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Abstract

Deep convolutional neural networks (CNNs) for video
denoising are typically trained with supervision, assuming
the availability of clean videos. However, in many appli-
cations, such as microscopy, noiseless videos are not avail-
able. To address this, we propose an Unsupervised Deep
Video Denoiser (UDVD'), a CNN architecture designed to
be trained exclusively with noisy data. The performance
of UDVD is comparable to the supervised state-of-the-art,
even when trained only on a single short noisy video. We
demonstrate the promise of our approach in real-world
imaging applications by denoising raw video, fluorescence-
microscopy and electron-microscopy data. In contrast to
many current approaches to video denoising, UDVD does
not require explicit motion compensation. This is advan-
tageous because motion compensation is computationally
expensive, and can be unreliable when the input data are
noisy. A gradient-based analysis reveals that UDVD auto-
matically adapts to local motion in the input noisy videos.
Thus, the network learns to perform implicit motion com-
pensation, even though it is only trained for denoising.

1. Introduction

Video denoising is a fundamental problem in image pro-
cessing, as well as an important preprocessing step for com-
puter vision tasks. Convolutional neural networks (CNNs)
[21] provide current state-of-the-art solutions for this prob-
lem [34, 35, 41, 43, 11, 9, 8, 6]. These networks are typ-
ically trained using a database of clean videos, which are
corrupted with simulated noise. However, in applications
such as microscopy, noiseless ground truth videos are often
not available. To address this issue, we propose a method
to train a video denoising CNN without access to super-

*equal contribution.
I'See https://sreyas-mohan.github.io/udvd/ for code and more results.

vised data, which we call Unsupervised Deep Video De-
noising (UDVD). UDVD is inspired by the “blind-spot”
technique, recently introduced for unsupervised still image
denoising [22, 17, 2, 19], in which a CNN is trained to es-
timate each noisy pixel from the surrounding spatial neigh-
borhood without including the pixel itself. Here, we pro-
pose a blind-spot architecture that processes the surround-
ing spatio-temporal neighborhood to denoise videos.

We show that UDVD is competitive with the current su-
pervised state-of-the-art on standard benchmarks, despite
not having access to ground-truth clean videos during train-
ing (see Figure 1). Moreover, when combined with ag-
gressive data augmentation and early stopping, it can pro-
duce high-quality denoising even when trained exclusively
on a single brief noisy video sequence (as few as 30
frames), outperforming unsupervised video denoising tech-
niques (e.g. F2F[11] and MF2F [9]) which are pre-trained
with supervision. Finally, methods based on pre-training
are not suitable for imaging applications where clean data
is unavailable. In contrast, we demonstrate that UDVD can
effectively denoise three different real-world datasets: raw
videos from surveillance cameras, fluorescence-microscopy
videos of cells, and electron-microscopy videos of catalytic
nanoparticles.

The state-of-the-art performance of UDVD is unex-
pected. Nearly all existing approaches to video denois-
ing [24, 1, 3, 25], including those based on deep CNNs [34,

, 11, 13, 42], use estimates of optical flow to adaptively
compensate for the motion of objects in the video. Con-
ventional wisdom suggest that ignoring such motion should
lead to denoising results in which moving content is blurred.
Contrary to this intuition, UDVD and some recent state-of-
the-art supervised methods for video denoising [35, &, 0]
yield excellent empirical performance without explicit es-
timation of optical flow. How can is this achieved? We
use a gradient-based analysis to show that both UDVD and
supervised CNNs perform spatio-temporal adaptive filter-
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Figure 1. Unsupervised denoising matches the performance of supervised denoising. Frame from a video in the Set8 dataset denoised
using different approaches. (a) Clean frame. (b) Frame corrupted with Gaussian noise of standard deviation 30 (relative to intensity range
[0-255]). (c) FastDVDnet [35], a supervised method trained on the DAVIS dataset. (d) MF2F [9], an unsupervised method which fine-
tunes a pre-trained FastDVDnet on the noisy video (e) Our proposed unsupervised method (UDVD), which uses five frames to denoise
each frame, trained on the DAVIS dataset. (f) UDVD trained only on the noisy video itself. Performance is quantified using PSNR / SSIM
[38], respectively. The corresponding videos, as well as additional examples, are included in Section C of the supplementary material.

ing, which is aligned with underlying motion. Thus, these
CNNs are automatically performing implicit motion com-
pensation. To quantify this, we demonstrate that it is pos-
sible to estimate optical flow accurately from the network
gradients, even though the network architectures are not de-
signed to account for optical flow, and the models receive
no optical-flow information during training.

