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Abstract

The efficacy of urban mitigation strategies for heat and carbon emissions relies heavily
on local urban characteristics. The continuous development and improvement of urban land
surface models enable rather accurate assessment of the environmental impact on urban
development strategies, whereas physically-based simulations remain computationally costly and
time consuming, as a consequence of the complexity of urban system dynamics. Hence it is
imperative to develop fast, efficient, and economic operational toolkits for urban planners to
foster the design, implementation, and evaluation of urban mitigation strategies, while retaining
the accuracy and robustness of physical models. In this study, we adopt a machine learning (ML)
algorithm, viz. Gaussian Process Regression, to emulate the physics of heat and biogenic carbon
exchange in the built environment. The ML surrogate is trained and validated on the simulation
results generated by a state-of-the-art single-layer urban canopy model over a wide range of
urban characteristics, showing high accuracy in capturing heat and carbon emissions. Using the
validated surrogate model, we then conduct multi-objective optimization using the genetic
algorithm to optimize urban design scenarios for desirable urban mitigation effects. While the
use of urban greenery is found effective in mitigating both urban heat and carbon emissions,

there is manifest trade-offs among ameliorating diverse urban environmental indicators.

Keyword: Carbon dioxide emission; Environmental system dynamics; Machine learning; Urban

heat mitigation; Urban system planning
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1 Introduction

It is projected that by 2030, approximately 5.17 billion people will live in urban areas
with the expansion and densification of the built environment worldwide (UN, 2019). The
extensive use of fossil fuels by densely populated cities generates concentrated emissions of
anthropogenic heat, pollutants, and greenhouse gases (GHGs), leading to degraded
environmental quality in urban areas. A prominent example is the phenomenon of the local
warming of urban cores as compared to their rural surroundings, widely known as the urban heat
island effect (UHI) (Oke, 1973, 1981). In addition, the anthropogenic stressors, especially those
arising from the concentrated emissions in the built environment, have been identified as
significant contributors to the long-term and emergent patterns in the global climate changes
(IPCC, 2014). To mitigate the potential risks of environmental degradation by climate changes,
195 countries have committed to the long-term reduction goal set by Paris Agreement that urges
each country to take the responsibility for the sustainable development of mankind (UNFCCC,
2015). Though the ambitious reduction goals and emission standards are made at the national
level, it is city authorities that make most specific decisions and executions to fulfill the
reduction expectations and mitigation goals (Rosenzweig et al., 2010; Bazaz et al., 2018;
UNFCCC, 2020).

Among the potential mitigation strategies at city level, urban greening is proved to be
effective with additional social and economic benefits. Many studies have confirmed the
feasibility of urban greenery in heat (Song & Wang. 2015; Wang et al., 2016, 2018, 2019; Wong
et al., 2021) and carbon emissions (Escobedo et al. 2010; Strohbach et al., 2012; Chen, 2015) via
various approaches, though most conclusions were drawn from location-based observation,

statistically analysis, and empirical equations (Weissert et al., 2014). Comprehensive or
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comparative modeling of the impact from urban greenery on heat and carbon emissions remains
scarce. Moreover, conclusions from those studies varied from city to city (Weissert et al., 2014;
Gao et al., 2020), depending on the urban characteristics such as native tree species, urban
morphology, land use portfolio, and population (Ward et al., 2015; Velasco et al., 2016). Hence
it is of pivotal importance that urban planners and policy makers should identify and create
specific local strategies under a regional context, with further understanding of the
environmental response under possible future scenarios, which usually requires extensive
monitoring and modeling efforts. In the past decades, the development of urban observation
networks and physical-based urban land surface models (ULSMs) partially fulfilled this
objective, which furnishes simulations of the micrometeorological conditions at the pedestrian
level in urban environment with reasonable accuracy. Some most recent ULSMs captured the
dynamics of carbon dioxide (CO2) exchange, one of the most influential GHGs, in the urban
environment (Jarvi et al., 2012; Goret et al., 2019; Li & Wang, 2020), enabling comparisons
between physics of heat and carbon emissions and their mitigation strategies (Li and Wang,
2021a).

The use of ULSMs in urban planning and decision-making processes remains scarce
hitherto: one major obstacle being the complexity of the algorithms. The guiding principle for
the development of physically-based models is to capture more realistic urban dynamics at high
spatiotemporal resolutions with enhanced accuracy. Hence a sophisticated ULSM inevitably
evolves toward higher complexity: a typical model usually contains a group of high-dimensional
non-linear functions, governing turbulent transport of mass, heat, momentum, and hydrological
dynamics. ULSMs are further complicated by accounting for the interactions between diverse

dynamic processes (e.g., heat and carbon). Adoption of the ULSMs by decision makers and
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practitioners is likely hindered by the prerequisite knowledge in physics, meteorology,
hydrology, plant physiology, and programming, to interpret or adopt numerical simulation results
(Pena Acosta et al., 2021).

