
D𝜌𝜂𝒖

D𝑡
+ n · B · n𝜌𝜂𝒖

)
d𝑆 =

∫

𝑆𝛿

𝜌𝜂𝒇𝐿d𝑆 +

∫

𝜕𝑆𝛿

𝜌𝜂Πn𝜕d𝑙,

(32)

where n𝜕 is the unit normal of 𝜕𝑆𝛿 .

Subtracting Equation 31 multiplied by 𝒖 from Equation 32 and

using Stokes’ theorem, we obtain
∫

𝑆𝛿

(
D𝒖

D𝑡
− 𝒇𝐿 + ∇𝑠Π

)
d𝑆 = 0. (33)

Since 𝑆𝛿 is arbitrarily selected, Equation 33 can be converted into a

differential form Equation 3.

B IISPH WITH JACOBI ITERATIONS

To solve Equation 14 using Jacobi iterations, we need to compute

its right-hand side (RHS) and the diagonal terms of the left-hand

side (LHS), which express how the 𝑖th term of the LHS is related to Γ𝑖 .

We consider each of the three terms on the LHS independently and

sum up the diagonal terms for each. For the first term, the diagonal

terms are simply:

(𝑎𝑖𝑖 )1 = −
1

Δ𝑡Γ∗𝑖
. (34)

For the second term on the LHS, we write out its SPH formulation:

(Δ𝑡
𝑅𝑇

𝜌
(∇

1

𝜂∗
)𝑖 ) · ∇Γ𝑖 (35)

= (Δ𝑡
𝑅𝑇

𝜌
(∇

1

𝜂∗
)𝑖 ) · (

∑︁

𝑗 ∈N(𝑖)

𝑎 𝑗 (Γ𝑗 − Γ𝑖 )∇𝑊𝑖 𝑗 ) . (36)

The diagonal coefficients would be:

(𝑎𝑖𝑖 )2 =
∑︁

𝑗 ∈N(𝑖)

−𝑎 𝑗∇𝑊𝑖 𝑗 · (Δ𝑡
𝑅𝑇

𝜌
(∇

1

𝜂∗
)𝑖 ) . (37)

For the third term on the LHS, which involves the Laplacian operator

∇2, we write out the SPH formulation of ∇2 = ∇ · ∇:

∇2Γ =

∑︁

𝑗 ∈N(𝑖)

𝑎 𝑗 (∇Γ𝑗 − ∇Γ𝑖 ) · ∇𝑊𝑖 𝑗 (38)

=

∑︁

𝑗 ∈N(𝑖)

𝑎 𝑗 (
∑︁

𝑘∈N( 𝑗)

𝑎𝑘 (Γ𝑘 − Γ𝑗 )∇𝑊𝑗𝑘 (39)

−
∑︁

𝑗 ∈N(𝑖)

𝑎 𝑗 (Γ𝑗 − Γ𝑖 )∇𝑊𝑖 𝑗 ) · ∇𝑊𝑖 𝑗 . (40)

By the symmetry of neighbor searching (if 𝑖 is a neighbor of 𝑗 , 𝑗 is

a neighbor of 𝑖), one of the 𝑘 will be 𝑖 , so setting 𝑘 ← 𝑖 we express

the diagonal coefficients of the third term as:

(∇2Γ)𝑖𝑖 =
∑︁

𝑗 ∈N(𝑖)

𝑎 𝑗 (𝑎𝑖∇𝑊𝑗𝑖 (41)

−
∑︁

𝑗 ∈N(𝑖)

−𝑎 𝑗∇𝑊𝑖 𝑗 ) · ∇𝑊𝑖 𝑗 (42)

=

∑︁

𝑗 ∈N(𝑖)

𝑎 𝑗 (−𝑎𝑖∇𝑊𝑖 𝑗 (43)

−
∑︁

𝑗 ∈N(𝑖)

−𝑎 𝑗∇𝑊𝑖 𝑗 ) · ∇𝑊𝑖 𝑗 (44)

= −
∑︁

𝑗 ∈N(𝑖)

𝑎 𝑗 (−𝑎𝑖∇𝑊𝑖 𝑗 (45)

−
∑︁

𝑗 ∈N(𝑖)

−𝑎 𝑗∇𝑊𝑖 𝑗 ) · ∇𝑊𝑖 𝑗 (46)

(𝑎𝑖𝑖 )3 = (Δ𝑡
𝑅𝑇

𝜌

1

𝜂∗
) · (∇2Γ)𝑖𝑖 . (47)

Finally,

𝑎𝑖𝑖 = (𝑎𝑖𝑖 )1 + (𝑎𝑖𝑖 )2 + (𝑎𝑖𝑖 )3 . (48)

Once the diagonal terms have been derived, the rest of the iterative

process is analogous to the original algorithm [Ihmsen et al. 2013].

In this derivation, we use 𝑖 and 𝑗 to represent the 𝑖th and 𝑗 th E

particle in a MELP system.
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