Our Contributions:

* A novel blind-spot architecture/objective for unsuper-
vised video denoising, which achieves performance com-
petitive with state-of-the-art supervised methods.

* A training paradigm using aggressive data augmentation
(time and space reversal) and early stopping to achieve
state-of-the-art performance from training on a single
brief noisy video.

* A demonstration of our method’s effectiveness in denois-
ing real-world electron and fluorescence microscopy data,
as well as raw videos. Unlike most existing methods for
unsupervised video denoising, our proposed method does
not require pre-training, which is key in real-world imag-
ing applications.

e An analysis of the denoising mechanism learned by
UDVD, demonstrating that it performs implicit motion
compensation even though it is only trained for denois-
ing. We apply the analysis to supervised networks, show-
ing that the same conclusion holds.

2. Background and Related Work

Traditional and CNN-based video denoising. Traditional
techniques for single image denoising include nonlinear fil-
tering [36, 26], sparse prior methods [12, 10, 33, 4, 30, 7],
and nonlocal means [20]; many of which have been ex-
tended to videos [24, 1, 25, 3]. In order to exploit the
spatio-temporal structure of the video, these methods typ-
ically employ motion compensation based on estimates of
optical flow.

In the last five years, data-driven methods based on
deep CNNs [21] have outperformed all other techniques
in image [45, 14, 5] and video denoising [34, 41, 35, 43].
The CNNs are trained to minimize the mean squared er-
ror between the network output and ground truth using
large databases of natural images/videos. Many deep-
learning techniques also perform explicit motion compensa-
tion. DVDnet [34] applies an image-denoising CNN to each
input frame, estimates the optical flow from the denoised
frames using DeepFlow [39] (a CNN pre-trained for this
purpose), warps the frames using the flow estimate to align
their content, and finally processes the registered frames
with a CNN. Ref. [41] applies a similar pipeline, but jointly
trains an optical-flow module with the denoising CNN.
Video denoising without motion compensation. Three re-
cent methods perform video denoising without explicit mo-
tion estimation. VNLnet [8] uses a non-local search algo-
rithm to find self-similar patches in the input video, and then
uses a CNN to process the patches. ViDeNN [6] consists of
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a first stage that denoises each frame using a CNN, and a
second stage that exploits temporal structure by using the
frames, (t — 1), ¢ and ¢ + 1 to produce the denoised tth
frame. FastDVDnet [35] uses UNet [32] blocks, trained end
to end, to denoise each frame using five contiguous frames.
These methods achieve state-of-the-art performance with-
out any explicit motion compensation, similar to our pro-
posed UDVD. In this work we show that such CNNs ac-
tually performs implicit motion estimation, which can be
revealed through a gradient-based analysis.

Unsupervised denoising. Noise2Noise (N2N) is an un-
supervised image-denoising technique where a CNN is
trained on pairs of noisy images corresponding to the same
clean image [22]. Frame2Frame (F2F) [11] exploits this
approach to fine-tune a pretrained image-denoising CNN
with noisy data. The idea is to register contiguous frames
using the optical flow (obtained from TV-L1 [44]), and
treat them as noisy realizations of the same clean image.
This scheme is extended to have a trainable flow estima-
tion module in [42], additional optical-flow consistency in
[13] and to use multiple noisy frames as input in Multi-
Frame2Frame (MF2F) [9].

Using the N2N framework to perform unsupervised
video denoising requires warping adjoining frames, which
in turn requires explicit motion compensation, and accurate
occlusion estimation. In addition, the assumption that con-
tiguous frames can be registered may not hold, particularly
if the motion speeds in the video are large relative to the
frame rate or local intensity changes are not due to trans-
lation. In order to bypass these issues, we develop a blind-
spot network that trains denoising CNNs by fitting the noisy
data directly. The CNN is trained to estimate each noisy
pixel value using the surrounding spatio-temporal neighbor-
hood, but without taking into account the noisy pixel itself
in order to avoid the trivial identity solution. This “blind
spot” can be enforced through architecture design [19], or
by masking [2, 17]. For still images, several variations of
this approach have been shown to provide effective denois-
ing for natural images and noisy images from fluorescence
microscopy [18, 31, 15].

