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Narain et al. 2013], and human skin [Rémillard and Kry 2013; van

Rees et al. 2017], are observed in our daily life because of their visu-

ally appealing motion and geometry. These thin structures manifest

highly desirable mechanical properties: high compactness, light

weight, and extreme flexibility [Liu et al. 2021; Novelino et al. 2020;

Yang et al. 2021; Zirbel et al. 2013]. Countless scholar articles have

explored the simulation and optimization of thin-shell objects, fo-

cusing on their dynamics and control. These literature touched on

fields that include but are not limited to: computer animation, com-

putational fabrication, material science, and soft robotics (e.g., see

[Bruton et al. 2016; Chen et al. 2018; Dang et al. 2022; Guo et al.

2018; Ly et al. 2018]). Among these lines of efforts, the design and

fabrication of magnetic thin shells, which aim to deliver specific

elastic behaviors under magnetic control, have emerged as future

crucial tasks, for its wide applications in physical and engineering

sciences (e.g., actuators [Kashima et al. 2012], medical robots [Hu

et al. 2018], and drug delivery [Zhao et al. 2011]). With the help of

advanced manufacturing, engineers can now embed a customized

magnetization profile into a soft polymeric sheet and naturally con-

trol the shape morphing and body locomotion of a magnetic thin

object, using a time-varying magnetic field. However, despite its

great potential in various applications, most of the previous work on

magnetic thin-shell modeling/design (as well as magnetic soft bod-

ies) were based on engineer’s intuition and abundant trial-and-error

experiments. An efficient material simulation algorithm of these

magneto-mechanical systems, in conjunction with its differentiable

optimizer and design framework, become an emergent necessity

to automate the design and comprehension of various emerging

applications related to magnetic-shell interactions.

We identified two challenges while developing simulation and

optimization algorithms to model magnetoelastic thin shells. On

the one hand, a continuum mechanics model to characterize the

magnetic strain-stress relationship on a thin shell is needed in the

current literature. In spite of the long history of study on mechanical

thin shells and abundant models available (e.g. the KirchhoffśLove

shell [Cirak et al. 2000], Cosserat shell [Green and Naghdi 1968],

elastica [Martin et al. 2010]), the extension of these models to ac-

commodate magnetic interaction, as well as their discretization and

numerical PDE solvers on a discretized thin-shell geometry, is not a

trivial task for numerical simulation. On the other hand, building

a fully differentiable simulation framework and the associated ad-

joint solvers and optimization frameworks for magnetoelastic thin

shells are in need to furnish supports for the various design and

optimization applications [Eshaghi et al. 2021; Kim et al. 2019; Zhao

et al. 2019]. In particular, many critical factors must be taken into

consideration for a thin-shell object design problem, such as the

inevitable multi-physics environment interaction and the numerical

instability due to nonlinear deformation.

We propose a unified computational framework to solve the simu-

lation and optimization problem for magnetic thin shells. Our model

is distinguished from others for its flexibility and versatility. It can

seamlessly integrate with any mainstream differentiable framework,

high performance elasticity solver, and numerical optimization li-

brary, which proves that we are making substantial progress toward

the goal to complete current differentiable physical ecosystem with

the ability on magnetic phenomena simulation and optimization.

We summarize our technical contributions as:

• A continuum mechanics model for magnetoelastic thin-shell

modeling that can be integrated into the existing thin-sell

simulators in a seamless fashion;

• A differentiable simulation framework enhanced to support

efficient gradient calculationswith respect tomulti-faceted de-

sign parameters, including the material properties, the resid-

ual magnetic flux density, and control policies;

• An fully automated design system to generate high-resolution

and high-performance magnetoelastic dynamic system de-

signs, exemplified by various animation, material, and robotic

designs such as crawling and jumping micro-robots, swim-

ming fish, soft-bodied hand, and mini-Kirigami graspers.

2 RELATED WORK

Thin-shell simulation. The study on continuum models for elastic

thin objects exhibiting bending resistance started from Terzopou-

los et al. [1987]. Bridson et al. [2003] derived a general discrete

thin-shell model based on a triangle mesh, whose elastic forces

are derived from an intuitive analysis. On the other hand, Grin-

spun et al. [2003] introduced an alternative energy model based on

differences of squared mean curvature. Both of them express the

interaction as the sum of membrane part and bending part. More

physically accurate analysis was introduced later by [Gingold et al.

2004], whose model of deformed shells is derived using differential

geometry under the KirchhoffśLove assumption, with bending en-

ergy discretized in terms of dihedral angles. Bergou et al. [2006]

furthermore presented a class of isometric bending models that

accelerates time-integration of triangular-meshed cloth and shells.