To respond to the appeal of open science and better inform the urban planning and
decision-making processes, attempts have been made to provide policy makers with e.g.,
operative models dedicated to decision-making with graphic or web-based programing supports
(Amini Parsa et al., 2019; Sun & Grimmond, 2019). For those approaches involving urban land
surface modeling, the full capability of ULSM is usually retained for better accuracy while the
difficulty in operation was reduced. Nevertheless, data collection, pre-processing, calibration,
and additional computational cost may continue to hamper the efforts in urban design and
planning.

Machine learning (ML) techniques provide exciting opportunities to lower the barriers to
using ULSMs for urban planning and decision making. ML algorithms are capable of inductively
inferring complicated, nonlinear processes such as those simulated by ULSMs. Because of their
strong representational power and low computational cost, they can be used as fast surrogates of
computationally expensive models to facilitate parameter estimation and optimization (Cai et al.,
2015; Laloy & Jacques, 2019; Kim & Boukouvala, 2020; Xu & Liang, 2021). ML-based
surrogate models are particularly suitable for urban planning and decision-making applications.
First, for design and planning purposes, the prediction of the general trend (such as temporally
averaged COz emission) is more important than detailed representation of the dynamics (such as
diurnal variation). Therefore, the surrogate model can focus on emulating temporal and/or spatial
statistics. The simplification reduces the level of complexity of surrogate modeling, and the ML

models can be trained with a moderate amount of observations and/or simulation results of



90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

ULSMs. Second, trained ML models typically require minimal computational cost compared to
ULSMs that are computationally expensive. Third, ML models can be easily deployed in user
interfaces across platforms, for example via notebook environments such as Jupyter (Executable
Books Community, 2020). This enables users to access the surrogates without meeting the
prerequisite of ULSMs.

Various ML algorithms have been used to build surrogate models, such as radial basis
function (Akhtar & Shoemaker, 2016), deep neural networks (Gettelman et al., 2021), and
Gaussian process regression (Laloy & Jacques, 2019). Among these algorithms, Gaussian
process regression (GPR) is a non-parametric ML technique (Rasmussen and Williams 2006)
and has been shown to perform well in various applications (e.g., Camps-Valls et al., 2018; Fang
et al., 2018). Through using appropriate covariance functions such as squared exponential kernel,
GPR can enforce local smoothness, which may be beneficial for searching of the optima (Razavi
et al., 2012; Laloy & Jacques, 2019).

The recent decade has seen the rapid development of machine learning models primarily
focused on urban heat mitigation (Gobakis et al., 2011; Oh et al., 2020; Pena Acosta et al., 2021),
the interpretation of remote sensing data (Milojevic-Dupont & Creutzig, 2021), and carbon
emissions (Creutzig et al., 2019; Zhang et al., 2021). Only limited effort was devoted specifically
to urban planning purpose (Pena Acosta et al., 2021), focused on individual environmental
processes separately. With the rapid global urbanization and climate changes, it is imperative to
extend the application of ML techniques to holistic urban system dynamics which helps integrate
multiple urban physics and diverse environmental impacts, and to foster sustainable urban design

and planning.
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To further improve the viability of ULSM and aid sustainable urban design and planning,
in this study, we adopt the GPR algorithm (Rasmussen and Williams 2006) to capture the
physics of thermal and CO:2 exchange, based on the state-of-the-art Arizona State University
(ASU) Single-Layer Urban Canopy Model version 4.1 (ASLUM v4.1) (Li & Wang, 2020; Wang
et al., 2021a). The proposed ML surrogates can effectively reduce the computational time and
cost associated with physical models while maintaining the robustness and accuracy, thus helpful
to new users from urban design and planning sectors who are not familiar with urban climate
modeling. Meanwhile, we use multi-objective genetic algorithm (McCall, 2005) to find the
optimal configurations of the urban system for simultaneous mitigation of heat and CO2
emissions. The results will potentially enhance our understanding of the water-heat-carbon

dynamics in urban ecosystem and promote the development towards sustainable cities.

2 Method

2.1 Single layer urban canopy model

Among the current ULSMs, single layer urban canopy models (SLUCMSs) are probably
the most widely used schemes for urban system modeling. In SLUCMs, the urban landscape is
represented as a generic unit of two-dimensional (2D) street canyon, consisting of two arrays of
buildings separated by a road, with infinite longitudinal dimension (Fig. 1). The morphology of
urban areas is defined by the canyon aspect ratio (building height/street width, H/W), while the
land cover type can be configured into different categories such as different types of pavements,
vegetation, and soil. The continuous improvement of SLUCMs in the last decade enables detail
modeling of thermal, hydrological, ecological, and physiological processes in urban areas (see

e.g., Masson, 2000; Lemonsu et al., 2012; Yang et al., 2015a; Ryu et al., 2016; Stavropulos-
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Laffaille et al., 2018; Meili et al., 2020; Wang et al., 2013, 2021a). These models have been used
to assess the impacts of various characteristics of the built environment, especially the designed
urban mitigation strategies, on the thermal, pollutants, and carbon emissions in cities.

