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Abstract

We propose Dirichlet Simplex Nest, a class of

probabilistic models suitable for a variety of data

types, and develop fast and provably accurate in-

ference algorithms by accounting for the model’s

convex geometry and low dimensional simplicial

structure. By exploiting the connection to Voronoi

tessellation and properties of Dirichlet distribu-

tion, the proposed inference algorithm is shown

to achieve consistency and strong error bound

guarantees on a range of model settings and data

distributions. The effectiveness of our model and

the learning algorithm is demonstrated by simula-

tions and by analyses of text and financial data.1

1. Introduction

For many complex probabilistic models, especially those

with latent variables, the probability distribution of interest

can be represented as an element of a convex polytope in a

suitable ambient space, for which model fitting may be cast

as the problem of finding the extreme points of the polytope.

For instance, a mixture density can be identified as a point

in a convex set of distributions whose extreme points are the

mixture components. In the well-known topic model (Blei

et al., 2003) for text analysis, a document corresponds to

a point drawn from the topic polytope, its extreme points

are the topics to be inferred. This convex geometric view-

point provides the basis for posterior contraction behavior

analysis of topic models, as well as developing fast geomet-

ric inference algorithms (Nguyen, 2015; Tang et al., 2014;

Yurochkin & Nguyen, 2016; Yurochkin et al., 2017).

The basic topic model – the Latent Dirichlet Allocation

(LDA) of Blei et al. (2003), as well as the comparable fi-

nite admixtures developed in population genetics (Pritchard
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et al., 2000) were originally designed for categorical data.

However, there are many real world applications in which

the convex geometric probabilistic modeling continues to

be a sensible approach, even if observed measurements are

no longer discrete-valued, but endowed with a variety of dis-

tributions. To expand the scope of admixture modeling for a

variety of data types, we propose to study Dirichlet Simplex

Nest (DSN), a class of probabilistic models that general-

izes the LDA, and to develop fast and provably accurate

inference algorithms by accounting for the model’s convex

geometry and its low dimensional simplicial structure.

The generative process given by a DSN is simple to de-

scribe: starting from a simplex B of K vertices embedded

in a high-dimensional ambient space S , one draws random

points from the B’s relative interior according to a Dirichlet

distribution. Given each such point, a data point is generated

according to a suitable probability kernel F . For the gen-

eral simplex nest, S can be any vector space of dimensions

D ≥ K − 1, while the probability kernel F can be taken

to be Gaussian, Multinomial, Poisson, etc, depending on

the nature of the observed data (continuous, categorical or

counts, resp.). If S is standard probability simplex, and F a

Multinomial distribution over categories, then the model is

reduced to the familiar LDA model of Blei et al. (2003).

Although several geometric aspects of the DSN can be found

in a vast array of well-known models in the literature, they

were rarely treated together. First, viewing data as noisy

observations from the low-dimensional affine hull that con-

tains B, our model shares an assumption that can be found

in both classical factor analysis and non-negative matrix fac-

torization (NMF) models (Lee & Seung, 2001), as well as

the work of Anandkumar et al. (2012); Arora et al. (2012b)

arising in topic models. Second, the convex constraints (i.e.,

linear weights of a convex combination are non-negative and

sum to one) are present in all latent variable probabilistic

modeling, even though most dominant computational ap-

proaches to inference such as MCMC sampling (Griffiths &

Steyvers, 2004) and variational inference (Blei et al., 2003;

Hoffman et al., 2013; Kucukelbir et al., 2017) do not appear

to take advantage of the underlying convex geometry.

As is the case with topic models, scalable parameter estima-

tion is a key challenge for the Dirichlet Simplex Nest. Thus,

our main contribution is a novel inference algorithm that
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accounts for the convex geometry and low dimensionality

of the latent simplex structure endowed with a Dirichlet

distribution. Starting with an original geometric technique

of Yurochkin & Nguyen (2016), we present several new

ideas allowing for more effective learning of asymmetric

simplicial structures and the Dirichlet’s concentration pa-

rameter for the general DSN model, thereby expanding its

applicability to a broad range of data distributions. We also

establish statistical consistency and estimation error bounds

for the proposed algorithm.

The paper proceeds as follows. Section 2 describes Dirichlet

Simplex Nest models and reviews existing geometric infer-

ence techniques. Section 3 elucidates the convex geometry

of the DSN via its connection to the Voronoi Tessellation of

simplices and the structure of Dirichlet distribution on low-

dimensional simplices. This helps motivate the proposed

Voronoi Latent Admixture (VLAD) algorithm. Theoretical

analysis of VLAD is given in Section 4. Section 5 presents

an exhaustive comparative study on simulated and real data.