3. Unsupervised Deep Video Denoising

In this section we describe our proposed architecture (see
Figure 2 for a detailed diagram).
Multi-frame blind-spot architecture. Our CNN maps five
contiguous noisy frames to a denoised estimate of the mid-
dle frame. Building on the “blind spot” idea proposed
in [19] for single-image denoising, we design the architec-
ture so that each output pixel is estimated from a spatio-
temporal neighbourhood that does not include the pixel it-
self. We rotate the input frames by multiples of 90° and pro-
cess them through four separate branches containing asym-
metric convolutional filters that are vertically causal. As a

result, the branches produce outputs that only depend on the
pixels above (0° rotation), to the left (90°), below (180°) or
to the right (270°) of the output pixel. These partial outputs
are then derotated and combined using a three-layered cas-
cade of 1 x 1 convolutions and nonlinearities to produce the
final output. The resulting field of view does not include the
pixel being denoised, as depicted at the bottom of Figure 2.
UDVD processes the video in two stages as shown in
Figure 2, similar to previously proposed networks for super-
vised video denoising [34, 6, 35]. A first stage, consisting
of three UNets [32] (D1 in the diagram) with shared pa-
rameters, maps each group of three contiguous frames (i.e.
(t—2,t—1,t), ¢t —1,t,t+1)and (t,t + 1,t +2))to a
separate feature map. These features are then mapped to a
single output using another UNet (D2). See Suppl. A for a
detailed description of the architecture.
Bias-free architecture. Inspired by [27], we remove all
additive terms from the convolutional layers in UDVD.
This provides automatic generalization to varying noise
levels not encountered during training, and facilitates our
proposed analysis to interpret the denoising mechanisms
learned by the network (see Section 5 and 6).
Using the missing pixel. The denoised value generated
by the proposed architecture at each pixel is computed
without using the noisy observation at that location. This
avoids overfitting — i.e. learning the trivial identity map that
minimizes the mean-squared error cost function — but ig-
nores important information provided by the noisy pixel.
In the special case of Gaussian additive noise, we can use
this information via a precision-weighted average between
the network output and the noisy pixel value. Follow-
ing [19, 18], the weights in the average are derived by as-
suming a Gaussian distribution for the error in the blind-
spot estimates of the color pixel values. Specifically, we
model the distribution of the three color channels of a pixel
x € R? given the noisy neighbourhood ©, as p(z|Q,) =
N (g, X2), where p, € R3 and ¥, € R3 represent
the mean vector and covariance matrix. Let y = = + 7,
n ~ N(0,0213) be the observed noisy pixel. We integrate
the information in the noisy pixel with the UDVD output by
computing the mean of the posterior p(x|y, £, ), given by

Elzlyl = (S, + oD (S e +07%y). (1)

See Suppl. A for more details. The CNN architecture is
trained to estimate the mean and covariance of this distribu-
tion at each pixel by maximizing the log likelihood of the
noisy data:

£t B0) = 5100 ) (S 40D )]

1
+ 5 log|%, + o?1].

When the noise process is unknown, we simply minimize
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Figure 2. Unsupervised Deep Video Denoising (UDVD) Network Architecture. The network takes 5 consecutive noisy frames as input
and produces a denoised central frame as output. We rotate the input frames by multiples of 90° and process them in four separate
branches with shared parameters, each containing asymmetric convolutional filters that are vertically causal. As a result, the branches
produce outputs that only depend on the pixels above (0° rotation, blue region), to the left (90°, pink region), below (180°, yellow
region) or to the right (270°, green region) of the output pixel. Each branch consists of a cascade of 2 Unet-style blocks (D1 and D2)
to combine information over frames. These outputs are then derotated and linearly combined (using a 1 x 1 convolutions) followed by
a ReLU nonlinearity to produce the final output. The resulting “field of view” is depicted at the bottom with each color representing the

contribution of the corresponding branch.

the MSE between the denoised output and noisy video, and
ignore the center pixel (see Suppl. A for more details).
Data augmentation and early stopping. In supervised de-
noising with simulated noise, training can rely on the gener-
ation of a virtually unlimited set of fresh noise realizations,
which prevents overfitting. In the unsupervised setting, this
is not possible, which makes it more challenging to train
models that can denoise short video sequences. To address
this, we (a) leverage data augmentation strategies: spatial
flipping and time reversal, and (b) perform early stopping
by monitoring the mean squared error between the network
output and noisy frames on a held-out set of frames. These
strategies make it possible to train UDVD with short video
sequences (as few as 30 frames), while achieving denoising
performance that is on par with or superior to both unsu-
pervised and supervised networks trained on much larger
datasets (see Figure 1, Table 2 and Suppl. D).

