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Abstract

We propose Dirichlet Simplex Nest, a class of
probabilistic models suitable for a variety of data
types, and develop fast and provably accurate in-
ference algorithms by accounting for the model’s
convex geometry and low dimensional simplicial
structure. By exploiting the connection to Voronoi
tessellation and properties of Dirichlet distribu-
tion, the proposed inference algorithm is shown
to achieve consistency and strong error bound
guarantees on a range of model settings and data
distributions. The effectiveness of our model and
the learning algorithm is demonstrated by simula-
tions and by analyses of text and financial data.’

1. Introduction

For many complex probabilistic models, especially those
with latent variables, the probability distribution of interest
can be represented as an element of a convex polytope in a
suitable ambient space, for which model fitting may be cast
as the problem of finding the extreme points of the polytope.
For instance, a mixture density can be identified as a point
in a convex set of distributions whose extreme points are the
mixture components. In the well-known topic model (Blei
et al., 2003) for text analysis, a document corresponds to
a point drawn from the topic polytope, its extreme points
are the topics to be inferred. This convex geometric view-
point provides the basis for posterior contraction behavior
analysis of topic models, as well as developing fast geomet-
ric inference algorithms (Nguyen, 2015; Tang et al., 2014;
Yurochkin & Nguyen, 2016; Yurochkin et al., 2017).

The basic topic model — the Latent Dirichlet Allocation
(LDA) of Blei et al. (2003), as well as the comparable fi-
nite admixtures developed in population genetics (Pritchard
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et al., 2000) were originally designed for categorical data.
However, there are many real world applications in which
the convex geometric probabilistic modeling continues to
be a sensible approach, even if observed measurements are
no longer discrete-valued, but endowed with a variety of dis-
tributions. To expand the scope of admixture modeling for a
variety of data types, we propose to study Dirichlet Simplex
Nest (DSN), a class of probabilistic models that general-
izes the LDA, and to develop fast and provably accurate
inference algorithms by accounting for the model’s convex
geometry and its low dimensional simplicial structure.

The generative process given by a DSN is simple to de-
scribe: starting from a simplex 2 of K vertices embedded
in a high-dimensional ambient space S, one draws random
points from the Z’s relative interior according to a Dirichlet
distribution. Given each such point, a data point is generated
according to a suitable probability kernel F'. For the gen-
eral simplex nest, S can be any vector space of dimensions
D > K — 1, while the probability kernel F' can be taken
to be Gaussian, Multinomial, Poisson, etc, depending on
the nature of the observed data (continuous, categorical or
counts, resp.). If S is standard probability simplex, and F' a
Multinomial distribution over categories, then the model is
reduced to the familiar LDA model of Blei et al. (2003).

Although several geometric aspects of the DSN can be found
in a vast array of well-known models in the literature, they
were rarely treated together. First, viewing data as noisy
observations from the low-dimensional affine hull that con-
tains 4, our model shares an assumption that can be found
in both classical factor analysis and non-negative matrix fac-
torization (NMF) models (Lee & Seung, 2001), as well as
the work of Anandkumar et al. (2012); Arora et al. (2012b)
arising in topic models. Second, the convex constraints (i.e.,
linear weights of a convex combination are non-negative and
sum to one) are present in all latent variable probabilistic
modeling, even though most dominant computational ap-
proaches to inference such as MCMC sampling (Griffiths &
Steyvers, 2004) and variational inference (Blei et al., 2003;
Hoffman et al., 2013; Kucukelbir et al., 2017) do not appear
to take advantage of the underlying convex geometry.

As is the case with topic models, scalable parameter estima-
tion is a key challenge for the Dirichlet Simplex Nest. Thus,
our main contribution is a novel inference algorithm that
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accounts for the convex geometry and low dimensionality
of the latent simplex structure endowed with a Dirichlet
distribution. Starting with an original geometric technique
of Yurochkin & Nguyen (2016), we present several new
ideas allowing for more effective learning of asymmetric
simplicial structures and the Dirichlet’s concentration pa-
rameter for the general DSN model, thereby expanding its
applicability to a broad range of data distributions. We also
establish statistical consistency and estimation error bounds
for the proposed algorithm.