Remeshing techniques were also invented under this framework in

order to enable drastic deformations [Narain et al. 2012], especially

when plasticity exists [Narain et al. 2013; Pfaff et al. 2014]. In recent

years, further augmentations on the capability of sensing intrinsic

geometry changes in response to environmental stimuli[Chen et al.

2018; van Rees et al. 2017], and describing compression/extension

and shearing normal to the mid-surface [Guo et al. 2018] broaden

the application scope of thin-shell models. At the same time, there

was a multitude of previous work in computational design that fo-

cused on the simulation and optimization for novel thin structures

and mechanics, including surface-based inflatables [Panetta et al.

2021], X-shells [Panetta et al. 2019], FlexMaps [Malomo et al. 2018],

KirchhoffśPlateau surfaces [Pérez et al. 2017]. Some other work

focused on the fabrication feasibility such as developability, where

thin shells are 3D printed as planar and targeted at shaping curved

surfaces [Ghaffari et al. 2015; Malomo et al. 2018; Pérez et al. 2017].

Magnetic simulation. Simulation of magnetic effects based on

physical computing has been promoted by a large amount of litera-

ture in the community of computer graphics. Thomaszewski et al.

[2008] firstly shifted attention to magnetic rigid-body, and simpli-

fied the scenario to linear magnetization and ignored the reaction

of magnetized substance to the magnetic field. Kim et al. [2020;

2018] presented novel methods of dynamic magnetization simula-

tion. Through delicately designed magnet models, they managed

to apply the LandauśLifshitzśGilbert equation in micro-magnetism
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Fig. 2. We test (a) bending and (b) twisting behaviors of a thin plate actuated by magnetic field (red arrow). The color on the plate represents the magnitude of

local magnetic energy, which increases from blue to red.

intomacro-scale simulation, which is also stable due to the nonlinear

magnetization, and facilitates mutual induction and remanence as

well. Other work concentrates on magnetic simulation of non-rigid

bodies, including ferrofluids [Huang et al. 2019; Huang and Michels

2020; Ishikawa et al. 2013; Ni et al. 2020] and viscoelastic bodies [Sun

et al. 2021]. As far as we know, simulation of magnetic deformable

solids has not been specifically studied yet. In the engineering com-

munity, the model of isotropic magneto-sensitive Cauchy-elastic

solids was developed by Dorfmann and Ogden [2003]. Based on this

model, Zhao et al. [2019] presented the first continuum-level hard

magnetoelastic material model, where the Helmholtz free energy

density function comprises elastic (neo-Hookean) and magnetoe-

lastic parts. Subsequently, a simulation framework using the finite

element method, developed by the same authors, was shown to be in

quantitative agreement with their experimental results. This formu-

lation has inspired many other works on hard-magnetic beams and

elastica [Wang et al. 2020a; Yan et al. 2021] modelling and simulation,

or incorporating other effects such as viscosity [Garcia-Gonzalez

2019]. In concurrent work, Pezzulla et al. [2021] derive the same

reduced model as proposed here, differing only by augmenting the

model by also accounting for variations along thickness. They also

validate the reduced model against with the 3D finite element im-

plementation based on the full energy model proposed by Zhao

et al. [2019]. However, differentiable simulation and optimization

frameworks remain unexplored in Pezzulla et al. [2021].

Computational design and trajectory optimization. In computer

animation and physics-based simulation, it is a common challenge

to design the precise material layouts, topological structures, and

external stimuli, to yield desired dynamic or quasi-static behaviors.

The space-time optimization methods, being firstly introduced into

graphic community by Witkin and Kass [1988], have been utilized

extensively to support the design of animations [Barbič et al. 2012; Li

et al. 2014; McNamara et al. 2004; Schulz et al. 2014], materials [Hahn

et al. 2019; Wang et al. 2015] and structures [Wang et al. 2020b; Zhu

et al. 2017]. The objective function for a typical space-time optimiza-

tion problem measures a temporally-accumulated distance between

the desired and the predicted motion sequence and the amount of

external force required to generate the motion. In our paper, with

the help of magnetic force, we can optimize trajectories without

any artificial external force. Although the objective function is usu-

ally quadratic and hence straightforward to solve, the constraint

function(s) can be nonlinear, which pose additional challenges to

the numerical optimizer. One common approach for solving this

problem is sensitivity analysis [Christopher Frey and Patil 2002],

which can effectively find a feasible descent direction of the ma-

terial parameters with respect to minimizing the objective while

satisfying the PDE constraints. It is often combined with the adjoint

method [McNamara et al. 2004] to efficiently evaluate the descent

direction. This is especially important for a long temporal sequence.

