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Deep Denoising for Scientific Discovery: A Case
Study in Electron Microscopy

Sreyas Mohan™, Ramon Manzorro

Eero P. Simoncelli

Abstraci—Denoising is a fundamental challenge in scientific
imaging. Deep convolutional nenral networks (CNNs) provide the
current state of the art in denoising photographic images. How-
ever, their potential has been inadeguately explored for scientific
imaging. Denoising CNNs are typically trained on clean images
corrupted with artificial noise, but in scientific applications, noise-
less ground-truth images are usually not available. To address this,
we propose a simulation-hased denocising (SBD) framework., in
which CNNs are trained on simulated images. We test the frame-
work on transmission electron microscopy (TEM) data, showing
that it outperforms existing technigues on a simulated benchmark
dataset, and on real data, We analyze the generalization capability
of SBI)Y, demonstrating that the trained networks are robust to
variations of imaging parameters and of the underlying signal
structure. Our results reveal that state-of-the-art architectures
for denoising photographic images may not be well adapted to
seientific-imaging data. For instance, substantially increasing their
field-of-view dramatically improves their performance on TEM
images acquired at low signal-to-noise ratios. We also demonstrate
that standard performance metrics for photographs (such as peak
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signal-to-noise ratio) may not be scientifically meaningful, and
propose several metrics to remedy this issue in the case of TEM
images. In addition, we propose a technigue, based on likelihood
computations, to visnalize the agreement between the structure of
the denvised images and the observed data. Finally, we release a
publicly availahle benchmark dataset containing 18,000 simulated
TEM images.

Index  Terms—Denovising,
microscopy, deep learning.

scientific  imaging,  electron

[. INTRODUCTION

MAGING technology is an essential tool in many scientific
I domains. Electron microscopy enables the visualization of
atomic structures [ 1], fluorescence microscopy makes it possible
to study cellular processes [2], and telescopes reveal galaxies
and other astronomical objects that are light years away [3]. In
all these modalities, images are corrupted by noise associated
with stochastic processes occurring during signal generation
and detection, degrading the information content of the image
data. The general goal of denoising is to estimate and restore
the information missing from these noisy observations, thus
facilitating the extraction of useful scientific information.

In the past decade, convolutional neural networks (CNNs) [4]
have achieved state-of-the-art performance in image denois-
ing [5]. [6]. However, the potential of this methodology has
barely been explored in the context of scientific imaging. In
the vast majority of the existing work,, noisy data are generated
by adding Gaussian noise to clean photographs. The CNNs are
then trained to approximate the ground-truth images from these
measurements, usually by minimizing mean squared error [3].
Unforunately, this paradigm is not adequate for most scieatific
domains, where large, labeled datasets of ground-truth clean data
are typically not available. To address this issue, we propose a
simulation-based denoising (SBD) framework, in which CNNs
are trained on simulated images. We validate our methodology
through a case study in transmission electron microscopy.

Transmission electron microscopy (TEM) is a powerful and
versatile characterization technique used to probe the atomic-
level structure and composition of a wide range of materials,
such as catalysts or semiconductors [8], [9]. The technique
has had a huge impact in structural biclogy, as recognized
with the award of the 2017 Nobel Prize in Chemistry [10].
Recent advancements in direct electron detection systems enable
experimentalists to image dynamic events al frame rales in
the kilohertz range [11], [12]. lmaging at these time scales is
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Denoising results for real data. (a) An experimentally-acquired atomic-resolution transmission electron microscope image of a CeQ2-supported Pt

nanoparticle. A description of the experimental data acquisition is given in Section 1V, The average image intensity is 0.45 electrons/pixel (ie., a large fraction
of pixels register zero electrons), which resulis in an extremely low signal-to-noise ratio. (b) Denoised image obtained via Founer-based filtering by a domain
expert (see Fig, SM 10 for the mask used), () Denoised image ohtained via the wavelet-based PURE-LET methad [7]. (d) Dencised image obtained by the proposed
simulation-hased denoising (SBD) framework, (e) Likelihood map quantifying to what extent the atomic structure identified from the SBD denoizsad image is
consistent with the data (see Section II). Regions in red are more likely to comespond to atomic columns in the nanoparticle. Regions in blue are more likely to

belong to the vacuum.

critical to advance our understanding of functional materials.
In catalytic systems, for example, the chemical transformation
process is accompanied by dynamic, atomic-level structural
rearrangements which may occur over a time scale spanning
tens of milliseconds [13]-[17]. Acquiring image series al such
high temporal resolution necessarily produces datasets that are
severely degraded by shol noise, rendering traditional imaging
processing approaches ineffective. It is typically not feasible
to reduce the noise content by increasing the intensity of the
incident electron beam, since the high-energy beam can also
damage the material when exposed to high doses. Consequently,
there is an acute need for novel denoising technology in this
domain.

In order to apply the proposed SBD framework to TEM data,
we generate a simulated dataset of TEM images, containing
18,000 examples, and use it to train CNNs for noise removal.
This approach outperforms existing technigues by a wide margin
on held-out' simulated data, as well as on real TEM measure-
ments (see Figs. 1, SMI12 and SM16 and Sections V-B and
V-D). We perform a thorough analysis of the generalization
capability of our models, demonstrating that the CNNs are robust
to variations of imaging parameters and of underlying signal
structure. Our results indicate that architectures optimized for

Lpart of the dataset not used for training.

