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ABSTRACT

The Southern Ocean is covered by a large amount of clouds with high cloud albedo. However, as reported by previous
climate model intercomparison projects, underestimated cloudiness and overestimated absorption of solar radiation (ASR)
over the Southern Ocean lead to substantial biases in climate sensitivity. The present study revisits this long-standing issue
and explores the uncertainty sources in the latest CMIP6 models. We employ 10-year satellite observations to evaluate
cloud radiative effect (CRE) and cloud physical properties in five CMIP6 models that provide comprehensive output of
cloud, radiation, and aerosol. The simulated longwave, shortwave, and net CRE at the top of atmosphere in CMIP6 are
comparable with the CERES satellite observations. Total cloud fraction (CF) is also reasonably simulated in CMIP6, but
the comparison of liquid cloud fraction (LCF) reveals marked biases in spatial pattern and seasonal variations. The
discrepancies between the CMIP6 models and the MODIS satellite observations become even larger in other cloud macro-
and micro-physical properties, including liquid water path (LWP), cloud optical depth (COD), and cloud effective radius, as
well as aerosol optical depth (AOD). However, the large underestimation of both LWP and cloud effective radius (regional
means ~20% and 11%, respectively) results in relatively smaller bias in COD, and the impacts of the biases in COD and
LCF also cancel out with each other, leaving CRE and ASR reasonably predicted in CMIP6. An error estimation
framework is employed, and the different signs of the sensitivity errors and biases from CF and LWP corroborate the
notions that there are compensating errors in the modeled shortwave CRE. Further correlation analyses of the geospatial
patterns reveal that CF is the most relevant factor in determining CRE in observations, while the modeled CRE is too
sensitive to LWP and COD. The relationships between cloud effective radius, LWP, and COD are also analyzed to explore
the possible uncertainty sources in different models. Our study calls for more rigorous calibration of detailed cloud physical
properties for future climate model development and climate projection.
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Article Highlights:

¢ Cloud radiative effects in CMIP6 are comparable with satellite observations.
¢ There are large compensating biases in cloud fraction, liquid water path, and droplet effective radius.
¢ Cloud radiative effect is over-sensitive to liquid water path and droplet effective radius in CMIP6.
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Clouds play a pivotal role in the global energy budget
by reflecting solar radiation back to space, which is known
as a cloud cooling effect (Schneider, 1972; Ramanathan et
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ences, School of Physics, Peking University, Beijing 100871, Nearly 80% of the Southern Ocean (SO) region (defined as
China 40°-60°S) is covered by cloud (Dolinar et al., 2015) but has
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been underexplored due to lack of observations. Meanwhile,
this area is far from any anthropogenic pollution sources but
has abundant biogenic marine gases and aerosols (McCoy et
al., 2020).

Cloud radiative effect (CRE) is largely determined by
cloud physical properties. The previous model assessments
showed that the poorly simulated regional radiation budget
can lead to the biases in sea surface temperature and climate
sensitivity (IPCC, 2014a, b; Bony et al.,, 2015) and also
affect the simulations of atmospheric circulation and precipita-
tion (Ceppi et al., 2012; Hwang and Frierson, 2013). The
cloud radiative cooling effect at the top of atmosphere
induced by a 15%-20% increase in low cloud coverage can
neutralize the effect of doubling CO, concentrations (Slingo,
1990). Cloud fraction (CF) was underestimated by many
global climate models, which results in a large bias in
absorbed shortwave radiation (Trenberth and Fasullo, 2010;
Dolinar et al., 2015). Moreover, cloud microphysical pro-
cesses also closely linked with the radiation budget and the
hydrological cycle, which efficiently determines regional
and global climate feedbacks (Tan et al., 2015; Bjordal et al.,
2020). Slingo (1990) found that the cooling effects of a 15%
—20% decrease in cloud effective radius (r,) or a 20%-35%
increase in liquid water path (LWP) are equivalent to a 15%
—20% increase in low cloud coverage. The cloud phase is
also critical to determine CRE (Teng et al., 2020), especially
for the mixed-phase clouds over the SO region (Bjordal et
al., 2020). The low and optically thick clouds over the SO
(Haynesetal.,2011) have aremarkable effect on the planetary
albedo. The concurrent increases in LWP and cloud optical
depth (COD) can cause negative shortwave CRE (Zelinka et
al., 2012).

Cloud physical parameterizations are key knobs in tuning
climate model simulations (Schiro, 2019; Wang et al., 2020).
By implementing new boundary layer and convection
schemes, researchers managed to improve CRE on the
global scale in Post-CMIP5 simulations (Stanfield et al.,
2015), most obviously in total CF and SW CRE over the SO.
Therefore, a comprehensive examination of cloud physical
properties is essential to understanding regional and global
CREs, simulating climate mean states and variations, and
quantifying climate feedbacks and sensitivities. It is a well-
known fact that the net radiative flux biases in the Coupled
Model Intercomparison Project Phase 5 (CMIP5) are mainly
caused by the SO clouds in the models (Bodas-Salcedo et
al., 2014). Here, we expand this effort to the CMIP Phase 6
(CMIP6) models (Eyring et al., 2016). The performance of
the latest models has been improved in terms of precipitation
extremes (Luo et al., 2022), equilibrium climate sensitivity
(Jiang et al., 2021), and climate extremes (Zhu et al., 2020).
A recent study attributed the high effective climate sensitivity
in the CMIP6 models to stronger positive cloud feedbacks
from decreasing extratropical low cloud coverage and
albedo mainly in the SO (Zelinka et al., 2020). Therefore, it
is critical to quantify and understand the cloud and radiation
biases in the CMIP6 models over the SO. To avoid degrada-
tion of model performance due to the complexity in air—sea

interactions, this study focuses on the Atmospheric Mode
Intercomparison Project (AMIP) experiment with prescribed
but time-varying sea surface temperature, sea ice content,
and other external forcings (Gates et al., 1999). It covers the
time period from January 1979 through December 2014.