4. Datasets

We demonstrate the broad applicability of our approach
by validating it on domains with different signal and noise

structure: natural videos, raw videos, fluorescence mi-
croscopy, and electron microscopy.

Natural videos. We perform controlled experiments on
natural videos by adding iid Gaussian noise to the DAVIS
dataset [29]. The training/validation/test split is 60/30/30
videos, respectively. We use three additional datasets for
testing - Set8 [35] composed of 4 videos from the Derfs
Test Media collection and 4 videos captured with a GoPro
camera, Derfs [9] with 7 videos, and the first 10 videos from
Vid3oC [16] dataset (See Suppl. D for details).

Raw videos. We evaluate UDVD on a dataset of raw videos
i.e with frame color channels interleaved according to the
sensor mosaic containing real noise introduced in [43].
The dataset contains 11 unique videos, each containing 7
frames, captured at five different ISO levels using a surveil-
lance camera. Each video has 10 different noise realizations
per frame, which are averaged to obtain an estimated clean
version of the video.

Fluorescence microscopy. We apply our approach to
fluorescence-microscopy recordings of live cells in [37].
We use two videos: Fluo-C2DL-MSC (CTC-MSC) de-
picting mesenchymal stem cells, and Fluo-N2DH-GOWT1
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Traditional Supervised CNN Unsupervised CNN (UDVD)
test set o VNLB VBM4D VNLnet DVDnet FastDVDnet 1 frame 3 frames 5 frames

30 33.73 31.65 - 34.08 34.06 32.80 33.48 33.92

DAVIS 40 3232 30.05 32.32 32.86 32.80 31.48 32.20 32.68
50  31.13 28.80 31.43 31.85 31.83 30.47 31.20 31.70

30 3174 30.00 - 31.79 31.60 30.91 31.62 32.01

Set8 40  30.39 28.48 30.55 30.55 30.37 29.63 30.42 30.82
50  29.24 27.33 29.47 29.56 29.42 28.65 29.47 29.89

Table 1. Denoising results on natural video datasets. All networks are trained on the DAVIS train set. Performance values are PSNR of
each trained network averaged over held-out test data. UDVD, operating on 5 frames, outperforms the supervised methods on Set8 and
is competitive on the DAVIS test set. Unsupervised denoisers with more temporal frames show a consistent improvement in denoising
performance. DVDnet and FastDVDnet are trained using varying noise levels (o € [0, 55]) and VNLnet is trained and evaluated on each
specified noise level. All UDVD networks are trained only at o = 30, showing that they generalize well on unseen noise levels. See
Sections C and F in the supplementary material for additional results. The PSNR values for all methods except UDVD are taken from [35].

=30 o =90
DAVIS Set8 Derfs Vid3o0C DAVIS Set8 Derfs Vid3oC
UDVD-S 33.68/78.16 32.90/81.85 33.95/81.91 34.65/84.60 29.05/53.53 28.07/55.35 29.42/59.25 29.94/63.79

UDVD* 33.78/79.88 31.90/82.53 32.58/81.44 34.24/83.96 28.87/51.22 27.25/51.84 28.26/52.44  29.23/60.08
FastDVDnet*  33.91/76.99 31.81/80.21 32.45/81.64 35.05/84.44 28.01/47.53 26.54/50.16 27.36/52.87 28.42/55.99

MF2F 33.91/80.01 31.84/80.55 32.87/82.22 35.18/85.71 28.81/5124 27.25/52.78 2829/55.06 29.67/61.28

Table 2. Results for UDVD trained on individual noisy videos. The top row shows PSNR/VMAF[23] values (averaged over the entire
dataset) for UDVD trained on each individual video sequence with early stopping (labelled UDVD-S) using the last 5 frames of a video as a
held-out set. We augmented the dataset with spatial flipping and time reversal (see Suppl. D for an ablation study). With the augmentations
and early stopping, UDVD-S is comparable to (and often outperforms) UDVD or FastDVDnet trained on the full DAVIS dataset (indicated
by *) and MF2F, which fine-tunes a pre-trained CNN on each individual video. See Suppl. D for results on individual video sequences.