natural photographic images may have fundamental shortcom-
ings when applied to domain-specific data. For instance, we
show that substantially increasing the field-of-view of denoising
CNNs has almost no effect on photographs, but produces a
significant boost in performance for TEM images. We also
demonstrate that standard performance metrics for photographs,
such as peak signal-to-noise ratio (PSNR) (Section SM ii) and
structural similarity index (SSIM) [18], often fail to produce a
scientifically-meaningful evaluation of the denoising results. For
example, the presence or absence of a single atomic column often
results in a negligible change in these metrics. This is highly
problematic, because detecting these columns is one of the main
motivations for our case study. To remedy this issue, we propose
several scientifically-motivated metrics to evaluate our results
(see Section V-C). In addition, we propose a likelihood-based
visualization of the agreement between the observed measure-
ments and structures of interest (such as atomic columns) in the
denoised image. This visualization can be used to flag denois-
ing artefacts, which may be mistaken for scientifically-relevant
structure (see Fig. 3). Finally, to encourage further development
of deep-leaming methodologies for scientific imaging, we have
made our benchmark dataset of TEM images publicly at hitps://
sreyas-mohan. github.io/electron-microscopy-denoising/. More
details on applying the proposed methodology to TEM data, and
domain-specific insights derived from the dencised images are
described in our companion paper [19].
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II. RELATED WORK

1) Denocising in scientific imaging: A wide variety of de-
noising methods have been applied across different scientific
imaging modalities, including traditional linear filters [20],
nonlinear filters [21]-[23], wavelet-based methods [24]-27],
and sparsity-based approaches [27], [28]. Deep convolutional
networks have been shown to outperform all of these approaches
in photographic images [3], [6]. The rapidly growing literature
on this methodology focuses almost exclusively on photographic
images. We are aware of only a few very recent exceptions. In
the medical domain, CNN-based denocising has been applied
to low-dose computer tomography [29], positron-emission to-
mography [30] and scintillation-camera data [31]. Refs. [32],
[33] apply CINNs to denoise simulated electron microscopy data,
without validating on real data. Ref. [34] train CNN to denoise by
adding synthetic noise on high-quality electron micrograph data.
Ref. [35] trains CNNs to denoise Raman scattering microscopy
data, using measurements gathered at a higher signal-to-noise
ratio (SNR) as ground-truth images. These results showcase
the potential of deep denoising for scientific imaging, but also
the challenge of gathering adequate datasets to train the deep
networks, In this work, we propose to address this challenge
by training denoising CNNs on carefully-designed simulated
datasets, and validate our approach on experimental measure-
ments.

2) Unsupervised denoising: Unsupervised denoising is a
promising approach for applications where ground-truth images
are not available. Unsupervised methods based on wavelets have
achieved performance comparable to their supervised counter-
parts on photographic images [36]-[38].

NoiseZNoise [39], a deep-learning approach that requires
access to pairs of noisy images corresponding to the same under-
lying signal, has been applied to cryo-electron microscopy [440].
More recent methods can be trained directly on noisy im-
ages [41]-[43]. Several recent works apply this approach to
fluorescence microscopy data [44]-[47]. In the case of our
TEM data, standard unsupervised methods do not perform as
well as the proposed supervised approach (see Section V-Di1).
This is possibly due to the limited number of training data (see
Fig. SM18) and the low input SNR. The SNR of our TEM data
{around 3 dB) is orders of magnitude lower than that reported
in typical unsupervised denoising works (e.g. around 27 dB
for [47]).

3) Deep Learning for TEM: Deep CNNs have been applied
to other image-processing tasks in TEM beyond denoising, see
[48] for a comprehensive review. Ref. [49] proposes a CNN-
based method for TEM image super-resolution, wherein CNNs
are trained on pairs of low-resolution and high-resolution images
acquired experimentally. Ref. [50] applies CNNs to perform
segmentation and systematically studies the influence of the
design of the training dataset and network architecture on the
generalization capabilities of these models. In this work, we
provide a similar analysis for denoising. Refs. [51], [52], [53],
and [54] propose a CNN-based method to identify structures
of interest in TEM images. They train on carefully designed
simulated data and show that the model generalizes to real

data. Our work provides further evidence that CNNs trained on
simulated data can generalize effectively to real measurements.

1. METHODOLOGY

A. Simulation-Based Denoising

Current state-of-the-art deep-learning techniques for denois-
ing photographic images require a training set of ground-truth
images [5]. Typically these clean images are corrupted with
additive Gaussian noise, and the CNNs are trained to minimize
the mean squared error between the network output and the
original images. The main obstacle to leveraging this approach
in scientific imaging is the lack of ground-truth data; in many
applications there is no such thing as a clean image. We address
this by using a dataset of simulated images to train the CNNs,
We call this framework simulation-based denoising (SBD).

Simulation-based denoising (SBD) consists of three stages:
simulation of the training set, training of the CNNs using the
simulated data, and inference on the real data (see Fig. 2 for an
overview of the methodology). In order to generate the training
set, we simulate clean images ry, ..., oy € BM (where M is
the number of pixels) according to a predefined physical model.
These clean images are then corrupted using a noise model,
which can follow a predefined model or be learned from the
data, to generate the simulated noisy data. We provide a detailed
account of how we generate the simulated dataset for our case
study in Sections IV and SM i-A, and of the noise model in
Section SMiii. Let ¥ ;) denote the random vector representing
the noisy image corresponding to the clean simulated image r;
and let y(x;) represent a realization of ¥ (). We parameterize
the denoising function as a CNN f; : B — E™ where the
parameters # are the weights of the network. To find a good
denoising function f3, we minimize a loss function £ : B x
RM — R whichquantifies how close the estimate from the CNN
Sfolylxg)) is to the clean image ;. ln our case study, we use
mean squared error, which is a standard choice in CNN-based
denoising [5]. More concretely, during the training stage, we
compute the parameters by solving

N
f = arg min lz L(folY (x:)), :-,-J] (1)

i=1

(2)

= argmﬂin[E

N
S N folY () — ziuiﬁ]

i=1

We perform minimization iteratively using a variant of stochastic
gradient descent. We approximate the expectation in (1) by
sampling new realizations of the noisy image ¥ (x;) every time
we compute the gradient. Once the network is trained, it can be
directly applied to new noisy images to perform denoising.