The paper proceeds as follows. Section 2 describes Dirichlet
Simplex Nest models and reviews existing geometric infer-
ence techniques. Section 3 elucidates the convex geometry
of the DSN via its connection to the Voronoi Tessellation of
simplices and the structure of Dirichlet distribution on low-
dimensional simplices. This helps motivate the proposed
Voronoi Latent Admixture (VLAD) algorithm. Theoretical
analysis of VLAD is given in Section 4. Section 5 presents
an exhaustive comparative study on simulated and real data.
We conclude with a discussion in Section 6.

2. Dirichlet Simplex Nest

We proceed to formally describe Dirichlet Simplex Nest
as a generative model. Let §31,...,8x € S be K el-
ements in a D-dimensional vector space S, and define
# = Conv(f,...,0K) as their convex hull. When
K < D+ 1, £ is asimplex in general positions. Next,
for each ¢ = 1,...,n, generate a random vector u; € %
by taking p; := Zle 0,1 Bk, where the corresponding co-
efficient vector 0; = (6;1,...,0;x) € AKX~ is generated
by letting §; ~ Dirg («) for some concentration parameter
a € Rf . Now, given u; the data point x; is generated by
xilpi ~ F(- | w;), where F is a given probability kernel
such that E[z; | 6;] = p; forany i =1,...,n.

Relation to existing models The DSN encompasses sev-
eral existing models in the literature. If we set S := AP~1
and likelihood kernel F'(-) to Multinomial, then we recover
the LDA model (Blei et al., 2003). Other specific instances
include Gaussian-Exponential (Schmidt et al., 2009) and
Poisson-Gamma models (Cemgil, 2009).

Estimating & is a challenging task for the general Dirichlet
Simplex Nest model. Taking the perspective of Bayesian
inference, a standard MCMC implementation for the DSN
is likely computationally inefficient. In the case of LDA,
as noted in Yurochkin & Nguyen (2016), the inefficiency
of posterior inference can be traced to the need for approx-
imating the posterior distributions of the large number of
latent variables representing the topic labels. With the DSN
model, we bypass the representation of such latent variables
by integrating them out, but doing so at the cost of losing
conjugacy. An alternative technique is variational inference

(cf. Blei et al. (2017); Paisley et al. (2014)). While very
fast, this powerful method may be inaccurate in practice and
does not carry a strong theoretical guarantee.

Relation to NMF and archetypal analysis The DSN
provides a probabilistic justification for these methods,
which often impose an additional geometric condition on the
model known as separability that identifies the model param-
eters in a way that permits efficient estimation (Donoho &
Stodden, 2003; Arora et al., 2012a; Gillis & Vavasis, 2012).
Separability is somewhat related to a control on the Dirich-
let’s concentration parameter «, by setting o be sufficiently
small. The DSN allows for a probabilistic description of
the nature of the separation. Moreover, by addressing also
the case where « is large, the DSN modeling provides an
arguably more effective approach to archetypal analysis and
non-negative matrix factorization for non-separable data.
We remark that an approach proposed by (Huang et al.,
2016) also permits a more general geometric identification
condition called sufficiently scattered, but this generality
comes at the expense of efficient estimation.

Geometric inference Geometric Dirichlet Means (GDM)
algorithm of Yurochkin & Nguyen (2016) is a geometric
technique for estimating the (topic) simplex 4 that arises
in the Latent Dirichlet Allocation model. The basic idea
of GDM is simple: performing the K-means clustering
algorithm on the n points u; (or their estimates) to obtain
K centroids. These centroids cannot be a good estimate for
A’s vertices, but they provide reasonable directions toward
the vertices. Starting from the simplex’s estimated centroid,
the GDM constructs K line segments connecting to the
K centroids and suitably extends the rays to provide an
estimate for the K vertices. The GDM method is shown to
be accurate when either & is equilateral, or the Dirichlet
concentration parameter « is very small, i.e., most of the
points ;s are concentrated near the vertices. The quality of
the estimates deteriorates in the absence of such conditions.