In this study, we adopt the newest version of Arizona State University Urban Canopy
Model (ASLUM version 4.1, Li & Wang, 2020, 2021b). ASLUM v4.1 features the coupling of
urban energy and water dynamics with photosynthesis and respiration from urban vegetation,
which enables us to quantify the compound environmental impact of urban mitigation strategies,
urban greening in particular, for both urban heat and CO2 mitigation.

To characterize the urban environment, the in-canyon air temperature (7can) is calculated
from the energy balance closure in street canyon (i.e., building walls and grounds) by (Wang et

al., 2013),

20 1, |, ST, ST, ST, T,

, ___ W RES, RES, RES, RES, RES,, O
2H 1 + I + o + J + !
W RES, RES, RES, RES, RES,

where T and frepresent the temperature and fraction of the sub-facets; RES is the aerodynamic
resistance on each sub-facets; subscripts w, p, v, s, a, can denote walls, paved surfaces,
vegetation, bare soil, atmosphere, and canyon respectively. In addition, the biogenic net
ecosystem exchange (NEE) is given as

NEE = R—GPP, ()
where R is the total respiration from soil and vegetation; GPP is the total gross primary
production from trees and lawns. The value of NEE follows the convention in ecology with both

R and GPP positive numbers, and negative NEE means net carbon sink.
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2.2 Dataset

A simulated dataset generated by ASLUM v4.1 are used for the subsequent ML
emulations. To improve the robustness of ML models over a wide range of urban configurations,
we conduct a large number of numerical simulations (N = 55388) by ASLUM v4.1 using a
variety of critical system design parameters. Training ML models only requires a small portion
of the dataset, while the majority of the dataset will be used in model testing and evaluation (see
Section 3.1). Each simulation is driven by in-situ observation from an eddy covariance (EC)
system in west Phoenix, Arizona (33.483847°N,112.142609°W) as the meteorological forcing.
The EC system measured basic meteorological variables and energy fluxes at 22 m above the
ground (>15 m above average roof level). Data retrieved from this EC tower (Chow, 2017) has
been used in previous urban studies ranging from surface energy dynamics, urban environment
modeling, and boundary layer physics (Chow et al., 2014; Song et al., 2017; Meili et al., 2020).
The meteorological forcing used in subsequent simulations includes the downwelling shortwave
and longwave radiation, atmospheric temperature, pressure, humidity, and wind speed (Fig. 2).
We selected 24 hours of measurement during a typical clear day in early summer (May 11%,
2012) to drive the physical model, with air temperature of 35 °C at the maximum and 23 °C at
the minimum. Meanwhile, the time selection of meteorological forcing avoids the influence from
random weather events like the presence of cloud, precipitation, and cold/heat waves. During the
simulation period, ALSUM v4.1 predicts the evolution of upwelling radiation, surface
temperatures and heat fluxes, and biogenic COz2 at an interval of 5 minutes, and aggerates these
variables into to 30-minutes average as the outputs.

The scenarios of urban system design in ASLUM v4.1 are represented by several groups

of parameters, including the street morphology, thermodynamic properties of urban fabric, urban
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greenery properties, overall land use types, and landscaping management schemes. Previous
studies have shown that certain parameters of the ASLUM v4.1 possess higher sensitivity
especially in prediction of extreme events and design optimization. These parameters are
hereafter referred to as the critical design parameters (Yang & Wang, 2014; Yang et al., 2016; Li
& Wang, 2021b). In the light of previous studies, here we select 24 urban system critical design
parameters in four groups that are most impactful to the urban thermal environment and carbon
exchange dynamics (Table 1). The 24 design parameters are sampled from individually
prescribed probability distribution functions (PDFs) (see details in Table 1 in Li & Wang,
2021b), respectively, and are considered to be independent. The possible covariances among
different parameters, in particular the soil thermal and hydrological properties, have insignificant
impact on the output of ASLUM (Wang et al., 2011). The PDFs of design parameters are
primarily derived from field or laboratory measurements, reported values from literature, or best
estimates within the physical ranges (Li & Wang, 2021b). In each simulation, we monitor the
mean air temperature at the pedestrian level inside of street canyon (7can), and the mean net
ecosystem exchange (NEE) over the street canyon. Finally, all simulations are randomly split

into two sets (training and test) for the subsequent ML regression and optimization.