In this study, we evaluate CMIP6 models using 10-year
satellite observations and focusing on atmospheric radiation
fluxes, cloud radiative and physical properties such as CRE,
CF, r., LWP, and COD, as well as aerosol optical depth
(AOD) over the SO. Since we aim to explore all relevant
cloud and aerosol output of a CMIP6 model, only five
CMIP6 models meet such a requirement and are analyzed in
this study. We investigate their relationships and the underly-
ing reasons for their biases. Detailed information of models
and satellite products, including the participating CMIP6 mod-
els and satellite retrievals, are described in section 2. Evalua-
tion results are shown in section 3. Synergistic results and fur-
ther analyses on potential uncertainty sources in predicting
CRE are discussed in section 4. Conclusions and discussions
on future research are provided in section 5.

2. Data and methods

2.1. Observations

Observational datasets for the period from January
2003 to December 2012 are utilized in our study to evaluate
the performance of CMIP6 models. Monthly-mean radiative
fluxes from the Clouds and the Earth’s Radiant Energy Sys-
tem (CERES) Energy Balanced and Filled (EBAF) dataset
are used for assessing top-of-atmosphere (TOA) cloud radia-
tive properties, including the longwave cloud radiative
effect (LW CRE), shortwave cloud radiative effect (SW
CRE), and net cloud radiative effect (CRE). Furthermore,
the Surface Data Ocean Fraction Coverage from CERES
SYNldeg Products are also used as a filter in our study to
avoid the inconsistency between land and ocean surface
retrievals. Hence, the pixels with ocean fraction of more
than 95% are chosen in this study. We also use retrieved
Level-3 cloud physical properties from Moderate Resolution
Imaging Spectroradiometer (MODIS) instruments onboard
the Aqua satellite (MYDO08_M3), including the CF, liquid
cloud fraction (LCF), r,, LWP, and COD. The details of the
MODIS dataset are shown in Table 1. Note that satellite-
derived LWP is an in-cloud property. To match up with the
climate models’ definition, which is averaged over the grid
box, we multiply the satellite LWP by the satellite CF to get
the grid-scale LWP for all the analyses below. To explore
the relationship between aerosols and clouds over the SO,
the Level-3 AOD product from MODIS is also analyzed in
this study.

The uncertainty of satellite-derived variables needs to
be emphasized, specifically for any model evaluation study.
Based on prior research, the uncertainty of global monthly
mean TOA fluxes can be separated into two parts. The differ-
ence of all-sky radiative fluxes can be 2.5-3 W m2, while
the discrepancies of clear-sky fluxes can reach 5-6 W m2
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and 4.5-5 W m2 for SW and LW fluxes, respectively (Loeb
et al., 2018a,b). Compared with in situ aircraft observations,
the MODIS cloud retrieval product overestimates r, near
cloud top by 26%-31% over the SO (Zhao et al., 2020).
Kang et al. (2021) further suggested that r, is overestimated
by satellite for non- or light precipitation and underestimated
for heavy precipitation. Considering the possible existing
uncertainty in satellite-derived variables, corresponding statis-
tic strategies (Weatherhead et al., 1998; Shea et al., 2017)
are used in this study. o, is the standard deviation of the vari-
able’s regional, annual, or monthly mean time series. x,,, is
the autocorrelation time of natural variability. It is calculated
as: K=+ (1+p)/(1-p), where p is the lag-1 autocorrela-
tion. The uncertainty of MODIS-derived cloud physical prop-
erties used in this study is presented in Table 2.

2.2. CMIP6 models

Considering the availability of datasets within the
CMIP6 project, five CMIP6 climate models (CESM2, GISS-

Table 1. Dataset and parameters used from the MYD08_M3 dataset.

E2-1-G, MPI-ESM-1-2-HAM, NorESM2-LM, and
UKESM1-0-LL) participating in the Atmospheric Model
Intercomparison Project (AMIP) are chosen. Some detailed
information on these five models is listed in Table 3. The
CMIP6 dataset is from “historical*” experiments. The radia-
tive properties in five CMIP6 models are incoming shortwave
radiation (rsdt), outgoing longwave radiation (rlut), outgoing
shortwave radiation (rsut), upwelling clear-sky longwave radi-
ation (rlutcs), and outgoing clear-sky shortwave radiation
(rsutcs). The total CF for the whole atmospheric column is
called clt, and the LCF (the mass of cloud liquid water) seen
by MODIS, including the large-scale and convective clouds,
is called clwmodis. The cloud physical properties in the mod-
els include LWP, r,, and COD. The parameters of LWP are
calculated by clwvi minus clivi, which corresponds to column
integrated condensed water minus that of ice. The variables
of r., are named as reffclwtop, representing the effective
radius of liquid droplets seen from satellite. Note that r, in
GISS-E2-1-G is calculated from the averaged reffclws (the

Parameter Variable Name
CF Cloud_Fraction_Mean_Mean
LCF Cloud_Retrieval_Fraction_Liquid_FMean
LWP Cloud_Water_Path_Liquid_Mean_Mean
COD Cloud_Optical_Thickness_Combined_Mean_Mean
Te Cloud_Effective_Radius_Liquid_Mean_Mean
AOD Aerosol_Optical_Depth_Average Ocean_Mean_Mean

Table 2. Annual and monthly variability parameters calculated for cloud radiative effect and cloud properties over the SO from the
CERES and MODIS satellite products. gy, is the standard deviation of the variable’s annual and monthly mean time series. «,,, is the

autocorrelation time of natural variability.