We conclude with a discussion in Section 6.

2. Dirichlet Simplex Nest

We proceed to formally describe Dirichlet Simplex Nest

as a generative model. Let β1, . . . , βK ∈ S be K el-

ements in a D-dimensional vector space S, and define

B = Conv(β1, . . . , βK) as their convex hull. When

K ≤ D + 1, B is a simplex in general positions. Next,

for each i = 1, . . . , n, generate a random vector µi ∈ B

by taking µi :=
∑K

k=1 θikβk, where the corresponding co-

efficient vector θi = (θi1, . . . , θiK) ∈ ∆K−1 is generated

by letting θi ∼ DirK(α) for some concentration parameter

α ∈ RK
+ . Now, given µi the data point xi is generated by

xi|µi ∼ F (· | µi), where F is a given probability kernel

such that E[xi | θi] = µi for any i = 1, . . . , n.

Relation to existing models The DSN encompasses sev-

eral existing models in the literature. If we set S := ∆D−1

and likelihood kernel F (·) to Multinomial, then we recover

the LDA model (Blei et al., 2003). Other specific instances

include Gaussian-Exponential (Schmidt et al., 2009) and

Poisson-Gamma models (Cemgil, 2009).

Estimating B is a challenging task for the general Dirichlet

Simplex Nest model. Taking the perspective of Bayesian

inference, a standard MCMC implementation for the DSN

is likely computationally inefficient. In the case of LDA,

as noted in Yurochkin & Nguyen (2016), the inefficiency

of posterior inference can be traced to the need for approx-

imating the posterior distributions of the large number of

latent variables representing the topic labels. With the DSN

model, we bypass the representation of such latent variables

by integrating them out, but doing so at the cost of losing

conjugacy. An alternative technique is variational inference

(cf. Blei et al. (2017); Paisley et al. (2014)). While very

fast, this powerful method may be inaccurate in practice and

does not carry a strong theoretical guarantee.

Relation to NMF and archetypal analysis The DSN

provides a probabilistic justification for these methods,

which often impose an additional geometric condition on the

model known as separability that identifies the model param-

eters in a way that permits efficient estimation (Donoho &

Stodden, 2003; Arora et al., 2012a; Gillis & Vavasis, 2012).

Separability is somewhat related to a control on the Dirich-

let’s concentration parameter α, by setting α be sufficiently

small. The DSN allows for a probabilistic description of

the nature of the separation. Moreover, by addressing also

the case where α is large, the DSN modeling provides an

arguably more effective approach to archetypal analysis and

non-negative matrix factorization for non-separable data.

We remark that an approach proposed by (Huang et al.,

2016) also permits a more general geometric identification

condition called sufficiently scattered, but this generality

comes at the expense of efficient estimation.

Geometric inference Geometric Dirichlet Means (GDM)

algorithm of Yurochkin & Nguyen (2016) is a geometric

technique for estimating the (topic) simplex B that arises

in the Latent Dirichlet Allocation model. The basic idea

of GDM is simple: performing the K-means clustering

algorithm on the n points µi (or their estimates) to obtain

K centroids. These centroids cannot be a good estimate for

B’s vertices, but they provide reasonable directions toward

the vertices. Starting from the simplex’s estimated centroid,

the GDM constructs K line segments connecting to the

K centroids and suitably extends the rays to provide an

estimate for the K vertices. The GDM method is shown to

be accurate when either B is equilateral, or the Dirichlet

concentration parameter α is very small, i.e., most of the

points µis are concentrated near the vertices. The quality of

the estimates deteriorates in the absence of such conditions.

The deficiency of the GDM algorithm can be attributed to

several factors: first, for a general simplex, the K-means

centroids and the simplex’s vertices do not line up. Fortu-

nately, we will see that they may be lined up in a straight

line by a suitable affine transformation of the simplex struc-

ture. Second, the nature of the Dirichlet distribution on the

simplex is not pro-actively exploited, including that of pa-

rameter α. Third, typically K ≪ D, the affine hull of B is

a very low-dimensional structure, a fact not utilized by the

GDM algorithm. It turns out that these shortcomings may

be overcome by a careful consideration of the geometric

structure of the simplex and the Dirichlet distribution.