2.3 Gaussian process regression

GPR is a Bayesian kernel regression method that uses a Gaussian Process (GP) to
describe the distribution of the quantity of interest and the Bayes’ theorem to infer the posterior
distribution (Rasmussen and Williams 2006). A GP refers to a set of random variables,

{1,.Y,,....Y,} (often indexed by inputs), that jointly follow a multivariate Gaussian distribution.

GPR starts by specifying the prior (i.e., before seeing any data) mean and covariance of the joint
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Gaussian distribution using the mean function w(x)= E[Y(x)] and a covariance function
k(x,x") = E[[Y(x)— u(x)][Y(x")— u(x")]], respectively. Here, X is a d-dimensional vector and
may include space coordinates, time, or controlling variables of Y. The mean and covariance
functions should reflect the prior knowledge of the general trend and level of smoothness of the
target function, respectively. The covariance implicitly maps the inputs to features ¢(x). By
doing so, GPR can approximate complex, nonlinear relationships between the target (¥ = Tcan or
NEE) and inputs (sampled from the ASLUM v4.1 parameter space).

Once training data are introduced, GPR uses the Bayes’ Theorem to infer the posterior

distribution of the target. Let D = {(x,,,),(X,,,).....(X,,»,)} denote training data, the posterior
distribution of the target variable at an unseen data point, ¥ = Y (x") is given by:
Y'|D,x" ~N Var(Y")). (3)
The posterior mean and variance are given below:
¥ =pu(x)+E(E+071) [y - p(0)], (4)
Var(Y) =0 -2 (Z+021)"'2". (5)

2

In the above equations, y = {y,,¥,,...,y,}, 0> is noise variance, go* is signal variance, a

hyperparameter of the covariance function, £ denotes the prior covariance matrix of the training
data with its jj-th entry as X, . = k(x,,x,), and T" is a vector denoting the covariance between
training and test data, i.e., =, = k(x,,X ).

In this study, we use GPR to construct surrogate models for NEE and Ttan, respectively.
Both surrogate models use the critical design parameters of the ASLUM as input variables after
scaling to [0, 1]. We note that this is a high dimensional problem with 24 input variables (p =

24), which would pose challenges for some commonly used surrogate modeling techniques such

10
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as polynomial chaos expansion (He et al., 2020). For both surrogate models, we specify a linear
prior mean and the commonly used squared exponential covariance function. The models are
trained using simulation results of ASLUM v4.1 described in Section 2.2. The two
hyperparameters of the covariance function (signal variance and range) are tuned by maximizing
log likelihood; the other hyperparameters (noise variance and coefficients of the linear mean
function) are estimated once the best signal variance and range are determined. In particular, the
signal variance and range (A) of the covariance function, noise variance, and coefficients of the
linear mean function () are estimated by maximizing the log marginal likelihood as a function

of these hyperparameters (Rasmussen and Williams 2006):

10gP(y|X,ﬁ,/1,0;,0'f) = —%(y—H,B)T [Z(Gé,)t)wLajlnTl(y—Hﬂ)
’ (6)

—glogZE—%log‘Z(ag”l)jL o,

where X = [xf,...,xﬂ, H= [1 X ], and 1, denotes a column vector of ones. Hyperparameters

n’

that maximize the above log marginal likelihood was identified using a quasi-Newton method.
This is more computationally efficient than methods such as grid search because the overhead of
calculating the derivatives is small (Rasmussen and Williams 2006).

The model trained using the selected hyperparameters is then used for optimization

(Section 2.4). In this study, we use the posterior mean y to emulate temporally aggregated NEE

and Tean simulated by ALSUM. However, whenever needed it is possible to use the posterior
variance with stochastic/robust optimization techniques (e.g., Diwekar, 2020; Mishra et al.,
2020).

Besides GPR, we also use the radial basis function (RBF) interpolation technique

(McDonald et al., 2007) to construct the surrogates. RBF interpolation constructs an exact
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emulator; in other words, the fitted function is exactly equal to the target variable at training data
points. Because of this appealing feature and satisfactory performance of RBF in previous
studies (Akhtar & Shoemaker, 2016), we include RFB interpolation in this study to construct
surrogates for 7can and NEE, respectively. The Gaussian basis is used, and its decay rate
hyperparameter was selected by maximizing coefficient of determination on a validation set

separate from training data.

2.4 Metrics of environmental quality and multi-objective optimization

As mentioned, we use daily mean in-canyon temperature (7can) and biogenic NEE to
represent thermal and carbon environment in this study. During summertime, both lower 7can and
NEE are preferred for better heat mitigation and CO2 reduction purposes. It is noteworthy that
urban mitigation strategies will affect the behavior of CO2 exchange over vegetated surfaces,
primarily by affecting the atmospheric temperature and radiation redistribution. Specifically, the
shading effect of tall urban trees (Wang, 2014; Upreti & Wang, 2017) reduces photosynthetic
active radiation on understory lawns, lowering CO2 uptake rate. Meanwhile, the cooling effect
caused by shading and evapotranspiration from green spaces reduces enzyme activities in
photosynthesis and respiration processes, weakening CO2 uptake and release at the same time.
The complex interactions between heat and biogenic carbon dynamics make it difficult to
disentangle the effect of mitigating heat and CO2 emissions separately.

