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Abstract

The quantification of cross-regional interactions for the atmospheric transport processes
is of crucial importance to improve the predictive capacity of climatic and environmental system
modeling. The dynamic interactions in these complex systems are often nonlinear and non-
separable, making conventional approaches of causal inference, such as statistical correlation or
Granger causality, infeasible or ineffective. In this study, we applied an advanced method, based
on the convergent cross mapping algorithm, to detect and quantify the causal influence among
different climate regions in the contiguous U.S. in response to temperature perturbations using
the long-term (1901-2018) climatology of near surface air temperature record. Our results show
that the directed causal network constructed by convergent cross mapping algorithm, enables us
to distinguish the causal links from spurious ones rendered by statistical correlation. We also
detect that the Ohio Valley region, as an atmospheric convergent zone, acts as the regional
gateway and mediator to the long-term thermal environments in the U.S. In addition, the
temporal evolution of dynamic causality of temperature exhibits superposition of periodicities at
various time scales, highlighting the impact of prominent low frequency climate variabilities
such as El Nifilo—Southern Oscillation. The proposed method in this work will help to promote
novel system-based and data-driven framework in studying the integrated environmental system

dynamics.

Keywords:
Causality; Complex network; Convergent cross mapping; System dynamics; Thermal

environment
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1. Introduction

The Earth’s environment and climate systems involve complex dynamic processes that
are non-separable, interacting, and more importantly, have causal influences toward one another.
Prominent examples include the drought patterns in the western U.S. that are strongly regulated
by the sea surface temperature (SST) of the Pacific (Namias, 1983), the long-distant links (aka
teleconnections) between ground level temperature and atmospheric Rossby waves (Wang et al.,
2013), and the correlation between anomalous atmospheric circulation and sea ice concentration
(Handorf et al., 2015), to name a few. Conventionally, the spatial or inter-variable correlations in
the climate system has been established by statistical regression of observational time series or
dissimilarity functions via information transfer (e.g., Moran, 1953; Fitzpatrick & Dunn, 2019;
Wang et al., 2020a).

On the other hand, successful identification of the directed dynamical influence, viz.
causality, in Earth’s climate system will greatly enhance the modeling and predictive capacity of
physically based Earth modeling frameworks (Runge et al., 2015, 2019; Jiang et al., 2016; Leng
et al., 2020; Huang et al., 2021). However, the conventional statistical correlation-based methods
to infer causality may induce spurious links that correlate climate variables driven by the same
external forcing but without mutual causal influence (Moran, 1953). These ephemeral or
“mirage” correlations (false causality) are common in nonlinear systems. Their presence can lead
to incorrect and even contradictory hypotheses (Sugihara et al., 2012), which can impede our
understanding of true interactions among system dynamics. In particular, inferring causality from
statistical correlation is risky for the Earth’s climate system that involves nonlinear dynamics
with weak and moderate interactions (McCann et al., 1998). The nonlinearity of climate

dynamics, especially the temperature evolution, has been extensively studied in response to, e.g.



46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

different CO2 emission scenarios (Good et al., 2015), which is largely attributed to the nonlinear
albedo feedback such as the sea-ice albedo feedbacks (Hall, 2004; Ishizaki et al., 2012).
Furthermore, our previous analysis of long-term temperature anomalies show that the time series
exhibit significant increase in autocorrelation and variance prior to critical transitions that
features nonlinear dynamic systems (Wang et al., 2020b).

In the literature, the Granger causality (GC) scheme has been commonly used for causal
inference, with the key assumption that a variable is causative to a dynamic system if the
prediction skill increases by adding this variable to the system’s autoregressive processes
(Granger, 1969). GC analysis has been applied to climate sciences, examples including the
potential causality between El Nifilo—Southern Oscillation (ENSO) and temperature and wind
patterns across the mid-to-high latitudes (McGraw & Barnes, 2018). More recently, Silva et al.
(2021) identified GC-based climate teleconnections between the precipitation response to SST
and ENSO. Nevertheless, there are some intrinsic disadvantages in GC-based causality analysis,
especially the requirement of strong coupling and separability of system dynamics. These
assumptions often lead to the loss of feasibility of GC’s causality inference, especially in the
Earth’s climate system where nonlinearity, weakly or moderately coupled dynamics, and
nonseparability prevail (Ancona et al., 2004). To overcome the inherited limitation of the GC
approach, Sugihara et al. (2012) developed a new method of causal inference based on the
convergent cross mapping (CCM) algorithm. The CCM method and its variations (e.g. partial
cross mapping, see Runge et al., 2015; Leng et al., 2020) have been successfully applied to
detect dynamic causality in Earth’s climate system, such as the causal influence of greenhouse
gas concentration and midlatitude circulation on global climate changes (van Nes et al., 2015),