A crucial difference between SBD and previous methodology
for deep denoising is that the training set needs to be explicitly
designed. In order to ensure effective generalization to our
real experimental data, we must include sufficient variation of
imaging parameters and imape structure in the training dataset.
In addition, particular care is needed to enforce invariance to
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Simulation-based denoising framework. (Top) A training dataset is generated by simulating TEM images of different structures at varying imaging

conditions. Here we focus on structures of Pt nanoparticles supported on CeOg. (Middle) A CNN is trained using the simulated images. paired with noisy
counterparts obtained by simulating the relevant noise process. (Botiom) The trained CHNN is applied to real data to vield a dencised image. Afier analyzing the
image to extract structures of intarest, a likelihood map is generated to quantify the agreement hetween this structure and the noisy data.

small changes in the geometry of the image. Fig. SM7 shows
that a denoising CNN can easily overfit the specific alignment
and scale of the training data. This issue can be addressed by
augmenting the training set with rotated and scaled versions of
the simulated images. Determining how to optimally sample
the space of possible simulation parameters when generating
data to train CNNs for denoising is an important methodological
question for future research.

B. Exploiting Non-Local Signal Structure

Images in scientific applications often have pixel-intensity
distributions that differ significantly from those of photographic
images. Our case study shows that it is crucial to take this into
account in order to achieve successtul denoising. Current state-
of-the-art networks for denoising photographic images have very
small fields of view. For example, the field of view (or receptive
field) [55] of DnCNN [5] and DURR [56] is 41 x 41 pixels, and
45 x 45 pixels respectively. Unlike photographic images, the
TEM images in our case study exhibit very prominent global
regularities, due to periodicity in the atomic structure of the
imaged materials. In addition, electron-microscopy images are

often measured at very low SNRs (in our case, the SNR for the
real TEM data is about 3 dB, but most works tor photographic
images focus on an SNR above 22 dB, see e.g. [5]). As the SNR
decreases, denoising CNNs tend to average over larger regions
of the surrounding pixels, as demonstrated in [57] (gqualitatively,
this is the same behavior observed in a classical linear Wiener
filter [58]). These considerations motivate using networks with
large field of view to denoise TEM data.

Here we propose to denoise TEM data using deep networks
with very large fields of view: 221 x 221 pixels and 893 x 893
pixels, a 25-fold and 400-fold increase with respect to generic
denoising architectures respectively. In order to obtain a large
field of view efficiently (i.e. without dramatically increasing the
number of parameters in the network), we propose using a UNet
network architecture [60]. We use 4 downsampling operations to
achieve the 221 = 221 field of view and 6 downsampling opera-
tions to achieve the 893 x 893 field of view (see Section SM iv
for a detailed description of the architecture). Table I compares
the influence of the field of view in denoising photographic and
our TEM images. For photographic images the performance of
the network remains almost constant as we increase the field
of view. In contrast, for TEM images increasing the field of
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TABLET
FIELD OF VIEW 0F CNN ARCHITECTURES AND PERFORMANCE. MEAN PSNR AND S5IM |+ STANDARD DEVIATION) OF DNFFERENT CNMN ARCHITECTURES
0N THE [ A) HELD-OUT SIMULATED TEST SET OF TEM DATA DESCRIBED I SECTION V-B AND (B) VALIDATHR SET OF THE DIV 2K PHOTOGRAPHIC IMAGE
DATASET [59]. For TEM IMAGES, INCREASING THE FIELD OF vIEW (FOV) OF THE UNET FrROM 45 = 45 PIXELS T0 221 = 221 PRODUCES A DREAMATIC

INCREASE OF ARDUND 6 DB IN PENE, EVEN TF THE NUMBER OF PARAMETERS REMAINS SIMILAR. INCREASING THE NUMBER OF PARAMETERS WHILE KEEPING

THE FIELD OF VIEW CONSTANT PRODUCES A MODEST GAIN IN PERFORMANCE, TN CONTRAST, CHANGING THE FIELD OF VIEW HAS ALMOST NO EFFECT ON
DENOISING PHOTOGRAPHIC IMAGES. THE NETWORKS USED FOR PROTOGRAPHIC IMAGES WERE TRAINED 0N 512 x 512 PATCHES EXTRACTED FROM TRAINING

Imaces oF DIVIK [59] CorruPTED WITH ADDITIVE GAUSSIAN NOISE WITH STANDARD DEVIATION o € [0, 100]

{a) TEM Images
MoDEL Parameters  Fueld of View PSNE S8IM
SBD + DnCNN [5] GLEK 41 x 41 3047 £ D64 093 £ 001
SBD + Small UNet [56] 233K 45 x 45 3087 £ 056 093 L 01
SBD + UNet (312 base channcls) 352K 221 = 221 B39 077 098 £ 00
SBD + UNet (64 base channels) 1.41M 221 = 221 T 0T 099 £ 001
SBD + UNet (128 base channels) 561M 221 = 221 AB05 = DE] 099 + 0.01]
SBD + UNet (128 base channels) T 15M 893 x« BO3 4287 £ 145 099 £ 001
(b) Photographic Images
MopeL  Parameters  Field of View PSNE 58IM
=230 =" a=0 od="T0
UNet 102K 40 = 49 2067 4 284 26164279 083 4006 0704+ 009
UNet 352K 221 = 221 2965 + 276 2608 +£ 268 OE3 L+ 005 070 £ 008
TNet 4.4M BO3 = 893 2054 + 282 2607 £ 2B0 OB L 006 0704+ 009

view produces a dramatic improvement in performance (6 dB
and 10 dB, when the field of view 15 221 = 221 and 893 = 293
respectively). Increasing the number of parameters, while keep-
ing the field of view constant, has a very modest effect, which
suggests that the increase in field of view is the primary reason
for the improvement.