To efficiently calculate derivatives of various physical systems, dif-

ferentiable physics simulations have emerged as active research

direction crossing graphics and machine learning communities over

past years. A broad array of differentiable simulators have been pro-

posed, including rigid-body dynamics [Freeman et al. 2021; Werling

et al. 2021], soft-body dynamics [Du et al. 2021; Geilinger et al. 2020;

Hu et al. 2019], cloth [Liang et al. 2019; Qiao et al. 2020] , and fluid

dynamics [Du et al. 2020; Holl et al. 2020; Ma et al. 2021; Schenck

and Fox 2018]. Our differentiable thin-shell simulator falls into this

category by extending the physical model from the volumetric to

thin-shell representation.

3 PHYSICAL MODELS

A fully magnetized hard-magnetic thin shell [Kim et al. 2019; Zhao

et al. 2019] can generate magnetic Cauchy stress through the ap-

plication of an actuating magnetic field to the intrinsic remnant

magnetization in the material. The magnetic Cauchy stress further

drives the deformation of the shell, which leads to the elastic Cauchy

stress. The areal potential energy density can be calculated as the

sum of the elastic part and the magnetic part:

𝐸 = 𝐸elasticity + 𝐸magnetism. (1)

We will explain the calculation of the elastic term in Section 3.1 and

the magnetic term in Section 3.2 respectively.

In the rest of this article, we symbolize vectors and second-order

tensors (matrices) using bold letters (such as 𝑯 and 𝑭 ), and scalars

using italic letters (such as𝐻 and 𝜇0). We consider quantities in both

the material (i.e., undeformed) space and the world (i.e., deformed)

space, using the convention that symbols accented with tildes (e.g.,

𝒙̃ vs. 𝒙) refer to the former.
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Fig. 7. Track fitting. The bar with one end fixed and the other end moves, driven by the magnetic field, precisely tracks the reference trajectory. As shown in

(a), the red line shows the reference trajectory while the blue line shows the trajectory of the moving end, with dots indicating positions in progressive frames.

The blue points are initially away from the red curve as it takes time for them to move to the starting point; these frames are outside the consideration of the

objective function, hence will not affect the final result. (b) shows the convergence curve of the objective function. (c) shows the frame in which the bar arrives

at the starting point of the reference track.

5.1 Quasi-Static Optimization

Parameters. The target shape is expressed in a 3𝑛v-dimensional

stacked vector of vertex positions, denoted 𝒙∗, and the parameters

to optimize are stacked into a vector 𝒌 . Since we aim to design the

remanent magnetization distribution of a thin-shell object, we stack

the three-dimensional magnetization vector 𝑴̃r on each face of the

thin shell in the material space to form a long vector 𝒌mag ∈ R
3𝑛f . In

order to get a better folding effect, we also optimize the membrane

coefficients 𝒌mem ∈ R
3𝑛f and the curvature coefficients 𝒌cur ∈ R

3𝑛𝑒

at the same time. The former is actually the Young modulus of

each face, and the latter is used to scale the dihedral angle 𝜃 into the

curvature for each edge. In a word, 𝒌 is constructed by concatenating

𝒌mag, 𝒌mem and 𝒌cur.

Formulations. To configure the target shape, an optimization prob-

lem is formulated as follows:

argmin
𝒌

𝐹 (𝒙 (𝒌)) =
�

�𝒙 (𝒌) − 𝒙∗
�

�

2
, (29)

subject to 𝒈(𝒙, 𝒌) = 0, (30)

with the objective function 𝐹 (𝒙) as the sum of square distances, and

the constraints

𝒈 =

𝜕
∑𝑛f

𝑗=1 𝜀 𝑗 (𝒌)

𝜕𝒙
= 0 (31)

indicating the force balance principle, derived from Equation (28).

It is noted that 𝒙 is determined by 𝒌 implicitly.

Gradients. The derivative of the objective function 𝐹 with respect

to 𝒌 is calculated by the method of Lagrange multipliers:

𝐿 = 𝐹 (𝒙) + 𝝀T𝒈, (32)

where 𝝀 is a 3𝑛v-dimensional multiplier vector. If we set 𝝀 so that

the equation
𝜕𝐹

𝜕𝒙
+ 𝝀T

𝜕𝒈

𝜕𝒙
= 0, (33)

holds, then the gradient of 𝐹 is obtained by

d𝐹

d𝒌
=

d𝐿

d𝒌
= 𝝀T

𝜕𝒈

𝜕𝒌
= −

𝜕𝐹

𝜕𝒙

(

𝜕𝒈

𝜕𝒙

)−1 𝜕𝒈

𝜕𝒌
.