(CTC-N2DH) depicting GOWT]1 cells. This dataset illus- net [34], FastDVDnet [35]). As shown in Table 1, UDVD

trates the challenges of applying supervised approaches to achieves comparable performance to the supervised state-
real data: there is no ground-truth clean data. of-the-art on the DAVIS test set and slightly outperforms
Electron microscopy. We also apply our methodology these methods on an independent test set (Set8) at multiple
to a transmission electron microscopy dataset from [28]. noise levels. It also outperforms traditional unsupervised
The data consist of a 40-frame video depicting a platinum techniques such as VNLB and VBM4D (see Figure 1 and
nanoparticle supported on a cerium oxide base. The av- Suppl. C for visual examples).

erage image intensity is 0.45 electrons/pixel, which results
in an extremely low signal-to-noise ratio. As with the
fluorescence-microscopy data, no ground-truth clean im-
ages are available.

Unsupervised denoising from limited data. In order to
validate our approach on a more challenging setting that is
closer to the practical applications of unsupervised denois-
ing, we trained and tested UDVD on individual videos from
our test sets. As shown in Table 3 and 4 in Suppl. D, when
combined with data augmentation and early stopping (using

Comparison with other approaches on natural videos. the last 5 frames of each video as a held-out validation set),

We train UDVD on the DAVIS training set (see Suppl. A this version of UDVD (called UDVD-S) achieves compa-
for the training procedure). Following [ rable results, or often outperforms supervised FastDVDnet

. 2], we add iid Gaussian noise with standard deviation and unsupervised UDVD trained on a large dataset (DAVIS)

o = 30 on the clean videos during training. UDVD is (see Table 2 for results on 4 different datasets).

5. Experiments and Results

evaluated on the DAVIS test set and on Set8 by compar- To the best of our knowledge, all the existing unsuper-
ing to the clean ground-truth videos via PSNR. We com- vised video denoising techniques are based on the F2F [1 1]
pare UDVD with several popular methods: Bayesian pro- framework, where a backbone CNN pre-trained with su-
cessing of spatio-temporal patches (VNLB [20]), an ex- pervision is fine-tuned on the video to be denoised. We

tension of the popular image-denoising algorithm BM3D compared UDVD-S against the most recent such method
(VBM4D [25]) and supervised CNNs (VNLnet [8], DVD- — MF2F [9] which fine-tunes a FastDVDnet [35] trained
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(a) Raw video (scene 11)

(b) Fluor. micro. (Mes. stem cells)

Denoised

(c) Fluor. micro. (GOWTT1 cells) (d) Electron micro. (nanoparticle)

Figure 3. Denoising real-world data. Results from applying UDVD to the raw video, fluorescence-microscopy and electron-microscopy
datasets described in Section 4. Qualitatively, UDVD succeeds in removing noise while preserving the underlying signal structure, even for
the highly noisy electron-microscopy data. Raw videos are converted to RGB for visualization. See Suppl. D and F for denoised videos.

with supervision on natural videos using an objective in-
volving optical flow computed on consecutive noisy frames
(see Section 2). Without any pre-training, UDVD-S outper-
forms MF2F in almost all videos in Table 3 and 4 in Suppl.
D, and datasets in Table 2 (See Table 5 in Suppl. D.3 for
measure of confidence). Note that (a) we trained MF2F us-
ing all the 5 training schemes provided in the paper and re-
ported the best results in Table 2, and (b) the metric we used
to measure performance in Table 2 is the average PSNR of
all denoised frames, unlike in Ref. [9] where the first 10
frames of each video were excluded (see Suppl. D.3 for
more details and results).

Use of temporal information. UDVD estimates each
frame from k surrounding contiguous frames. To validate
the effect of using more temporal information, we tested
k € {1,3,5}. As shown in Table 1, performance improves
substantially and monotonically with & (see Suppl. B for
more noise levels ). This is in agreement with the literature
on supervised learning [35]. The performance gains aris-
ing from a longer temporal context are more substantial at
higher noise levels (see Table 1). This is consistent with our
analysis in Section 6 which shows that, at low noise lev-
els, UDVD(k = b) tends to ignore the distant frames, but
relies on them more at higher noise levels (see Figure 4 &
Suppl. G).