and the detection of atmospheric teleconnections in monsoon dynamics (Runge et al., 2015). In
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addition, causal inference methods have been evaluated in the study of hydrometeorological
systems (Wang et al., 2018; Ombadi et al., 2020). In particular, Shi et al. (2022) proposed a new
perspective to use causality to detect the drought propagation, in contrast to the overuse of
correlation analysis.

In this study, we apply the CCM method to quantify the causal influence in temperature
perturbations among different climate regions in the contiguous U.S. (CONUS), using the long-
term temperature climatology in 1901-2018. The detection of cross-regional causal interactions
can provide new insights to understanding the response of thermal environments (and associated
atmospheric transport) to emergent anomalous climatic patterns, with implications to occurrence
of extreme events such as mega-heatwaves or persistent droughts. Our analysis also enables us to
identify key climate regions, viz. mediators, as critical atmospheric gateways in spreading and
distributing climate perturbations, by constructing the CONUS climate system as a complex
network. The construction of the causal network, in turn, will facilitate the imperative need of the
development of data-driven and system-based frameworks in the integrated Earth system (Fan et

al., 2020; Wang & Wang, 2020; Wang, 2021, 2022).

2. Methods
2.1 Data retrieval and treatment

In this study, we retrieved the monthly mean near-surface temperature over the period
1901-2018 from Climatic Research Unit (CRU) Time-Series (TS) version 4.03

(https://catalogue.ceda.ac.uk/uuid/10d3e3640f004c578403419aac167d82) produced by the

Center for Environmental Data Analysis (CEDA) Archive. The 0.5° % 0.5° spatially gridded

dataset covers the spatial domain of global land surfaces except Antarctica, with a total number
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of 3288 grid cells over the entire CONUS. The observational data are anomalized using 1961—
1990 monthly averages for each grid cell (Harris et al., 2020). We aggregated all CONUS grid
cells into nine climatic regions, to better represent the thermal environments in individual regions
with distinct background climatic and geographic conditions. These climatic regions are
Northwest (NW), West (WE), Southwest (SW), Northern Rockies and Plains (NRP), South (SO),
Upper Midwest (UM), Ohio Valley (OV), Southeast (SE), and Northeast (NE). The division of
climate regions is defined by the National Centers for Environmental Information of NOAA

(https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php). We then

removed the seasonal cycle by subtracting monthly anomalies averages from the regional
temperature anomalies time series during the study period to minimize the impact of seasonality.

The detrended time series of temperature anomalies are used for subsequent causality analysis.

2.2 The convergent cross-mapping CCM method to estimate causality

The CCM method has been developed to detect and quantify the directed causal influence
among key parameters in nonlinear dynamic systems, based on the embedding theory (Sugihara
et al., 2012). The fundamental concept of the CCM algorithm is that if causality exists between a
pair of generic variables, represented by vectors (adequately long time series) X and Y, then we
can reconstruct the cross-mapping dynamics of one variable from the information of the other.
The reconstruction of phase space for each dynamical variable is based on the delay-coordinate
embedding method (Takens, 1981). In addition, CCM uses simple projection (Sugihara & May,
1990), i.e. a nearest-neighbor algorithm that involves exponentially weighted distances from

nearby points on a reconstructed manifold, to make kernel estimation.
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50 m(t)=[X(2),¥(1),Z(1)]

(@) =[Y(0),Y(t-1),Y(1-27)]

Figure 1. Illustration of correspondence between two shadow manifolds of convergent cross
mapping: (a) the canonical Lorenz system m with three coupled vectors X, Y, and Z, with two

attractors projected onto the manifolds of (b) Mx and (¢) My.