Mean Kvar (yr) Jvar (yr) KV&]]’ (mon) UVHI’ (mon)
LW CRE 30.64 1.29 0.22 245 3.20
SW CRE -70.11 0.97 0.20 2.35 42.31
Net CRE -39.47 0.97 0.31 2.36 43.73
CF 88.36% 1.73 0.121% 241 1.48%
LCF 43.45% 0.98 0.346% 2.50 7.49%
Te 13.33 0.98 0.06 2.37 1.27
LWP 142.03 1.99 1.88 2.56 40.95
COD 14.99 2.20 0.21 2.65 4.17
AOD 0.09 1.40 0.0032 2.64 0.02
Table 3. CMIP6 AMIP models evaluated in this study.
Model Name Modeling Center Horizontal Grids
CESM2 National Center for Atmospheric Research, USA 288 x 192
GISS-E2-1-G Goddard Institute for Space Studies, USA 144 x 90
MPI-ESM-1-2-HAM* Max Planck Institut fur Meteorologie, Germany 192 x 96
NorESM2-LM#** NorESM Climate modeling Consortium, Norway 144 x 96
UKESM1-0-LL Met Office Hadley Centre, UK 192 x 144

*r, is multiplied by a factor of 10, as the original 7, is on the order of 1 pm.
**r, values that are too large (greater than 25 um) are excluded.
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effective radius of stratiform cloud liquid water) in multiple
layers. The cod of CMIP6 models is the integral of scatter-
ing, absorption, and attenuation coefficients along the radia-
tive path. The od550aer of CMIP6 models refers to the
AOD from ambient aerosols. All available “rlilp1f1” ensem-
ble runs from three CMIP6 models (CESM2, MPI-ESM-1-2-
HAM, and NorESM2-LM) are used in our study. Owing to
the unavailability in the AMIP experiment, the “rlilp3fl”
ensemble run from GISS-E2-1-G and the “rlilp1f4” ensem-
ble run from UKESM1-0-LL are used here. The time period
of CMIP6 datasets used in this study is from January 2003
to December 2012, consistent with our satellite product time
period.

2.3. Evaluation methods

In this study, the evaluations are developed using the fol-
lowing statistical methods. The regional averaged variables
over the SO are calculated by Eq. (1):

k
i=1 X;

X- :
k

@)
where X; is the ith value of the multiyear averaged corre-
sponding variable and £ is the total number of samples.
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The regional root-mean-square Error (RMSE) is calcu-
lated from Eq. (2), where m is the sum of grid samples cover-
ing the SO and X; is the corresponding value of grid i. X is
the averaged value of the grid over the SO.
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The correlation coefficient is used for evaluations in
this study. In Eq. (3), X and Y represent the corresponding
variables of observation and the CMIP6 models, respec-
tively, Cov(X,Y) is the covariance, and Var|X| and Var|Y]|
denote the variance of X and Y separately.

X; 4

Normalized variable = .
max (X)

The normalization method used in this study is calculated
by using the ratio of the ith variable and the maximum of val-
ues to show the temporal change of corresponding variables.
Note that all the grid data used in this study is latitude-
weighted.

3. Evaluation of climatology and spatiotem-
poral variations

3.1. Absorbed solar radiation

Absorbed solarradiation (ASR)is calculated as the down-
welling minus upwelling shortwave radiation of all-sky condi-
tions at the top of atmosphere. A previous study by Trenberth
and Fasullo (2010) found that too large ASR over the SO
was simulated by the CMIP3 models, showing a substantial
bias of more than 32 W m=2. The serious overestimation of
ASR and underestimation of cloudiness over the SO led to
poor model performance in simulating the energy budget in
the Southern Hemisphere in climate models (Marchand et
al., 2014). Here, we first compare CMIP6 multimodel mean
ASR against the CERES satellite observations. In Fig.1a,
the spatial distribution of the ASR biases can be characterized
as an overall underestimation over a large fraction of the
oceans and an overestimation in the high-latitude region
(50°W-150°E, 53°-60°S). More importantly, the magnitudes

TOA ASR
0 A UKESM1-0-LL

40 0.3 B CESM2

] C GISS-E2-1-G

/ D MPI-ESM-1-2-HAM
30/ E NorESM2-LM
20|
(1] 2 L 1 (0

Fig. 1. (a) The multimodel mean bias of Absorbed Solar Radiation (ASR) at the top of atmosphere (TOA) over the Southern
Ocean (SO) between five CMIP6 models and CERES observations. (b) The relative bias. (c) The Taylor Diagram of
multiyear mean ASR in CMIP6 simulations against CERES observations. The axis is the standard deviation of CMIP6 and
CERES. The root-mean-square errors (RMSEs) of the models are indicated by the green dotted lines. The arc refers the

correlation coefficient between CMIP6 models and CERES.
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of those biases are within the range of £10 W m=2 and +10%
relative changes (Fig. 1b), showing an evident improvement
of ASR in CMIP6 compared to CMIP3 and CMIPS. In
Fig. lc, all the correlation coefficients of multiyear mean
ASR between CERES and individual CMIP6 models are
larger than 0.95, indicating well-aligned spatial patterns
between satellite and CMIP6 models. The RMSE of multiyear
mean ASR for the CMIP6 models compared to CERES
ranges from 4 W m2 to 8 W m2, and such biases between
simulations and observations are considerably smaller than
previous results from CMIP3 (Trenberth and Fasullo, 2010).

