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Abstract 1 

The quantification of cross-regional interactions for the atmospheric transport processes 2 

is of crucial importance to improve the predictive capacity of climatic and environmental system 3 

modeling. The dynamic interactions in these complex systems are often nonlinear and non-4 

separable, making conventional approaches of causal inference, such as statistical correlation or 5 

Granger causality, infeasible or ineffective. In this study, we applied an advanced method, based 6 

on the convergent cross mapping algorithm, to detect and quantify the causal influence among 7 

different climate regions in the contiguous U.S. in response to temperature perturbations using 8 

the long-term (1901–2018) climatology of near surface air temperature record. Our results show 9 

that the directed causal network constructed by convergent cross mapping algorithm, enables us 10 

to distinguish the causal links from spurious ones rendered by statistical correlation. We also 11 

detect that the Ohio Valley region, as an atmospheric convergent zone, acts as the regional 12 

gateway and mediator to the long-term thermal environments in the U.S.  In addition, the 13 

temporal evolution of dynamic causality of temperature exhibits superposition of periodicities at 14 

various time scales, highlighting the impact of prominent low frequency climate variabilities 15 

such as El Niño–Southern Oscillation. The proposed method in this work will help to promote 16 

novel system-based and data-driven framework in studying the integrated environmental system 17 

dynamics. 18 
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1. Introduction 23 

The Earth’s environment and climate systems involve complex dynamic processes that 24 

are non-separable, interacting, and more importantly, have causal influences toward one another. 25 

Prominent examples include the drought patterns in the western U.S. that are strongly regulated 26 

by the sea surface temperature (SST) of the Pacific (Namias, 1983), the long-distant links (aka 27 

teleconnections) between ground level temperature and atmospheric Rossby waves (Wang et al., 28 

2013), and the correlation between anomalous atmospheric circulation and sea ice concentration 29 

(Handorf et al., 2015), to name a few. Conventionally, the spatial or inter-variable correlations in 30 

the climate system has been established by statistical regression of observational time series or 31 

dissimilarity functions via information transfer (e.g., Moran, 1953; Fitzpatrick & Dunn, 2019; 32 

Wang et al., 2020a). 33 

On the other hand, successful identification of the directed dynamical influence, viz. 34 

causality, in Earth’s climate system will greatly enhance the modeling and predictive capacity of 35 

physically based Earth modeling frameworks (Runge et al., 2015, 2019; Jiang et al., 2016; Leng 36 

et al., 2020; Huang et al., 2021). However, the conventional statistical correlation-based methods 37 

to infer causality may induce spurious links that correlate climate variables driven by the same 38 

external forcing but without mutual causal influence (Moran, 1953). These ephemeral or 39 

“mirage” correlations (false causality) are common in nonlinear systems. Their presence can lead 40 

to incorrect and even contradictory hypotheses (Sugihara et al., 2012), which can impede our 41 

understanding of true interactions among system dynamics. In particular, inferring causality from 42 

statistical correlation is risky for the Earth’s climate system that involves nonlinear dynamics 43 

with weak and moderate interactions (McCann et al., 1998). The nonlinearity of climate 44 

dynamics, especially the temperature evolution, has been extensively studied in response to, e.g. 45 
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different CO2 emission scenarios (Good et al., 2015), which is largely attributed to the nonlinear 46 

albedo feedback such as the sea-ice albedo feedbacks (Hall, 2004; Ishizaki et al., 2012). 47 

Furthermore, our previous analysis of long-term temperature anomalies show that the time series 48 

exhibit significant increase in autocorrelation and variance prior to critical transitions that 49 

features nonlinear dynamic systems (Wang et al., 2020b).  50 

In the literature, the Granger causality (GC) scheme has been commonly used for causal 51 

inference, with the key assumption that a variable is causative to a dynamic system if the 52 

prediction skill increases by adding this variable to the system’s autoregressive processes 53 