For a dynamically coupled canonical Lorenz system, the CCM algorithm is illustrated in
Fig. 1, where the reconstructed lagged-coordinate vector for time series X(¢) with length L is
denoted as x(7) = [X(¢), X(+—1), ..., X(t—(E—1)7)], with 7and E the time delay and embedding
dimension to construct the shadow manifold My, respectively (likewise for y(7) and My). The
embedding dimension E can be physically interpreted as the complexity of the state variable (in
our case, temperature) as to be causally influenced by other confounding variables in the
complex system. For example, it is found that causal analysis of precipitation requires a much
larger embedding dimension that that of temperature, indicating the physics of precipitation is of
higher complexity than that of heat transfer. In addition, the time delay 7= 1 is equivalent to use

consecutive data points in the data series (without filtering) to construct shadow manifolds based
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on the delay-coordinate embedding. The shadow manifold, constructed using these parameters,
represents the low-dimensional approximations of the true system that could be of infinitely high
dimension in theory. Thus, the convergence of the CCM method will be limited by observational
error, process noise, and time-series length L, e.g. with limited or noisy field data, the
predictability of CCM is demonstrated to increases with L.

If two generic variables X and Y are causally coupled in a complex system, there is a
cross-mapping correspondence between the two attractor manifolds Mx and My. For the given
time series Y(?), its cross-mapping estimate Y(#)|Mx is based on a simple projection of the £+1
nearest neighbors of vector x(¢) in the manifold of Mx, where E+1 is the minimum number of
points required for a bounded simplex in the £-dimensional space. The time indices of those £+1
neighbors x(1), x(t2),..., X(te+1) (from closest to farthest) in Mxare used to identify the
corresponding putative neighbors in ¥, i.e. Y(#1), Y(22),..., Y(te+1). The cross-mapping estimate of

Y(¢), denoted as Y(#)|Mx, is determined using the weighted average as

E+1
Y(O)| My =2 w0 Y(t), (1)
i=1
where the weight vector wi(?) is estimated by
u (t
(1) =) @

with

ui(t):exp{—w}, 3)
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and d[x(¢), x(t:)] the Euclidean distance between the two vectors x(¢) and x(#) in Mx. To measure

the causality from Y to X, the correlation coefficient Priu, between the original Y(¢) and the

cross-mapping estimate Y (#)| M , will be used, which is defined by

o {7 ()-m ) [ YO | M, — s, |} | "

0,0,

where E, 1, and o are the statistical expectation, average, and standard deviation, respectively.

The larger value implies a stronger casual influence, while Y is not causal to X if Py, <0.

2.3 Time delay and embedding dimension to reconstruct phase-space dynamical system

Since the CCM method is derived from the standard delay-coordinate embedding method
(Takens, 1981), the phase space of the underlying dynamical system can be reconstructed from
time series and the accuracy of the reconstruction requires the proper choice of the time delay ¢
and the embedding dimension E. The value of the time delay can be computed as the
autocorrelation length (Kantz, 1997). Empirically, the delay time can be chosen as the average
oscillation period of the underlying times series, that is corresponding to unit value in discrete-
time map (Lai & Ye, 2003; Grassberger & Procaccia, 1983; 2004). Thus, for temperature
anomaly here the time delay is chosen as 7= 1. The properly chosen embedding dimension £ can
be determined using the correlation integral and dimension method or the GP-algorithm
(Grassberger & Procaccia, 1983; Lai & Ye, 2003). The correlation dimension D2 in nonlinear
time series can be evaluated by using the correlation integral C(¢), which is the probability that a
pair of points chosen randomly in the reconstructed phase space is within a hypersphere of radius
& ( Grassberger & Procaccia, 1983; Lai & Ye, 2003). For the reconstructed vector time series x(¢)

with number of points N inside, the correlation integral can be approximated by

8
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Figure 2. Determination of the embedding dimension £using the GP-algorithm of correlation

integral and dimension from the aggregated time series of regional temperature anomalies: (a)

plots of the correlation integral on a logarithm scale for different embedding dimension m =

)

(6)

1, ..., 30 for the nine climate regions, and (b) the slope values of log C, (&) versus loge for the

nine climate regions obtained from a least-squares fitting. The slope increases with m and

reaches an approximate plateau value, as shown by the two blue solid lines for eye guidance.
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In practice, the correlation dimension D: is estimated by examining the slope of the linear

portion of log C, (¢) versus loge for a series of increasing values of m (different embedding

dimensions). Results of detailed calculations of the correlation integrals and correlation
dimension from the aggregated time series of temperature anomalies are shown in Fig. 2. The
slope in the plot increases with m until it reaches a plateau and the slope value at the plateau is
then taken as the D2 estimation (Grassberger & Procaccia, 1983; Ding et al., 1993). The results
show the D: estimation is around 1.7, the embedding dimension E for the reconstruction must be

sufficiently large as for an infinite, noiseless time series, the estimated dimension value D2
increases with E but plateaus for £ > [D_z] +1 (Ding et al., 1993), so the embedding dimension is

determined as £ = 3.