In order to gain some insight into the denoising mechanisms
learned by our models, we apply the gradieni-based analysis
proposed by [57]. We visualize the linear term in the first-order
Taylor decomposition of the denoising map with respect to
its input for specific pixels. In more detail, we compute the
gradient of a pixel in the denoised image f{y); with respect
to the input noisy image y. This vector (or image) V,( fy):).
makes it possible to visualize the influence of different regions
of the noisy image on the denoised pixel f(y);. This approach
is similar to visualization methods proposed in the context of
image classification {e.g. [61], [62]). Our analysis reveals that
the network learns to simultanecusly exploit local structure as
well as non-local periodicities in the data (see Fig. SM9). This
demonstrates the remarkable flexibility of data-driven denoising
based on deep learning.

C. Likelihivod Maps

In most applied domains, the goal of dencising is to uncover
image structure of scientific interest. In our case study, this
corresponds to the location and intensity of projected columns of
atoms in a catalytic nanoparticle that is surrounded by a vacuum.
Quantifying to what extent such structure is consistent with
the observed measurements is therefore of great interest. We
propose to achieve this by computing the likelihood of the data
with respect to meaningful features identified in the denoised
image. The general procedure, and its implementation in the
case of our case study, are as follows:

1) Tdentify aregion of interest K. Tn our case study, this would
correspond to an atomic column, located for example via
blob detection [63], or to the vacuum.

2) Fit a low-dimensional model to the denoised image within
the region of interest. The low-dimensional model pro-
vides an estimate of the image value x; at each pixel lo-
cation i € . In our case, we assume that pixel intensities
within a given atomic column and the vacuum are constant,
s0 the estimate is obtained by averaging over all denoised
pixels in 7.

3) Compute the likelihood of the noisy data in K with respect
to the estimated pixel values. In our case, the noise is
approximately independent and individually distributed
(iid) Poisson (see Section SM iii), so the likelihood is
given by

L(R) = [ ] pecws), 3)

icER

where y; denoles the noisy value in the ith pixel, and g,
is a Poisson probability mass function (pmf) with rate
parameter x;. Note that in the low-dimensional model,
which assumes constant intensities, &; is constant for all
pixels in 7.

This technique makes it possible to consider different hy-
potheses about the underlying image structure and compare
their agreement with the observed data. In our case study, we
evaluate the hypotheses that a detected atomic column is (1) truly
there, or (2) an artefact introduced by the denoising procedure,
The likelihood under hypothesis (1) is computed as above.
The likelihood under hypothesis (2) is computed by setting the
estimate «; equal to the average intensity of the noisy pixels
identified as belonging to the vacuum region. To visualize the
consistency of the two hypotheses with the measured data, we
plot the difference in their log likelihood for each region of
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Fig.4. Distribution of likelihood ratio. The figure shows the distribution of log-
likelihood ratio of over 25,000 regions of interest computed from the surface of
1550 denoized images using the dataset described in Section V-C2, The empirical
distribution is visualized as a box plot indicating the median, 25th quartile,
T5th quartile, minimum and maximum value of the distribution. The regions
containing spurious atoms ( false positives, (a)) have a much lower log-likelihood
ratio than the regions containing accurately recovered atoms (true positives, (h).
Regions where existing atoms were not detected (false negatives, (o)) have a
higher log-likelihood ratio, comparable to that of the regions with accurately
recovered atoms. The occurrence of missing and spurious atoms in denoised
images is relatively low; out of the 25,732 regions of interest, only 2,457 and
2,368 were false positives and false nepatives respectivaly,

interest. This is equivalent to performing a log-likelihood ratio
test. We call this visualization a likelihood map.

Figs. 1 and 3 show likelihood maps for the real data and for a
simulated example. In the simulated example (Fig. 3), a spurious
atom is detected at the left end of the zoomed region. However,
the likelihood map at that location is very low, which indicates
that the presence of an atom may not be consistent with the
observed data at that location. Fig. 4 shows the distribution of
log-likelihood ratio of over 25,000 regions of interest extracted
from the surface of over 1,550 denoised images obtained from
the datasel described in Section V-C2. As shown in Fig. 4, the
log-likelihood ratio values of spurious atoms (false postives, (a))
are much lower than those of correctly-identified atoms (true
positives, (c)). When the network fails to detects atoms (false
negatives, (b)), we observe that the log-likelihood ratio in such
regions tends to be high. It is worth noting that the occurrence of

spurious and missing atoms in the denoised images is relatively
low: out of the 25,732 regions identified, only 2,457 and 2,368
regions correspond to spurious and missing atoms respectively.

Visualizing the likelihood is useful to quantify the agreement
between the output of deep-leaming models and the observed
data, but it is important o note that the approach suffers from
sampling bias. We focus on regions of the input that have been
selected because they resemble structures of scientific interest.
The data in those regions are therefore more likely to be in
agreement with the presence of such structures, just by the sheer
fact that they have been selected. This is a manifestation of the
notorious multiple-comparisons problem [64], [63]. Overcom-
ing this issue is an important challenge for future research.

IV, DaTASET

The TEM image data used in this work correspond to im-
ages from a widely utilized catalytic system, which consist of
platinum (Pt} nanoparticles supported on a larger cerium (TV)
oxide (CeO ) nanoparticle. This bi-functional catalytic system is
ubiquitously used in clean energy conversion and environmental
remediation applications, in addition to a broad range of other
chemical reactions [66]-[68]. From a general point of view, this
system can be considered as a model for supported nanoparticle
catalysts, since a large number of heterogeneous catalysis are
based on metallic nanoparticles supported over different oxides.
Thus, results and conclusions extracted from the currenl work
are relevant to a great number of similar samples in the field of
catalysis (e.g., oxide crystals supporting metal nanoparticles).