(Granger, 1969). GC analysis has been applied to climate sciences, examples including the 54 

potential causality between El Niño–Southern Oscillation (ENSO) and temperature and wind 55 

patterns across the mid-to-high latitudes (McGraw & Barnes, 2018). More recently, Silva et al. 56 

(2021) identified GC-based climate teleconnections between the precipitation response to SST 57 

and ENSO. Nevertheless, there are some intrinsic disadvantages in GC-based causality analysis, 58 

especially the requirement of strong coupling and separability of system dynamics. These 59 

assumptions often lead to the loss of feasibility of GC’s causality inference, especially in the 60 

Earth’s climate system where nonlinearity, weakly or moderately coupled dynamics, and 61 

nonseparability prevail (Ancona et al., 2004). To overcome the inherited limitation of the GC 62 

approach, Sugihara et al. (2012) developed a new method of causal inference based on the 63 

convergent cross mapping (CCM) algorithm. The CCM method and its variations (e.g. partial 64 

cross mapping, see Runge et al., 2015; Leng et al., 2020) have been successfully applied to 65 

detect dynamic causality in Earth’s climate system, such as the causal influence of greenhouse 66 

gas concentration and midlatitude circulation on global climate changes (van Nes et al., 2015), 67 

and the detection of atmospheric teleconnections in monsoon dynamics (Runge et al., 2015). In 68 
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addition, causal inference methods have been evaluated in the study of hydrometeorological 69 

systems (Wang et al., 2018; Ombadi et al., 2020). In particular, Shi et al. (2022) proposed a new 70 

perspective to use causality to detect the drought propagation, in contrast to the overuse of 71 

correlation analysis.  72 

In this study, we apply the CCM method to quantify the causal influence in temperature 73 

perturbations among different climate regions in the contiguous U.S. (CONUS), using the long-74 

term temperature climatology in 1901–2018. The detection of cross-regional causal interactions 75 

can provide new insights to understanding the response of thermal environments (and associated 76 

atmospheric transport) to emergent anomalous climatic patterns, with implications to occurrence 77 

of extreme events such as mega-heatwaves or persistent droughts. Our analysis also enables us to 78 

identify key climate regions, viz. mediators, as critical atmospheric gateways in spreading and 79 

distributing climate perturbations, by constructing the CONUS climate system as a complex 80 

network. The construction of the causal network, in turn, will facilitate the imperative need of the 81 

development of data-driven and system-based frameworks in the integrated Earth system (Fan et 82 

al., 2020; Wang & Wang, 2020; Wang, 2021, 2022).  83 

 84 

2. Methods 85 

2.1 Data retrieval and treatment 86 

In this study, we retrieved the monthly mean near-surface temperature over the period 87 

1901–2018 from Climatic Research Unit (CRU) Time-Series (TS) version 4.03 88 

(https://catalogue.ceda.ac.uk/uuid/10d3e3640f004c578403419aac167d82) produced by the 89 

Center for Environmental Data Analysis (CEDA) Archive. The 0.5o × 0.5o spatially gridded 90 

dataset covers the spatial domain of global land surfaces except Antarctica, with a total number 91 

https://catalogue.ceda.ac.uk/uuid/10d3e3640f004c578403419aac167d82
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of 3288 grid cells over the entire CONUS. The observational data are anomalized using 1961–92 

1990 monthly averages for each grid cell (Harris et al., 2020). We aggregated all CONUS grid 93 

cells into nine climatic regions, to better represent the thermal environments in individual regions 94 

with distinct background climatic and geographic conditions. These climatic regions are 95 

Northwest (NW), West (WE), Southwest (SW), Northern Rockies and Plains (NRP), South (SO), 96 

Upper Midwest (UM), Ohio Valley (OV), Southeast (SE), and Northeast (NE). The division of 97 

climate regions is defined by the National Centers for Environmental Information of NOAA 98 

(https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php). We then 99 

removed the seasonal cycle by subtracting monthly anomalies averages from the regional 100 

temperature anomalies time series during the study period to minimize the impact of seasonality. 101 

The detrended time series of temperature anomalies are used for subsequent causality analysis.  102 