The deficiency of the GDM algorithm can be attributed to
several factors: first, for a general simplex, the K -means
centroids and the simplex’s vertices do not line up. Fortu-
nately, we will see that they may be lined up in a straight
line by a suitable affine transformation of the simplex struc-
ture. Second, the nature of the Dirichlet distribution on the
simplex is not pro-actively exploited, including that of pa-
rameter . Third, typically K < D, the affine hull of Z is
a very low-dimensional structure, a fact not utilized by the
GDM algorithm. It turns out that these shortcomings may
be overcome by a careful consideration of the geometric
structure of the simplex and the Dirichlet distribution.

For illustrations, we consider a toy problem of learning ex-
treme points of simplex %, given Gaussian data likelihood
xilu; ~ N(pi,0?Ip) and D = K = 3. The triangle is
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(a) GDM; time ~ 1s

(b) Xray; time < 1s

(¢) HMC; time ~ 10m (d) VLAD; time < 1s

Figure 1: Toy simplex learning: n = 5000,D = 3, K =3, = 2.5,0 = 0.1.

chosen to be non-equilateral and Dirichlet concentration
parameter is set to o = 2.5. Figure 1a illustrates the dete-
riorating performance of the GDM. In Figure 1b, we also
observe Xray (Kumar et al., 2013), another recent NMF al-
gorithm, failing to solve the problem, as the aforementioned
separability assumption is violated for large . On the other
hand, Figure 1c demonstrates the high accuracy of the pos-
terior mean obtained by Hamiltonian Monte Carlo (HMC)
(Neal et al., 2011; Hoffman & Gelman, 2014) implemented
using Stan (Carpenter et al., 2017), albeit at the cost of 10
minutes training time. Lastly our new algorithm (VLAD)
in Fig. 1d, exhibits an accuracy comparable to that of the
HMC and the run-time of the GDM algorithm.

3. Inference of the Dirichlet Simplex Nest
3.1. Simplicial Geometry

In order to motivate our algorithm, we elucidate the geome-
try of the DSN through the concept of Centroidal Voronoi
Tessellation (CVT) (Du et al., 1999) of a simplex 4, a
convex subset of D-dimensional metric space S.
Definition 1 (Centroidal Voronoi Tessellation). Let Q C S
be an open set equipped with a distance function d and a
probability density p. For a set of K points cy, ..., ck, the
Voronoi cell corresponding to cy, is the set

Vi ={z € Q:d(x,cr) < d(z,c) forany | # k}.

The collection of Voronoi cells V7, ..., Vi is a tessellation
of 2; i.e. the cells are disjoint and U Vi, = Q. If ¢y, ..., cx
are also the centroids of their respective Voronoi cells, i.e.,

1
L = 7ka (2 /Vk zp(x)dx

the tessellation is a Centroidal Voronoi Tessellation.

CVTs are special: any set of k points induces a Voronoi tes-
sellation, but these points are generally not the centroids of
their associated cells. One can check that a CVT minimizes

J(ch...,cK):/V d(x, ct)?p(x)d.

It is a fact that J has a unique global minimizer as long as
p vanishes on a set of measure zero, the Voronoi cells are

convex, and the distance function is convex in each argu-
ment (Du et al., 1999). Moreover, it can be seen that the
centroids of the CVT of an equilateral simplex equipped
with the Dirg (o) distribution fall on the line segments be-
tween the centroid of the simplex and the extreme points of
the simplex, but this is not the case when the simplex shape
is non-equilateral (cf. Fig. 1a).

The following lemma formalizes the aforementioned insight
to a simplex of arbitrary shape % by considering a suitably
modified distance function d(-, -) of the CVT. (In Fig. 1d,
the blue, purple and yellow dots are the sample versions
of the Voronoi cells of the CVT under the new distance
function and the corresponding centroids are in red.)

Lemma 1. Let B € RP*X denote the matrix form of sim-
plex Z. Suppose it has full (column) rank, equipped with
distance function ||- || g gr)+ and the probability distribution
Pp defined as

Py(S) = Prob({8 € AX~!: Bh c S}),

where 6 is distributed by symmetric Dirichlet density p,, :=
Dirg (), for any S C int(%), and A’ denotes a pseudo-
inverse of A. The centroids of its CVT fall on the line
segments connecting the centroid of % to (1, ..., fk.