3.2. Cloud radiative effect

Cloud radiative effect (CRE) is defined in this study as
the difference of net incoming radiation between all-sky and
clear-sky conditions at the top of atmosphere (TOA). The spa-
tial distributions of LW CRE, SW CRE, and net CRE from
the CMIP6 models and CERES are shown in Fig. 2. The spa-
tial patterns of radiative properties in the CMIP6 models are
generally consistent with CERES. However, the magnitudes
are stronger over the deep ocean and relatively weaker on
the near-shore regions. Considering the abundant low-level
clouds over the SO, there is an obvious cooling effect over
the southern Indian and Atlantic oceans. The relatively
weaker cooling occurred in the high latitudes to the south of
55°S (Figs. 2b and e). This can be attributed to the high surface
reflectance by sea ice appearing in austral winter with rela-
tively weak solar radiation. According to Figs. 2g and h, the
warming effect of LW CRE is relatively underestimated by
the CMIP6 models over a large fraction of the SO, but the spa-
tial biases of SW CRE between CMIP6 models and CERES

4075 4075

50°8 30 50°8

20 60

CERES TOA SW CRE (M=—-70.11W n_1_2?‘

suggest that the cooling effect of SW CRE is apparently over-
estimated over the areas south of 50°S and underestimated
over the lower latitudes. The larger bias of SW CRE can
also explain the similar pattern of net CRE discrepancy due
to the stronger magnitude of the effect of SW CRE than
theof LW counterpart (Fig. 2i). Generally speaking, the
biases in net CRE are contributed by both SW and LW CRE
in the lower latitudes, while SW CRE biases dominate over
the high latitudes. The standard deviations between the five
CMIP6 climate models are used to represent the inter-model
spreads. The standard deviations in SW CRE and net CRE,
particularly over the area to the south of the African continent
(0°-25°E, 40°-47°S), reach more than 15 W m2, making
the model biases less statistically significant in those
regions.

To examine the fidelity of each CMIP6 model in a
more quantitative manner, the Taylor diagrams (Taylor,
2001) for the CRE spatial distributions are shown in Fig. 3.
LW CRE is found to have a larger bias than the SW counter-
part. As we learn from Fig. 2g, the CMIP6 multimodel
mean cannot capture the magnitude of LW CRE very well,
with maximal underestimation of about 5 W m2. In Fig. 3a,
the Taylor diagram shows that the correlation coefficient of
the LW CRE spatial distribution is less than 0.6, with
RMSE larger than 2 W m2. On the contrary, the simulated
SW CRE and net CRE are better correlated with observations
(Figs. 3b and c). In particular, UKESM1-0-LL exhibits the
best performance with the largest correlation coefficient and
the smallest RMSE. CESM2 also shows good performance
in SW and net CRE. The net CRE evaluation resembles that
of SW CRE according to the three criteria in the Taylor dia-
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Fig. 2. Multimodel means and standard deviations of LW, SW, and net CRE from five CMIP6 models and from CERES.
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grams, implying that the net CRE is mainly regulated by the
SW part.

3.3. Cloud fraction

Cloud macro-physical properties such as CF can play a
dominant role in determining the radiative characteristics of
cloud. Basically, increasing cloud coverage can reduce outgo-
ing longwave radiation at the TOA and shortwave radiation
reaching the surface. The CF spatial pattern over the SO in
the CMIP6 models generally agrees with MODIS (Figs. 4a
and b), with more cloud cover over the deep ocean regions.
The differences between MODIS and the CMIP6 models

TOA LW CRE

TOA SW CRE

(Fig. 4c) suggest that there is less CF simulated in CMIP6
models, especially over the region near 40°S. The CF differ-
ence between MODIS and CMIP6 models can be caused by
many factors, such as cloud overlap algorithms and the thresh-
old assumptions for cloud formation (Jian et al., 2021). The
spatial distribution of the spread of the five CMIP6 models
can be seen in Fig. 4d. The model disagreement is larger
over the southern Indian Ocean (0°-25°E, 40°—47°S), where
a similar bias in net CRE simulation can be found (Fig. 21).
Specifically, according to the Taylor diagram (Fig. 4e),
UKESM1-0-LL and CESM2 exhibit better performance in

TOA NET CRE

A UKESM1-0-LL

B CESM2

C GISS-E2-1-G

D MPI-ESM-1-2-HAM
E NorESM2-LM

Fig. 3. Taylor Diagrams of multiyear mean (a) LW, (b) SW, and (c) net CRE in CMIP6 simulations compared with CERES
observations. The axis is the standard deviation of CMIP6 simulations and CERES observations. The RMSE of difference
between simulation and observation is represented as green dotted line. The arc refers the correlation coefficient between

CMIP6 and CERES.
AT°S MODIS CF (M=88.01%) 160
90
80
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70
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60°S 50
180°W  90°W 0°E 90°E 180°E
= [
658 CMIP6 CF (M=82.85%) 100
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0°E
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Fig. 4. Spatial distribution of multiyear mean total cloud fraction (CF) over the SO from CMIP6 simulations and MODIS
observations (a—d). Taylor Diagram of multiyear spatial average of CMIP6-simulated CF to MODIS-observed CF (e).
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simulating CF with higher spatial correlation and smaller
RMSE against satellite observations. The underestimated
CF in the models can also explain the lower modeled LW
CRE compared to CERES observations. LWP and COD do
not impact LW radiation significantly because cloud emissiv-
ity is close to 1 when LWP and COD are larger over the
region, like over the SO.