 103 

2.2 The convergent cross-mapping CCM method to estimate causality 104 

The CCM method has been developed to detect and quantify the directed causal influence 105 

among key parameters in nonlinear dynamic systems, based on the embedding theory (Sugihara 106 

et al., 2012). The fundamental concept of the CCM algorithm is that if causality exists between a 107 

pair of generic variables, represented by vectors (adequately long time series) X and Y, then we 108 

can reconstruct the cross-mapping dynamics of one variable from the information of the other. 109 

The reconstruction of phase space for each dynamical variable is based on the delay-coordinate 110 

embedding method (Takens, 1981). In addition, CCM uses simple projection (Sugihara & May, 111 

1990), i.e. a nearest-neighbor algorithm that involves exponentially weighted distances from 112 

nearby points on a reconstructed manifold, to make kernel estimation. 113 

https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
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 114 

Figure 1. Illustration of correspondence between two shadow manifolds of convergent cross 115 

mapping: (a) the canonical Lorenz system m with three coupled vectors X, Y, and Z, with two 116 

attractors projected onto the manifolds of (b) MX and (c) MY. 117 

 118 

For a dynamically coupled canonical Lorenz system, the CCM algorithm is illustrated in 119 

Fig. 1, where the reconstructed lagged-coordinate vector for time series X(t) with length L is 120 

denoted as x(t) = [X(t), X(t−), …, X(t−(E−1))], with  and E the time delay and embedding 121 

dimension to construct the shadow manifold MX, respectively (likewise for y(t) and MY). The 122 

embedding dimension E can be physically interpreted as the complexity of the state variable (in 123 

our case, temperature) as to be causally influenced by other confounding variables in the 124 

complex system. For example, it is found that causal analysis of precipitation requires a much 125 

larger embedding dimension that that of temperature, indicating the physics of precipitation is of 126 

higher complexity than that of heat transfer. In addition, the time delay  = 1 is equivalent to use 127 

consecutive data points in the data series (without filtering) to construct shadow manifolds based 128 
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on the delay-coordinate embedding. The shadow manifold, constructed using these parameters, 129 

represents the low-dimensional approximations of the true system that could be of infinitely high 130 

dimension in theory. Thus, the convergence of the CCM method will be limited by observational 131 

error, process noise, and time-series length L, e.g. with limited or noisy field data, the 132 

predictability of CCM is demonstrated to increases with L. 133 

If two generic variables X and Y are causally coupled in a complex system, there is a 134 

cross-mapping correspondence between the two attractor manifolds MX and MY. For the given 135 

time series Y(t), its cross-mapping estimate Y(t)|MX is based on a simple projection of the E+1 136 

nearest neighbors of vector x(t) in the manifold of MX, where E+1 is the minimum number of 137 

points required for a bounded simplex in the E-dimensional space. The time indices of those E+1 138 

neighbors x(t1), x(t2),…, x(tE+1) (from closest to farthest) in MX are used to identify the 139 

corresponding putative neighbors in Y, i.e. Y(t1), Y(t2),…, Y(tE+1). The cross-mapping estimate of 140 

Y(t), denoted as Y(t)|MX, is determined using the weighted average as 141 
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and d[x(t), x(ti)] the Euclidean distance between the two vectors x(t) and x(ti) in MX. To measure 147 

the causality from Y to X, the correlation coefficient 
XY M

  between the original Y(t) and the 148 

cross-mapping estimate ˆ( ) | XY t M will be used, which is defined by 149 
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=

E
, (4) 150 

where E, , and  are the statistical expectation, average, and standard deviation, respectively. 151 

The larger value implies a stronger casual influence, while Y is not causal to X if 0
XY M

  .  152 

 153 

2.3 Time delay and embedding dimension to reconstruct phase-space dynamical system 154 

Since the CCM method is derived from the standard delay-coordinate embedding method 155 