For illustrations, we consider a toy problem of learning ex-

treme points of simplex B, given Gaussian data likelihood

xi|µi ∼ N (µi, σ
2ID) and D = K = 3. The triangle is
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(a) GDM; time ≈ 1s
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(b) Xray; time < 1s
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(c) HMC; time ≈ 10m
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(d) VLAD; time < 1s

Figure 1: Toy simplex learning: n = 5000, D = 3,K = 3, α = 2.5, σ = 0.1.

chosen to be non-equilateral and Dirichlet concentration

parameter is set to α = 2.5. Figure 1a illustrates the dete-

riorating performance of the GDM. In Figure 1b, we also

observe Xray (Kumar et al., 2013), another recent NMF al-

gorithm, failing to solve the problem, as the aforementioned

separability assumption is violated for large α. On the other

hand, Figure 1c demonstrates the high accuracy of the pos-

terior mean obtained by Hamiltonian Monte Carlo (HMC)

(Neal et al., 2011; Hoffman & Gelman, 2014) implemented

using Stan (Carpenter et al., 2017), albeit at the cost of 10

minutes training time. Lastly our new algorithm (VLAD)

in Fig. 1d, exhibits an accuracy comparable to that of the

HMC and the run-time of the GDM algorithm.

3. Inference of the Dirichlet Simplex Nest

3.1. Simplicial Geometry

In order to motivate our algorithm, we elucidate the geome-

try of the DSN through the concept of Centroidal Voronoi

Tessellation (CVT) (Du et al., 1999) of a simplex B, a

convex subset of D-dimensional metric space S .

Definition 1 (Centroidal Voronoi Tessellation). Let Ω ⊂ S
be an open set equipped with a distance function d and a

probability density ρ. For a set of K points c1, . . . , cK , the

Voronoi cell corresponding to ck is the set

Vk = {x ∈ Ω : d(x, ck) < d(x, cl) for any l 6= k}.
The collection of Voronoi cells V1, . . . , VK is a tessellation

of Ω; i.e. the cells are disjoint and ∪kVk = Ω. If c1, . . . , cK
are also the centroids of their respective Voronoi cells, i.e.,

ck =
1∫

Vk

ρ(x)dx

∫

Vk

xρ(x)dx

the tessellation is a Centroidal Voronoi Tessellation.

CVTs are special: any set of k points induces a Voronoi tes-

sellation, but these points are generally not the centroids of

their associated cells. One can check that a CVT minimizes

J(c1, . . . , cK) =

∫

Vk

d(x, ck)
2ρ(x)dx.

It is a fact that J has a unique global minimizer as long as

ρ vanishes on a set of measure zero, the Voronoi cells are

convex, and the distance function is convex in each argu-

ment (Du et al., 1999). Moreover, it can be seen that the

centroids of the CVT of an equilateral simplex equipped

with the DirK(α) distribution fall on the line segments be-

tween the centroid of the simplex and the extreme points of

the simplex, but this is not the case when the simplex shape

is non-equilateral (cf. Fig. 1a).

The following lemma formalizes the aforementioned insight

to a simplex of arbitrary shape B by considering a suitably

modified distance function d(·, ·) of the CVT. (In Fig. 1d,

the blue, purple and yellow dots are the sample versions

of the Voronoi cells of the CVT under the new distance

function and the corresponding centroids are in red.)

Lemma 1. Let B ∈ RD×K denote the matrix form of sim-

plex B. Suppose it has full (column) rank, equipped with

distance function ‖·‖(BBT )† and the probability distribution

PB defined as

PB(S) = Prob({θ ∈ ∆K−1 : Bθ ∈ S}),

where θ is distributed by symmetric Dirichlet density ρα :=
DirK(α), for any S ⊂ int(B), and A† denotes a pseudo-

inverse of A. The centroids of its CVT fall on the line

segments connecting the centroid of B to β1, . . . , βK .

Proof. Let c1, . . . , cK and V1, . . . , VK be the centroids and

cells of the CVT of ∆K−1 equipped with Euclidean dis-

tance and DirK(α) density ρα. It suffices to verify that

Bc1, . . . , BcK and BV1, . . . , BVK are the centroids and

cells of the CVT of B = B∆K−1. By a change of vari-

ables formula,

argmin

{

∫

BVk

‖x−Bv‖2(BBT )†ρα(B
†x)| det(B†)|dx

∫

Vk

ρα(B†x)| det(B†)|dx : v ∈ Vk

}

= argmin

{

∫

Vk

‖Bθ −Bv‖2(BBT )†ρα(θ)dθ
∫

Vk

ρα(θ)dθ
: v ∈ Vk

}

= argmin

{

∫

Vk

‖θ − v‖22ρα(θ)dθ
∫

Vk

ρα(θ)dθ
: v ∈ Vk

}

,

which we recognize as the centroids of the CVT of ∆K−1

under ℓ2 metric. Since ∆K−1 is a standard simplex and

therefore equilateral, the centroids of the CVT of equilateral
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simplex fall on the line segments connecting the centroid of

the simplex to its extreme points.