LCF in the CMIP6 models and in MODIS is shown in
Fig. 5. Because of unavailable LCF output from GISS-E2-1-
G and MPI-ESM-1-2-HAM, only CESM2, NorESM2-LM,
and UKESM 1-0-LL are compared with MODIS. The observa-
tion shows that LCF (Fig. 5a) has a pattern similar to total
CF (Fig. 4a), i.e., greater cloud fraction at higher latitudes.
This pattern is also consistent with the distribution of net
CRE shown in Fig. 2c, which has a stronger cooling effect
over the high-latitude deep sea. Note that the net CRE over
the region of 100°-180°E is weaker than other areas which
is caused by the smaller liquid cloud fraction of this region.
Compared to observations, the CMIP6 LCF bias is high in
the area near 40°—45°S and low near 50°—60°S. Moreover,
the inter-model spread is rather large over the area of 50°
—100°E, 45°-55°S, which makes the model-observation com-
parison meaningless in this region.

3.4. Cloud liquid water path and cloud optical depth

The spatial patterns of cloud LWP in the CMIP6 multi-
model mean and in MODIS are shown in Fig. 6. The
MODIS observation reveals that the high-latitude LWP is dis-
tinctly larger than the LWP at lower latitudes (Fig. 6a),
which is consistent with the patterns of observed CF

MODIS LCF (M=43.27%)
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(Fig. 4a) and LCF (Fig. 5a). Compared to MODIS, the multi-
model mean LWP in the CMIP6 models is underestimated
by 19.9% (Figs. 6b and c). The spatial distribution of modeled
LWP is characterized by high values in the middle of the
SO between 40°-50°S, which is not comparable with observa-
tions. The standard deviations among the five CMIP6 models
are generally large over the high latitudes (50°-60°S).

For the individual CMIP6 models, their spatial correla-
tions with observations are rather diverse. There are even neg-
ative correlation coefficients for MPI-ESM-1-2-HAM and
UKESMI1-0-LL (Fig. 6e). In contrast, the LWP spatial pat-
terns in CESM?2, GISS-E2-1-G, and NorESM2-LM are rea-
sonable. The RMSE magnitude also differs vastly among dif-
ferent models, ranging from a minimum error of 20 g m2
for CESM2 to a maximum error of 40 g m~2 for UKESM1-0-
LL. Note that a negative spatial correlation coefficient never
occurs for other cloud macrophysics parameters like total
CF and LCF in any model discussed here, implying a much
larger challenge for those models to predict LWP.

The SO mean COD is comparable between the CMIP6
mean (15.2) and MODIS (14.9). The slight overestimation
of COD in CMIP6 can compensate for the underestimation
of CF in the radiation calculation, leaving the modeled
mean CRE close to the satellite observation. However,
regional biases in COD are much larger. Spatially, the
biases appear as a general overestimation at lower latitudes
and underestimation at higher latitudes. Meanwhile, the spa-
tial patterns of satellite-observed COD, the multimodel
mean COD, and the differences between those two (Figs. 7a,

LCF

0 A UKESM1-0-LL
B CESM2
C NorESM2-LM

40°S 15
10
50°S
5
N 0

180°W 90°W 0°E

Fig. 5. Same as Fig. 4, except for liquid cloud fraction (LCF).



b, and c) are quite similar to the patterns of LWP (Fig. 6). It
implies COD is largely controlled by LWP in this region.
Of the individual CMIP6 models involved in this study
(Fig. 7e), CESM2 is the only model showing reasonable
COD performance, with a spatial correlation of 0.75 and a

CLOUD SIMULATIONS IN THE SOUTHERN OCEAN

RMSE of 2.2. Both the spatial distributions and magnitudes
of COD in the other four models exhibit marked biases com-
pared to MODIS, with correlation coefficients smaller than
0.12 and RMSE larger than 3. In particular, the magnitude
of COD in MPI-ESM-1-2-HAM is extremely low (generally

A UKESM1-0-LL

40°S _MODIS LWP (M=141.46 g m S0 B CESM2
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U 50 60
50°S : \ 0 50° 0
R 3 0d 20
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Fig. 6. Same as Fig. 4, except for liquid water path (LWP).
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\ q 5
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Fig. 7. Same as Fig. 4, except for liquid cloud optical depth (COD).
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less than 0.4), which means its predicted COD has no physical
meaning.

3.5. Cloud effective radius

Compared to MODIS r,, the CMIP6 models show poor
performance in simulating r, over the SO. As seen in
Fig. 8a, r, over the deep oceans is much larger in satellite
observations than it is near the continent of South America.
In contrast, the spatial pattern of the CMIP6 multimodel
mean r, shows the opposite, i.e., larger r, is predicted over
the near-shore regions (Fig. 8b). Moreover, the differences
of r, climatology between MODIS and the CMIP6 models
(Fig. 8c) show that the magnitude of r, over the SO is underes-
timated by about 11.8% by the CMIP6 models. The large
biases in the deep oceanic regions are consistent among the
models, as a high standard deviation of r, occurs only in the
coastal regions near South America in the five CMIP6 mod-
els. The relationships between the five individual CMIP6
models and MODIS are shown in Fig. 8e. The RMSE of simu-
lated r, in the five CMIP6 models compared to MODIS is
between 0.8-2.6 pum, indicating stark differences in r,
between the CMIP6 models and satellite observations.