(Takens, 1981), the phase space of the underlying dynamical system can be reconstructed from 156 

time series and the accuracy of the reconstruction requires the proper choice of the time delay τ 157 

and the embedding dimension E. The value of the time delay can be computed as the 158 

autocorrelation length (Kantz, 1997). Empirically, the delay time can be chosen as the average 159 

oscillation period of the underlying times series, that is corresponding to unit value in discrete-160 

time map (Lai & Ye, 2003; Grassberger & Procaccia, 1983; 2004).  Thus, for temperature 161 

anomaly here the time delay is chosen as  = 1. The properly chosen embedding dimension  can 162 

be determined using the correlation integral and dimension method or the GP-algorithm 163 

(Grassberger & Procaccia, 1983; Lai & Ye, 2003). The correlation dimension D2 in nonlinear 164 

time series can be evaluated by using the correlation integral C(), which is the probability that a 165 

pair of points chosen randomly in the reconstructed phase space is within a hypersphere of radius 166 

 ( Grassberger & Procaccia, 1983; Lai & Ye, 2003). For the reconstructed vector time series x(t) 167 

with number of points N inside, the correlation integral can be approximated by 168 
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where  is the Heaviside step function, and 
i j−x x  is the distance between xi and xj. The 170 

correlation dimension D2 is given by consequently  171 
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 173 

Figure 2. Determination of the embedding dimension  using the GP-algorithm of correlation 174 

integral and dimension from the aggregated time series of regional temperature anomalies: (a) 175 

plots of the correlation integral on a logarithm scale for different embedding dimension m = 176 

1, …, 30 for the nine climate regions, and (b) the slope values of log ( )NC   versus log for the 177 

nine climate regions obtained from a least-squares fitting. The slope increases with m and 178 

reaches an approximate plateau value, as shown by the two blue solid lines for eye guidance.  179 

 180 
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In practice, the correlation dimension D2 is estimated by examining the slope of the linear 181 

portion of log ( )NC  versus log for a series of increasing values of m (different embedding 182 

dimensions). Results of detailed calculations of the correlation integrals and correlation 183 

dimension from the aggregated time series of temperature anomalies are shown in Fig. 2. The 184 

slope in the plot increases with m until it reaches a plateau and the slope value at the plateau is 185 

then taken as the D2 estimation (Grassberger & Procaccia, 1983; Ding et al., 1993). The results 186 

show the D2 estimation is around 1.7, the embedding dimension E for the reconstruction must be 187 

sufficiently large as for an infinite, noiseless time series, the estimated dimension value D2 188 

increases with E but plateaus for 2[ ] 1E D +  (Ding et al., 1993), so the embedding dimension is 189 

determined as E = 3.  190 

 191 

2.4 The regional causal effect and causal susceptibility 192 

The aforementioned algorithm enables us to quantify the directed causality between the 193 

temperature anomalies in each pair of climate regions, resulted in a directed causal network of 194 

temperature climatology in CONUS with nine nodes, each representing one climate region. 195 

Using this network, we define two indices to measure the causal effect and causal sensitivity for 196 

a climate region: the average causal effect (ACE) and the average causal susceptibility (ACS). 197 

The estimate of ACE and ACS for a given region R can be calculated by averaging along 198 

individual column and rows of the adjacency matrix of the causality network, respectively 199 

(Runge et al., 2015):  200 
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where NR is the total number of climate regions. Furthermore, to investigate the long-term trend 203 

of ACE and ACS, we compute their running averages using a sliding window of size w, as for a 204 

time window [k-(w-1)/2, k+(w-1)/2], with k at the middle of the time window, as 205 
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In a given region R, a larger ACE value means a stronger causal effect of that region to mediate 208 

the thermal climatology in other regions. Likewise, a higher ACS value signifies that the region 209 

is more susceptible to thermal perturbations of other regions. 210 

 211 

3. Results and Discussion 212 

3.1 Statistical correlation vs. causality 213 

We first constructed a directed causal network of the temperature climatology among the 214 

nine CONUS climatic regions, using the CCM algorithm outlined in Section 2. The inter-215 

regional interactions of climatic variables have been quantified using conventional statistical 216 

similarity functions or Granger causality methods that directly link the time series of climatic 217 

variables between a pair of nodes (Boers et al., 2019; Fitzpatrick & Dunn, 2019; Silva et al., 218 