Lemma 1 suggests an algorithm to estimate the extreme

points of B. First, estimate the centroids of the CVT of

B (equipped with scaled Euclidean norm ‖ · ‖(BBT )† ) and

search along the rays extending from the centroid of B

through the CVT centroids for the simplicial vertices.

3.2. The Voronoi Latent Admixture (VLAD) Algorithm

We first consider the noiseless problem, F (· | µ) = δµ.

That is, xi = µis are observed. In this case, Lemma 1

suggests estimating the CVT centroids by scaled K-means

optimization:

argmin
c1,...,cK

{
1
2

∑K
k=1

∑
xi∈Vk

(xi − ck)
T (BBT )†(xi − ck)

}
,

(1)

Unfortunately, the scaled Euclidean norm ‖ · ‖(BBT )† is

unknown. We propose an equivalent approach that does not

depend on knowledge of BBT .

In the noiseless case, observe that the population covariance

matrix of the samples takes the form Σ = BSBT , where

S is the covariance matrix of a Dir(α) random variable on

∆K−1. By the standard properties of the Dir(α) distribution,

it can be seen that S = 1
K(Kα+1)P , where P = IK −

1
K1K1

T
K is the centering matrix. Hence, knowledge of Σ

will be sufficient because the centered data points x fall in

span(Σ) = span(BPBT ): For each (θ, x) pair,

x̄ := Bθ︸︷︷︸
x

− 1
KB1
︸ ︷︷ ︸
E[x]

= Bθ − 1
KB1(1T θ︸︷︷︸

=1

) = BPθ := Bθ̄.

(2)

This suggests that the centroids of the CVT may be recov-

ered by clustering the centered data points in the ‖ · ‖Σ†-

norm. This insight is formalized by

Lemma 2. The centroids of the CVT of simplex B under

‖ · ‖(BBT )†-norm are given by {c∗k + c0|k = 1, . . . ,K},
where (c∗1, . . . , c

∗
K) solves the minimization

min
c1,...,cK
V1,...,VK

1

2

K∑

k=1

∫

x∈BVk

(x̄− ck)
TΣ†(x̄− ck)ρ(x)dx (3)

and c0 =
∫
xρ(x)dx is the centroid of simplex B.

Proof. We first show that (3) is equivalent to (unscaled)

K-means clustering on ∆K−1. Note that Σ = δBPBT

for some δ > 0. Without loss of generality, we restrict to

ck’s in span{BPBT }. Write ck = BPvk for vk ∈ RK , for

k = 1, . . . ,K. Recalling (2) and the fact P is a projector,

(1/δ)
∑K

k=1

∫
x∈BVk

(x̄− ck)
TΣ†(x̄− ck)ρ(x)dx

=
∑K

k=1

∫
θ∈Vk

(θ̄ − vk)
TPBTΣ†BP (θ̄ − vk)ρα(θ)dθ

=
∑K

k=1

∫
θ∈Vk

(θ̄ − vk)
TP (θ̄ − vk)ρα(θ)dθ

=
∑K

k=1

∫
θ∈Vk

‖θ̄ − Pvk‖22ρα(θ)dθ. (4)

Since θ is distributed by the symmetric Dirichlet ρα =
Dir(α) on ∆K−1, the last equality entails that the optimal

vk’s are the points which represent the barycentric coor-

dinate of the centroids of the CVT of ∆K−1. Thus, the

optimal solution for ck = BPvk represents the centroids of

the CVT of simplex B under ‖ · ‖(BBT )†-norm (using the

coordinating system that is centered at origin c0).

We proceed to address the optimization (3) applied to em-

pirical data to arrive at Voronoi Latent Admixture (VLAD)

algorithm in Algorithm 1. We utilize the singular value de-

composition (SVD) of the centered data points to simplify

computation. Let X̄ ∈ Rn×D be the matrix whose rows are

the centered data points and X̄ = UΛWT be its SVD. Each

term in the objective of (3) is equivalent to, with Σ being

replaced by its empirical version, Σn = 1
nWΛ2WT :

(x̄i − ck)
TΣ†

n(x̄i − ck) =

n(ui − ηk)
TΛWTWΛ−2WTWΛ(ui − ηk) = n‖ui − ηk‖22,

where x̄i = WΛui, and set ck = WΛηk. Thus, instead of

performing scaled K-means clustering in S, it suffices to

perform standard K-means in the low (K − 1) dimensional

space. This yields a significant computational speed-up.