Proof. Letcy,...,cx and V7, ..., Vi be the centroids and
cells of the CVT of AX~! equipped with Euclidean dis-
tance and Dirk («) density p,. It suffices to verify that
Beq,...,Bck and BV, ..., BV are the centroids and
cells of the CVT of £ = BAKX~!. By a change of vari-
ables formula,

aremi Jsv, Iz = Blltg pry1 pa(B'2)| det(B")|dz v
rgmin :
’ Iy, po(BTa)] det(B)|dz e
fv 1B — B'UH(QBBT)Tpa(e)do
= argmin{ k TvE Vk}
Jv, pa(6)d0

- Jy 16— vl pa(6)d0 |

= . A
ka pa(0)do

which we recognize as the centroids of the CVT of AX~!
under /o metric. Since AX~! is a standard simplex and
therefore equilateral, the centroids of the CVT of equilateral
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simplex fall on the line segments connecting the centroid of
the simplex to its extreme points. O

Lemma 1 suggests an algorithm to estimate the extreme
points of A. First, estimate the centroids of the CVT of
% (equipped with scaled Euclidean norm || - || g gry+) and
search along the rays extending from the centroid of %
through the CVT centroids for the simplicial vertices.

3.2. The Voronoi Latent Admixture (VLAD) Algorithm

We first consider the noiseless problem, F'(- | p) = 4.
That is, x; = p;s are observed. In this case, Lemma 1
suggests estimating the CVT centroids by scaled K -means
optimization:

argmin{3 34, 3, v (21 — ) T(BBT) (s — e},
c1

..... CK

(1
Unfortunately, the scaled Euclidean norm || - || gp7yt is
unknown. We propose an equivalent approach that does not
depend on knowledge of BBT.

In the noiseless case, observe that the population covariance
matrix of the samples takes the form ¥ = BSB”, where
S is the covariance matrix of a Dir(«) random variable on
AK=1 By the standard properties of the Dir(«) distribution,
it can be seen that S = mP, where P = Iy —
+1x 1% is the centering matrix. Hence, knowledge of ¥
will be sufficient because the centered data points x fall in
span(X) = span(BPBT): For each (0, x) pair,

Z:= BY —+B1=B0— £B1(1"9) = BP9 := Bf.
x =1
E[z] =
2)
This suggests that the centroids of the CVT may be recov-
ered by clustering the centered data points in the || - ||si-

norm. This insight is formalized by

Lemma 2. The centroids of the CVT of simplex % under
|l - ll(gprys-norm are given by {c; + colk = 1,..., K},
where (cj, . .., c};) solves the minimization

K

1 ol —

ek D Z/ (Z — cx) T2 (@ — cp)p(z)dz (3)
1y, Vi k=1J2€BV}

and ¢ = [ zp(x)dz is the centroid of simplex 2.

Proof. We first show that (3) is equivalent to (unscaled)
K-means clustering on AX~!. Note that ¥ = 6BPBT
for some § > 0. Without loss of generality, we restrict to
cx’s in span{ BPBT}. Write ¢, = BPuy, for v, € R, for

k=1,..., K. Recalling (2) and the fact P is a projector,

(1/0) Sfy foepy, (@ — ) TS (@ — ci)p(w)da
= Y fyer, (0 —v) " PBTSIBP(G — vi)pa(0)dd
= Zszl feevk (0 — v)TP(0 — vi) pa(0)dO
= Y Joev, 10 = Pull5pa(6)d6. )

Since 0 is distributed by the symmetric Dirichlet p, =
Dir(a) on AKX~ the last equality entails that the optimal
vy’s are the points which represent the barycentric coor-
dinate of the centroids of the CVT of AX~1. Thus, the
optimal solution for ¢, = B Puvy, represents the centroids of
the CVT of simplex % under || - |[(pp7)t-norm (using the
coordinating system that is centered at origin cy). O

We proceed to address the optimization (3) applied to em-
pirical data to arrive at Voronoi Latent Admixture (VLAD)
algorithm in Algorithm 1. We utilize the singular value de-
composition (SVD) of the centered data points to simplify
computation. Let X € R™*P be the matrix whose rows are
the centered data points and X = UAWT be its SVD. Each
term in the objective of (3) is equivalent to, with > being
replaced by its empirical version, %,, = %VVA2 wt:

(.@ - Ck)TE;rl(.i‘i — Ck) =

n(u; — i) TAWTWAT2WIWA(u; — ) = nl|ui — i3,

where T; = W Au;, and set ¢, = W An,. Thus, instead of
performing scaled K-means clustering in S, it suffices to
perform standard K -means in the low (K — 1) dimensional
space. This yields a significant computational speed-up.
After applying VLAD, the weights 6;’s can be obtained by
projecting the data points onto % and compute the barycen-
tric coordinates of the projected points.