2021). In this study, in addition to CCM analysis, we also constructed an undirected CONUS 219 

regional network using statistical correlation coefficient, defined in Eq. (4) but between the 220 

observed X(t) (instead of cross-mapping estimate) and Y(t) directly.  221 
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Figure 3 shows the comparison of the undirected correlation (Fig. 3a) and directed 222 

causality (Fig. 3b) networks. It is noteworthy that the network of statistical correlations is 223 

stronger than the causal counterpart, as manifested by the darker color in Fig. 3a representing 224 

higher strength. By definition, the correlation network is symmetric and without directionality. In 225 

comparison, the directed causal network is generally asymmetric, as the causal influence from X 226 

to Y is not necessarily the same as that from Y to X. In this specific case, however, the causality 227 

network of CONUS temperature climatology (Fig. 3b) is rather (not completely though) 228 

symmetric, suggesting the cross-regional causal influence among CONUS climate regions is, in 229 

general, reciprocated in terms of the atmospheric heat transfer. For example, the temperature in 230 

the OV region exerts a causal influence on four neighboring regions (NE, UM, SE, SO) with 231 

strength greater than 0.6, while the latter regions responded with a mutual causal effect with 232 

comparable strength. The cause-effect network of temperature in Fig. 3b is sparser (with less 233 

number of connectivities) than the one from the simple correlations in Fig. 3a, because the latter 234 

often admits spurious links due to common external variables (Shi et al., 2022; Sugihara et al., 235 

2012).  236 

To facilitate a more direct comparison of the statistical correlation and causality, we 237 

identified the effect links in the networks using a common threshold value of 0.5. The choice of 238 

this threshold is adopted from the suggested value by previous studies (Tsonis and Roebber, 239 

2004; Yang et al., 2022), which has been tested to be statistically significant. A pair of climate 240 

regions is considered as effectively connected (statistically or causally) if the strength in matrices 241 

of Fig. 3a and 3b is greater than 0.5. The choice of this threshold value follows previous study of 242 

thermal climate network and was validated by statistical test (Tsonis & Roebber, 2004; Wang et 243 

al., 2021). The results are shown in Fig. 3c, where the links with significant statistical correlation 244 
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but no causality are marked as spurious links and represented by gray dash lines. In this case, we 245 

identified three spurious links, namely that connect SW and NRP, SW and SO, and SO and UM.  246 

  247 

Figure 3. Comparison of the correlation and causality networks for the nine CONUS climate 248 

regions: (a) the matrix of connectivity determined by undirected statistical correlation, (b) the 249 

matrix of connectivity determined by directed causality, and (c) graphic representation of causal 250 

and spurious links resulted from (a) and (b), with a threshold strength of 0.5. Cells with dashed 251 

boxes in (a) and (b) represent causally (above the threshold) connected pairs. The gray dashed 252 

lines represent the spurious link between different regions, and lines with an arrow the directed 253 

causal influence with strength denoted by different colors (the same scale as in (b)).  254 

 255 
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The number of spurious links is seemingly small, but the implication is significant. First, 256 

the South and Southwest regions stand out as most significantly affected by spurious links, likely 257 

due to the analogy in thermal environments that subject to common radiative forcing.  Secondly, 258 

by removing the spurious links in Fig. 3c, the southern part of the CONUS thermal climate 259 

network is effectively a bipartite system with distinct east and west clusters. The emergence of 260 

clustering in CONUS climate network is consistent with the finding in a previous study based on 261 

advanced information theory (Wang et al., 2020a). More specifically, in the east half of the 262 

CONUS network, the Ohio Valley region appears to be the gateway of cross-regional thermal 263 

interactions. This is not only due to the geographic location of the region, but also agrees with 264 

climatic observations and modeling results as reported in the literature as well (detailed below in 265 