After applying VLAD, the weights θi’s can be obtained by

projecting the data points onto B and compute the barycen-

tric coordinates of the projected points.

Algorithm 1 Voronoi Latent Admixture (VLAD)

Input: data x1, . . . , xn; K; extension parameter γ.

Output: simplex vertices β1, . . . , βK

1: ĉ0 ← 1
n

∑
i xi {find data center}

2: x̄i ← xi − ĉ0, i = 1, . . . , n {centering}

3: compute top K− 1 singular factors of the centered data

matrix X̄ ∈ Rn×D: X̄ = UΛWT

4: η1, . . . , ηK ← K-means(u1, . . . , un), where the ui’s

are the rows of U ∈ Rn×(K−1)

5: ĉk ←WΛηk + ĉ0
6: β̂k ← ĉ0 + γ(ĉk − ĉ0)

It remains to estimate the extreme points βks given the

CVT centroids cks. This task is simplified by two observa-

tions: First, the CVT centroids reside on the line segment

between the centroid of simplex B and its extreme points,

per Lemma 1. Thus we merely need to estimate the ratio of
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the distance from the extreme point to the centroids of B

and the distance from the CVT centroids to the centroid of

B. Due to the symmetry of DirK(α) distribution on ∆K−1,

this ratio is identical for all extreme points – we refer to

this ratio as the extension parameter γ. Secondly, γ does

not depend on the geometry of B, only that of the Dirichlet

distribution. Thus, γ can be easily estimated by appealing

to a Monte Carlo technique on DirK . This subroutine is

summarized in Algorithm 2, provided that α is given.

Algorithm 2 Evaluating extension parameters

1: generate θ1, . . . , θm ∼ DirK(α), where m is the num-

ber of Monte Carlo samples

2: v1, . . . , vK ← K-means(θ1, . . . , θm)

3: γ ←
√
K2 −K

(∑K
l=1 ‖vl − 1

K1K‖2
)−1

3.3. Estimating the Dirichlet Concentration Parameter

Next, we describe how to estimate concentration parameter

α from the data, by employing a moment-based approach.

Recall from the previous section that there is an one-to-one

mapping between α and the extension parameter γ. For each

α > 0, let γ(α) > 0 denote the corresponding extension

parameter and B(γ) ∈ RD×K the estimator of B output

by VLAD with extension parameter γ. In the absence of

noise, the covariance matrix of the DSN model has the form

BS(α)BT , where S(α) ∈ RK×K is the covariance matrix

of a Dir(α) random variable on ∆K−1. This suggests we

estimate α by a generalized method of moments approach:

α̂ = argmin
α>0

‖B̂(γ(α))S(α)B̂(γ(α))T − Σ̂‖, (5)

where Σ̂ is the sample covariance matrix Σ̂ = 1
nX̄

T X̄ . We

remark that there is no need to run VLAD multiple times

to evaluate the objective in (5) at multiple α-values. After

VLAD is run once, we may evaluate γ(α) for any value of

γ by affinely transforming the output of VLAD. Further, (5)

is a scalar optimization problem, so the computational cost

of solving (5) is negligible.

In the presence of noise, the covariance matrix of the DSN

model no longer has the form BS(α)BT . We need to

add a correction term to ensure a consistent estimator of

BS(α)BT . For example, if the noise is Gaussian, a consis-

tent estimator of BS(α)BT is

Σ̃ = Σ̂− σ̂2ID,

where σ̂2 is an estimate of the noise variance. In the Sup-

plement, we give consistent estimators of BS(α)BT for

multinomial and Poisson noise. With a good estimator Σ̃
of BS(α)BT in place, we replace Σ̂ in (5) by Σ̃ and then

solve (5) to obtain an estimate of α.

4. Consistency and Estimation Error Bounds

In this section we establish consistency properties and error

bound guarantees of the VLAD procedure.

For c = (c1, . . . , cK) ∈ RK×D, define φA : RD ×
RK×D → R as

φA(x, c) = mink∈{1,...,K} ‖x− ck‖2A†

where A is a positive semidefinite matrix. Recall Σ as the

covariance matrix of the data generating distribution and Σn

its empirical counterpart. In the algorithm, we work with

the best rank K − 1 approximation of Σn, which we denote

by (Σn)
K . Let Q denote the distribution for µis. Recall

that Xi|µi ∼ F (·|µi). Let P be the induced distribution

corresponding to X̃i, which is the projection of Xi on the

affine space of dimension K − 1 spanned by the top K − 1
eigenvectors of Σ. We also use Pn to denote the empirical

distribution of the data represented by random variables Xi.