A. Real Data

The real data used to test the proposed SBD framework consist
of a series of images of the Pt/CeOy catalyst. The images were
acquired in a Ny gas atmosphere using an aberration-corrected
FEI Titan transmission electron microscope (TEM), operated at
300 kV and coupled with a Gatan K2 IS direct electron detector.
The detector was operated in electron counting mode with a
time resolution of 0,025 sec/frame and an incident electron dose
rate of 5,000 e /A%/s. The electromagnelic lens system of the
microscope was tuned to achieve a highly coherent parallel beam
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configuration with minimal low-order aberrations (e.g., astigma-
tism, coma), and a third-order spherical aberration coefficient of
approximately —13 pm.

B. Simulation Detaset

The simulated TEM image datasel was generated using the
multi-slice TEM image simulation method, as implemented in
the Dr. Probe software package [69] (see Section SM i-A for
more details on the simulation process). Images were simulated
with 1024 x 1024 pixels and then binned to match the approxi-
malte pixel size of the experimentally acquired image series. To
equate the intensity ranpe of the simulated images with those
acquired experimentally, the intensities of the simulated images
were scaled by a factor which equalized the vacuum inlensity
in a single simulation to the average intensity measured over a
large area of the vacuum in a single 0.023 s experimental frame
{i.e., 045 counts per pixel in the vacuum region).

In the type of phase-contrast TEM imaging performed in
this work, multiple electron-optical and specimen parameters
can give rise to complex, non-linear modulations of the image
contrast. These parameters include the objective lens defocus,
the specimen thickness, the orientation of the specimen, and
its crystallographic shape/structure. Various combinations of
these parameters may cause the contrast of atomic columns
in the image to appear as black, white, or an intermediate
mixture of the two (see, e.g., Fig. SM1). When designing the
simulated dataset for the SBD framework, it is necessary (o
include images simulated under widely varied conditions, in
order to cover the breadth of possibilities which may arise during
a typical experiment. A skilled microscopist attempts to acquire
images under conditions in which the image contrast can be
interpreted, which limits the overall size of the parameter space
under consideration. However, various instances of defocus, tilt,
thickness, and shape/structure inevitably arise. To generate our
dataset we systematically varied these parameters to produce a
large number of potential combinations (approximately 18,000),
as described in Sections SM i-B and SM i-C,

V. EXPERIMENTS AMD RESULTS

In this section, we evaluate the performance of our proposed
methodology and show that we outperform other methods by a
large margin (more than 12 dB in PSNE on held-out simulated
data). We also perform a thorough analysis of the generalization
capability of our models, demonstrating that the CNNs are robust
to variations in imaging parameters and in underlying signal
structure. Furthermore, we demonstrate that standard perfor-
mance meltrics for photographs, such as peak signal-to-noise
ratio (PSNR) and SSIM [ 18], may fail to produce a scientifically-
meaningful evaluation of the denoising results, and we propose
a few alternative metrics to remedy this. Finally, we show that
our approach achieves effective denoising of real experimental
data.

We use CNNs with the proposed UNet architecture with
128 base channels and 6 scales in all of our experiments (see
Sections [I-B and SM iv for more details). The networks were
trained on 400 x 400 patches extracted from the training images

and augmented with horizontal Oipping, vertical flipping, ran-
dom rotations between —45° and +45°, and random resizing by
a factor of 0.75-0.82. The models were trained using the Adam
optimizer [70], with a default starting learning rate of 1072,
which was reduced by a factor of 2 every time the validation
PSNR plateaued. Training was terminated via early stopping
based on validation PSNR. The details of training, validation and
test data for each experiment are provided in the corresponding
section. Since the models are trained on 400 »x 400 patches,
when applying them to larger images we divide the images into
overlapping 400 x 400 patches, denoise them, and then combing
them via averaging.

A. Generalization to Unseen Structures and Acquisition
Conditions

In order to study the generalization ability of the proposed ap-
proach across different imaging parameters and signal structures
we divided the simulated dataset described in Section IV into
different subsets. These subsets were classified based on (1) the
character of the atomic column contrast, (2) the structure/size
of the supported Pt nanoparticle, and (3) the defects of the Pt
surface structure, The contrast was classified into three divisions,
black, intermediate, or white contrast, by a domain expm‘lsz
(see Fig. SM1 in the supplementary material). The nanoparticle
structure was classified into four categories, “PINp1” through
“PiNp4”. PtNpl and PINp2 correspond to supported PLnanopar-
ticles of size 2 nm, which differ in the presence or absence
of an atomic column located at the interface between the Pt
and the CeOs support. PtNp3 corresponds to a Pt nanoparticle
| nm in size. PINp4 corresponds to a Pt nanoparticle 3 nm
in size. Finally, the defects were divided into five categories:
“Do, “D1v, “D2", “Dh", and “Ds" in accordance with the
atomic-scale structural models presented in SM i-A and in par-
ticular in Fig. SM5. D0 is the initial structure, D1/D2 a structure
in which 1/2 atomic columns have been removed respectively,
Dh a structure in which a column has been reduced to half its
original occupancy, and Ds a structure in which a column has
been reduced to a single atom. The generalization ability of the
proposed CNN was evaluated by systematically training on each
of the subsets and testing on the rest. The number of images
in each subset was fixed to be equal in order to ensure a fair
comparison.

The performance of SBD is robust to variations in imaging
parameters and in the underlying signal structure, as shown in
Fig. SM&. We only observe asignificant decrease in performance
when the network is trained on black-contrast images and tested
on other contrasts (interestingly the network generalizes well
from white and intermediate contrasis (o black contrasis).