3.6. Seasonal cycles of variables

The above evaluations focus on the climatology and spa-
tial distributions of cloud properties. Here, we further evaluate
the seasonal variations of CRE, the related cloud properties,
and AOD in the five CMIP6 models. The simulated ten-
year averaged seasonal cycles in SW and LW CRE in the
five individual CMIP6 models exhibit good agreement with
the ones from CERES (Figs. 9a and b). Both models and satel-

MODIS r_ (M=13.28 um)

i

50°S

. o Lot
180°W  90°W 0°E 90°E 180°E
CMIP6 r_ (M=11.71 um)
40°S .. =

50°S

lite observations show that SW CRE peaks in the austral sum-
mer, as the solar radiation reaches the maximum in the sum-
mer. Meanwhile, the CMIP6 models and CERES also agree
that LW CRE peaks in the austral winter. However, there
are significant differences between the CMIP6 models and
MODIS in the temporal evolution of cloud physical properties
and AOD throughout a year. The temporal changes in CF
(Fig. 9¢) between CMIP6 models and observations are rela-
tively consistent. All models capture the peak in the austral
winter, but two of them (GISS-E2-1-G and MPI-ESM-1-2-
HAM) erroneously predict another peak in the austral summer
that does not exist in the satellite observations. Different
with CF seasonality, LCF reaches the maximum over the
SO in the austral summer. Only UKESM1-0-LL can simulate
such a pattern, while CESM2 and NorESM2-LM predict
two LCF peaks in spring and fall.

Much larger disparities in the seasonal cycles can be iden-
tified for COD, r,, LWP, and AOD in comparing the
CMIP6 models with MODIS. As shown in Figs. 9e, f, and g,
the temporal changes in COD, r,., and LWP from MODIS
share a similar pattern, i.e., an increase in austral winter and
a decrease in austral summer. However, the modeled LWP
seasonality is opposite to that pattern. Therefore, even
though the modeled r,, generally agrees with the observed sea-
sonal pattern, the seasonality of COD is not comparable
between models and MODIS. To be more specific, MPI-
ESM-1-2-HAM, NorESM1-LM, and CESM2 simulate the
oppositive trends, and UKESM1-0-LL cannot actually repre-
sent the obvious change of corresponding variables.
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Fig. 8. Same as Fig. 4, except for liquid cloud effective radius (r).
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Fig. 9. Annual cycles of normalized cloud radiative effect and cloud physical properties in five CMIP6 models and satellite
observations. Note that the normalization is calculated as the monthly-mean value divided by the maximum value throughout

a year.
4. Exploration of uncertainty sources
4.1. CRE error estimation

To explore the possible influence of cloud physical prop-
erties on the net CRE, the correlation coefficients of spatial
distributions between individual cloud physical properties
and net CRE are calculated from three sources: the satellite
observation, the CMIP6 multimodel mean, and the differ-
ences between models and observations (Fig. 10). Generally,
all cloud physical properties examined here are positively cor-
related with SW CRE. For CF, the observations show a high

correlation coefficient of about 0.6, while the modeled clima-
tological means and biases do not show strong relationships
between CF and SW CRE. In contrast, the models all agree
well with observations on the strong positive relationship
between LCF and SW CRE. For COD and LWP, the observa-
tions only show a moderate positive correlation, with coeffi-
cients no larger than 0.3, while much stronger correlations
between COD/LWP and SW CRE are found in the CMIP6
models. It indicates that the radiation simulations of those
CMIP6 models over the SO are too sensitive to LWP and
COD. The positive correlation between CRE and r,, is unex-
pected to some extent, and it implies that some other co-
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varying factors dictate such a relationship.

The relative importance of each factor in contributing
to SW CRE can be partly revealed by comparing the correla-
tion coefficients across all parameters in their relationship
with SW CRE. In observations, CF and LCF exhibit the
largest correlation, indicating highest relevance to SW CRE.
However, for the CMIP6 models, COD, LWP, and r, are the
more relevant variables compared with CF and LCF, corrobo-
rating the notion that the SW CRE controlling factors are
quite different between the models and observations. For
the biases in the modeled SW CRE, the potential largest con-
tributors include LCF, LWP, and COD, as their biases resem-
ble those of SW CRE well in space with high correlation coef-
ficients. Furthermore, AOD-SW CRE relationships are
found to be positive in both observations and models. How-
ever, the biases in the modeled SW CRE cannot be
explained by those in the aerosol field, as there is a small cor-
relation coefficient between aerosol and SW CRE biases.

The two key parameters in controlling CRE are CF and
LWP. To quantitatively estimate their joint and relative contri-

butions to CRE errors, we adopt a multivariate linear regres-
sion model to link CRE with CF and LWP. The regression
slopes of CREs versus CF (dcr) and LWP (dpwp) can be
derived from Eq. (5),

CRE = 6CFCF + 6LWPLWP +r, (5)

where CRE represents the LW, SW, or net CRE. ris the resid-
ual of the corresponding regression.

Following Dolinar et al. (2015), the CRE sensitivity to
CF or LWP (&g.), the CRE errors from CF or LWP bias
(&bias), the co-variations (&.y), and the total errors (gy,)) are
computed as follows:

Esen = (Om — Oobs) Xobs » (6)
Ebias = Oobs (Xm — Xobs) » @)
Ecov = (Om — Oobs) (Xm — Xobs) (8)
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Fig. 10. Correlation coefficients of spatial distributions between SW CRE and cloud physical properties or
AOD in satellite products, multimodel mean, and the model biases (model minus observation).