Algorithm 1 Voronoi Latent Admixture (VLAD)

Input: data x4, ...,x,; K; extension parameter .
Output: simplex vertices 31, ..., Ok
I: G + + >, x; {find data center}
2: T; < x; —Co, 1 =1,...,n {centering}
3: compute top K — 1 singular factors of the centered data
matrix X € R**P: X = UAWT
4: m,...,nx < K-means(uq,...,u,), where the u;’s
are the rows of U € R™*(K~1)
5: /C:ZC +— WAn, + ¢
6: By < co +y(ck — o)

It remains to estimate the extreme points Jxs given the
CVT centroids cgs. This task is simplified by two observa-
tions: First, the CVT centroids reside on the line segment
between the centroid of simplex % and its extreme points,
per Lemma 1. Thus we merely need to estimate the ratio of
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the distance from the extreme point to the centroids of A
and the distance from the CVT centroids to the centroid of
2. Due to the symmetry of Dirg () distribution on AX~1,
this ratio is identical for all extreme points — we refer to
this ratio as the extension parameter . Secondly, v does
not depend on the geometry of %, only that of the Dirichlet
distribution. Thus,  can be easily estimated by appealing
to a Monte Carlo technique on Dirg. This subroutine is
summarized in Algorithm 2, provided that « is given.

Algorithm 2 Evaluating extension parameters

1: generate 01, ...,0,, ~ Dirg(a), where m is the num-
ber of Monte Carlo samples
2: v1,...,vk < K-means(6,...,60,,)

-1
39 < VEZ =K (S0 o = #1k]l2)

3.3. Estimating the Dirichlet Concentration Parameter

Next, we describe how to estimate concentration parameter
« from the data, by employing a moment-based approach.
Recall from the previous section that there is an one-to-one
mapping between « and the extension parameter . For each
a > 0, let v(«) > 0 denote the corresponding extension
parameter and B(y) € RP*¥ the estimator of B output
by VLAD with extension parameter . In the absence of
noise, the covariance matrix of the DSN model has the form
BS(a)BT, where S(a) € RE*X is the covariance matrix
of a Dir(a) random variable on AKX~ This suggests we
estimate « by a generalized method of moments approach:

& = argmin 1B(7())S()B(v(a))" =], ()

where ¥ is the sample covariance matrix S = %X TX. We
remark that there is no need to run VLAD multiple times
to evaluate the objective in (5) at multiple a-values. After
VLAD is run once, we may evaluate («) for any value of
v by affinely transforming the output of VLAD. Further, (5)
is a scalar optimization problem, so the computational cost
of solving (5) is negligible.

In the presence of noise, the covariance matrix of the DSN
model no longer has the form BS(a)B?. We need to
add a correction term to ensure a consistent estimator of
BS(a)BT. For example, if the noise is Gaussian, a consis-
tent estimator of BS(«) BT is

Y =%-4%p,

where &2 is an estimate of the noise variance. In the Sup-
plement, we give consistent estimators of BS(a)B” for
multinomial and Poisson noise. With a good estimator %
of BS(a)BT in place, we replace ¥ in (5) by ¥ and then
solve (5) to obtain an estimate of a.

4. Consistency and Estimation Error Bounds

In this section we establish consistency properties and error
bound guarantees of the VLAD procedure.