B. Comparison of SBD With Other Methods

The imaging parameters of the real data, described in Sec-
tion TV, are well described by the whilte contrast category defined
in Section SM i-B. We therefore used the subset of simulated
dataset corresponding to this contrast (5583 images) to compare

!Domain experts refers to three material scientists who specialize in TEM.
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TABLE 1T
RESULTS ON SIMULATED TEST DIATA. MEAN PSNE AND S5IM (£ STANDARD
DEVIATION) OF DIFFERENT DEMOISING METHODS 08 THE HELD-OUT
SrauLaTED TEST SET DESCRIBED IN SECTION V-B. SBD APFROACHES
ACHIEVE THE BEST RESULTS. SBD COMBINED WITH THE PROPOSED
ARCHITECTURE OUTPERFORMS ALL OTHER TECHNIQUES BY ABOUT 12 D,
THE PERFORMANCE OF SBED APPLIED TO ADIMTIONAL ARCHITECTURES 1S
REPORTED IN TABLE I, AND DENOISED IMAGES ARE SHOWN IN FiG.5 SM12

AND SM13
METHODS PSNR S55IM
Raw 356 £ 0032 000 & 0.0
Low Pass Filter [20] 21.59 £ 0.07 044 £ 002
Adaptive Wiener Filter [71] 2242 + 108 063 £+ 0.02
VET + NLM [72] 2655 £ 016 073 £ 001
VST + BM3D [73] 25274+ 005 080 4+ 00
PURE-LET [7] 2836 4 088 093 & 001
SBD + DnCNN [5] 3047 £ 064 093 £ N
SBD + Small TUNet [56] INET £ 056 093 £ 001
SBD + Proposed Architecture 4287 + 145 099 + 001

our proposed methodology to other models. 90% of the data
were used for training. The remaining 559 images were evenly
split into validation and test sets. We compare our proposed
LUNet architecture (see Section SM iv) with two state-of-the-art
architectures for photographic-image denoising [5], [56] (see
Sections SM iv-B and SM iv-C), and with several classical
denoising methods: low-pass filtering [20], adaptive Wiener
filtering [71], BM3D [73], non-local means [7] and, a wavelet-
based method known as PURE-LET [7]. A detailed description
of these techniques is provided in Section SMv. For all methods,
hyperparameters were chosen based on the validation data.
Performance was measured in terms of S5IM [18] and peak
signal-to-noise ratio (PSNE).

The results demonstrate that SBD is an effective denoising
methodology for TEM data. Our proposed CNN outperforms all
other methods by a margin of 12 dB in PSNR on the simulated
test data, as shown in Table I, and Fig.s SMI12 and SM13.
SBD recovers the overall shape of the nanoparticle, the interface
between the nanoparticle and the support, and the different peri-
odic patterns of the CeQOs support and Pt nanoparticle. Contrast
leatures, such as subtle patierns of bright, intermediate and dark
teatures associated with the atomic structure of the CeQ; crystal,
are well reproduced in the images denoised via SBD, but are
mostly absent from the results of the baseline approaches.

C. Beyond PSNR: Towards Scientifically-Meaningful
Evaluation Metrics

Domain scientists denoise images in order to extract scien-
tifically relevant information. In our case, the atoms on the
surface of nanoparticles are of particular interest, because the
atomic configuration at the surface regulates the nanoparticle’s
ability to catalyze chemical reactions, It is therefore of critical
importance to understand how different denoising methods re-
cover these atoms. We can verify visually that SBD achieves a
largely successful recovery in held-out simulated data, whereas
the baseline methods described in Section V-B do not (see
Fig. 8M 12 for example). However, visual inspection is a limited
and non-quantitative evaluation tool. Unfortunately, standard

[EEE TEANSACTIONS ON COMPUTATIONAL IMAGING. VOL. 8, 2022

metrics like PSNR and S5IM are insensitive (o changes in
the atomic structure of the nanoparticle surface, because these
changes have a small effect on the overall intensity of the im-
ages. We demonstrate the lack of sensitivity through a synthetic
example in Fig. SM14: when we add or remove an atom in the
surtace the PSNR and S51M remain roughly constant. Motivated
by the need for scientifically-relevant performance evaluation,
we propose several metrics explicitly designed to account for
changes in surface atomic configuration in Section V-C1. We
report an evaluation of SBD using these metrics on a challenging
lest dataset in Section V-C2.

1) Evaluation Metrics: To define metrics that evaluate de-
tection of surface atoms, we assume that there is a predefined
approach to perform detection based on the denoised images.
In our case of interest, we apply a blob detection algorithm
iLaplacian of Gaussian [63]) to locate the centers, and compute
the «-shape of all the atom centers using Delaunay triangula-
tion [74]. Let A and B be the set of surface atoms of interest in the
denoised image and the ground-truth clean image respectively.
We propose the following four metrics to measure the fidelity of
the recovered structure:

* Precision is the fraction of atoms in the denoised image

that are also present in the clean image.

|A M B|
|B]

* Recall is the fraction of atoms in the clean image that are
correctly recovered in the denoised image.

|AnB|
Al

* F1 score combines precision and recall by giving them
equal importance.

P(A,B) = (4)

R(A,B) = (5)

P(A, B)R(A, B)
P(A,B) + R(A,B)’

* Jaccard index is an alternative measure consisting of
the ratio between the size of the intersection between the
recovered atoms and the ground truth divided by the size
of their union.