To account for the compound mitigation effect to heat and carbon emissions, we perform
multi-objective optimization to minimize 7can and NEE simultaneously. The decision variables
(24 ASLUM v4.1 parameters) are constrained by their physically feasible ranges (Table 1). The

optimization problem is solved by an elitist genetic algorithm (Deb, 2001) in MatLab®. A

12
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population size of 500 is used in each generation with the maximum of 500 generations when
searching for the Pareto solutions. Mathematically, Pareto solutions are defined as a compromise
to “no other solution that can improve at least one of the objectives without degradation any
other objective” (Ngatchou et al., 2005). The optimization process stops when the movement of
the points on the Pareto front between the final two iterations is small.

To facilitate the assessment of optimization results and to enable direct comparison

among designed scenarios, we introduce a compound heat-carbon index (CHCI):
CHCI = aT,, +(1-a)NEE, (7)

where 0 < o <1 is the weight of multiple environmental indicators (for simplicity, we use o =

0.5 for subsequent analysis), and the overhead bar denotes the normalization by

X — Xmin
X max _Xmin , (8)

} =
with X being Tcan or NEE. Qualitatively, lower CHCI represents lower temperature and stronger
carbon sink, thus indicates better overall environmental quality. Based on the simulated dataset,

the values of Tcan,max, Tcan,min, NEEmax, and NEEmin in this study are 39.77 °C, 8.47 °C, 0.090 mg

m~2s~!, and —0.190 mg m~s~!, respectively.

3 Results and Discussion

3.1 Machine learning surrogates

In this study, we train two GPR models to emulate 7Tcan and NEE, respectively, using 5%
of the simulated dataset (Niwain = 0.05N = 2769), as described in Section 2.2. We then evaluate the
emulation accuracy of the two surrogates on the test data (Niest = 0.95N = 52619). Figure 3ab
shows the comparison between Tcan and NEE simulated by the physical model ASLUM v4.1 and

ML surrogates on the test data. For each scenario, CHCI is calculated by Eq.(6) using normalized
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Tcan and NEE from ASLUM and GPR models respectively (Fig. 3c). The result shows GPR
models reproduce the environmental metrics with satisfactory accuracy, with coefficient of
determination (R?) above 0.96 for Tcan, NEE, and CHCI. Figure 3d shows the change of R? and
normalized root mean square errors (RMSEn) of the comparisons when varying the training
sample size from 0.5% to 10% with 0.5% increment (0.005N = 277). R? and RMSEn shown in
Fig. 3d are the ensemble means from 20 runs with different random seeds to reduce the influence
of data heterogeneity and randomness in training sample selection. The variations among 20 runs
are insignificant with the coefficient of variance (standard deviation / mean) smaller than 0.002
for R? and 0.02 for RMSEn. Generally, the model performance improves with the increase of
training sample size, but the change becomes marginal when sample size is greater than 3%
(0.03N = 1662). The GPR surrogate models retain reasonable accuracy (R? > 0.90 for Tean and
NEE on test data) when trained by only 0.5% (277) of the dataset while tested on the rest. Small
training sample size can potentially cause over-fitting, especially for models fitting on a large
number of input features due to the “curse of dimensionality” (Bessa et al., 2017). In this study,
the minimum training sample size required to avoid over-fitting issue is around 0.3% (0.003N =
166), but the model performance and stability degrade significantly on test samples when
training sample size is smaller than 0.5% of the dataset. Users with a limited amount of data
points from observations should be cautious about the over-fitting issue and employ strategies
such as reducing the input dimension and model averaging (Cawley and Talbot, 2007, 2010). To
the extent allowed by computational budget, we suggest increasing training sample size to ensure
better and more robust model performance.

The emulation accuracy of RBF interpolant is substantially lower than GPR (R?>=0.77

and 0.88 for Tean and NEE, respectively, evaluated on test data). Therefore, we did not use the
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RBF surrogates for optimization. A possible cause of the inferior performance is that RBF may
be subject to numerical stability and robustness issues with large datasets (Skala, 2017).
However, RBF may be an attractive candidate for surrogate modeling when only a small amount
of training data is available (Razavi et al., 2012; Akhtar & Shoemaker, 2016).

In addition to the satisfactory accuracy, our performance benchmark shows that the GPR
surrogate models only take 3.6, 17.6, and 35.0 seconds to simulate a group of 10, 50, and 100
different scenarios respectively, which is eight times faster on average than ASLUM v4.1 (tested
on Intel Xeon E-2186G 3.8GHz with 12 logic cores and 40GB RAM). The high efficiency
reduces the time cost of calculation, facilitating decision making processes and enabling fast
comparison between a large amount of scenarios, especially when exhaustive search for best case
is desired. The improvement in calculation efficiency also promotes fast assessment of variable
sensitivity for high-dimensional physical-based ASLUM v4.1, in comparison with the previous

sensitivity analysis (Li & Wang, 2021b).