For ¢ = (c1,...,cx) € REXDP define ¢, : RP x

REXD s R as

pa(z,c) =mingeqr,.. iyl — cr s

where A is a positive semidefinite matrix. Recall X as the
covariance matrix of the data generating distribution and 3,
its empirical counterpart. In the algorithm, we work with
the best rank K — 1 approximation of ¥,,, which we denote
by (X,)%. Let Q denote the distribution for z;s. Recall
that X;|p; ~ F(:|u;). Let P be the induced distribution
corresponding to X;, which is the projection of X; on the
affine space of dimension K — 1 spanned by the top K — 1
eigenvectors of 2. We also use PP, to denote the empirical
distribution of the data represented by random variables X.

Since K-means clustering is a subroutine of our algorithm,
we expect at least some sort of condition requiring that the
K -means clustering routine be well-behaved in some sense.
To that end we need the following standard condition on the
population K -means objective (cf. Pollard (1981)).

(a.1) Pollard’s regularity criterion (PRC): The Hessian ma-
trix of the function ¢ — Q¢pgpr (-, ¢) evaluated at c*
for all optimizers ¢* of Qppspr(+, ¢) is positive defi-
nite, with minimum eigenvalue Ay > 0.

It turns out that this will be all we need for the following the-
orem in the noiseless setting, where we have ¥ = BS BT =

(2)% has rank K — 1 and so, P = Q and X; Z X;.
Theorem 1. Consider the noiseless setting, i.e., F'(- | p) =
d,,- Suppose that Z = Conv(f1, ..., fx) is the true topic
simplex, while (B1,, . .., Bkn) are the vertex estimates ob-
tained by VLAD algorithm. Moreover, assume the error
due to Monte Carlo estimates of the extension parameter is
negligible. Provided that condition (a.1) holds,

aﬁﬂ'(K)n) - (ﬁla cee 76K>|| = OP(n_1/2)7

min ||(Br,yns - - -
T

where the minimization is taken over all permutations 7 of
{1,...,K}.

Note that the constant corresponding to the rate Op(n~'/2)
is dependent on the Hessian matrix of the function ¢ —
P¢x: (-, ¢). The proof for Theorem 1 is in the Supplement.

In general, F'( | i) is not degenerate. Due to the presence of
"noise" in the K —1 SVD subspace, the estimates of the CVT
centroids may be inconsistent, which entails inconsistency
of the VLAD’s estimate for . The following theorem
provides an error bound in the general setting. We need a
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strengthening of Pollard’s Regularity Criterion. Let (X)%
denote the best K — 1 rank approximation of 3 with respect
to the Frobenius norm. Assume:

(a.2) The Hessian matrix of the function ¢ +— P s« (-, )
evaluated at c* for all optimizers c* of Py« (-, ) is
uniformly positive definite with minimum eigenvalue
Ao > 0, for all (X)X such that (X — BSBT) < éIp,
for some € > 0.

The noise level is formalized by the following conditions:

(b) There is ¢p > 0 such that egIp — Cov(X|0) is positive
semi-definite uniformly over §# € AK—1,

(c) There exists My such that for all M > M,
I8/t c0)e 17 = col3g(z)dx < %%, for some univer-

sal constant k;, where B(v/M, ¢y) is a ball of radius
v/M around population centroid cq and g(-) is the den-
sity of IP with respect to the Lebesgue measure on the
K — 1 dimensional space which contains the top K — 1
eigenvectors of BSBT + ¢yIp.

Theorem 2. Suppose that = Conv(/31, ..., fk) is sim-
plex corresponding to extreme points of the DSN. Let
(Bin,---,Bkn) be the corresponding extreme point esti-
mates obtained by the VLAD algorithm. Assume the error
in the Monte Carlo estimates of the extension parameter is
negligible. Provided that (a.2), (b) and (c) hold, then

ming || (B, -5 Brgn) = (Brs-- - Br)ll2 =
o ( 6(1)/3/)\0> + Op(n=1/2), (6)
where 7 ranges over permutations of {1,..., K}.

The constant corresponding to the rate Op(n~'/2) in the
above theorem, depends on the Hessian matrix of the func-
tion ¢ = P¢x(-,¢). The constant corresponding to the

0] (\/ e(l)/ 3 / )\0> is dependent on the minimum and maxi-

mum eigenvalues of the matrix BSB7T.