Table 4. Individual errors and total error in SW, LW, and net CRE of the CMIP6 models as indicated by CRE sensitivities to CF or
LWP, biases of CF or LWP, and co-variations.
SW CRE LW CRE net CRE
CF sensitivity error 187.56 21.61 209.18
CF biases 8.22 0.12 8.34
CF co-variations -10.93 -1.26 -12.19
LWP sensitivity error —-104.86 -1.95 -106.41
LWP biases -6.18 -1.55 -6.56
LWP co-variations 21.41 0.32 21.73
Total 95.22 17.29 114.09

Note: Error are in units of W m2.
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Etotal =Esen, CF T Esen, LWP 1 Ebias,CF+
Ebias, LWP T Ecov, CF t Ecov, LWP »

©

where X is CF or LWP, the subscript obs means the observa-
tion, and m represents the simulated value.

Four errors (&sen, Ebiass Ecovs Etotal) for SW, LW, and net
CRE are shown in Table 4. The SW CRE sensitivity to CF
and LWP can reach 187.6 W m=2 and —104.9 W m~2, respec-
tively. The different signs of the sensitivity errors and
biases from CF and LWP once again corroborate the
notions that there are compensating errors in the modeled
SW CRE calculation, and the cancellation of those errors
result in smaller error in CRE. Similar with SW CRE, the
net CRE is sensitive to CF and LWP with sensitivity magni-
tudes of 209.2 W m2 and —106.4 W m2, respectively. LW
CRE sensitivities to CF or LWP, the biases in CF and LWP,
and the co-variations are much smaller than the ones in SW
and net CRE, indicating that simulated SW sensitivity con-
tributes most to the total errors. With larger magnitudes in
all four errors, CF generally exhibits a larger influence on
CRE in comparison with LWP.

4.2. Relationship between COD, LWP, and r,

Asis discussed in section 3, the modeled spatial distribu-
tions of LWP, COD, and r, have different characteristics com-
pared to the MODIS observations. Even though LWP and
COD in the CMIP6 models share similar spatial patterns
(Figs. 6 and 7), that of r, is largely different from them
(Fig. 8). This motivates us to explore how COD is calculated

MODIS

CESM2
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in each model. Employing the canonical formula of the
COD calculation in Eq. (10), we compare COD provided by
the CMIP6 models with those calculated as a function of
LWP and r..

3LWP

COD = R
2pwre

(10)

Figure 11 uses scatter density maps to show the relation-
ship between model-simulated COD and calculated COD
based on model output and MODIS retrieved and calculated
COD. In Fig. 11a, the correlation between MODIS retrieved
and calculated COD reaches 0.9, with RMSE of 1.7. As is
shown in Figs. 11b and c, the simulated COD values in
CESM?2 and UKESMI1-0-LL have better consistency with
the predicted values. In particular, the correlation coefficient
R in CESM2 can reach 0.99. In the comparison of CRE
(Figs. 2 and 3), the better inner relationship among the physi-
cal properties in CESM2 and UKESM1-0-LL can determine
the simulation appearance of CRE. However, the simulated
COD and calculated COD in GISS-E2-1-G, MPI_ESM_1-
2 _HAM, and NorESM2-LM shows weaker correlations,
with a correlation coefficient R 0of 0.53, 0.63, and 0.45, respec-
tively (Figs. 11d-f). Specifically, MPI_ESM_1-2_HAM
tends to simulate smaller COD than calculated COD. Such a
discrepancy can be explained by the “reduction factor” intro-
duced in the radiation scheme of the MPI model (Mauritsen
et al., 2019). Its purpose is to account for the cloud hetero-
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Fig. 11. Scatter density plots of COD calculated offline by LWP and r, versus COD taken directly from model output or
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genicity within a grid cell, but it is poorly constrained. The
disagreement between calculated and online simulated COD
may stem from the r, choice in the calculation based on the
model output, as mentioned in section 2.

4.3. Plausible influence from aerosols

As a possible source of bias contributing to the modeled
cloud radiative effect and physical properties in the CMIP6
models over the SO, aerosol fields in the CMIP6 models are
evaluated with satellite products. Here, we focus on AOD,
which is output by all models. Among the five CMIP6 mod-
els, the GISS model is an outlier, as its AOD values are
about six times the MODIS observations. The other four mod-
els only differ from MODIS by 0.04 (Figs. 12a and b). How-
ever, the spatial correlations of AOD between the other four
CMIP6 models and MODIS are rather poor, with coefficients
smaller than 0.2. It implies the models have difficulty in pre-
dicting the sources of aerosols of the SO and related transport
processes. Interestingly, even with the largely biased AOD
magnitude, the GISS model shows good agreement with
MODIS on the spatial pattern of AOD (Fig. 12c), showing
much larger AOD in the Atlantic and Indian oceans of the
SO than in the Pacific Ocean. The high AOD over the southern
Pacific near 150°W is also captured by the GISS model.
Note that the satellite-retrieved AOD is also subject to large
uncertainty over the SO, as the highly frequent clouds make
it difficult for the instruments to distinguish aerosol from
cloud. Overall, a poor ability of aerosol simulation in the
CMIP6 models is identified, and the biases can be propagated
to simulating cloud physical properties over the SO.