Optimization. Weutilize themethod ofmoving asymptotes (MMA)

[Svanberg 2002] to solve the optimization problem in this section.

The steps to optimize the parameter vector are summarized in Al-

gorithm 2.

5.2 Trajectory Optimization

Parameters. Without loss of generality, we assume that there are

𝑠 + 1 frames in total, uniformly sampled from 𝑡0 = 0 to 𝑡𝑠 = 𝑇 , with

Δ𝑡 = 𝑇 /𝑠 as the time step. Any quantity taking 𝑡 as an argument is
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Table 1. We list parameters used in our simulation and optimization examples: the number of faces 𝑛f (for a volumetric object, 𝑛f denotes the number of faces

on its surface mesh), the number of elements (for volumetric objects) 𝑛e, the number of vertices 𝑛v, Young’s modulus 𝑌 , the Poisson ratio 𝜈 , the damping

coefficient 𝛾 , the time step size Δ𝑡 , the number of degrees of freedom𝑚 (i.e., the dimension of 𝒌), the residual objective function value 𝑟 , the runtime for the

entire optimization 𝑡opt, and the number of optimization iterations iteropt. For all the optimization examples, we set the ranges of 𝑘mem (𝑘cur = 𝑘memℎ
2/12)

and the external magnetic field are [104, 108 ] (PA) and [−0.05, 0.05] (T), respectively, and no bounds for the magnetic remanence.

Figure Example2 𝑛f 𝑛e 𝑛v 𝑌 [Pa] 𝜈 𝛾 [N · s/m] Δ𝑡 [s] 𝑚 𝑟 𝑡opt [s] iteropt
2 Bending and twisting 2048 ś 1097 1 × 105 0.5 1 × 10−4 1 × 10−2 ś ś ś ś

5 Reptile 496 ś 326 1 × 105 0.5 1 × 10−2 1 × 10−4 ś ś ś ś

4 Hexagram 2048 ś 1097 1 × 105 0.5 5 × 10−3 1 × 10−2 6 k 6.7 × 10−2 1.6 × 104 50

7 Track fitting (L) 768 ś 417 1 × 105 0.5 1 × 10−4 1 × 10−3 0.5 k 3.8 × 10−5 4.4 × 104 463

7 Track fitting (C) 768 ś 417 1 × 105 0.5 1 × 10−4 1 × 10−3 0.3 k 2.3 × 10−5 1.6 × 104 241

8 Letters 8192 ś 4225 1 × 1053 0.5 4 1 × 10−4 9.0 k 2.5 × 100 3.0 × 104 90

10aśg Octopus (pipe I) 492 ś 313 1 × 104 0.5 0 1 × 10−3 9.0 k 9.8 × 10−4 3.6 × 104 72

10hśn Octopus (pipe II) 492 ś 313 1 × 104 0.5 0 1 × 10−3 9.0 k 3.9 × 10−3 2.2 × 104 41

11 Octopus (tunnel) 492 ś 313 1 × 104 0.5 0 1 × 10−3 9.0 k 8.8 × 10−3 4.4 × 104 49

13 Kirigami∗ 244 ś 205 1 × 105 0.5 1 × 10−3 1 × 10−2 0.7 k −2.8 × 100 3.9 × 102 95

2.1 k 4.9 × 10−4 4.1 × 104 486

14 Hand (top) 3320 4975 1662 1 × 106 0.45 1 1 × 10−4 1.0 k 4.1 × 10−5 1.2 × 102 16

14 Hand (middle) 3320 4975 1662 1 × 106 0.45 1 1 × 10−4 1.0 k 1.8 × 10−5 1.3 × 103 30

14 Hand (bottom) 3320 4975 1662 1 × 106 0.45 1 1 × 10−4 1.0 k 2.6 × 10−5 5.9 × 103 45

16 Heart (top) 1326 1963 665 1 × 105 0.45 0.2 1 × 10−4 1.4 k 3.0 × 10−3 5.6 × 102 72

16 Heart (bottom) 1326 1963 665 1 × 105 0.45 0.2 1 × 10−4 0.5 k 5.8 × 10−3 9.2 × 102 42

15 Starfish (top) 1400 1870 702 1 × 106 0.45 0 5 × 10−4 1.2 k 8.7 × 10−4 2.5 × 104 42

15 Starfish (middle) 1400 1870 702 1 × 106 0.45 0 5 × 10−4 1.2 k 2.0 × 10−4 4.5 × 104 111

15 Starfish (bottom) 1400 1870 702 1 × 106 0.45 0 5 × 10−4 1.2 k 5.3 × 10−6 3.9 × 104 77
2 All these simulations use the same values for the following parameters (except otherwise described in the text) : the contact stiffness 𝑘n = 104 N/m, the coefficient of friction