Since K-means clustering is a subroutine of our algorithm,

we expect at least some sort of condition requiring that the

K-means clustering routine be well-behaved in some sense.

To that end we need the following standard condition on the

population K-means objective (cf. Pollard (1981)).

(a.1) Pollard’s regularity criterion (PRC): The Hessian ma-

trix of the function c 7→ QφBSBT (·, c) evaluated at c∗

for all optimizers c∗ of QφBSBT (·, c) is positive defi-

nite, with minimum eigenvalue λ0 > 0.

It turns out that this will be all we need for the following the-

orem in the noiseless setting, where we have Σ = BSBT =

(Σ)K has rank K − 1 and so, P = Q and X̃i
L
= Xi.

Theorem 1. Consider the noiseless setting, i.e., F (· | µ) =
δµ. Suppose that B = Conv(β1, . . . , βK) is the true topic

simplex, while (β1n, . . . , βKn) are the vertex estimates ob-

tained by VLAD algorithm. Moreover, assume the error

due to Monte Carlo estimates of the extension parameter is

negligible. Provided that condition (a.1) holds,

min
π
‖(βπ(1)n, . . . , βπ(K)n)− (β1, . . . , βK)‖ = OP(n

−1/2),

where the minimization is taken over all permutations π of

{1, . . . ,K}.

Note that the constant corresponding to the rate OP(n
−1/2)

is dependent on the Hessian matrix of the function c 7→
PφΣ(·, c). The proof for Theorem 1 is in the Supplement.

In general, F (· | µ) is not degenerate. Due to the presence of

"noise" in the K−1 SVD subspace, the estimates of the CVT

centroids may be inconsistent, which entails inconsistency

of the VLAD’s estimate for B. The following theorem

provides an error bound in the general setting. We need a
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strengthening of Pollard’s Regularity Criterion. Let (Σ)K

denote the best K− 1 rank approximation of Σ with respect

to the Frobenius norm. Assume:

(a.2) The Hessian matrix of the function c 7→ Pφ(Σ)K (·, c)
evaluated at c∗ for all optimizers c∗ of Pφ(Σ)K (·, c) is

uniformly positive definite with minimum eigenvalue

λ0 > 0, for all (Σ)K such that (Σ − BSBT ) ≤ ǫ̃ID,

for some ǫ̃ > 0.

The noise level is formalized by the following conditions:

(b) There is ǫ0 > 0 such that ǫ0ID−Cov(X|θ) is positive

semi-definite uniformly over θ ∈ ∆K−1.

(c) There exists M0 such that for all M > M0,∫
B(

√
M,c0)c

‖x − c0‖22g(x)dx ≤ k1

M , for some univer-

sal constant k1, where B(
√
M, c0) is a ball of radius√

M around population centroid c0 and g(·) is the den-

sity of P with respect to the Lebesgue measure on the

K−1 dimensional space which contains the top K−1
eigenvectors of BSBT + ǫ0ID.

Theorem 2. Suppose that B = Conv(β1, . . . , βK) is sim-

plex corresponding to extreme points of the DSN. Let

(β1n, . . . , βKn) be the corresponding extreme point esti-

mates obtained by the VLAD algorithm. Assume the error

in the Monte Carlo estimates of the extension parameter is

negligible. Provided that (a.2), (b) and (c) hold, then

minπ ‖(βπ(1)n, . . . , βπ(K)n)− (β1, . . . , βK)‖2 =

O

(√
ǫ
1/3
0 /λ0

)
+OP(n

−1/2), (6)

where π ranges over permutations of {1, . . . ,K}.

The constant corresponding to the rate OP(n
−1/2) in the

above theorem, depends on the Hessian matrix of the func-

tion c 7→ PφΣ(·, c). The constant corresponding to the

O

(√
ǫ
1/3
0 /λ0

)
is dependent on the minimum and maxi-

mum eigenvalues of the matrix BSBT .

The preceding results control the error incurred by the

VLAD algorithm when the concentration parameter α is

known. When α is unknown, our proposed solution in

Section 3.3 performs well in both simulated and real-data

experiments. We do not know in theory whether the concen-

tration parameter α is identifiable, we shall present empirical

results in the Supplement which suggest identifiability. As-

suming a condition which guarantees model identifiability,

we can establish that the estimate obtained by the VLAD

algorithm via (5) is in fact consistent.