3.2 Multi-objective optimization

Once the GPR emulations of ASLUM v4.1 is trained and tested, we use a multi-objective
genetic algorithm (GA) optimization process to find the desirable urban system design within the
physically feasible range of the critical design parameters in Table 1. The multi-objective GA
finds urban configurations that minimize 7can and NEE simultaneously, leading to Pareto
solutions. The Pareto solutions characterize the trade-off among multiple objectives in a
constrained optimization. In this study, a tradeoff exists between the two urban environmental
measures, viz., Tcan and NEE, because photosynthesis shrinks with temperature decrease, though

the underlying mechanisms are much more complex. Figure 4 shows the comparison of results of
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ASLUM v4.1 simulations and the Pareto front formed by multiple Pareto solutions (n = 134)
identified by GA with similar CHCI but different combinations of 7Tcan and NEE. The Pareto
solutions are located lower left corner, within the range of CHCI from —0.05 to 0.10. Overall, the
CHCI values of the Pareto solutions are significantly lower than the training and test dataset,
indicating the potential further improvement of environmental quality via optimized urban
design.

Furthermore, the Pareto front roughly consists of two segments: the upper left wing
running parallel with the equi-CHCI contours and the lower right tail with increasing CHCI. The
segment of Pareto front with (roughly) constant CHCI can be physically interpretated as that the
optimal urban designs for mitigating carbon emission can be obtained with the trade-off of
compromising heat mitigation. Yet, the total efficacy of the combined benefit of carbon-heat
mitigation is achieved with constant CHCI. The lower right tail, in contrast, signals that if urban
system design put more weight on the cooling effect, as a consequence, the objective of carbon
emissions will be strongly degraded. This is manifested in that the right tail extends in the
direction where CHCI increases, meaning the combined benefit of carbon-heat mitigation will be
severely hampered: only marginal cooling effect can be obtained at the expense of significant
increases in carbon emission.

Note that here we only consider two essential measures of urban environmental quality. If
more environmental metrics are to be included (e.g., health risks of urban residents due to
degraded thermal/air quality), the multi-objective optimization will likely produce smaller (due
to more optimization constraints) solution domain with lowest CHCI as the candidate for urban

system design. But the trade-offs among diverse environmental indicators will remain the
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guiding principles for researchers and policy makers to design and assess more livable cities

using multi-objective optimization.

3.3 Implications to urban system design

For optimal urban system design, one would seek for the urban characteristics that lead to
Pareto solutions. The deviations of these parameters from their status quo values indicate the
potential urban system design for planners to ammolite the thermal and carbon environments in
cities. Figure 5a shows the histograms of initial and optimized (Pareto solutions) distributions of
the 24 critical design parameters. Among the Pareto solutions (n = 134), we found that the key
parameters shared similar values skewed to the edge of prescribed boundaries from Table 1.
Overall, wide street (), low-rise building (H), high vegetation coverage (fv), dense lawns
(LAIg), and small bare soil fraction (fs) are most likely to furnish Pareto solutions for thermal
and carbon mitigations. To achieve desirable environmental benefits, these urban features need
to fall within a small range (Fig. 5b). Good environmental performance is also associated with
high trees (A1) with large crown (71) and dense canopy (LAlr). Environmental responses (i.e.,
Tean and NEE) are not sensitive to parameters related to trees than those related to urban street
morphology and land use, yet tree parameters play important roles affecting both heat and CO2
exchanges in urban environment (Li & Wang, 2021a). As a result of heat mitigation, urban
greenery saves building energy consumption during summertime, indirectly reducing CO2
emissions induced by fossil fuel power generation (Akbari, 2002). This study only considers
biogenic CO2 exchange. The importance of greenery-related urban features (i.e., fv, fs, LAlg,
LAIr, Ar, r1, etc.) might be more substantial if point source emissions from fossil fuel power

plants are included.
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Unlike the parameters of street canyon geometry and plant properties, no significant
skewness of material properties of pavement and building materials are observed, except for the
albedo of vegetated ground (aG3) and heat capacity (c/#1) and thermal conductivity (kW1) of
building walls. Albedo of vegetated ground (aGs3) directly affects the energy flux and the skin
temperature of ground vegetation (i.e., urban lawns) and controls the rates of evapotranspiration,
photosynthesis, and respiration. Active evapotranspiration dissipates surface energy via latent
heat (Yang & Wang, 2017; Aram et al., 2019), triggering changes in the ambient temperature
and further altering biogenic CO2 exchanges through physiological processes. In addition,
thermal properties of building walls regulate the energy exchange rate between building and
canyon atmosphere, more effectively than roofs, especially if the building interior thermal
environment is regulated by the operation of heating, ventilation, and air conditioning (HVAC)
systems or effective (green) building energy designs (Wang et al., 2021Db).