𝑐f = 0.6, the density of mass 𝜌 = 103 kg/m3 and the thickness for thin-shell objects ℎ = 1mm. All these examples use StVK model for elasticity of thin shells, except for the
hands and starfish (the neośHookean model for elasticity of volumeric bodies).

3 The given value is used in the case of optimizing remanence alone.
∗ The first line shows the data in the quasi-static optimization and the second line shows the data in the trajectory optimization. They represents different optimization tasks and
share the same set of simulation parameters.

it every forward-simulation frame, due to its great memory over-

head. Instead, we record 𝒙𝑛 at each frame and calculate derivatives

(Appendix A.2) on the fly.

6 EXPERIMENTAL RESULTS

In this section, we evaluate the soundness and the efficacy of our

computational method by a set of experiments, including magnetic

phenomena simulation, quasi-static shape design, trajectory fitting

and motion control. Parameter settings used in the simulations

are summarized in Table 1. These experiments were run on 6-core

3.2GHz Intel(R) Core(TM) i7-8700 desktop with 16 GB RAM.

6.1 Validation

Bending and Twisting. As shown in Figure 2, we first validate the

soundness of our proposed continuum mechanics model through

the bending and twisting behaviors of a thin plate actuated by a

constantly rotating magnetic field. The left end of the thin shell

is fixed, and the remanent magnetization is uniformly distributed

on its right end only, perpendicular to the rest shape and pointing

upward. The elastic material properties are uniformly distributed

over the entire plate.

Five magnetic fields with different strengths, all along the direc-

tion of [1,−1, 0], are applied to the thin plate and intrigue the thin

ALGORITHM 3: Trajectory Optimization

Input: the objective function 𝐹 ( {𝒙𝑛 },𝒌) , the constraints 𝒈 = 0 and

𝒉 = 0, the initial states 𝒙0 and 𝒗0, the number of total frames

𝑠 + 1 and the time step Δ𝑡 .

Output: optimized 𝒌 .

for 𝑖 ← 1 to the maximal number of iterations do

𝒙 ← 𝒙0, 𝒗 ← 𝒗0;

for 𝑛 ← 1 to 𝑠 do

Advance Δ𝑡 by Algorithm 1;

𝒙𝑛 ← 𝒙 ;

end

𝝀𝑥 ← 0, 𝝀𝑣 ← 0;

d𝐹/d𝒌 ← 𝜕𝐹p/𝜕𝒌;

for 𝑛 ← 𝑠 to 1 do

Update 𝝀𝑣, 𝝀𝑥 according to Equation (40);

d𝐹/d𝒌 ← d𝐹/d𝒌 + 𝝀T
𝑣
(𝜕𝒈𝑛/𝜕𝒌) ;

end

Pass d𝐹/d𝒌 to the optimizer to calculate the descent direction;

Use the line-search method to determine the descending step

size;

Update 𝒌;

if |Δ𝒌 | < 𝜂 then Break; // 𝜂 = 10−5

end
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Fig. 15. Jumping starfish. The three rows show three different settings: the orange starfish in the top row is three times mass density as the green ones in

the bottom two rows, and the third row conditions an objective function with less penalty of the magnitude of the external magnetic field. The starfish is

set to jump over the pink arrows. With different settings, the starfish nevertheless successfully reaches the target, however through different maneuvers

automatically generated through optimized magnetic fields.

Fig. 16. Beating hearts. The left column shows the surfaces with magnetic

material in blue (the lower half for the above one, and the ribbon area for

the bottom one), with the silver arrows depicting the optimized magnetic

remanence in these areas. The hearts get expanded (horizontally) and con-

tracted (vertically elongated) responding to the optimized magnetic fields,

shown in the middle and right columns, respectively.

drive the Kirigami structure stretching as much as possible in ver-

tical direction. Next, by taking the derived remanence magnetiza-

tion as known, we perform a trajectory optimization on the time-

dependent external magnetic field for a fast-reaching task. Four

target points (indicated using red ball in Figure 13) are randomly

placed in the surrounding 3D space. They are placed consecutively

at predefined time instances. The objective function measures the

distance from Kirigami’s center point to the active target point start-

ing 𝑜𝑛𝑒𝑠𝑒𝑐𝑜𝑛𝑑 after the new target initialization, until the target is

replaced. The total magnetic field strength is treated as a regular-

ization term in our objective function. As the curve in Figure 13

shows, every 1 s after the target appears, the center of our Kirigami

structure can reach the target point with extremely high accuracy.