Generalization across noise levels. UDVD generalizes
strongly across noise levels not encountered during training.
The results in Table 1 are obtained with a network trained
only at a fixed noise level of 0 = 30. This generalization
ability is consistent with bias-free networks for image de-
noising [27]. See Suppl. F for more discussion and results.

Raw videos with real noise. We train UDVD on the first
9 realizations of the 5 videos from the test set of the raw
video dataset (see Section 4), holding out the last realiza-
tion for early stopping. We compare our performance with
RViDeNet [43] which is pre-trained on a simulated dataset

ISO
CNN 1600 3200 6400 12800 25600 mean

UDVD 48.04 4624 4470 4219 4211  44.69
RViDeNet [43]  47.74 4591 43.85 4120 41.17 4397

Table 3. Raw video denoising. PSNR values evaluated on the test
set of the raw video dataset (Section 4) when denoised with (a)
UDVD trained only the noisy test videos and (b) RViDeNet trained
with supervision on a large dataset. The columns correspond to
different ISO levels, with larger levels resulting in noisier data.

and then fine-tuned with supervision on 6 training videos
from the raw video dataset. UDVD outperforms RViDeNet
at all noise levels (see Table 3 and Fig 3). Note that UDVD
was directly trained on the mosaiced raw videos. Existing
unsupervised video denoising methods, like MF2F, cannot
be applied directly on this dataset as their pre-trained back-
bone expects an input in the RGB domain (more details in
Suppl. E).

Real-world microscopy data. We train UDVD on the
fluorescence-microscopy data described in Section 4 fol-
lowing the same procedure as for the natural videos, in-
cluding data augmentation. For the electron-microscopy
data, we trained on the first 35 frames of the video, and
used the remaining 5 as a validation set to perform early
stopping based on mean-squared error. UDVD is able
to effectively denoise the fluorescence-microscopy and the
electron-microscopy datasets described in Section 4. This
can be appreciated qualitatively in Figure 3 and Suppl. E.

6. Automatic Motion Compensation

Most previous approaches for video denoising rely on
explicit motion compensation [24, 1, 3, 25]. This requires
estimating the optical flow, which is the local translational
motion of features in the image arising from the motion of
objects and surfaces in a visual scene relative to the cam-
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Figure 4. Video denoising as spatiotemporal adaptive filtering. Visualization of the equivalent linear weights (a(k, %), Eq. 4) used to
compute two example denoised pixels using UDVD. The left two columns show noisy frames y; at two noise levels, and the corresponding
denoised frames, d:. Three successive clean frames {x¢—1, Z+, ++1} are shown in top row, for reference. Corresponding weights a(k, )
for pixel ¢ (intersection of the dashed white lines) in these three frames, are shown in the last three columns. The weights are seen to adapt
to underlying video content, with their mode shifting to track the motion of the skier. As the noise level o increases (bottom row), their
spatial extent grows, averaging out more of the noise while respecting object boundaries. For each denoised pixel, the sum of weights (over
all pixel locations and frames) is approximately one, and thus can be interpreted as computing a local average (but note that some weights

are negative, depicted in blue).

era. Several CNN-based denoisers build motion estimation
into the architecture [34, 41]. In particular, motion com-
pensation is critical to the F2F and MF2F frameworks for
unsupervised denoising, which use motion compensation to
register contiguous images [11, 13, 9]. In contrast, recent
supervised video denoising networks like FastDVDnet [35]
and ViDeNN [6], as well as our unsupervised UDVD, do not
perform any explicit motion compensation. Despite this,
they achieve state-of-the-art results. The empirical perfor-
mance of these approaches suggests that the networks must
somehow be exploiting temporal information successfully.
Here, we study this phenomenon through an analysis of the
denoising mapping, which reveals that these networks per-
form an implicit form of motion compensation.

Gradient-based analysis. We use the approach of [27] to
analyze CNNis trained for image denoising. Let y € R"? be
a flattened video sequence containing 7" noisy frames with
n pixels each, processed by a CNN. We define the denois-
ing function f; : R"” — R as the map between the noisy
video and the denoised value d; := f;(y) of the CNN out-
put at the ¢th pixel. A first-order Taylor decomposition of

the denoising function may be written as:
di = fi(y) = (Vfi(y),y) + b, 3)

where Vf;(y) € R"" denotes the gradient of f; at 3. The
constant b := f;(y) — (Vfi(y),y) is the net bias of the
network, a combined function of all additive constants in the
convolutional and batch-normalization layers of the CNN.