The preceding results control the error incurred by the
VLAD algorithm when the concentration parameter « is
known. When « is unknown, our proposed solution in
Section 3.3 performs well in both simulated and real-data
experiments. We do not know in theory whether the concen-
tration parameter « is identifiable, we shall present empirical
results in the Supplement which suggest identifiability. As-
suming a condition which guarantees model identifiability,
we can establish that the estimate obtained by the VLAD
algorithm via (5) is in fact consistent.

Theorem 3. Assume that function p(&) = 1(?1((%;51) is

monotonically increasing in &, where (&) is the extension

Table 1: Baselines and required conditions

Method

VLAD (this work)
VLAD-« (this work)
Gibbs (2004)
Stan-HMC (2017)
SVI (2013)

GDM (2016)
RecoverKL (2013)
SPA (2012)

MVES (2009)

Xray (2013)

Conjugacy True o  Separability

X X X X X< X< X X

X X X X X NG { X

LRSS X X X X X

parameter corresponding to . Let ag € % be the true
concentration parameter for some compact set 6. Let &, =

argmin, . || B(y(a))S(a) B(y(a))” — £, ||, where ,, is
a consistent estimator of B.S(a) BT. Then,

. P
&, — agl] — 0. 7

5. Experiments

The goal of our experimental studies is to demonstrate the
applicability and efficiency of our algorithm for a number of
choices of the DSN probability kernel: Gaussian, Poisson
and Multinomial (i.e. LDA). We summarize all competing
estimation procedures in our comparative study and their
corresponding underlying assumptions in Table 1.

We remark that Gibbs sampler (Griffiths & Steyvers, 2004),
Stan implementation of No U-Turn HMC (Hoffman & Gel-
man, 2014; Carpenter et al., 2017) and Stochastic Variational
Inference (SVI) (Hoffman et al., 2013) may be augmented
with techniques such as empirical Bayes to estimate hy-
perparameter «, although it may slow down convergence.
We instead allow these baselines to use true values of « in
all simulated experiments to their advantage; when latent
simplex is of general geometry (i.e. non-equilateral), GDM
(Yurochkin & Nguyen, 2016) requires « — 0 to perform
well, which is alike separability. Not all baselines are suit-
able for all three probability kernels, i.e. Gibbs sampler
and SVI rely on (local) conjugacy and are only applicable
in the LDA scenario; RecoverKL (Arora et al., 2013) is an
algorithm that relies on a separability condition (i.e. anchor
words) designed for topic models.

In simulated experiments we will consider both VLAD with
estimated concentration parameter o following our results
in Section 3.3 and VLAD trained with the knowledge of
true data generating o« (VLAD-«). For real data analysis,
we estimate the concentration parameter by (5) and apply
VLAD to a text corpus and stock market data set.
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Figure 3: Minimum matching distance for varying DSN geometry.

5.1. Comparative Simulation Studies

Convergence behavior We investigate the convergence
of the estimates of the DSN extreme points for the three
likelihood kernels under the increasing sample size. The
hyperparameter settings are D = 500, K = 10, a = 2 (for
LDA vocabulary size D = 2000). To ensure non-trivial ge-
ometry of the DSN we rescale extreme points towards their
mean by uniform random factors between 0.5 and 1. We use
the Minimum Matching distance - a metric previously stud-
ied in the context of polytopes estimation (Nguyen, 2015) to
compare the quality of the fitted DSN model returned by a
variety of inference algorithms. We defer additional details
to the supplement.

In Fig. 2 we see that VLAD and VLAD-« significantly out-
perform all baselines. Further, the estimation error reduces
with increased sample size verifying statements of Theo-
rems 2 and 3. We note that Stan HMC may also achieve
good performance, however it is very costly to fit (e.g., 40
HMC iterations for Poisson case and n = 30000 took 14
hours compared to 7 seconds for VLAD), therefore we had
to restrict number of iterations, which explains its wider
error bars across experiments.

Geometry of the DSN To study the role of geometry of the
DSN we rescale extreme points towards their mean by uni-
form random factors ¢j ~ Unif(ciin, 1) fork =1,..., K

and vary cp,i, in Fig. 3 (smaller values imply more severe
skewness of the latent simplex). To isolate the effect of the
geometry of the DSN, we compare to GDM combined with
knowledge of true o and extension parameter estimation
using Algorithm 2 (GDM-MQ). If the underlying simplex
is equilateral, GDM-MC will be equivalent to VLAD-a.