The tiny fluctuation of position error for the remaining time con-

firms that our optimized control policy can effectively suppress large

vibration that would have been introduced by sudden maneuvers.

Please refer to the supplementary video for visual evidence.

6.4 Volumetric Objects

Our magnetic-elastic model is not limited to simulations of thin-

shell objects, but can also be integrated into any state-of-the-art

FEM-based simulation framework to imitate volumetric soft objects

with a magnetic thin layer, with the only change is for all the surface

triangles, their potential energies need an extra term from magnetic

side. This model provides new capability on realizing unthehered

active exoskeleton control.

Gesturing Hands. As illustrated in Figure 14, we first experiment

on a static shape-fitting problem. Initially, the volumetric hand

model has a homogeneous elastic material distribution. Quasi-static

optimizations are conducted to find three sets of remanence magne-

tization distribution on the hand surface, which allow the hand’s rest

shape to deform to three given gestures driven by a given vertical

magnetic field. To alleviate the side effects caused by the distorted

mesh discretization, we designate a set of anchor points on each

finger and evaluate the shape similarity base on these points.This

sparse position constrains help our optimizer converge to a more

natural result.

Beating Hearts. As demonstrated in Figure 16, a heart exoskeleton

is designed to enhance the heart’s beating deformation. Similar to

the previous example, we conduct a quasi-static optimization to find

the optimized surface remanence magnetization distribution which

can fit to the most contracted shape driven by a constant magnetic

field. The only difference is that the surfaces allowed to maintain

magnetic material are restricted to the areas highlighted using blue

color in the left column of Figure 16. Through the comparison shown

in Figure 16, with optimized remanence magnetization, the heart
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Fig. 17. The two curves show the applied external magnetic field in the first 50 frames that facilitates the orange starfish’s jumping strategy, as depicted in the

top row. The figures show the correlation between the external magnetic stimuli and the actions taken in the process of starfish’s taking-off in details.

delivers a strong beating sequence driven by a periodically switching

magnetic field.

Jumping Starfish. The starfish example in Figure 15 shows that

our proposed trajectory optimization algorithm can be employed to

deform soft objects through magnetic thin layers on their surfaces.

The external magnetic field is optimized to make the starfish jump

over an obstacle at designated time, depicted as pink arrows in Fig-

ure 15. The green and orange starfishes are identical with respect to

their geometry and elastic material distribution, but the orange one

is 3-times heavier than the green one. The differentiable frictional

contact model mentioned in the Section 6.1 is adopted here as well.

Through the results shown in Figure 15, the starfish is optimized

to gain an initial take-off momentum through the frictional con-

tact with the ground. This strategy is more obvious for the heavier

starfish as shown in Figure 17; in the first stage ((a)ś(b)), the starfish

lifts its tentacles driven by an upward magnetic field and stores

elastic potential energy in its body; then as the magnetic field turns

downward, the stored elastic potential energy is quickly released,

which makes the starfish suddenly flap its tentacles down to hit the

ground with high speed. Such strong impact helps the starfish gain

initial take-off momentum in both vertical and horizontal direction.

7 CONCLUSIONS AND DISCUSSIONS

We have proposed a novel computational framework to design mag-

netoelastic thin shells and demonstrated a broad array of applica-

tions. Our main contribution is finding an effective computational

solution to support both forward simulation and inverse design

tasks of a new category of physical objects that are on the periphery

of the previous literature. For forward simulation, we developed

the first continuum mechanics model based on the KirchhoffśLove

thin-shell model to characterize the behaviors of a magnetalelastic

thin shell under external magnetic stimuli. The underlying consti-

tutive model decouples the overall potential energy into its elastic

and magnetic components, and the magneto-mechanical coupling

arises only from the deformation-induced variation of the remanent

magnetization in the applied magnetic field. Based on this model,

we provide a complete numerical recipe, which includes the dis-

cretization formula and the Hessian matrix derivation. Due to its

conciseness, our method can be easily integrated into the existing

finite-element thin-shell framework to support novel magnetic phe-

nomena simulations. For the inverse design problems, we build a

fully differentiable simulation framework, in conjunction with its

adjoint solvers, to support a plethora of design tasks, ranging from

magnetoelastic soft robots, functional Origami, to artworks and

metamaterial designs. For both static and dynamic PDE-constraint

problems, our differentiable solver improves the optimization per-

formance on magnetoelastic thin-shell structures.