Our proposed architecture is bias-free (i.e., all additive
constants are removed from the architecture, as proposed
in [27]), and thus b = 0. As a result, the denoised value at
the ith pixel may be written as:

T

d(Z) = <vfz(y)7 y> = Z(a(k7i)7yk>v “4)

k=1

where 5 denotes each of the T flattened frames that com-
pose the noisy video, and the weights a(k, ¢) correspond to
the gradient of f; with respect to y. Each vector a(k, i) can
be interpreted as an equivalent filter that produces an esti-
mate of the denoised video at pixel ¢ via a weighted average
of the noisy observations over space and time.
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(a) Noisy frame (o = 30)
R e S

(b) Motion estimate from clean video

(c) Motion estimate from UDVD gradients

Figure 5. CNNs trained for denoising automatically learn to perform motion estimation. (a) Noisy frame from a video in the DAVIS
dataset. (b) Optical flow direction at multiple locations of the image obtained using a state-of-the-art algorithm applied fo the clean video.
(c) Optical flow direction estimated from the shift of the adaptive filter obtained by differentiating the network, which is trained exclusively
with noisy videos and no optical flow information. Optical flow estimates are well-matched to those in (b), but deviate according to the
aperture problem at oriented features (see black vertical edge of bus door), and in homogeneous regions (see bus roof, top right).

Interpreting equivalent filters. Visualizing these equiv-
alent filters reveals that UDVD learns to denoise by per-
forming averaging over an adaptive spatiotemporal neigh-
borhood of each pixel. As illustrated in Figure 4 (and
Suppl. G), when the noise level increases, the averaging is
carried out over larger regions. This intuitive behavior is
also seen in classical linear Wiener filters [40], where the
filters are larger for higher levels of noise. The crucial dif-
ference is that in the case of CNNs, the equivalent filters
are adapted to the local video content: they respect object
boundaries in space and time, taking into account their mo-
tion. This is apparent in Figure 4: equivalent filters in ad-
joining frames are automatically shifted spatially to com-
pensate for the movement of the skier (additional examples
in Suppl. G). We find that this implicit motion compensa-
tion is not unique to UDVD: CNNss trained in a supervised
fashion have the same property (see also Suppl. G).
Optical-flow estimation. In order to validate our observa-
tion that CNNs exclusively trained for denoising implicitly
detect and exploit video motion, we use the equivalent fil-
ters of the networks to estimate the optical flow. To estimate
the optical flow from the ! frame to the (¢ + 1)* frame at
the ith pixel, we compute the difference between the posi-
tion of the centroid of the equivalent filter corresponding to
the pixel at times ¢, a(¢,%), and time ¢t + 1, a(t + 1,). To
increase the stability of the estimated flow, we compute the
filter centroid through a robust weighted average that only
includes entries with relatively large values (within 20% of
maximum value in the filter).

The optical-flow estimates obtained from the gradients
of the trained UDVD network are surprisingly precise, even
at very high noise levels. Figure 5, and additional figures in
Suppl. G, show that the results are similar to those obtained

by applying an algorithm for optical-flow estimation (Deep-
Flow [39]) on the corresponding clean video. This demon-
strates that the CNNs are able to implicitly estimate motion
from data, despite the fact that they were not trained on that
problem, and even in the presence of substantial noise cor-
ruption, a setting that is quite challenging for optical-flow
estimation techniques. We also observe that the optical-flow
estimates obtained from UDVD gradients tend to be less ac-
curate for pixels near strongly oriented features where local
motion is only partially constrained (known as the aperture
problem) or in homogeneous regions, where the local mo-
tion is unconstrained (the blank wall problem).

7. Conclusion

In this work we propose a method for unsupervised deep
video denoising that achieves comparable performance to
state-of-the-art supervised approaches. Combined with
data-augmentation techniques and early stopping, the
method achieves effective denoising even when trained
exclusively on short individual noisy sequences, which
enables its application to real-world noisy data. In addition,
we perform a gradient-based analysis of denoising CNNgs,
which reveals that they learn to perform implicit adaptive
motion compensation. This suggests several interesting
research directions. For example, denoising may be a
useful pretraining task for optical-flow estimation or other
computer-vision tasks requiring motion estimation.
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