Theorem 3. Assume that function ϕ(α̃) = γ(α̃)2

K(Kα̃+1) is

monotonically increasing in α̃, where γ(α̃) is the extension

Table 1: Baselines and required conditions

Method Conjugacy True α Separability

VLAD (this work) × × ×
VLAD-α (this work) × √ ×
Gibbs (2004)

√ √⋆ ×
Stan-HMC (2017) × √⋆ ×
SVI (2013)

√ √⋆ ×
GDM (2016) × × √⋆

RecoverKL (2013) × × √
SPA (2012) × × √
MVES (2009) × × √
Xray (2013) × × √

parameter corresponding to α̃. Let α0 ∈ C be the true

concentration parameter for some compact set C . Let α̂n =
argminα∈C ‖B̂(γ(α))S(α)B̂(γ(α))T − Σ̃n‖, where Σ̃n is

a consistent estimator of BS(α)BT . Then,

‖α̂n − α0‖ P−→ 0. (7)

5. Experiments

The goal of our experimental studies is to demonstrate the

applicability and efficiency of our algorithm for a number of

choices of the DSN probability kernel: Gaussian, Poisson

and Multinomial (i.e. LDA). We summarize all competing

estimation procedures in our comparative study and their

corresponding underlying assumptions in Table 1.

We remark that Gibbs sampler (Griffiths & Steyvers, 2004),

Stan implementation of No U-Turn HMC (Hoffman & Gel-

man, 2014; Carpenter et al., 2017) and Stochastic Variational

Inference (SVI) (Hoffman et al., 2013) may be augmented

with techniques such as empirical Bayes to estimate hy-

perparameter α, although it may slow down convergence.

We instead allow these baselines to use true values of α in

all simulated experiments to their advantage; when latent

simplex is of general geometry (i.e. non-equilateral), GDM

(Yurochkin & Nguyen, 2016) requires α → 0 to perform

well, which is alike separability. Not all baselines are suit-

able for all three probability kernels, i.e. Gibbs sampler

and SVI rely on (local) conjugacy and are only applicable

in the LDA scenario; RecoverKL (Arora et al., 2013) is an

algorithm that relies on a separability condition (i.e. anchor

words) designed for topic models.

In simulated experiments we will consider both VLAD with

estimated concentration parameter α following our results

in Section 3.3 and VLAD trained with the knowledge of

true data generating α (VLAD-α). For real data analysis,

we estimate the concentration parameter by (5) and apply

VLAD to a text corpus and stock market data set.
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Figure 2: Minimum matching distance for increasing n

0.2 0.4 0.6 0.8 1.0
Gaussian likelihood: cmin

10

20

30

40

50

60

M
in

im
um

 m
at

ch
in

g 
di

st
an

ce

VLAD-α
GDM
VLAD
Xray
Stan-HMC
SPA
MVES
GDM-MC

(a) Gaussian data

0.2 0.4 0.6 0.8 1.0
Poisson likelihood: cmin

10

20

30

40

50

60

70

80

M
in

im
um

 m
at

ch
in

g 
di

st
an

ce

VLAD-α
GDM
VLAD
Xray
Stan-HMC
SPA
MVES
GDM-MC

(b) Poisson data

0.2 0.4 0.6 0.8 1.0
Multinomial likelihood: cmin

0.00

0.01

0.02

0.03

0.04

0.05

0.06

M
in

im
um

 m
at

ch
in

g 
di

st
an

ce

VLAD-α
GDM
VLAD
RecoverKL
Gibbs
SVI
GDM-MC

(c) Categorical data

Figure 3: Minimum matching distance for varying DSN geometry.

5.1. Comparative Simulation Studies

Convergence behavior We investigate the convergence

of the estimates of the DSN extreme points for the three

likelihood kernels under the increasing sample size. The

hyperparameter settings are D = 500,K = 10, α = 2 (for

LDA vocabulary size D = 2000). To ensure non-trivial ge-

ometry of the DSN we rescale extreme points towards their

mean by uniform random factors between 0.5 and 1. We use

the Minimum Matching distance - a metric previously stud-

ied in the context of polytopes estimation (Nguyen, 2015) to

compare the quality of the fitted DSN model returned by a

variety of inference algorithms. We defer additional details

to the supplement.

In Fig. 2 we see that VLAD and VLAD-α significantly out-

perform all baselines. Further, the estimation error reduces

with increased sample size verifying statements of Theo-

rems 2 and 3. We note that Stan HMC may also achieve

good performance, however it is very costly to fit (e.g., 40

HMC iterations for Poisson case and n = 30000 took 14

hours compared to 7 seconds for VLAD), therefore we had

to restrict number of iterations, which explains its wider

error bars across experiments.