2.4 The regional causal effect and causal susceptibility

The aforementioned algorithm enables us to quantify the directed causality between the
temperature anomalies in each pair of climate regions, resulted in a directed causal network of
temperature climatology in CONUS with nine nodes, each representing one climate region.
Using this network, we define two indices to measure the causal effect and causal sensitivity for
a climate region: the average causal effect (ACE) and the average causal susceptibility (ACS).
The estimate of ACE and ACS for a given region R can be calculated by averaging along
individual column and rows of the adjacency matrix of the causality network, respectively

(Runge et al., 2015):

1
ACE, (1) = v 12 P, - (7)
R

—LizR

10
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1
ACS, (1) = T ZR: P, - (8)
R i#

where Nr is the total number of climate regions. Furthermore, to investigate the long-term trend

of ACE and ACS, we compute their running averages using a sliding window of size w, as for a

time window [k-(w-1)/2, k+(w-1)/2], with k at the middle of the time window, as

- 1 k+(w-1)/2

ACEr; =— ACE(j), )
W jmk—(w-1)12

. 1 k+(w-1)/2

ACSri =— ACS(j)- (10)
w J=k—(w-1)/2

In a given region R, a larger ACE value means a stronger causal effect of that region to mediate
the thermal climatology in other regions. Likewise, a higher ACS value signifies that the region

is more susceptible to thermal perturbations of other regions.

3. Results and Discussion
3.1 Statistical correlation vs. causality

We first constructed a directed causal network of the temperature climatology among the
nine CONUS climatic regions, using the CCM algorithm outlined in Section 2. The inter-
regional interactions of climatic variables have been quantified using conventional statistical
similarity functions or Granger causality methods that directly link the time series of climatic
variables between a pair of nodes (Boers et al., 2019; Fitzpatrick & Dunn, 2019; Silva et al.,
2021). In this study, in addition to CCM analysis, we also constructed an undirected CONUS
regional network using statistical correlation coefficient, defined in Eq. (4) but between the

observed X(7) (instead of cross-mapping estimate) and Y(¢) directly.

11
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Figure 3 shows the comparison of the undirected correlation (Fig. 3a) and directed
causality (Fig. 3b) networks. It is noteworthy that the network of statistical correlations is
stronger than the causal counterpart, as manifested by the darker color in Fig. 3a representing
higher strength. By definition, the correlation network is symmetric and without directionality. In
comparison, the directed causal network is generally asymmetric, as the causal influence from X
to Y is not necessarily the same as that from Y to X. In this specific case, however, the causality
network of CONUS temperature climatology (Fig. 3b) is rather (not completely though)
symmetric, suggesting the cross-regional causal influence among CONUS climate regions is, in
general, reciprocated in terms of the atmospheric heat transfer. For example, the temperature in
the OV region exerts a causal influence on four neighboring regions (NE, UM, SE, SO) with
strength greater than 0.6, while the latter regions responded with a mutual causal effect with
comparable strength. The cause-effect network of temperature in Fig. 3b is sparser (with less
number of connectivities) than the one from the simple correlations in Fig. 3a, because the latter
often admits spurious links due to common external variables (Shi et al., 2022; Sugihara et al.,
2012).

To facilitate a more direct comparison of the statistical correlation and causality, we
identified the effect links in the networks using a common threshold value of 0.5. The choice of
this threshold is adopted from the suggested value by previous studies (Tsonis and Roebber,
2004; Yang et al., 2022), which has been tested to be statistically significant. A pair of climate
regions is considered as effectively connected (statistically or causally) if the strength in matrices
of Fig. 3a and 3b is greater than 0.5. The choice of this threshold value follows previous study of
thermal climate network and was validated by statistical test (Tsonis & Roebber, 2004; Wang et

al., 2021). The results are shown in Fig. 3¢, where the links with significant statistical correlation

12



245  but no causality are marked as spurious links and represented by gray dash lines. In this case, we

246  1identified three spurious links, namely that connect SW and NRP, SW and SO, and SO and UM.
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247