F(A B) =2 (6)

|4 B|
AUB|

When performing intersection and union operations, we con-
sider two atoms to be the same if the distance between their
centers is less than a threshold of 10 pixels. For comparison, the
physical distance between neighboring atoms is about (.16 nm,
and 10 pixels cormrespond to a distance of 0,061 nm. All our
metrics take values between O and 1 (1 is best). Fig. SM14 shows
a synthetic example comparing three images with ditferent
atomic configurations: all the images have similar PSNR and
S5IM values, but the precision, recall, F1 and Jaccard index
show substantial differences.

2) Evaluating Atom Detection Accuracy: To evaluate the
performance of the proposed approach to recover atoms at the
surface, we designed a new dataset with 308 images, where the
imaging parameters are set based on the real dataset described

J(A, B) = (7)

Authorized licensed use limited tor New York Uiniversity. Downloaded on October 02 2022 at 03-44:30 UTC from IEEE Xplore. Restrictions apphy.



MOHAN et gl.: DEEF DENOISING FOR SCIENTIFIC DISCOVERY: A CASE STUDY IN ELECTRON MICROSCOPY 593

1.08

=

0.95 E

0.9

0.855

0.8

0.75

Q7 [ | O Surface [ Bulk |

==

.-

0.685

Precision Hecall

Fig. 5.
corresponding © 25 unique noisy images sampled from the 308 clean i

F1 Score Jaccard Index

Performance of SBD in terms of our proposed metrics. We compute all our proposed metrics (see Section V-C1) on over 7000 denoised images
s described in Section V-C2. The empirical distribution on the surface (red) and bulk

{green) is visualized as box plots indicating the median, 25" quartile, 73" quartile, minimum and maximum value of the distribution. SBD has a near perfect
performance in the bulk with all metric values hovering around 1. On the surface, SBD achieves a median score of 1 for precision and recall, and about 0.95 for

F1 score and Jaccard index.

in Section I'V-A. This new dataset is similar to the one used for
the generalization experiments in Section V-A, but here we add
more diverse surface defects. We created a series of 44 PUYCeOs
structural models with atomic-level surtace defects such as the
removal of an atom from a column, removal of two atoms,
removal of all but one atom and addition of an atom at a new
site (see Fig. SM135 for a visual overview). We hypothesize that
these defects emulate dynamic atomic-level reconfigurations
that could potentially be observed in real experiments. To match
the image contrast of our real data, we simulated images under
defocus values ranging from 6 nm to 10 nm, all with a tilt of 37 in
x and -1 in v and a support thickness of 4 nm. SBD recovers all
the atoms in the bulk almost perfectly, as reflected in the different
melrics. On the surface, SBD achieves a median score of 1 for
precision and recall, and more than 0.95 on F1 and Jaccard index
isee Fig. 5).

D. Performance on Real Data

In the experiments reported in Sections V-B and V-C we
used a network trained on all simulated images from the white
contrast category defined in Section V-A. However, the real data
described in Section IV more closely corresponds to a subset
of white contrast images satisfyving the following conditions:
structure limited to PINP2, thickness between 40 A — 60 A
and, defocus between 5 nm and 10 nm. We used 236 images
from this subset for training, and another such 15 images for
validation. We also trained two state-of-the-art architectures for
photographic image denoising - DnCNN [3] and DURR. [56] on
these data.

Results on real experimental data obtained using SBD trained
on this relevant subset of white contrast are shown in Figs 1,
SMI16, and SM17. SBD produces denoised images thal are of
much higher quality than those of the baseline methods de-
scribed in Section V-B, which contain obvious artefacts, Further,
we validate the denoising results of SBD by comparing to an esti-
mated reference image obtained by temporal averaging. Our real
dataset consists of 40 frames that are approximately stationary

and aligned. Therefore, their temporal average provides a good
estimate for the ground-truth images. As shown in Fig. 6, the
denoised intensity values of the atomic column approximately
match those of the estimated reference image.

In the rest of this section, we compare the performance of SBD
and unsupervised denoising techniques on the real experimental
data, and analyze the effect of the design of the training dataset
on the denoised output produced by SBD.

1) Comparison to Unsupervised Deep Denoising Methods:
Unsupervised denoising techniques can be used to train a denois-
ing CNN using only noisy images (see Section I for a discussion
on this methodology). We apply the following unsupervised
metheds to the real data described in Section I'V-A:

* Noise2Noise [39] is a strategy used to train CNN by using
pairs of noisy images which correspond to the same clean
image. We applied this method to our data by treating
images captured in consecutive time steps as different
noisy realizations of an underlying clean image. The results
{shown in Fig. 7(b)) contain visible artefacts and missing
atoms,

* Blind-spot net [43] is a CNN which is constrained to
predict the intensity of a pixel as a function of the noisy
pixels in its neighbourhood, without using the pixel itself.
This method is competitive with the current supervised
state-of-the-art CNN on photographic images. However,
when applied to our real dataset it produces denoised
images with visible artefacts (see Fig. 7(c)). A possible
explanation is the limited amount of data {40 noisy images)
we train on. To validate this hypothesis, we trained a
blind-spot net on simulated training sets of different sizes.
The performance on held-out data is indeed poor when
the training set is small, but it improves to the level of
supervised approaches as we use more training data (see
Fig. SM18).