In Fig. 3 we see that VLAD and VLAD-« are robust to
varying skewness of the DSN. On the contrary, GDM-MC
is only accurate when the latent simplex becomes closer to
equilateral. This experiment verifies geometric motivation
of our work — in practice we can not expect latent geometric
structure to be necessarily equilateral and geometrically
robust method such as VLAD is more reliable.

Varying Dirichlet prior To complete our simulation studies
we verify a estimation procedure proposed in Section 3.3
and analyzed in Theorem 3. It is also interesting to compare
performance of other baselines for larger a — scenario often
overlooked in the literature.

In Fig. 4 (and in previous experiments) we see that perfor-
mance gap between VLAD and VLAD-« is very small, sup-
porting effectiveness of our o estimation procedure across
probability kernels. Additionally, we see that higher val-
ues of o lead to degrading performance of all considered
methods, however VLAD degrades more gracefully.
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Table 2: NYT topic modeling (categorical data) Il Stock data factor analysis (continuous data)

Perplexity = Coherence Time H Frobenius norm Volume  Time
VLAD 1767 0.86 6min 0.300 0.14 1s
GDM 1777 0.88 30min 0.294 1499 1s
Gibbs Il HMC 1520 0.80  5.3hours 0.299 1.95 10min
RecoverKL || MVES 2365 0.70 17min 0.287 5.39 x 10°  3min
SVI Il SPA 1669 0.81 40min 0.392 3.31 x 107 1s

5.2. Real Data Analysis Valero Energy and Chevron are inversely related to the per-

Topic modeling We analyze a collection of news articles
from the New York Times. After preprocessing, we have
5320 unique words and 100k training documents with 25k
left out for perplexity evaluation. We also compare semantic
coherence of the topics (Newman et al., 2010).

In Table 2 (left) we present results for K = 80 topics. The
Gibbs sampler has the best perplexity score, but it falls
behind in topic coherence. VLAD estimated v = 0.05 and
has approximately same perplexity and coherence as GDM,
while being 5 times faster. VLAD identified contextually
meaningful topics, as can be seen from good coherence
score and by eye-balling the topics — they cover a variety
of concepts from fishing and cooking to the Enron scandal
and cancer. The top 20 words for each of the VLAD topics
are provided along with the code.

Stock market analysis We collect variations (closure mi-
nus opening price) for 3400 days and 55 companies. We
train several algorithms on data from the first 3000 days and
report the average distance between the data points from
the last 400 days and fitted simplices (i.e., Frobenius norm).
This metric alone might be misleading since stretching any
simplex will always reduce the score, therefore we also re-
port the volumes of corresponding simplices. Results are
summarized in Table 2 (right) — our method (estimated
a = 0.05) achieves comparable fit in terms of the Frobenius
norm with a more compact simplex. Among the factors
identified by VLAD, we notice a growth component related
to banks (e.g., Bank of America, Wells Fargo). Another
factor suggests that the performance of fuel companies like

formance of defense contractors (Boeing, Raytheon).

6. Summary and Discussion

The Dirichlet Simplex Nest model generalizes a number of
popular models in machine learning applications, including
LDA and several variants of non-negative matrix factoriza-
tion (NMF). We also develop an algorithm that exploits the
geometry of the DSN to perform fast and accurate inference.
We demonstrate the superior statistical and computational
properties of the algorithm on several real datasets and ver-
ify its accuracy through simulations.

One of the key distinctions between the DSN model and
NMF models is we replace the separability assumption by
a Dirichlet prior on the weights. The main benefit of this
approach is it enables us to model data that does not contain
archetypal points (Cutler & Breiman, 1994). Among the
limitations of our approach is the reliance on the Dirichlet
distribution assumption in a crucial way, that the Dirichlet
distribution is symmetric on the standard probability sim-
plex AKX~ In theory, the algorithm breaks down when the
Dirichlet distribution is asymmetric. Surprisingly, in simu-
lations at least, we found that VLAD seems quite robust in
recovering the correct direction of extreme points, even as
most existing methods break down in such situations. These
findings are reported in the Supplement.
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