248  Figure 3. Comparison of the correlation and causality networks for the nine CONUS climate
249  regions: (a) the matrix of connectivity determined by undirected statistical correlation, (b) the
250  matrix of connectivity determined by directed causality, and (¢) graphic representation of causal
251  and spurious links resulted from (a) and (b), with a threshold strength of 0.5. Cells with dashed
252 boxes in (a) and (b) represent causally (above the threshold) connected pairs. The gray dashed
253 lines represent the spurious link between different regions, and lines with an arrow the directed
254  causal influence with strength denoted by different colors (the same scale as in (b)).
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The number of spurious links is seemingly small, but the implication is significant. First,
the South and Southwest regions stand out as most significantly affected by spurious links, likely
due to the analogy in thermal environments that subject to common radiative forcing. Secondly,
by removing the spurious links in Fig. 3¢, the southern part of the CONUS thermal climate
network is effectively a bipartite system with distinct east and west clusters. The emergence of
clustering in CONUS climate network is consistent with the finding in a previous study based on
advanced information theory (Wang et al., 2020a). More specifically, in the east half of the
CONUS network, the Ohio Valley region appears to be the gateway of cross-regional thermal
interactions. This is not only due to the geographic location of the region, but also agrees with
climatic observations and modeling results as reported in the literature as well (detailed below in
Section 3.2).

In addition, we also constructed the causal graphs using the GC approach. The results are
shown in Figs. Al and A2 in Appendix. It can be seen that the causality networks detected by
GC, though self-consistent, are at variance with and not comparable to those detected by CCM or
conventional statistical correlation (Figs. 3a,b). This discrepancy can be attributed to that the GC
method is: (1) not most fitful for nonlinear systems with moderate coupling, and (2) very
sensitive to the choice of maximum delay zmax to do the autoregression analysis, the

determination of which can be rather arbitrary and does not admit a solid physical interpretation.

3.2 Regional causal effect and susceptibility
We then further investigate the causal network and quantify the role of each climate
region in transporting and distributing temperature perturbations. It was found that regions with

strong strength in causal effect and/or susceptibility are linked with major atmospheric uplifting
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zones in complex climate systems (Runge et al., 2015). The results of calculated ACE and ACS
indices, as defined in Egs. (7) and (8) and averaged over the entire study period, are shown in
Fig. 4, mapped over CONUS. It is clear that the Ohio Valley region acts as a causal gateway and
mediator at the same time, manifested as the brightest region (i.e. with highest values of ACE
and ACS). This means that the Ohio Valley is the most conducive to spreading temperature
anomalies (e.g. heat extremes) to (Fig. 4a), meanwhile the most susceptible to thermal
perturbations arising from (Fig. 4b) other regions in CONUS. Potential physical mechanisms that
contribute to making OV a regional gateway include: (a) this region has the strongest geostrophic
wind components (Walsh et al., 1982); (b) it is most significantly affected by ENSO and
temperature extremes (Gershunov & Barnett, 1998); and (c) it mediates atmospheric heat transfer
and drought distribution in the U.S. with high climate variability (Karl & Koscielny, 1982;

Konapala & Mishra, 2017; Zhang et al., 2010).

(b)

ACE ACS

022 024 026 028 0.3 032 034 036 038 04 0.22 0.24 0.26 0.28 0.3 0.32 0.34 0.36
=

0.38
B " ' : | '

—

Figure 4. Quantification of (a) the average causal effect and (b) the average causal susceptibility
for the temperature climatology in CONUS. The colors correspond to the causal effect or

susceptibility strength.

In the western U.S., the NW, WE, and SW regions, in general, have weaker local causal

influence than their eastern counterparts. Nevertheless, due to the presence of long-range
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connectivity among CONUS climate regions, the susceptibility of the Great Plains to climatic
extremes, e.g. summer drought and heatwaves, could also be regulated by the Pacific oceanic
conditions. For example, Namias (1983) found that in the West, the local surface circulation is
characterized by easterly wind anomalies that are originated from the continental interior and
mostly directed down the slope of the Rocky Mountain Ridge (Lau & Nath, 2012). The western
ridges therefore contribute to build blocking high pressure systems to cyclonic activity from the
Pacific. As a consequence, the development of a North Pacific oscillation (NPO) exerts a
causally dynamic influence on the atmospheric transport of heat and moisture, in particular storm
tracks, as to amplify and stabilize the heat and drought patterns (Charney & DeVore, 1979;
Namias, 1983; Matsueda, 2011). This causal influence in climate dynamics is largely responsible
for the persistent drought and mega-heatwave episodes over the western U.S. in summers

(Perkins, 2015; Wang et al., 2021).