It is noteworthy that initial soil moisture (SWCi) shows limited sensitivity with the
optimal mean nearly identical to its initial value (Fig. 5b). In urban environment, scheduled
irrigation controls soil moisture, therefore the optimal irrigation amount exists corresponding to
the optimal soil moisture. The finding is consistence with Li and Wang (2021a), where it is
found that excessive irrigation may not help to mitigate carbon emission. This is due to the fact
that the extra moisture can promote soil respiration (hence increase carbon emission), whereas
the marginal cooling due to extra irrigation is not significant. This effect has been corroborated
by Vivoni et al. (2020), based on a year-long in-situ measurement at a desert urban park, and was
referred to as an “oasis effect” of urban irrigation that enhances evapotranspiration and CO2
exchanges. It is also noteworthy that the tail observed in the Pareto front in Fig. 4 with degraded

co-benefit of heat and carbon mitigation can be largely attributed to this effect as well.
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Overall, the good agreement between the results of the GA multi-objective optimization
and previous physically-based simulations (Li & Wang, 2021a) underlines the reliability and
fidelity of the ML surrogates in the current study. Results show that specific urban system design
strategies for effective mitigation of heat and carbon emissions include more urban green spaces,
choices of urban vegetation types, meticulous management of irrigation schedule, and adoption
of smart building and pavement materials. The ML-based surrogates and optimization algorithms
can be used in the place of physical models with significantly reduced complexity and
computational cost, and furnish excellent operative models for fast decision making.
Nevertheless, as revealed by this study, it is of critical importance to re-iterate here that multi-
objective optimizations are intrinsically constrained by the competing interest among diverse
objectives. Furthermore, the GA optimization method in this study helps to inform policy makers
and practitioners at the onset of planning stage, and to gauge their preference of specific or
compound design objectives, e.g., improvement of thermal comfort, air quality, building energy

efficiency, or reduction of health risks, etc.

3.4 Future development

This study aims to provide a practical toolkit to design and evaluate the impact of urban
characteristics on improving the livability of urban environment, based on ML surrogates trained
on a simulated dataset. We adopt GPR in our applications to showcase the performance of ML
emulation in terms of model accuracy and stability. However, many other popular ML or deep
learning algorithms, such as Random Forest, support vector machine, or deep neural networks,

can be adopted for urban system design depending on specific applications or the user
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preference. For example, support vector machine with RBF kernel is expected to outperform
GPR when training data is scarce (Razavi et al., 2012; Akhtar & Shoemaker, 2016).

The design optimization in this study is primarily based on ML models without the aid
from physically-based UCM. Theoretically, ML emulations are expected to be more accurate
within the range of training data than when it is used for extrapolation. This caveat will be
relaxed by adaptive learning with dataset continuously retrieved from observation or numerical
modeling to retrain the ML models during optimization. Adaptive learning could further improve
the model accuracy and optimization performance but might sacrifice model simplicity and
practicality for non-machine learners (i.e., urban planner/designers and decision makers).

In this study, we focus on heat and carbon emissions as the indicator of the urban
environmental quality. Though they are the major concerns amid the global climate change,
many other factors affect the comfort and health of urban dwellers that should be considered in
sustainable urban development. For example, relative humidity and thermal radiation (i.e.,
ultraviolet, UV) play important roles in human thermal comfort and their influence varies among
climate regions (Abdel-Ghany et al., 2013; Baruti et al., 2019). Thermal discomfort caused by
undesired relative humidity and excessive UV exposure can be mitigated by proper urban
designs of urban geometry, building and pavement materials, green and blue spaces (Lai et al.,
2019). Moreover, air pollutions such as high levels of ozone and particulate matters (PM)
concentration can be alleviated by street trees, though the mitigation effect is highly dependent
on tree location and species (Barwise & Kumar, 2020) and requires dedicated tree models to
quantify (Riondato et al., 2020). As shown by the Pareto solutions in Fig. 4, exclusive urban
planning objectives, such as UHI mitigation by reflective pavements, often lead to severe

compromise of other environmental qualities (e.g., carbon emissions). Such one-sidedness in
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urban planning strategies has practically gained upper hand in policies of some local
municipalities, which leads to many unintended physical consequences in the real world (Yang et
al., 2015b). It is important that urban practitioners bear in mind the potential trade-offs of multi-
objective designs, and more sustainable urban planning strategies should account for the
interactions of total urban system dynamics, instead of trying to “optimize” for singular
environmental indicators (in particular, heat mitigation).