The ideal deformation behaviour of magnetoelastic material is

nonlinear, incompressible, and time/strain rate-dependent. Our pro-

posed magnetoelastic constitutive model possesses many simpli-

fications. The hysteresis loop is not considered in our model. A

conventional finite element frame like what we employed in this

paper has great difficulties on modeling incompressible deforma-

tions. Moreover, when the applied magnetic field is stronger than

the coercivity of the immersed magnetic material, the proposed

continuum mechanics model will no longer be applicable, because

the nonlinear magnetization is not negligible anymore. Last but not

the least, the influence of the magnetization on elastic materials

property change should also be involved into the current framework.

Currently, we use a gradient-based method MMA for parameter

fitting. We plan to explore other optimization schemes to avoid any

local minimal trap.

Because the relevant facility has limited accessibility, this work fo-

cuses on tackling the computational challenges and aims to provide

a simulation tool to open the stage for the potentially close collabo-

ration among graphics, design, and fabrication. Nevertheless, it is

worth discussing here the feasibility of our optimization approaches
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in physical-world fabrication. An abrupt residual magnetization can

be realized by direct ink writing of an elastomer composite contain-

ing ferromagnetic microparticles [Kim et al. 2018]. The spatially

varying bending stiffness can be realized by embedding indentations

and local structures, which has been a common practice in Origami

design and fabrication. From the perspective of algorithm itself,

additional regularization terms which penalize the abrupt material

or magnetic field change need to be involved into the objective

function to ensure the design’s fabricability.

Another possible topic for further investigation is incorporat-

ing topological optimization into the current framework, which

will facilitate more complex structures and functionalities of the

design. At the same time, we plan to explore high-performance im-

plementation of our thin-shell solver in order to support large-scale

topological optimization applications. This is a challenging problem

to solve because the dimension of the design space would be signifi-

cantly enlarged. Lastly, we are also considering incorporating our

fully differentiable simulator and the accompanied adjoint solvers

into the reinforcement learning frameworks, which can extend our

simulator to accommodate the various control policy learning tasks.
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A PHYSICAL ANALYSIS

A.1 Lagrangian Formulations of Magnetostatics

We integrate Equation (9) over an arbitrary volumeD with suitably

regular boundary 𝜕D and apply Gauss’s theorem to obtain
∫

𝜕D
𝑩 · 𝒏 d𝑆=

∫

D
∇ · 𝑩 d𝑉 = 0. (45)

Considering that 𝒏 d𝑆 = 𝐽 𝑭−T𝒏̃ d𝑆 , we acquire
∫

𝜕D
𝑩 · 𝒏 d𝑆 =

∫

𝜕D̃
𝑩 · 𝐽 𝑭−T𝒏̃ d𝑆 =

∫

𝜕D̃
𝐽 𝑭−1𝑩 · 𝒏̃ d𝑆 , (46)

which means
∫

𝜕D̃
𝐽 𝑭−1𝑩 · 𝒏̃ d𝑆=

∫

D̃
∇̃ · 𝐽 𝑭−1𝑩 d𝑉̃ = 0 (47)

by Gauss’s theorem. Since D is also an arbitrary volume, the equa-

tion

∇̃ · 𝐽 𝑭−1𝑩 = 0 (48)

holds, which suggests us to define 𝑩̃ = 𝐽 𝑭−1𝑩.
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Similarly, we integrate Equation (10) over an arbitrary (but suit-

ably regular) open surface S and then apply Stoke’s theorem to

obtain
∫

𝜕S
𝑯 · d𝒙 =

∫

S
(∇ × 𝑯 ) · 𝒏 d𝑆 = 0. (49)

Considering that d𝒙 = 𝑭d𝒙̃ , we acquire
∫

𝜕S
𝑯 · d𝒙 =

∫

𝜕S̃
𝑯 · 𝑭d𝒙̃ =

∫

𝜕S̃
𝑭T𝑯 · d𝒙̃ , (50)

which means
∫

𝜕S̃
𝑭T𝑯 · d𝒙̃ =

∫

S̃
(∇̃ × 𝑭T𝑯 ) · 𝒏̃ d𝑆 = 0 (51)

by Stoke’s theorem. Since S is also an arbitrary open surface, the

equation

∇̃ × 𝑭T𝑯 = 0 (52)

holds, which suggests us to define 𝑯̃ = 𝑭T𝑯 .