3.3 Temporal variability and periodicity of causality

The dynamics of complex climate system are known to subject to temporal variability
ranging from seasonal to millennium time scales (Kenyon & Hegerl, 2008; Ghil & Lucarini,
2020), so does their causal influence. In this study, we further attempt to look into the temporal
variability and the presence of possible periodicity in the causal network of CONUS temperature
anomalies, by looking into the running means of ACE and ACS defined in Egs. (9) and (10). The
results are shown in Fig. 5, with a 15-year sliding window size. The time evolution of ACE and
ACS in all the nine climate regions exhibit patterns of superposition of climatic periodicity at
different time scales, as expected. The low frequency climatic variability at decadal scale is

discernible in the time history, which are likely due to the influence of ENSO or NPO as their
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influence is manifested in determining the atmospheric gateways as discussed before (Section
3.2). In particular, the strong correlation between ENSO and the general trend of global
temperature changes has been well demonstrated (e.g. Arblaster & Alexander, 2012). It was also
found that the Pacific Decadal Oscillation (PDO) has great impacts on the temperature extremes
over the northern Pacific Rim and North America (Kenyon & Hegerl, 2008). In addition, it has
been tantalizingly suggested that the presence of persistent droughts and heat over the western
U.S. may be linked to the double sunspot cycle, with a periodicity of re-occurrence around 20-25
year (Namias, 1983). The western high pressure may be periodically reinforced by downstream
strong cyclonic systems from central and eastern North America, and the characteristics of the
regional pressure may contribute to the temperature periodicity in western US (Namias, 1983). In
the Great Plains region, the low-frequency circulation changes suggest that there exists a
prominent mid-tropospheric blocking anticyclone over that region, and these air patterns are in a
realignment with the planetary-scale wave structure (Lau & Nath, 2012).

These aforementioned mechanisms of climatic periodicity were, in the literature, mostly
observed or explained as statistical correlations, while their causal influence remain obscure up
to date. The results in Fig. 5 provide some clue to further unravel the causal/ dynamics in the
CONUS climate system. Other than the natural climate variability, the periodicity or cyclicity of
causal dynamics has been under-explored up to date. To fully disentangle the various principal
modes of the causal variability, it requires further spectral analysis using more sophisticated

tools, such as the empirical mode decomposition (EMD) analysis (Huang et al., 1998).
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Figure 5. Temporal evolution of the running means of (a) ACE and (b) ACS of the causal
network for CONUS regional temperature anomalies. A 15-year sliding window size is used,

with the red dashed lines denoting the mean values over the entire study period.

4. Concluding Remarks

The spreading of thermal perturbations dictates the atmospheric heat transfer in the Earth
system. The data-driven causal inference method CCM provides new insights to identify thermal
influence and feedback among the climate regions in CONUS, using the long-term near surface
air temperature observations. Our results demonstrate that the conventional statistical method to

infer causal relationships may lead to spurious links in Earth’s climate system that is moderately

18



353  coupled. As indicated by the directed causal network, our findings highlight the Ohio Valley as
354  the regional thermal mediator to the temperature perturbations over the CONUS. It is noteworthy
355  that the CCM method can be applied to identify causal relationship between different variables
356 that also contribute to regulating the thermal environment of the U.S., e.g. pressure, wind, soil
357  moisture, etc. Introducing these confounding variables in the causal analysis will enable us to
358  construct more informative (and more complex) causal graphs that vary spatio-temporally and
359  cross pairwise variable. Nevertheless, disentangling and interpretating information in such

360  complex causal graphs present physical and numerical challenges that need to be tackled in

361  future studies; one example of such challenge will be on how to determine the cross-variable
362  embedding dimension £ in the CCM method. In future studies, it is important to extend the

363  proposed method to investigate the key role that the major climate oscillations play behind the
364  causality of thermal interactions, and to better understand the physical mechanisms in the

365  occurrence of extreme events such as heatwaves and persistent droughts.
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Figure A1l. The temperature interactions among the CONUS using Granger Causality method,

where 7max 1s the maximum time delay of the GC autoregression model, and « the significance

level. The black cells represent effective causality.
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