Furthermore, the high computational efficiency of ML emulation can enhance the
performance and predictive capacity of regional urban hydroclimate modeling by serving as
surrogates of multi-scale numerical platforms such as the widely-used Weather Research and
Forecast (WRF) model (Skamarock et al., 2019). Currently, WRF resolves urban land surface
using WRF-UCM coupling framework, which allows simple configuration of urban
characteristics with limited urban types. Comparing to the simplified UCM in WRF model, ML
models learned from full version of UCM will produce more detailed and accurate results with
much improved computational economy. As cities are more vulnerable in climate change than
other nature areas, the improvement in computation speed and accuracy are not trivial in terms of

the sustainable development of the human society.

4 Concluding remarks

This paper presents a method emulating a complex urban land surface model using
machine learning, aiding the direct interpretation of modeling results for urban planners and
policymakers who might have less knowledge on urban land surface models and computing
coding. The machine learning surrogate models inherit the advantages the physical-based

ASLUM v4.1 model in terms of core dynamics, accuracy, and high resolution, with enhanced
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computational efficiency and user-friendliness to practitioners. Based on scenario comparison
and optimization under constraints, specific mitigation strategies can be derived for both existing
and developing urban areas. The versatility of the proposed method and its further improvement
(e.g., web-based and graphic user interface development) will help to foster decision making
processes and enable policy makers and urban planners to gain deeper and more holistic insight
into sustainable solutions that promotes the overall livability of cities.

The transition from complex process-based modeling to ML-based protocols, albeit at its
infancy, is transformative and has the potential to furnish a new paradigm in urban system
modeling using advanced computer techniques, and further our fundamental understanding of the
complex urban ecosystem and the interactions among its diverse components. Future work is
planned to take the full advantage of data-driven techniques to form comprehensive and
systematic views of compound urban environmental assessment including UHI, building energy

efficiency, ecosystem services, air quality, anthropogenic CO2 emission, etc.
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Figure 1. Schematic of urban representation in a single layer urban canopy model. H, R and W
represent normalized building height, width of building portion and non-building portion,
respectively. A street canyon includes two symmetric rows of street trees, specified by tree
height (47), crown radius (77), and tree location (cr). Non-building portion is further configured
as paved (dark gray), lawn (dark green), and bare soil surfaces (brown). CO2 exchanges include
anthropogenic emissions from building (light gray), human (blue), and vehicle (red) and biogenic

exchanges from tree (light green), lawn (dark green), and bare soil (brown).
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Figure 2. Meteorological forcing used in the simulation (a) downwelling shortwave (S|) and
longwave (L) radiations; (b) air temperature (72) and windspeed (U); (c) background CO2
concentration ([COz]) and air density (pa). Mean Tean and NEE are calculated during the shaded
period (24 hours). Results from non-shaded period are used for quality control in ASLUM and

are not used in ML training and test.
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516  Table 1. Variables used as training features for Gaussian Process regression models.
Name Unit  Mean Std. Min. Max. Name Unit Mean  Std. Min. Max.
Canyon geometry Material properties
Normalized road width Albedo - Wall
w - 0.60 0.19 0.05 0.80 awi - 0.17 0.04 0.06 0.28
Normalized building height Albedo - Paved
H - 078 040 0.10 1.50 aGi - 0.13 0.03 0.05 020
Soil properties Albedo - Lawn
Bare soil fraction aG - 020 0.04 0.08 0.33
fs - 0.21 0.11 0.05 0.50 Albedo - Bare soil
Saturation soil moisture aGs - 020 0.04 0.08 0.33
Ws - 035 0.07 0.15 0.55 Thermal conductivity - Wall
Residual soil moisture 13/4 Wm 'K 0.12  0.03 0.05 020
2 - 0.06  0.01 0.02 0.10 Thermal conductivity - Paved
Initial soil moisture kG WmK-! 149 033 0.56 244
SWCi - 020 0.06 0.08 030 Thermal conductivity - Lawn
Plant properties kG2 Wm 'K 0.65 0.14 024 1.06
Lawn fraction Thermal conductivity - Bare soil
I~ - 033 0.11 0.05 0.0 kGs Wm 'K 023 0.05 0.08 036
Tree - Leaf area index Heat capacity - Wall
LAIr m?/m? 4.15 087 150  6.50 c MJm3 K-! 231 051 086 3.74
Grass - Leaf area index Heat capacity - Paved
LAl m?/m? 268 079 1.00 5.00 cGi MJm3 K-! 090 020 034 146
Tree crown size Heat capacity - Lawn
rT - 0.07 0.03 0.02 0.12 cGz MJm3 K-! 1.70 037 0.64 2.76
Tree height Heat capacity - Bare soil
hr - 0.70 021 025 1.00 cGs MJm3 K-! 1.02 021 038 1.63
Tree location
cr - 048 027 0.00 1.00
517
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