As to the magnetization intensity 𝑴 , since the effective magnetic

charge density 𝜌M = −∇·𝑴 is conservative (𝜌M = 𝐽 𝜌M), there exists

a conservation equation as follows:

∇̃ · 𝑴̃ = 𝐽∇ ·𝑴 . (53)

Observing the above derivation of 𝑩̃ = 𝐽 𝑭−1𝑩, it is not hard to see

that

∇̃ · 𝑨̃ = 𝐽∇ · 𝑨 = 𝐽∇ · 𝐽−1𝑭 𝑨̃ (54)

holds for any vector field 𝑨, due to d𝑉 = 𝐽d𝑉̃ . For this reason, it is

natural to define 𝑴̃ = 𝐽 𝑭−1𝑴 .

More detailed derivations and applications can be seen in the

work of Dorfmann and Ogden [2014].

A.2 Derivatives in Forward Simulation

The Jacobian and Hessian terms of discrete thin-shell elastic energy

have been introduced in previous work, and we refer readers to

the work of Grinspun et al. [2006] or the work of Tamstorf and

Grinspun [2013] for a clear derivation. Next, we will concentrate on

the derivatives of discrete thin-shell hard-magnetic energy, which

is novel for the community of computer graphics.

For a triangle face with its three vertices located at 𝒙̃0, 𝒙̃1, 𝒙̃2 in the

material space, and 𝒙0, 𝒙1, 𝒙2 in the world space after deformation,

we define

𝑿̃ =

(

𝒙̃1 − 𝒙̃0 𝒙̃2 − 𝒙̃0
)

, (55)

𝑿 =

(

𝒙1 − 𝒙0 𝒙2 − 𝒙0
)

. (56)

Then the deformation gradient can be represented as

𝑭 = 𝑿 (𝑿̃T𝑿̃ )−1𝑿̃T + 𝒏𝒏̃T. (57)

Substituting 𝑭 into Equation (24), we obtain

𝜀magnetism = −𝐴̃ℎ

(

𝑿
(

𝑿̃T𝑿̃
)−1

𝑿̃T + 𝒏𝒏̃T
)

𝑴̃r · 𝑩applied

= −𝐴̃ℎ𝑿
(

𝑿̃T𝑿̃
)−1

𝑿̃T − 𝐴̃ℎ𝒏𝒏̃T𝑴̃r · 𝑩applied. (58)

Equation (58) actually separates the magnetic energy into two parts,

with the first part denoting the part contributed by remanence

component parallel to the face while the second part denoting the

part contributed by remanence component perpendicular to the face.

Denoting the two parts of magnetic energy as 𝜀1, 𝜀2 respectively,

then 𝜀magnetism = 𝜀1 + 𝜀2. Use [𝒆] to denote the cross product matrix

of the 3D vector 𝒆, and vec(𝑬) to denote the corresponding vector

of the matrix 𝑬 concatenated by column, and additionally define

𝑷 =

1

2𝐴

(

𝑩applied − 𝒏𝑩
T
applied

𝒏
)

, (59)

𝑸 =

(

[𝒙2 − 𝒙0] −[𝒙1 − 𝒙0]
)T

. (60)

Here 𝑷 ∈ R3×1, 𝑸 ∈ R6×3. Taking the derivative of the above

equation, we acquire their Jacobian terms as

d𝜀1

d𝑿
= − 𝐴̃ℎ

(

(

𝑿̃T𝑿̃
)−1

𝑿̃T𝑴̃r𝑩
T
applied

)T

, (61)

d𝜀2

d vec(𝑿 )
= − 𝐴̃ℎ𝑸𝑷 . (62)

Equation (61) has nothing to do with 𝑿 , thus the Hessian matrix is

only yielded from the second term of Equation (62):

d2𝜀magnetism

d vec(𝑿 )2
=

d2𝜀2

d vec(𝑿 )2

= − 𝐴̃ℎ
(

𝒏̃ · 𝑩applied

)

(

𝑸
( 3

4𝐴2
𝒏𝑩T

applied
𝒏𝒏T

−
1

4𝐴2

(

𝒏𝑩T
applied

+ 𝑩applied𝒏
T − 𝑩T

applied
𝒏𝑰

) )

𝑸T

+

(

0 [𝑷 ]

[𝑷 ]T 0

)

)

, (63)

where 𝑰 denotes the 3 × 3 identity matrix.
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