Section 3.2).  266 

In addition, we also constructed the causal graphs using the GC approach. The results are 267 

shown in Figs. A1 and A2 in Appendix.  It can be seen that the causality networks detected by 268 

GC, though self-consistent, are at variance with and not comparable to those detected by CCM or 269 

conventional statistical correlation (Figs. 3a,b). This discrepancy can be attributed to that the GC 270 

method is: (1) not most fitful for nonlinear systems with moderate coupling, and (2) very 271 

sensitive to the choice of maximum delay max to do the autoregression analysis, the 272 

determination of which can be rather arbitrary and does not admit a solid physical interpretation.  273 

 274 

3.2 Regional causal effect and susceptibility 275 

We then further investigate the causal network and quantify the role of each climate 276 

region in transporting and distributing temperature perturbations. It was found that regions with 277 

strong strength in causal effect and/or susceptibility are linked with major atmospheric uplifting 278 
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zones in complex climate systems (Runge et al., 2015). The results of calculated ACE and ACS 279 

indices, as defined in Eqs. (7) and (8) and averaged over the entire study period, are shown in 280 

Fig. 4, mapped over CONUS. It is clear that the Ohio Valley region acts as a causal gateway and 281 

mediator at the same time, manifested as the brightest region (i.e. with highest values of ACE 282 

and ACS). This means that the Ohio Valley is the most conducive to spreading temperature 283 

anomalies (e.g. heat extremes) to (Fig. 4a), meanwhile the most susceptible to thermal 284 

perturbations arising from (Fig. 4b) other regions in CONUS. Potential physical mechanisms that 285 

contribute to making OV a regional gateway include: (a) this region has the strongest geostrophic 286 

wind components (Walsh et al., 1982); (b) it is most significantly affected by ENSO and 287 

temperature extremes (Gershunov & Barnett, 1998); and (c) it mediates atmospheric heat transfer 288 

and drought distribution in the U.S. with high climate variability (Karl & Koscielny, 1982; 289 

Konapala & Mishra, 2017; Zhang et al., 2010).  290 

 291 

Figure 4. Quantification of (a) the average causal effect and (b) the average causal susceptibility 292 

for the temperature climatology in CONUS. The colors correspond to the causal effect or 293 

susceptibility strength.  294 

 295 

In the western U.S., the NW, WE, and SW regions, in general, have weaker local causal 296 

influence than their eastern counterparts. Nevertheless, due to the presence of long-range 297 
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connectivity among CONUS climate regions, the susceptibility of the Great Plains to climatic 298 

extremes, e.g. summer drought and heatwaves, could also be regulated by the Pacific oceanic 299 

conditions. For example, Namias (1983) found that in the West, the local surface circulation is 300 

characterized by easterly wind anomalies that are originated from the continental interior and 301 

mostly directed down the slope of the Rocky Mountain Ridge (Lau & Nath, 2012). The western 302 

ridges therefore contribute to build blocking high pressure systems to cyclonic activity from the 303 

Pacific. As a consequence, the development of a North Pacific oscillation (NPO) exerts a 304 

causally dynamic influence on the atmospheric transport of heat and moisture, in particular storm 305 

tracks, as to amplify and stabilize the heat and drought patterns (Charney & DeVore, 1979; 306 

Namias, 1983; Matsueda, 2011). This causal influence in climate dynamics is largely responsible 307 

for the persistent drought and mega-heatwave episodes over the western U.S. in summers 308 

(Perkins, 2015; Wang et al., 2021).  309 

 310 

3.3 Temporal variability and periodicity of causality 311 

The dynamics of complex climate system are known to subject to temporal variability 312 

ranging from seasonal to millennium time scales (Kenyon & Hegerl, 2008; Ghil & Lucarini, 313 

2020), so does their causal influence. In this study, we further attempt to look into the temporal 314 

variability and the presence of possible periodicity in the causal network of CONUS temperature 315 

anomalies, by looking into the running means of ACE and ACS defined in Eqs. (9) and (10). The 316 

results are shown in Fig. 5, with a 15-year sliding window size. The time evolution of ACE and 317 