* Blind-spot net with early stopping. In Ref. [75] it is shown
that early stopping based on noisy held-out data can boost
the performance of blind-spot nets. Here we used 35 images
for training the blind-spot net and the remaining 5 images
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Walidation on real data. The real data consist of 40 frames which are approximately stationary and aligned. Their temporal average (left) therefore provides
a repsonahle estimate for the true intensity profile, Tn the image on the right, we compare the average intensity profile on the surface stomic columns of the platinum
nanoparticle for the denoised data (middle) and the temporal average (left). The profiles are very similar (except for some spurious fluctuations in the temporal
average), which suggests that the proposed approach achieves effective denoising on the real data.
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Comparison of unsupervised denoising methods with SBD on real data. The real data described in Section IV-A denoised using SBD and unsupervised
methods described in Section V-D11, The second and third rows zoom in on the region in red and green boxes respectively, Our proposed method denoises the real
data more effectively than the unsupervised approaches. SBD is able to precisely recover the structure of the nanoparticle and has very few artefacts (compare
visually to the estimated reference image obtained via time averaging; there are three missing atoms for most unsupervised methods in the third row). A * indicates
that the method used early stopping and | indicates that the method uses 5 noisy frames as input.

as a held-out validation set. We chose the model param-
eters that minimized the mean squared error between the
noisy validation images and the corresponding denoised
estimates. The results (shown in Fig. 7(d)) are signifi-
cantly betier than those of the standard blind-spot network.
However, there are still noticeable artefacts, which include
missing atoms.

Unsupervised Deep Video Denoising (UDVD) [75] is an
unsupervised method for denoising video data based on the
blind-spot approach. It estimates a denoised frame using
5 conseculive noisy frames around it. Our real data con-
sists of 40 frames acquired sequentially. UDVD produces
better results than blind-spot net, but still contains visible
artefacts, including missing atoms (see Fig. 7(e)). Note
that, UDVD} uses 5 noisy images as input, and thus has

more context to perform denoising than the other methods
{(including SBD).

* Selt2Self [76] is an unsupervised method specifically de-
signed for denoising based on asingle noisy image. This ap-
proach achieves near state-of-the-art performance in noisy
photographic images corrupted with moderate amounts of
noise [76]. However, when applied to our data, Self2Self
produces images with clear artefacts; some of the atoms are
missing and the shape of atoms are distorted (see Fig. 7(1)).

It is important to note that the backbone architectures of all

these methods are UNets with large fields of view, like the one
used for SBD. In our experiments, we trained the blind-spot
nets and UDVD on 600 »x 600 patches extracted from the real
data. We used Adam optimizer [70] with a starting learning
rate of 1 x 10~ which was reduced in half for every 2000
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epochs. We trained for a total of 5000 epochs. When performing
early stopping, we picked the checkpoint with the best mean
squared error on the validation set. Following [76], Self2Self
was trained for 150,000 steps with the Adam optimizer and a
starting learning rate of 10~

As shown in Fig. 7, the unsupervised denoising methods
produce higher-quality reconstructions than those of the baseline
methods discussed in Section V-B (see Fig. SM16). However,
they still suffer from visible artefacts, particularly on the surface
of the nanoparticle, limiting their practical utility. UDVD is the
method that achieves best performance, but it requires multiple
noisy trames as input. ln contrast, SBD can denoise the image
effectively from a single noisy input frame (see Fig. T{g)), as
long as the simulated training data correspond closely to the
real noisy image. Using a single frame is important in some
applications, such as our case of interest, where the ultimate
goal is to identify dynamic changes in the atomic structure of
the nanoparticle.

2) A Word of Caution. Effect of Training Data on SBD:
Figs SM16, SM17 and 7 show that SBD achieves impressive re-
sults on real data, but it is important to point out that this requires
a caretul design of the training dataset. Our real data broadly
corresponds to images in the white contrast category, defined in
Section V-A. However, when a network trained on white contrast
images (Section V-B) is evaluated on the real data, it produces
unnatural streak patterns in the bulk (see third row in Fig. SM19).
When visually comparing this to the pattern in the bulk of the
reference image computed by lime averaging, it is evident that
this is an artefact of denoising. This can be remedied by training
the network on the more restricted subset of images described
in Section ¥-D (see third row in Fig. SM19), whose imaging
parameters are more suited to the real acquisition conditions.
Since unsupervised denoising methods directly train on the real
data, they do not suffer from this problem of mismatch between
training and test data. The patterns recovered by unsupervised
methods in the bulk are close to the estimated reference image
isee Fig. SM19). However, as discussed in Section V-D1, they
show significant artefacts on the surface of nanoparticle. Domain
generalization, when there is a gap between the distribution of
the training and test data is a fundamental challenge in machine
learning [77]. Ref. [78] proposes a method to address this gap for
denoising. They pre-train a CNN model on simulated data, and
adjust a small set of CNN parameters adaptively and selectively
for each individual experimental test image.

V1. Discussion anD CONCLUSIONS

Owr case study is a proof of concept that CNNs trained for
denoising on simulated data can be remarkably effective when
applied to real imaging data. 1t provides several insights and
suggests future research directions that are relevant, beyond
electron microscopy, to other domains where the images of
interest can be simulated, such as medical imaging [29], [31],
other types of microscopy [32], [33], or astronomy [79]. We
show that the design of the training dataset is critical, so an
important question is how to design simulated training datasets
in a principled systematic way. Answering it will require a

deeper understanding of the generalization ability of CNNs with
respect to variations in the statistics of the input images. We also
demonstrate that architectures tailored to photographic imag-
ing can perform poorly when applied to other data. Designing
CNNs for other domains requires an understanding of the image
features that are exploited for denoising. Gradient visualization
is shown to be useful here, but more advanced visualization
techniques are needed. In addition, we dermonstrate that standard
metrics used to quantity performance in photographs may not be
sensitive to scientifically relevant features, and propose several
new metrics o address this problem. Although SBD outperforms
other methods by a large margin, some artefacts such as phantom
atoms still appear. Our proposed likelihood maps help to flag
such events, but may still fail to do soinregions of unusually low
SNR. Developing more sophisticated methods for uncertainty
quantification is therefore a key research direction. It would also
be of great interest to develop unsupervised or self-supervised
denoising approaches that are effective with small amounts of
data at low SNRs. Finally, to encourage turther development of
deep-learning methodologies for scientific imaging, we release a
denoising benchmark dataset of TEM images. containing 18,000
examples.
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