Geometry of the DSN To study the role of geometry of the

DSN we rescale extreme points towards their mean by uni-

form random factors ck ∼ Unif(cmin, 1) for k = 1, . . . ,K

and vary cmin in Fig. 3 (smaller values imply more severe

skewness of the latent simplex). To isolate the effect of the

geometry of the DSN, we compare to GDM combined with

knowledge of true α and extension parameter estimation

using Algorithm 2 (GDM-MC). If the underlying simplex

is equilateral, GDM-MC will be equivalent to VLAD-α.

In Fig. 3 we see that VLAD and VLAD-α are robust to

varying skewness of the DSN. On the contrary, GDM-MC

is only accurate when the latent simplex becomes closer to

equilateral. This experiment verifies geometric motivation

of our work — in practice we can not expect latent geometric

structure to be necessarily equilateral and geometrically

robust method such as VLAD is more reliable.

Varying Dirichlet prior To complete our simulation studies

we verify α estimation procedure proposed in Section 3.3

and analyzed in Theorem 3. It is also interesting to compare

performance of other baselines for larger α — scenario often

overlooked in the literature.

In Fig. 4 (and in previous experiments) we see that perfor-

mance gap between VLAD and VLAD-α is very small, sup-

porting effectiveness of our α estimation procedure across

probability kernels. Additionally, we see that higher val-

ues of α lead to degrading performance of all considered

methods, however VLAD degrades more gracefully.
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Figure 4: Minimum matching distance for increasing α.

Table 2: NYT topic modeling (categorical data) || Stock data factor analysis (continuous data)

Perplexity Coherence Time Frobenius norm Volume Time

VLAD 1767 0.86 6min 0.300 0.14 1s

GDM 1777 0.88 30min 0.294 1499 1s

Gibbs || HMC 1520 0.80 5.3hours 0.299 1.95 10min

RecoverKL || MVES 2365 0.70 17min 0.287 5.39× 109 3min

SVI || SPA 1669 0.81 40min 0.392 3.31× 107 1s

5.2. Real Data Analysis

Topic modeling We analyze a collection of news articles

from the New York Times. After preprocessing, we have

5320 unique words and 100k training documents with 25k

left out for perplexity evaluation. We also compare semantic

coherence of the topics (Newman et al., 2010).

In Table 2 (left) we present results for K = 80 topics. The

Gibbs sampler has the best perplexity score, but it falls

behind in topic coherence. VLAD estimated α = 0.05 and

has approximately same perplexity and coherence as GDM,

while being 5 times faster. VLAD identified contextually

meaningful topics, as can be seen from good coherence

score and by eye-balling the topics — they cover a variety

of concepts from fishing and cooking to the Enron scandal

and cancer. The top 20 words for each of the VLAD topics

are provided along with the code.

Stock market analysis We collect variations (closure mi-

nus opening price) for 3400 days and 55 companies. We

train several algorithms on data from the first 3000 days and

report the average distance between the data points from

the last 400 days and fitted simplices (i.e., Frobenius norm).

This metric alone might be misleading since stretching any

simplex will always reduce the score, therefore we also re-

port the volumes of corresponding simplices. Results are

summarized in Table 2 (right) — our method (estimated

α = 0.05) achieves comparable fit in terms of the Frobenius

norm with a more compact simplex. Among the factors

identified by VLAD, we notice a growth component related

to banks (e.g., Bank of America, Wells Fargo). Another

factor suggests that the performance of fuel companies like

Valero Energy and Chevron are inversely related to the per-

formance of defense contractors (Boeing, Raytheon).

6. Summary and Discussion

The Dirichlet Simplex Nest model generalizes a number of

popular models in machine learning applications, including

LDA and several variants of non-negative matrix factoriza-

tion (NMF). We also develop an algorithm that exploits the

geometry of the DSN to perform fast and accurate inference.

We demonstrate the superior statistical and computational

properties of the algorithm on several real datasets and ver-

ify its accuracy through simulations.

One of the key distinctions between the DSN model and

NMF models is we replace the separability assumption by

a Dirichlet prior on the weights. The main benefit of this

approach is it enables us to model data that does not contain

archetypal points (Cutler & Breiman, 1994). Among the

limitations of our approach is the reliance on the Dirichlet

distribution assumption in a crucial way, that the Dirichlet

distribution is symmetric on the standard probability sim-

plex ∆K−1. In theory, the algorithm breaks down when the

Dirichlet distribution is asymmetric. Surprisingly, in simu-

lations at least, we found that VLAD seems quite robust in

recovering the correct direction of extreme points, even as

most existing methods break down in such situations. These

findings are reported in the Supplement.
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