ACS in all the nine climate regions exhibit patterns of superposition of climatic periodicity at 318 

different time scales, as expected. The low frequency climatic variability at decadal scale is 319 

discernible in the time history, which are likely due to the influence of ENSO or NPO as their 320 
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influence is manifested in determining the atmospheric gateways as discussed before (Section 321 

3.2). In particular, the strong correlation between ENSO and the general trend of global 322 

temperature changes has been well demonstrated (e.g. Arblaster & Alexander, 2012). It was also 323 

found that the Pacific Decadal Oscillation (PDO) has great impacts on the temperature extremes 324 

over the northern Pacific Rim and North America (Kenyon & Hegerl, 2008). In addition, it has 325 

been tantalizingly suggested that the presence of persistent droughts and heat over the western 326 

U.S. may be linked to the double sunspot cycle, with a periodicity of re-occurrence around 20-25 327 

year (Namias, 1983). The western high pressure may be periodically reinforced by downstream 328 

strong cyclonic systems from central and eastern North America, and the characteristics of the 329 

regional pressure may contribute to the temperature periodicity in western US (Namias, 1983). In 330 

the Great Plains region, the low-frequency circulation changes suggest that there exists a 331 

prominent mid-tropospheric blocking anticyclone over that region, and these air patterns are in a 332 

realignment with the planetary-scale wave structure (Lau & Nath, 2012).  333 

These aforementioned mechanisms of climatic periodicity were, in the literature, mostly 334 

observed or explained as statistical correlations, while their causal influence remain obscure up 335 

to date. The results in Fig. 5 provide some clue to further unravel the causal dynamics in the 336 

CONUS climate system. Other than the natural climate variability, the periodicity or cyclicity of 337 

causal dynamics has been under-explored up to date. To fully disentangle the various principal 338 

modes of the causal variability, it requires further spectral analysis using more sophisticated 339 

tools, such as the empirical mode decomposition (EMD) analysis (Huang et al., 1998).  340 

 341 
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 342 

Figure 5. Temporal evolution of the running means of (a) ACE and (b) ACS of the causal 343 

network for CONUS regional temperature anomalies. A 15-year sliding window size is used, 344 

with the red dashed lines denoting the mean values over the entire study period.  345 

 346 

4. Concluding Remarks 347 

The spreading of thermal perturbations dictates the atmospheric heat transfer in the Earth 348 

system. The data-driven causal inference method CCM provides new insights to identify thermal 349 

influence and feedback among the climate regions in CONUS, using the long-term near surface 350 

air temperature observations. Our results demonstrate that the conventional statistical method to 351 

infer causal relationships may lead to spurious links in Earth’s climate system that is moderately 352 
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coupled. As indicated by the directed causal network, our findings highlight the Ohio Valley as 353 

the regional thermal mediator to the temperature perturbations over the CONUS. It is noteworthy 354 

that the CCM method can be applied to identify causal relationship between different variables 355 

that also contribute to regulating the thermal environment of the U.S., e.g. pressure, wind, soil 356 

moisture, etc. Introducing these confounding variables in the causal analysis will enable us to 357 

construct more informative (and more complex) causal graphs that vary spatio-temporally and 358 

cross pairwise variable. Nevertheless, disentangling and interpretating information in such 359 

complex causal graphs present physical and numerical challenges that need to be tackled in 360 

future studies; one example of such challenge will be on how to determine the cross-variable 361 

embedding dimension E in the CCM method. In future studies, it is important to extend the 362 

proposed method to investigate the key role that the major climate oscillations play behind the 363 

causality of thermal interactions, and to better understand the physical mechanisms in the 364 

occurrence of extreme events such as heatwaves and persistent droughts.  365 
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Appendix: 373 

 374 

 375 

Figure A1. The temperature interactions among the CONUS using Granger Causality method, 376 

where max is the maximum time delay of the GC autoregression model, and  the significance 377 

level. The black cells represent effective causality.  378 



21 

 

 379 

Figure A2. Same with Fig. A1, but with different significance level  = .   380 
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