The relationships between r, and AOD from MODIS
and the five individual CMIP6 models are shown in Fig. 13.
From Fig. 13a, the satellite-derived r, is dominated by cloud
droplet radii between 13—-15 um, with AOD ranging from

0.04 to 0.19. The correlation between MODIS AOD and
MODIS r., is 0.05, indicating that the signal of
aerosol—cloud interaction is not strong in this long-time aver-
aged spatial pattern of r, over the SO, and there should be
some other more relevant factors. Three models predict a posi-
tive correlation between AOD and r,, while NorESM2-LM
and GISS-E2-1-G simulate a negative correlation (Figs. 13d
and e). The weak relationship in the observation and diverse
relationships in the model simulations reveal that it is not a
feasible way to identify aerosol—cloud interactions by simply
correlating AOD with cloud properties through their spatial
patterns.

5. Conclusion and discussions

Global climate models (GCMs) have been widely
reported to exhibit too much absorbed solar radiation (ASR)
over the Southern Hemisphere, especially over the Southern
Ocean (SO), with a mean bias more than 30 W m2. Such a
bias further leads to substantial uncertainty in simulating
atmospheric circulations and storm activities in GCMs.
Using CERES satellite observations as the benchmark, we
show that the bias of ASR over the SO simulated in the
CMIP6 models is reduced (within the range of £10 W m2)
compared to the previous CMIP models. Over a large fraction
of the SO, even an underestimation of ASR occurs. To under-
stand the improvement of ASR simulations from CMIP3 to
CMIP6, this study evaluates the performances of cloud charac-
teristics in the five climate models (CESM2, GISS-E2-1-G,
MPI-ESM-1-2-HAM, NorESM2-LM, and UKESM1-0-LL)
participating in CMIP6. We use 10-year MODIS and
CERES satellite observations to evaluate the cloud radiative
effect and cloud physical properties in those CMIP6 models
over the SO. The key findings are summarized as follows:

CMIP6 TOA AOD (M=0.14
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Fig. 12. Spatial distribution of multiyear mean aerosol optical depth (AOD) over the SO from CMIP6 models and MODIS
(a—c). Taylor Diagram of multiyear AOD spatial average of CMIP6 to MODIS (d). The axis is the standard deviation of
CMIP6 simulated AOD and MODIS AOD. The RMSE of difference between CMIP6 and MODIS is represented as green
dotted line. The arc refers the correlation coefficient between the four CMIP6 models and observation.
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Fig. 13. Scatter plots of the relations between r, and AOD from MODIS and the CMIP6 models.

a) The ASR simulations in the CMIP6 models have
been largely improved since CMIP3, and the simulations of
cloud radiative effect in the five CMIP6 models match well
with satellite observations. Especially for SW CRE, the corre-
lations between the CMIP6 models and CERES are close to
0.9. Due to the significant cloud cooling effect over the SO,
the net CRE is dominated by SW CRE. Overall, among the
five CMIP6 models, CESM2 and UKESM1-0-LL exhibit bet-
ter performances in simulating the regional radiation balance
and components.

b) Compared to MODIS, the CMIP6 models have similar
spatial patterns of CF but with underestimated magnitudes
over the SO. Similar with the CRE comparisons, CESM?2
and UKESMI1-0-LL also have better correlations with
MODIS CF than the other three CMIP6 models. However,
there are noticeable biases of LCF between the CMIP6 models
and MODIS observation, with an overestimation at lower lati-
tudes and underestimation at higher-latitude areas. More-
over, the discrepancies of cloud physical properties (LWP,
COD, and r,) between the CMIP6 models and MODIS
appear even larger. The CMIP6 models fail to capture the spa-
tial characters of cloud LWP and COD. Also, the magnitudes
of LWP and COD simulated in certain CMIP6 models
depart far away from the MODIS observations. Those identi-
fied biases are all larger than the estimated uncertainty in
the satellite products.

¢) When comparing the spatial relationships between
SW CRE and six cloud properties, we find that the simulated
SW CRE in the CMIP6 models over the SO is too sensitive

to the LWP and COD, while the observations show the SW
CRE is mainly controlled by CF and LCF. An error estimation
for CRE reveals that there are compensating errors in the mod-
eled CF and LWP, and the cancellation of those errors result
in smaller net error in CRE.

d) The simulated COD in CESM2 and UKESM1-0-LL
are well correlated with the calculated COD based on LWP
and r,. It is important to note that these two models also out-
perform the rest in the comparison of cloud radiative effect.
It implies that the inner relationship among the physical prop-
erties in each CMIP6 model can impact the simulation of
cloud radiative properties.

e) Detailed analyses to explain the biases of cloud physi-
cal properties between satellite observation and the CMIP6
models are performed in this study. Compared to MODIS,
the AOD is overestimated in the CMIP6 models, with lower
correlation. The inconsistency of AOD simulated in the
CMIP6 models can be responsible for the weaker perfor-
mance of simulating cloud physical properties over the SO.
Especially for GISS-E2-1-G, the magnitude of AOD is way
too large, which could be another uncertainty source for
cloud simulations over the SO. However, in both satellite
observation and the five CMIP6 models, there are no strong
relationships between the r, and AOD over the SO.

Data availability.  All the CMIP6 model outputs used for
this research can be downloaded from website at https://esgf-node.
IInl.gov/search/cmip6/. The CERES observations used in this
study were obtained from the NASA Langley Research Center
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CERES ordering tool at https://ceres.larc.nasa.gov/data/ (Loeb et
al., 2018; Kato et al., 2018). The MODIS satellite retrieval products
were obtained from L1 and Atmosphere Archive and Distribution
System (LAADS) MODIS Science Team, datasets can be down-
loaded at https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/
61/MODO08_M3/ (MODIS Atmosphere L3 Gridded Product Algo-
rithm Theoretical Basis Document (ATBD) & Users Guide, 2019).
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